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Abstract. Depth estimation in colonoscopy images provides geometric
clues for downstream medical analysis tasks, such as polyp detection,
3D reconstruction, and diagnosis. Recently, deep learning technology
has made significant progress in monocular depth estimation for nat-
ural scenes. However, without sufficient ground truth of dense depth
maps for colonoscopy images, it is significantly challenging to train deep
neural networks for colonoscopy depth estimation. In this paper, we pro-
pose a novel approach that makes full use of both synthetic data and real
colonoscopy videos. We use synthetic data with ground truth depth maps
to train a depth estimation network with a generative adversarial network
model. Despite the lack of ground truth depth, real colonoscopy videos
are used to train the network in a self-supervision manner by exploit-
ing temporal consistency between neighboring frames. Furthermore, we
design a masked gradient warping loss in order to ensure temporal consis-
tency with more reliable correspondences. We conducted both quantita-
tive and qualitative analysis on an existing synthetic dataset and a set of
real colonoscopy videos, demonstrating the superiority of our method on
more accurate and consistent depth estimation for colonoscopy images.

Keywords: Colonoscopy · Depth estimation · Self-supervised
learning · Videos · Temporal consistency

1 Introduction

Colorectal cancer is recently reported as the third most prevalent malignancy
and the fourth most common cause of cancer-associated death worldwide [1,13,
15]. Colonoscopy is an effective technique for the prevention and treatment of
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colon cancer. Many approaches have been proposed for colorectal polyp detection
and diagnosis in colonoscopy images and videos [5,9,20,21]. While geometric
features, e.g. location, size, and shape of polyps, are critical for colorectal polyp
diagnosis, depth estimation from colonoscopy images could help a lot in deriving
3D geometric information of the intestinal environment.

Many efforts have been put into depth estimation and 3D reconstruc-
tion of intestinal environments from colonoscopy videos. Low-level geometric
clues are utilized in earlier model-based approaches. Hong et al. [3] estimate
depths from colon fold contours. Zhao et al. [22] combine structure-from-motion
(SfM) and shape-from-shading (SfS) techniques for surface reconstruction. These
approaches suffer from reflection and low texture of colonoscopy images, result-
ing in inconsistency and great sparseness of the estimated depth maps. In order
to enhance surface textures for more robust SfM, Widya et al. [17–19] use chro-
moendoscopy with the surface dyed by indigo carmine. However, chromoen-
doscopy is not very common, which leads to limitations in application. Besides,
these approaches require dense feature extraction and global optimization, which
is computationally expensive.

Deep-learning-based approaches have achieved remarkable performance in
general depth estimation recently. Compared with natural scenes where ground-
truth depth can be obtained using depth cameras or LiDARs, acquiring the
ground-truth depth for colonoscopy videos is arduous. Ma et al. [7] use an SfM
approach [12] to generate sparse colonoscopy depth maps as ground-truth to
train a depth estimation network. However, due to the inherited limitation of SfM
in low-quality reconstruction for textureless and non-Lambertian surfaces, it is
challenging to obtain accurate dense depth maps for supervised learning. Assum-
ing temporal consistency between frames in videos, unsupervised depth estima-
tion has also been studied [2,6,23]. Liu et al. [6] propose a self-supervised depth
estimation method for monocular endoscopic images using depth consistency
check between adjacent frames with camera poses estimated by SfM. Freedman
et al. [2] propose a calibration-free unsupervised method by predicting depth,
camera pose, and intrinsics simultaneously. However, for colonoscopy videos with
weak illumination in complex environments, these unsupervised approaches face
significant challenges posed by frequent occlusions between colon folds and non-
Lambertian surfaces.

Many works use synthetic data to produce precise ground truth depth
for network training. Mahmood et al. [8] train a joint convolutional neural
network-conditional random field framework on synthetic data and transfer real
endoscopy images to synthetic style using a transformer network. Rau et al. [11]
train an image translation network pix2pix [4] with synthetic image-and-depth
pairs to directly translate a colonoscopy image into a depth map. In order to
reduce the domain gap between synthetic data and real images, the GAN loss
also involves the depth maps predicted from real colonoscopy images but L1 loss
is not computed since no ground truth is available for real images. By doing
so, the generator is expected to learn to predict realistic-looking depth maps
from real images. However, without accurate supervision on the details in the
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predicted depth map, it is non-trivial for the generator to precisely predict depth
for unseen textures in real colonoscopy images that deviate from synthetic data.

In this paper, we not only utilize synthetic data with ground truth depth to
help the network learn fine appearance features for depth estimation but also
exploit the temporal consistency between neighboring frames to make full use
of unlabeled real colonoscopy videos for self-supervision. Moreover, we design a
masked gradient warping loss to filter out non-reliable correspondence caused
by occlusions or reflections. A more powerful image translation model [16] is
also employed in our framework to enhance the quality of depth estimation.
We evaluate our method on the synthetic dataset [11] and our real colonoscopy
videos. The results show that our method achieves more accurate and temporally
consistent depth estimation for colonoscopy images.

2 Methodology

Given a single colonoscopy image F, our goal is to train a deep neural network
DepthNet G that directly generates a depth map D as D = G(F). In order to
train the DepthNet G, we leverage both the synthetic data for full supervision
and real colonoscopy videos for self-supervision via temporal consistency. The
framework of our approach is shown in Fig. 1. First, we adopt a high-resolution
image translation model to train DepthNet in an adversarial manner with syn-
thetic data. Second, we introduce self-supervision during the network training
by enforcing temporal consistency between the predicted depths of neighboring
frames of real colonoscopy videos.

DepthNet
Discriminator

PWC-Net

GAN lossA synthetic image 

Neighboring frames

Optical flows 

Predicted depth map GT depth map 

Predicted depth maps 

Depth Gradient 
Warping Module

(a) Full Supervision with Synthetic Data

(b) Self-Supervision with Real Data

DepthNet

DepthNet
Masked gradient 

warping loss

Feature matching 
loss

Fig. 1. Overview of our approach. (a) We first train DepthNet as a conditional GAN
with synthetic image-and-depth pairs. (b) The DepthNet is then finetuned with self-
supervision by checking the temporal consistency between neighboring frames.
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(a) Colonoscopy image (b) Deconv (c) Upsample+Conv (d) Self-supervised

Fig. 2. Checkerboard artifacts. From a colonoscopy image (a), the original pix2pixHD
model produces a depth map with checkerboard artifacts (b). Checkerboard artifact is
alleviated by replacing the deconvolution layers in the generator with upsampling and
convolution layers (c). Smoother depth is generated with our self-supervised model (d).

2.1 Training Baseline Model with Synthetic Data

We adopt the high-resolution image translation network pix2pixHD [16] as our
baseline model to translate a colonoscopy image to a depth map. It consists of
a coarse-to-fine generator and a multi-scale discriminator in order to produce
high-resolution images. The network is trained in an adversarial manner with a
GAN loss and feature matching loss [16] on the synthetic dataset [11] which con-
tains paired synthetic colonoscopy images and the corresponding depth maps.
However, the original pix2pixHD model produces results with checkerboard arti-
facts [10], as Fig. 2(b) shows. In order to alleviate this effect, we replace the
deconvolution layers in the generator with upsampling and convolutional lay-
ers, similar to [6]. Figure 2(c) shows that the checkerboard effect is alleviated by
replacing the deconvolutional layers with upsampling and convolutional layers.
However, there are still many noises in the predicted results due to the specular
reflections and textures, which appear frequently in real colonoscopy images.

2.2 Self-supervision with Colonoscopy Videos

Due to the domain gap between synthetic and real colonoscopy images, when
applying the DepthNet trained on the synthetic data to predict depth directly
from clinical colonoscopy images, the results tend to be spatially jumping and
temporally inconsistent because of the specular reflection and complex textures
in intestinal environments, as Fig. 2(c) shows. While obtaining ground-truth
depth for real colonoscopy images is arduous, the temporal correlation between
neighboring frames in colonoscopy videos provides natural constraints on the pre-
dicted depths. Therefore, we propose to enforce temporal consistency between
the predicted depths of neighboring frames in network training.

For two neighboring frames in a real colonoscopy video Fr
i and Fr

j , the Depth-
Net estimates two depth maps Dr

i and Dr
j respectively. In order to check the

consistency between these two depth maps, a typical way is to warp one frame
to the other according to the camera pose and intrinsic, which are not easy to
obtain. In order to avoid camera calibration, we propose a calibration-free warp-
ing module that finds pixel correspondences from optical flows. A pre-trained
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Fig. 3. Depth gradient warping module to check the temporal structural consistency
of the predicted depth maps of two neighboring frames.

network PWC-Net [14] is employed to infer optical flows. Due to self-occlusions
and reflections in colons, brightness consistency is not guaranteed so that errors
in optical flow estimation are inevitable. In order to filter out the optical flow
noises, we estimate optical flows Oi→j and Oj→i in two directions. Then we
check if a pixel p can be warped back to the same position from frame i to
frame j by Oi→j then from frame j to frame i by Oj→i. If not, the pixel p is
filtered out when checking temporal consistency. Therefore, we compute a mask
Mi for frame i as

Mi(p) =
{

0, |Oi→j(p) + Oj→i(q)| > ε
1, otherwise

(1)

where q is the corresponding location in frame Fr
j of the pixel p in frame Fr

i

according to the estimated optical flow q = p + Oi→j(p). Note that we use
bilinear interpolation of Oj→i(q) for a subpixel q. ε is a threshold for the forward-
backward warping distance check. We set ε = 1 in our experiments.

However, the camera shifts at two neighboring frames. As a result, the abso-
lute depth values of the correspondence pixels in two neighboring frames are not
equal. Instead of comparing the depth values directly, we encourage the struc-
tural consistency between two depth maps by comparing the gradients of two
depth maps through the depth gradient warping module. As Fig. 3 shows, we
compute the gradients (Gx

i ,Gy
i ), (Gx

j ,Gy
j ) of the two predicted depth maps Dr

i

and Dr
j in x and y direction. Then we check the consistency between the depth

gradients of two neighboring frames with the mask Mi to calculate the masked
gradient warping loss for self-supervision:

LMGW =
1

|Mi|
∑
p∈Fr

i

Mi(p)
( ∣∣∣Gx

i (p) − G̃x
i (p)

∣∣∣ +
∣∣∣Gy

i (p) − G̃y
i (p)

∣∣∣ )
, (2)
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where G̃x
i , G̃y

i are the gradient maps warped from Gx
j ,Gy

j according to the
estimated optical flow Oj→i by bilinear interpolation.

Our full objective combines both self-supervision with masked gradient warp-
ing loss LMGW and supervision with GAN loss LGAN and feature matching loss
LFM with α and γ balance the three loss terms:

L = αLMGW + γLFM + LGAN . (3)

3 Experiments

3.1 Dataset and Implementation Details

Both synthetic and real colonoscopy data are used for training and evaluation.
We use the UCL synthetic dataset published by Rau et al. [11]. The dataset
consists of 16,016 pairs of synthetic endoscopic images and the corresponding
depth maps. Following their split strategy, the dataset is divided randomly into
training, validation, and test set by 6:1:3. We also collect 57 clinical colonoscopy
videos from different patients. In the training stage, we use neighboring frames
from each video at different intervals. Trading off overlap and interval between
frame pairs, we choose four intervals including 1, 4, 8, and 16 frames. The final
dataset of real colonoscopy data contains 6,352 training pairs and 4,217 test
pairs.

Both the synthetic images and real images are resized to 512 × 512. We train
our network in two steps. In the first step, we train our model on the synthetic
data only. In the second step, we finetune the model with self-supervision on real
colonoscopy frames. The batch size of synthetic images and real images for the
first step and second step is set 8 and 4 respectively. We employ Adam optimizer
with β1 = 0.5 and β2 = 0.999. The learning rate starts with 5e − 5 and linearly
decays. We update the generator every iteration while update the discriminator
every 5 iterations. The framework is implemented in PyTorch 1.4 and trained
on 4 Nvidia Titan XP GPUs. The first step training takes 70 epochs and we add
the second step finetuning with real data at the last 10 epochs. The weight for
the masked gradient warping loss α = 5 initially and linearly increases by 2 in
the second step. The weight of feature matching loss γ = 2.

3.2 Quantitative Evaluation

In order to quantitatively evaluate the performance of our method on depth esti-
mation of colonoscopy images, we compare our method with previous approaches
on the UCL synthetic dataset [11]. We adopt the same three metrics including
the absolute L1 distance, the relative error, and the root-mean-squared-error
RMSE between the ground truth and prediction. The results are reported in
Table 1.
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Table 1. Quantitative evaluation on the UCL synthetic dataset (* in cm, ** in %).

Method Mean L1-error* Mean relative L1-error** Mean RMSE*

Pix2pix [11] 0.232± 0.046 8.2± 2.0 0.236

Extended pix2pix [11] 0.171± 0.034 6.4± 1.7 0.175

Our baseline 0.032± 0.011 1.5± 2.0 0.056

Ours 0.033± 0.012 1.6± 2.2 0.057

Our baseline model is only trained with synthetic data. It shows that a better
conditional GAN model (pix2pixHD instead of pix2pix) brings great performance
improvement. While only tested on synthetic data, our model that is fine-tuned
with real colonoscopy videos does not make further improvement on synthetic
data. This is reasonable because the self-supervision between neighboring frames
leverages temporal consistency for more depth data from real colonoscopy video
but it does not bring more information for the synthetic data.

Although the self-supervision with temporal consistency does not bring gain
on the mean accuracy, it significantly improves the temporal consistency between
the estimated depths on both the synthetic and real colonoscopy data. We quan-
tify the temporal consistency by the masked gradient warping loss LMGW , which
reflects the structural consistency between the estimated depth maps of two
neighboring frames. Table 2 demonstrates that our method reduces the masked
gradient warping loss on both the synthetic data and real data.

Table 2. Masked gradient warping loss on synthetic and real colonoscopy datasets.

Method Synthetic dataset (cm/pixel) Real dataset (cm/pixel)

Baseline 0.024± 0.003 0.025± 0.020

Ours 0.020±0.003 0.012±0.011

3.3 Qualitative Evaluation on Real Data

Without ground-truth depths for quantitative comparison on real colonoscopy
data, we evaluate our method qualitatively by comparing the depth prediction
results with other methods. First, we compare our method with Rau et al. [11]
and show some examples in Fig. 4. For the first three examples, we observe
the wrongly predicted location of the lumen, missed polyps, and misinterpreted
geometry of the lumen respectively in the results generated by Rau et al.. For
the last three examples, we can see that our method generates more accurate
predictions, proving that our model better captures geometric structure details.

We also verify our model in regards to the temporal consistency of the depth
estimation. As shown in Fig. 5, without supervision by temporal consistency, the
baseline model tends to predict discontinuous depths on the polyp surface due
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Images

Rau et al.

Ours

Fig. 4. Comparison of our method with Rau et al. [11]. The red ellipses highlight the
inaccurate depth predictions such as wrong locations of the lumen, missed polyp, and
misinterpreted geometry of the lumen.

to the specular reflection in the colonoscopy frames. These depth noises also
lead to the discontinuity between neighboring frames. In comparison, the depths
predicted by our fine-tuned model are more spatially smooth and temporally
consistent, avoiding the interruption by specular reflections and textures.

Frames

Baseline

Ours

Fig. 5. Depth estimation for adjacent frames in a real colonoscopy video. Compared
with the results generated by the baseline model, our model produces more consistent
results avoiding the noises caused by specular reflections and textures.

4 Conclusion

We propose a novel depth estimation approach for colonoscopy images that
makes full use of both synthetic and real data. Considering the depth estimation
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task as an image translation problem, we employ a conditional generative net-
work as the backbone model. While the synthetic dataset which contains image-
and-depth pairs provides precise supervision on the depth estimation network,
we exploit unlabeled real colonoscopy videos for self-supervision. We designed a
masked gradient warping loss to ensure the temporal consistency of the estimated
depth maps of two neighboring frames during network training. The experimen-
tal results demonstrate that our method produces more accurate and temporally
consistent depth estimation for both synthetic and real colonoscopy videos. The
robust depth estimation will facilitate the accuracy of many downstream med-
ical analysis tasks, such as polyp diagnosis and 3D reconstruction, and assist
colonoscopists in polyp localization and removal in the future.

Acknowledgments. We acknowledge funding from National Natural Science Foun-
dation of China under Grants 61976007 and 62076230.
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