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Abstract. Atrial fibrillation (AF) is a complex cardiac disease impact-
ing an ever-growing population and increases 6-fold the risk of thrombus
formation. However, image based bio-markers to predict thrombosis in
presence of AF are not well known. This lack of knowledge comes from
the difficulty to analyse and compare the shape of the Left Atrium (LA)
as well as the insufficiency of data that limits the complexity of models
we can use. Conducting data analysis in cardiology exacerbates the small
dataset problem because the heart cycle renders impossible to compare
images taken at systole and diastole time. To address these issues, we
first propose a graph representation of the LA, to focus on the impact
of pulmonary veins (PV) and LA Appendage (LAA) positions, giving
a simple object easy to analyse. Secondly, we propose a meta-learning
framework for heterogeneous datasets based on the consistent represen-
tation of each dataset in a common latent space. We show that such
a model is analogous to a meta-classifier, where each dataset is charac-
terised by specific projection in a common latent space, while sharing the
same separating boundary. We apply this model to the graph represen-
tation of the LA and interpret the model to give novel time-dependant
bio-markers related to PV and LAA configurations for the prediction of
thrombosis.
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1 Introduction

Atrial fibrillation (AF) is a complex cardiac disease impacting an ever-growing
population, creating a hemodynamic environment prone to clot formation and
ischemic stroke. The stratification of stroke risk in AF has significant clinical
implications for the management of anticoagulation, which was shown to effec-
tively limit the occurrence of strokes but at the cost of increased risk of bleeding.
The net benefit of introducing preventive anticoagulation is currently estimated
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by computing a score based on patient demographics, clinical condition and past
history, but the ability of this score to accurately assess stroke risk in AF patients
is largely suboptimal [8]. Thus, to better understand AF, important studies were
conducted on LA hemodynamics [12] or LAA morphology [13]. Indeed, as the
immense majority of clots occur in the LAA which is known to show high inter-
individual variability, series of studies have focused on characterizing the LAA
shape, demonstrating moderate association with stroke risk [3]. However, those
studies are mostly qualitative, tools available to clinician for decision making are
still limited and while imaging data availability is growing, it is under-utilised
to quantitatively explore novel image-based bio-markers. An important hurdle
making it difficult to use is its heterogeneity. In cardiology, images are taken at
different times in the heart cycle, using different imaging systems, and for differ-
ent tasks. Developing analysis methods allowing to integrate information across
heterogeneous datasets to enable statistical studies is therefore a necessity.

In this work we follow this idea. Inspired by [1], we propose a multi-channel
formulation to merge multiple heterogeneous datasets into a common latent
representation. This framework realises a combination of Multi-task Learning
(MTL) [9] and Meta Learning (ML) [4]: the common representation across
datasets imposed in the latent space induces homogeneity across latent pro-
jections while enriching the amount of data provided to train a classifier for
automated image-based diagnosis. In addition, the learned latent distribution of
the joint representation is a meta parameter that constitutes an excellent prior
for future datasets as it is robust to multiple datasets sharing a common task.

We propose to use such a model to explore underlying links between Throm-
bosis and Pulmonary Veins (PV), Appendage (LAA) positions and orientations
in the Left Atrium. In the following sections we propose a lightweight graph
representation of the LA to focus on PV and LAA positions and formulate the
classification methodology within a supervised framework where the common
representation is improved in terms of Kullback-Leibler divergence. We finally
apply the model to the joint analysis of LA Graphs where the data is split in
systole and diastole subsets. This constitutes a multi-label classification problem
across datasets where the labels are consistent but the dataset is heterogeneous.

2 Methodology

2.1 Pre-processing Pipeline

Our study was performed on 3D Computational Tomography scans (CT-Scans)
along with clinical data from 107 patients suffering atrial fibrillation, of which 64
are labelled Thrombus positive, a composite criterium composed of a detection
of LAA thrombus on CT scan and/or past history embolism. In particular,
our database is composed of 50 patients in systole (of which 27 are Thrombus
positive) and 57 patients in diastole (of which 37 are Thrombus positive). Cardiac
segmentation was first conducted automatically with a 3D U-Net neural network
as proposed by [5], and then hand-corrected by experts. All the data was acquired
by the Bordeaux University Hospital.



Phase-Independent Latent Representation for Cardiac Shape Analysis 539

From the available segmentation masks we use the open-source package MMG1

for meshing the shapes. First we apply a marching cube algorithm, giving a
rough meshing of the surface, the mmg3d algorithm is then applied with specific
parameters to keep the number of triangles under 2500.

2.2 Graph Representation of the LA

To study the impact of PVs and LAA geometry in clot formation, we propose
to represent the LA as a graph similar to its centre-line. To do so, we first label
automatically the PVs and LAA of every mesh with the help of the LDDMM
framework and the varifold representation of shapes (see [7]). We compute the
Atlas, or mean shape of the population, giving us a diffeomorphic registration
from the Atlas to every shape. The population can then be fully represented by
the Atlas T and a set of deformations {ϕi}i�n. After hand-labeling of the Atlas,
we warped the labels through the deformations in order to label every patient.

In practice, due to different types of vein anatomy in the population, the
atria were separated in three classes to prevent big deformations from moving
the labels too far from the roots of the veins. The analysis was performed with
the deformetrica software [2] and the deformation and varifold kernels widths
were both set to 10 mm.

Fig. 1. Pipeline for the graph representation of the LA.

As a result, the variations of each mesh were captured well up to the residual
noise on the surface. Therefore, atlas labels were warped to each subject faithfully
to the anatomy of the atrium, as shown in Fig. 1.

1 https://www.mmgtools.org/.

https://www.mmgtools.org/
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To achieve the graph representation, we extract the centre of mass of each
label (i.e. PVs, LAA and body of LA) as well as the centre of each junction
between labels, representing the ostium2. These points are the graph nodes,
each branch is connected to the centre of the body of the LA.

Finally, to have a unified coordinate system between graphs, we set the body
centre as the origin, fix the x-axis as the direction from the centre to the LAA
ostium, and chose the left anterior PV ostium as the second direction.

2.3 Design of Fusion and Classification Loss Function

Let’s denote D = {Dk}N
k=1 N datasets with respective dimension dk, and (x, y) =

{xk, yk}N
k=1 a set of pairs of observation xk and label yk from every dataset.

Let z ∈ R
d be the latent variable shared by all elements of (x, y), with d the

dimension of the latent space such that d � inf {dk|1 � k � N}. We aim at
having a common representation across datasets Dk, thus for every k a common
distribution p(z|xk, yk).

To do so, we use variational inference by introducing φ = {φk}N
k=1 the infer-

ence parameters for each datasets, θ the common generative parameters and
density functions qφ(z|xk, yk) ∈ Q, which we want, on average, to be as close
as possible to the common posterior pθ(z|D). By using the Kullback-Leibler
divergence, this problem translates to:

argmin
q∈Q

EN [DKL(qφ(z|xk, yk)||pθ(z|D))] (1)

Because of the intractability of pθ(z|D) we cannot directly solve this optimi-
sation problem. We aim to find a lower bound of (1) by expanding the Kullback-
Leibler divergence:

DKL[qφ(z|xk, yk)||pθ(z|D))] =
∫
Rd

qφ(z|xk, yk)[ln qφ(z|xk, yk) − ln pθ(z|D)]dz

(2)
Using Bayes’ theorem, we can now rearrange the divergence to:

DKL[qφ(z|xk, yk)||pθ(z|D))] = DKL[qφ(z|xk, yk)||pθ(z|x))]
− Ez∼qφk

[ln pθ(y|z, x)] + ln pθ(y|x)
(3)

Which yields the following evidence lower bound:

ln pθ(y|x) − DKL[qφ(z|xk, yk)||pθ(z|D))] =Ez∼qφk
(z|xk,yk)[ln pθ(y|z, x)]

− DKL[qφ(z|xk, yk)||pθ(z|x))]
(4)

We impose this constraint over all datasets, by supposing that every dataset is
conditionally independent, we have the following evidence lower bound:

L(x, y, θ, φ) =
1
N

N∑
k=1

Ez∼qφk
(z|xk,yk)

[∑N
k=1 ln pθ(yk|z, xk)

]

− DKL[qφk
(z|xk, yk)||pθ(z|x))]

(5)

2 The ostium is the centre of the root of the vein.
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Maximising the lower bound L is therefore equivalent to optimising the initial
problem (1). The distribution pθ(yk|z, xk) of shared parameters θ is learned by
a common decoder from the latent space, and acts on the labels yk, in this
sense the decoder is a classifier on the set of all labels in D. In addition the
learned distribution pθ is a meta-parameter that contains information from every
datasets in D.

Unlike variational auto-encoders, the reconstruction objective in (5) is over
the labels y, which transforms the traditional decoder into a classifier. Moreover
having more than one encoder impacts the reconstruction loss which becomes a
cross reconstruction of the labels from every dataset. This constraint forces the
encoders to identify a common latent representation across all the datasets.

In practice, we assume Q is the Gaussian family, parameters θ and φ are
initialised randomly, the optimisation is done by stochastic gradient descent,
using an adaptive learning rate with an Adam optimiser and back-propagation.

3 Synthetic Experiments

The aim of our synthetic experiments3 is to highlight the possibilities offered by
our method, for the sake of interpretability, we chose to use a relatively simple
parameterisation for our model, consisting of a neural network with three fully
connected layers as our encoder and 2 fully connected layers for the classifier. All
activation functions are ReLU, and a Softmax function is used for classification.

The synthetic data was generated with the make-classification function
from the scikit-learn4 library, by generating clusters of points for multi-label
classification by sampling from a normal distribution. We then generate similar
datasets by applying transformation and adding noise to the initial problem.
Thanks to this method, we can generate a high variety of independent datasets
where the features have different distributions, but sharing the same target space.

We generate a collection of 5 independent datasets of dimensions varying
between 10 and 20, sharing three labels. The latent dimension is set to 4 and
we train our model jointly across datasets, as well as on each dataset separately.
On 100 experiments, results show a generally increased overall accuracy score
on test data when the datasets are trained jointly. With a 90% confidence level,
the accuracy for joint training lies in [0.83, 0.99] with a median of 0.92, while
the accuracy for separate training lies in [0.73, 0.94] with a median of 0.86, and
about the same amount of epochs are required for convergence. Moreover, we
can see in Fig. 2 that training multiple datasets jointly leads to a coherent latent
space shared between labels (Fig. 2b), while trying to independently represent
the latent spaces of each dataset in a common space leads to poor consistency
of the latent space representation across datasets (Fig. 2a).

3 The code is available at https://github.com/Inria-Asclepios/mcvc.
4 https://scikit-learn.org/.

https://github.com/Inria-Asclepios/mcvc
https://scikit-learn.org/
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(a) The 5 independent latent spaces
in a common space

(b) Our model’s Joint latent space

Fig. 2. Latent space after convergence on 5 datasets with 3 labels. Our model provides a
unified representation (Fig. 2b), not achievable when datasets are trained independently
(Fig. 2a)

3.1 Noisy Labels

Because of the shared latent space between the collection of datasets D, some
subspace is allocated for labels that may not belong to a given dataset Di.
This brings robustness to the classification when there is an uncertainty on
the ground truth labels. In fact, if we assign a wrong label to a given dataset
Di the model is capable of assigning the observation to another label due to
the constraint of obtaining a coherent latent space. To illustrate this point we
created four datasets sharing three common possible labels; for one dataset we
modified the third label into a fourth label. In Fig. 3 we show the evolution of
the joint latent space throughout training, which highlights the preference for
obtaining a coherent latent space rather than high-accuracy, the test accuracy
dropped from 0.88 to 0.75 while the fourth label completely disappeared in the
predictions.

(a) After 10 epochs (b) After epoch 50 (c) After convergence

Fig. 3. Evolution of joint latent space whith noisy labels. The wrong label (red) dis-
appears completely from predictions to become coherent label (green) (Color figure
online)
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4 Application to LAA Graphs

Our clinical database is composed of 50 patients in systole (of which 27 are
Thrombus positive) and 57 patients in diastole (of which 37 are Thrombus pos-
itive), thus we use two encoders in which we feed the nodes of the graphs to
enable a joint analysis of the dataset. The labels are 1 if the patient is Throm-
bus positive and 0 otherwise. As such, the classes are well balanced for both
datasets. We train the model with the same architecture and hyper-parameters
as for synthetic data.

After 10-fold cross-validation, the model yields an average test accuracy of
0.89, for the diastolic set 0.92, and for the systolic set 0.86. In contrast, attempts
to classify the subsets independently suffer from mode collapse; even a careful
hyper-parameters fine-tuning results in very poor accuracy scores, reaching at
best 0.65 in both cases. This highlights the robustness of the model and the
clear advantage of joint analysis. Figure 4b shows the shared latent space with
the systole subset as (×) and diastole subset as (•). We see a clear separation of
classes as well as a common separator for the subsets, while systole and diastole
are well grouped together for each class.

When we attempt to classify the complete dataset without any splitting, dis-
regarding the considerable changes in shape during the cardiac cycle, we obtain
slightly worse accuracy results of 0.84. In addition, such a model is less inter-
pretable as important features for a given class can be contradictory in between
subsets. To highlight this we investigate important features and show possible
bio-markers.

As an additional baseline we performed PCA followed by logistic regression
with cross validation and grid search on the number of principal components.
We observed a much lower accuracy both on the complete dataset or individual
subsets (0.65 at diastole, 0.71 at systole and 0.66 on the complete dataset).

We compare results from three interpretation algorithm (Integrated Gradi-
ent [11], DeepLIFT [10], and KernelSHAP [6]) implemented in captum5 python
library. We first feed the tests 100 times during cross validation and compute
the feature importance algorithms on samples that are predicted right with more
than a 95% certainty. Mean values over all samples are the final feature attri-
bution scores. Figure 4a highlights the necessity to split the datasets to keep
clinical coherence; It shows the Integrated gradient score on the x value of the
Right Inferior PV (RIPV) point when the dataset is split (systole and diastole)
and when it is trained commonly (i.e. not split). We see the model without split-
ting the data disregards this feature when in fact it is important for the diastole
subset.

Figure 5 shows the possible bio-markers, in black are atlases of the popu-
lation at systole and diastole, in blue are important feature values for control
patients, in red are the ones for Thrombus positive patients. At diastole, the
model seems to focus on the left PVs; their ostia being closer to and rotated
towards the interior compared to the rest of the frame in Thrombus positive

5 https://captum.ai/.

https://captum.ai/
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Fig. 4. Results of the method. Joint analysis enables better interpretation of biomarkers
(4a) as well as successful representation in the latent space (4b).

cases; In addition, for those cases, all veins intersection with the LA body are
more horizontal, this ‘fold’ could impact the hemodynamic environment of the
LA, which plays an important part in clot formations. At systole, the left PV
and the angulation of the appendage are the focus. For Thrombus positive cases,
PVs are rotated towards the interior with the left interior PV being on top and
aligned with the LAA; The LAA ostium tends to be closer to the center and the
LAA lower. Finally we see again the PVs tendency to being more ‘folded’. While
being interpretable, this also highlights the importance of analysing systole and
diastole images separately.

Fig. 5. Visualisation of important features for predicting presence (red) and absence
(blue) of thrombosis, both at diastole and systole. (Color figure online)
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5 Conclusion

In this work, we provided a graph representation of the LA to analyse possible
image-based bio-markers. In order to enable joint analysis of systole and diastole
graphs we presented a new method at the crossroad between multi-task learning
and meta learning to tackle the joint analysis of multiple heterogeneous datasets.
By leveraging on the idea that the whole is better than its parts, we proposed
a classification scheme with good interpretation properties of the latent space
highlighted in the study of LA Graphs. We believe that the coherent latent
space inherited from our model makes it possible to have deep neural network
as encoders while conserving the interpretability of simpler models. We aim at
further exploiting this property by applying the method to joint analysis of
datasets containing much more heterogeneity. Finally, we believe the lightweight
graph representation can be added in a more complete and multi-disciplinary
study of the LA.
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