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Abstract. Volumetric meshes with hexahedral elements are generally
best for stress analysis using finite element (FE) methods. With recent
interests in finite element analysis (FEA) for Transcatheter Aortic
Valve Replacement (TAVR) simulations, fast and accurate generation of
patient-specific volumetric meshes of the aortic valve is highly desired.
Yet, most existing automated image-to-mesh valve modeling strategies
have either only produced surface meshes or relied on simple offset oper-
ations to obtain volumetric meshes, which can lead to undesirable arti-
facts. Furthermore, most recent advances in deep learning-based meshing
techniques have focused on watertight surface meshes, not volumetric
meshes. To fill this gap, we propose a novel volumetric mesh genera-
tion technique using template-preserving distortion energies under the
deep learning-based deformation framework. Our model is trained end-
to-end for image-to-mesh prediction, and our mesh outputs have good
spatial accuracy and element quality. We check the FEA-suitability of
our model-predicted meshes using a valve closure simulation. Our code
is available at https://github.com/danpak94/Deep-Cardiac-Volumetric-
Mesh.

Keywords: 3D image to volumetric mesh · ARAP energy ·
CNN-GCN · Finite element analysis · Aortic valve modeling

1 Introduction

For stress analyses using finite element (FE) methods, volumetric meshes with
hexahedral elements lead to most accurate results and better convergence [25].
With recent interests in finite element analysis (FEA) for Transcatheter Aor-
tic Valve Replacement (TAVR) simulations [2,28], fast and accurate generation
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of patient-specific volumetric meshes of the aortic valve is highly desired. Yet,
most existing automated valve modeling strategies have only focused on voxel-
wise segmentation [15], surface meshes, [7,18] or volumetric meshes generated
by simple offset operations [6,12]. Although offsetting is viable for certain initial
surface meshes, it quickly becomes ill-defined when combining multiple compo-
nents or modeling structures with high curvature. Post-processing can mitigate
some of these problems, but it limits usability by non-experts during test time.
In this work, we aim to address this limitation by learning an image-to-mesh
model that directly outputs optimized volumetric meshes.

Most existing valve modeling approaches have used template deformation
strategies [4,7,12,16]. We adopt a similar approach, as it ensures mesh corre-
spondence between model predictions for easy application to downstream tasks
(e.g. shape analysis or batch-wise FEA). Some previous works have used sequen-
tial localization + deformation-along-surface-normals and/or hand-crafted image
features [7,12], both of which limit the methods’ adaptability to image and tem-
plate mesh variations. Instead, we focus on deep learning-based deformation
methods [3,16,27,30], which addresses both of these limitations by (1) not lim-
iting the deformation to the surface normal directions and (2) learning image
features via end-to-end training. Deep learning also has additional benefits such
as fast inference and the ability to generate diffeomorphic deformation field [3].

Mesh deformation in computer graphics aims to match the user-defined loca-
tions of handle points while preserving the mesh’s geometric detail [1,24]. Unfor-
tunately, the same formulation is not ideal for valve modeling because it is dif-
ficult to define proper handle points and their desired locations on 3D images
for the flexible valve components. Instead, we apply the idea of minimizing the
mesh distortion energy into our deep learning pipeline, while enforcing spatial
accuracy through surface distance metrics.

In summary, we propose a novel deep learning image-to-mesh model for vol-
umetric aortic valve meshes. Our contributions include: (1) identifying two effec-
tive deformation strategies for this task, (2) incorporating distortion energy into
both strategies for end-to-end learning, and (3) generating volumetric meshes
from just the base surface training labels (i.e. surface before adding thickness).

2 Methods

2.1 Template Deformation-Based Mesh Generation

Template deformation strategies aim to find the optimal displacement vectors δ
for every vertex vi ∈ V of a mesh M , where M = (V, E) is a graph with nodes
V and edges E . Then, the optimization over a loss L is:

δ∗ = arg min
δ

L(M,M0, δ) (1)

where M and M0 are target and template meshes, respectively. We used deep
learning models as our function approximator hθ(I;M0) = δ, where I is the
image and θ is the network parameters. Thus, we ultimately solved for θ:
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θ∗ = arg min
θ

[
E(I,M)∼Ω [L(M,M0, hθ(I;M0))]

]
(2)

where Ω is the training set distribution. We experimented with two variations
of hθ, as detailed below. Both models are shown schematically in Fig. 1.

Fig. 1. (Top) Training steps using space deformation. (Bottom) Inference steps using
node-specific displacements; training is performed with the same losses as space defor-
mation using δ(M0), M , M0,open and M0,closed.

2.1.1 Space Deformation Field (U-Net)
For the first variation, we designed hθ to be a convolutional neural network
(CNN) that predicts a space deforming field φ ∈ R

H×W×D×3 for each I ∈
R

H×W×D. From φ, we trilinearly interpolated at V0 to obtain δ. To obtain
a dense topology-preserving smooth field, we used the diffeomorphic B-spline
transformation implemented by the Airlab library [22]. In this formulation, the
loss typically consists of terms for task accuracy and field regularization [3,21]:

L(M,M0, φ) = Lacc(P (M), P (φ(M0))) + λLsmooth(φ) (3)

where L from Eq. 1 is modified to include φ, which fully defines δ. P is point
sampling on the mesh surface, where for a volumetric mesh such as φ(M0),
points are sampled on the extracted base surface. In this work, Lacc is fixed for
all methods to be the symmetric Chamfer distance:
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Lacc(A,B) =
1

| A |
∑

a∈A

min
b∈B

‖a − b‖22 +
1

| B |
∑

b∈B

min
a∈A

‖b − a‖22 (4)

For baseline comparison, we used the bending energy for Lsmooth [11,21]. For our
final proposed method, however, we show that the proposed distortion energy is
able to replace Lsmooth and produce better results.

2.1.2 Node-Specific Displacement Vectors (GCN)
For the second variation of hθ, we directly predicted δ using a combination of a
CNN and a graph convolutional network (GCN), similar to [5,27]. The intuition
is to have the CNN extract useful imaging features and combine them with the
GCN using the graph structure of M0. In this formulation, it is difficult to restrict
node-specific displacements to be smooth or topology-preserving. Instead, the
loss typically consists of metrics for task accuracy and mesh geometric quality:

L(M,M0, δ) = Lacc(P (M), P (δ(M0))) + λT Lgeo(δ(M0)) (5)

where Lacc is defined by Eq. 4. Similar to the space deformation method, we
established the baseline with common Lgeo terms (Lnormal, Ledge, Llap with
uniform edge weights) [5,10,27,30]. For our final proposed method, we show
that the proposed distortion energy is able to replace Lgeo and produce better
results.

2.2 Distortion Energy (Larap)

Although Lsmooth and Lgeo have been effective in their proposed domains, they
are not ideal for volumetric mesh generation, especially when we only use the
base surface labels for training. To preserve the volumetric mesh quality of
δ(M0), we used the deformation gradient F to allow for the calculation of various
distortion energies [8]. For each tetrahedral element with original nodes x̄i and
transformed nodes xi = δi(x̄i):

F =

⎡

⎣x1 − x0 x2 − x0 x3 − x0

⎤

⎦

⎡

⎣x̄1 − x̄0 x̄2 − x̄0 x̄3 − x̄0

⎤

⎦

−1

(6)

which can be broken down into rotation and stretch components using the polar
decomposition: F = RS. More specifically, we can use singular value decompo-
sition (SVD) to obtain F = UΣVT , from which we can calculate R = UVT

and S = VΣVT . Using these components, we can derive various task-related
distortion energies [8,24]. We used the as-rigid-as-possible (ARAP) energy, a
widely used energy for geometry processing. The ARAP energy density for each
ith element can be expressed as:

Ψarap(i) = ‖F − R‖2F = ‖R(S − I)‖2F = ‖(S − I)‖2F (7)
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where I is the identity matrix and ‖·‖F is the Frobenius norm. Assuming equal
weighting, Larap = 1

N

∑N
i=1 Ψarap(i) for N elements. Note that all operations

are fully differentiable and therefore suitable for end-to-end learning, as long as
F is full rank (i.e. no degenerate elements) and Σ has distinct singular values
(i.e. F �= I). In our experiments, both conditions were satisfied as long as we
initialized δ with randomization. Computing F for hexahedral elements involves
using quadrature points, but we were able to obtain just as accurate results in
less training time by simply splitting each hexahedron into 6 tetrahedra and
using the above formulation.

2.3 Weighted Larap (Lwarap)

Due to the large structural differences in the leaflets during valve opening and
closing, imposing Larap with one template leads to suboptimal results. We
addressed this with a simple weighting strategy:

Lwarap = αclosedLarap,closed + αopenLarap,open (8)

where α is the softmax of distances from the output to the closed and open
templates: α(i) = 1 − exp(Lacc(M0,i, δ(M0)))/

∑
i exp(Lacc(M0,i, δ(M0))). The

final loss of our proposed method is then:

L(M,M0, δ) = Lacc(P (M), P (δ(M0))) + λLwarap(δ(M0)) (9)

3 Experiments and Results

3.1 Data Acquisition and Preprocessing

We used a dataset of 88 CT scans from 74 different patients, all with tricus-
pid aortic valves. Of the 88 total scans, 73 were collected from IRB-approved
TAVR patients at the Hartford hospital, all patients being 65–100 years old. The
remaining 15 were from the training set of the MM-WHS public dataset [31]. For
some Hartford scans, we included more than one time point. The splits for train-
ing, validation, and testing were 40, 10, 38, respectively, with no patient overlap
between the training/validation and testing sets. We pre-processed all scans by
thresholding the Hounsfield Units and renormalizing to [0, 1]. We resampled all
images to a spatial resolution of 1 × 1 × 1 mm3, and cropped and rigidly aligned
them using three manually annotated landmarks, resulting in final images with
[64, 64, 64] voxels.

We focused on 4 aortic valve components: the aortic wall and the 3 leaflets.
The ground truth mesh labels were obtained via a semi-automated process [12],
which included manually annotating the component boundaries and points on
the surface. Commissures and hinges were separately labeled to assess correspon-
dence accuracy. Two mesh templates for open and closed valves were created
using Solidworks and Hypermesh, with the representative anatomical parame-
ters in [26]. Each template has 19086 nodes and 9792 linear hexahedral elements.
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Table 1. All evaluation metrics for baseline (Lsmooth/Lgeo), weighting ablation,
(Larap), and proposed (Lwarap) methods. Values are combined across all patients
and valve components (mean(std)). U-net: space deformation, GCN: node-specific dis-
placements, CD: Chamfer Distance, HD: Hausdorff Distance, Corr: Correspondence
error, Jac: scaled Jacobian determinant, (1): unitless, *: p < 0.01 between baseline and
Lwarap, †: p < 0.01 between Larap and Lwarap. Lower is better for all metrics.

CD (mm) HD (mm) Corr (mm) 1 - Jac (1) Skew (1)

U-net (Lsmooth) 0.63(19) 3.60(128) 1.72(117) 0.18(14) 0.40(19)

U-net (Larap) 0.61(20) 3.65(140) 1.61(101) 0.14(13) 0.32(20)

U-net (Lwarap) 0.60(19)∗ 3.71(139) 1.60(109) 0.12(12)∗† 0.30(18)∗†

GCN (Lgeo) 0.70(23) 3.91(174) 1.68(116) 0.48(32) 0.62(21)

GCN (Larap) 0.72(23) 3.77(140) 1.81(110) 0.14(13) 0.33(20)

GCN (Lwarap) 0.69(20)† 3.58(122)∗† 1.74(108) 0.11(11)∗† 0.28(18)∗†

Fig. 2. Mesh predictions using space deformation (U-net) and node-specific displace-
ments (GCN), with baseline regularization terms vs. Lwarap. The zoomed-in parts
demonstrate the main advantage of our approach - good volumetric mesh quality
throughout the entire mesh (shape closer to cube is better).

3.2 Implementation Details

We used Pytorch ver. 1.4.0 [17] to implement a variation of a 3D U-net for
our CNN [20], and Pytorch3d ver. 0.2.0 [19] to implement the GCN. The basic
CNN Conv unit was Conv3D-InstanceNorm-LeakyReLu, and the network had
4 encoding layers of ConvStride2-Conv with residual connections and dropout,
and 4 decoding layers of Concatenation-Conv-Conv-Upsampling-Conv. The base
number of filters was 16, and was doubled at each encoding layer and halved at
each decoding layer. The GCN had 3 layers of graph convolution operations
defined as ReLU(wT

0 fi +
∑

j∈N (i) w
T
1 fj) and a last layer without ReLU . The

input to the initial GCN layer was concatenation of vertex positions and point-
sampled features from the last 3 U-net decoding layers. The GCN feature sizes
were 227 for input, 128 for hidden, and 3 for output layers. We found λ for every
experiment with a grid search based on validation error, ranging 5 orders of
magnitude. λ = 5 for Lwarap. The value of λ is crucial for all experiments,
but results were generally not too sensitive within one order of magnitude.
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Fig. 3. CT images and predicted meshes at 2 orthogonal viewing planes. Each block
of 8 images is a different test set patient. Y: aortic wall and R, G, B: valve leaflets

We used the Adam optimizer [9] with a fixed learning rate of 1e−4, batch size of
1, and 2000 training epochs. The models were trained with a B-spline deforma-
tion augmentation step, resulting in 80k training samples. All operations were
performed on a single NVIDIA GTX 1080 Ti, with around ∼24 h of training
time and maximum GPU memory usage of ∼1.2 GB. Inference takes ∼20 ms per
image.

3.3 Spatial Accuracy and Volumetric Mesh Quality

We evaluated the mean and worst-case surface accuracy of our predicted meshes
using the symmetric Chamfer distance (divided by 2 for scale) and Hausdorff
distance, respectively. Note that the ground truth meshes are surface meshes,
so we extracted the base surface of our predicted volumetric meshes for these
calculations. For correspondence error, we measured the distance between hand-
labeled landmarks (3 commissures and 3 hinges) and specific node positions on
the predicted meshes. We also checked the predicted meshes’ geometric quality
using the scaled Jacobian determinant (−1 to 1; 1 being an optimal cube) and
skew metrics (0 to 1; 1 being a degenerate element) [23]. Statistical significance
was evaluated with a paired Student’s t-test between our proposed method vs.
the baseline/ablation experimental groups. The baseline was established with
U-net + Lsmooth and GCN + Lgeo, and the ablation study was for comparing
against non-weighted Larap.

For both deformation strategies, our proposed method with Lwarap holis-
tically outperformed the baseline and non-weighted Larap (Table 1, Fig. 2, 3).
As expected, the most significant improvement was in element quality, and our
method also showed slight improvements in spatial accuracy. Our model was
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Fig. 4. FEA results using U-net + Lwarap meshes for 10 test set patients. Values
indicate maximum principal stress in the aortic wall and leaflets during diastole (kPa).

robust to the noisy TAVR CT scans riddled with low leaflet contrast and lots of
calcification, and was applicable to various phases of the cardiac cycle.

3.4 FE Stress Analysis During Valve Closure

Figure 4 shows the results of FEA performed with volumetric meshes generated
directly from our method (i.e. no post-processing). We used an established pro-
tocol [12,29] with the static and nonlinear analysis type on Abaqus/Standard.
Briefly, we simulated valve closure during diastole by applying an intraluminal
pressure (P = 16 kPa) to the upper surface of the leaflets and coronary sinuses
and a diastolic pressure (P = 10 kPa) to the lower portion of the leaflets and
intervalvular fibrosa. The resulting maximum principal stresses in the aortic wall
and leaflets were approximately 100–500 kPa (Fig. 4), consistent with previous
studies [12,29]. This demonstrates the predicted meshes’ viability for FEA, and
thus potential clinical relevance in the form of biomechanics studies and TAVR
planning.

Note that we can easily extend the analysis using the same predicted meshes,
such as by using a material model that incorporates the strain energy function of
fibrous and anisotropic structures. In this work, we evaluated the stresses based
on the fact that the aortic valve is approximately statically determinate [13,14].

3.5 Limitations and Future Works

There were no hard failure cases of our model, but in future works, we hope
to enable expert-guided online updates for more rigorous quality control dur-
ing test time. We will also aim to address our main limitation of requiring
two well-defined volumetric mesh templates. Lastly, we will expand our frame-
work to other important structures for TAVR simulations, such as calcification,
myocardium, and ascending aorta.
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4 Conclusion

We presented a novel approach for predicting aortic valve volumetric FE meshes
from 3D patient images. Our method provides a principled end-to-end learnable
way to optimize the volumetric element quality within a deep learning template
deformation framework. Our model can predict meshes with good spatial accu-
racy, element quality, and FEA viability.
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