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Abstract. This paper presents a novel hierarchical Bayesian model for
unbiased atlas building with subject-specific regularizations of image reg-
istration. We develop an atlas construction process that automatically
selects parameters to control the smoothness of diffeomorphic transfor-
mation according to individual image data. To achieve this, we introduce
a hierarchical prior distribution on regularization parameters that allows
multiple penalties on images with various degrees of geometric trans-
formations. We then treat the regularization parameters as latent vari-
ables and integrate them out from the model by using the Monte Carlo
Expectation Maximization (MCEM) algorithm. Another advantage of
our algorithm is that it eliminates the need for manual parameter tuning,
which can be tedious and infeasible. We demonstrate the effectiveness of
our model on 3D brain MR images. Experimental results show that our
model provides a sharper atlas compared to the current atlas building
algorithms with single-penalty regularizations. Our code is publicly avail-
able at https://github.com/jw4hv/HierarchicalBayesianAtlasBuild.

1 Introduction

Deformable atlas building is to create a “mean” or averaged image and register
all subjects to a common space. The resulting atlas and group transformations
are powerful tools for statistical shape analysis of images [12,18], template-based
segmentation [13,21,22], or object tracking [16,17], just to name a few. A good
quality of altas heavily relies on the registration process, which is typically for-
mulated as a regularized optimization to solve [5,7,25,30]. An issue in the cur-
rent process of registration-based atlas construction is how to regularize model
parameters. Having an appropriate regularization is critical to the “sharpness”
of the atlas, as well as ensuring a set of desirable properties of transformations,
i.e., a smooth and invertible smooth mapping between images, also known as
diffeomorphisms, to preserve the topology of original images.

Current atlas building models either exhaustively search for an optimal regu-
larization in the parameter space, or treat it as unknown variables to estimate from
Bayesian models. While ad hoc parameter-tuning may yield satisfactory results,
it requires expert domain knowledge to guide the tuning process [14,18,26,27].
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Inspired by probabilistic models, several works have proposed Bayesian models
of atlas building with automatically estimated regularizations [1,2,31]. These
approaches define a posterior distribution that consists of an image matching term
between a deformed atlas and each individual as a likelihood, and a regularization
as a prior to support the smoothness of transformation fields. The regularization
parameter is then jointly estimated with atlas after carefully integrating out the
image deformations using Monte Carlo sampling. However, sampling in a high-
dimensional transformation space (i.e., on a dense 3D image grid 1283) is compu-
tationally expensive and often leads to a long execution time with high memory
consumption. More importantly, the aforementioned methods are limited to regu-
larizations with single-penalty for population studies. This prohibits the model’s
ability to adaptively search for the best regularization parameter associated with
an individual subject, which is critical to images with various degrees of geometric
transformations. The typical “one-fits-all” fails in cases where large geometric vari-
ations occur, i.e., brain shape changes of Alzheimer’s disease group. Allowing the
subject-specific (data-driven) regularization can substantially affect the sharpness
and quality of the atlas [29].

In this paper, we propose a hierarchical Bayesian model of atlas building
with subject-specific regularizations in the context of Large Deformation Dif-
feomorphic Metric Mapping (LDDMM) algorithm [7]. In contrast to previous
approaches treating the regularization of individual subjects as a single-penalty
function with adhoc parameters, we develop a data-adaptive algorithm to auto-
matically adjust the model parameters accordingly. To achieve this, we intro-
duce a novel hierarchical prior that features (i) prior distributions with multiple
regularization parameters on the group transformations in a low-dimensional
bandlimited space; and (ii) a hyperprior to model the regularization parameters
as latent variables. We then develop a Monte Carlo Expectation Maximization
(MCEM) algorithm, where the expectation step integrates over the regulariza-
tion parameters using Hamiltonian Monte Carlo (HMC) sampling. The joint
estimation of model parameters including atlas, registration, and hyperparame-
ters in the maximization step successfully eliminates a massive burden of multi-
parameters tuning. We demonstrate the effectiveness of our algorithm on both
2D synthetic images and 3D real brain MRIs.

To the best of our knowledge, we are the first to extend the atlas building to
a data-adaptive and parameter-tuning-free framework via hierarchical Bayesian
learning. Experimental results show that our model provides an efficient atlas
construction of population images, particularly with large variations of geometric
transformations. This paves a way for an improved quality of clinical studies
where atlas building is required, for example, statistical shape analysis of brain
changes for neurodegenerative disease diagnosis [12], or atlas-based segmentation
for in-utero placental disease monitoring [16].

2 Background: Atlas Building with Fast LDDMM

We first briefly review an unbiased atlas building algorithm [14] based on Fourier-
approximated Lie Algebra for Shooting (FLASH), a fast variant of LDDMM
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with geodesic shooting [30]. Given a set of images I1, · · · , IN with N being the
number of images, the problem of atlas building is to find a template image I
and transformations φ1, · · · , φN that minimize the energy function

E(I, φn) =
N∑

n=1

Dist(I ◦ φn, In) + Reg(α, φn). (1)

The Dist(·, ·) is a distance function that measures the dissimilarity between
images, i.e., sum-of-squared differences [7], normalized cross correlation [6], and
mutual information [28]. The Reg(·) is a weighted regularization with parameter
α that guarantees the diffeomorphic properties of transformation fields.

Regularization In Tangent Space of Diffeomorphisms. Given an open
and bounded d-dimensional domain Ω ⊂ R

d, we use Diff(Ω) to denote a space
of diffeomorphisms and its tangent space V = TDiff(Ω). The regularization of
LDDMM is defined as an integral of the Sobolev norm of the time-dependent
velocity field v(t) ∈ V (t ∈ [0, 1]) in the tangent space, i.e.,

Reg(α, φn) =
∫

〈L(α)vn(t),L(α)vn(t)〉 dt, with
dφn(t)

dt
= −Dφn(t) · vn(t). (2)

Here L is a symmetric, positive-definite differential operator, with parameter
α controling the smoothness of transformation fields. In this paper, we use the
Laplacian operator L = (−αΔ+Id)3, where Id is an identity matrix. The opera-
tor D is a Jacobian matrix and · denotes an element-wise matrix multiplication.

According to the geodesic shooting algorithm [25], the minimum of LDDMM
is uniquely determined by solving a Euler-Poincaré differential equation
(EPDiff) [3,19] with initial conditions. This inspires a recent model FLASH
to reparameterize the regularization of Eq. (2) in a low-dimensional bandlimited
space of initial velocity fields, which dramatically reduces the computational
complexity of transformation models with little to no loss of accuracy [30].

Fourier Computation of Diffeomorphisms. Let D̃iff(Ω) and Ṽ denote
the space of Fourier representations of diffeomorphisms and velocity fields
respectively. Given time-dependent velocity field ṽ(t) ∈ Ṽ , the diffeomorphism
φ̃(t) ∈ D̃iff(Ω) in the finite-dimensional Fourier domain can be computed as

φ̃(t) = Ĩd + ũ(t),
dũ(t)

dt
= −ṽ(t) − D̃ũ(t) ∗ ṽ(t), (3)

where Ĩd is the frequency of an identity element, D̃ũ(t) is a tensor product
D̃⊗ũ(t), representing the Fourier frequencies of a Jacobian matrix D̃ with central
difference approximation, and ∗ is a circular convolution 1.

The Fourier representation of the geodesic shooting equation (EPDiff) is

∂ṽ(t)
∂t

= −K̃
[
(D̃ṽ(t))T � L̃ṽ(t) + ∇̃ · (L̃ṽ(t) ⊗ ṽ(t))

]
, (4)

1 To prevent the domain from growing infinity, we truncate the output of the convo-
lution in each dimension to a suitable finite set.
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where � is the truncated matrix-vector field auto-correlation. The operator ∇̃·
is the discrete divergence of a vector field. Here K̃ is an inverse operator of L̃,
which is the Fourier transform of a Laplacian operator in this paper.

The regularization in Eq. (2) can be equivalently formulated as

Reg(α, φn) = 〈L̃(α)ṽn(0), L̃(α)ṽn(0)〉, s.t. Eq. (3) & Eq. (4).

We will drop off the time index in remaining sections for notational simplicity,
e.g., defining ṽn � ṽn(0).

3 Our Model: Bayesian Atlas Building with Hierarchical
Priors

This section presents a hierarchical Bayesian model for atlas building that allows
subject-specific regularization with no manual effort of parameter-tuning. We
introduce a hierarchical prior distribution on the initial velocity fields with adap-
tive smoothing parameters followed by a likelihood distribution on images.

Likelihood. Assuming an independent and identically distributed (i.i.d.) Gaus-
sian noise on image intensities, we formulate the likelihood of each observed
image In as

p(In | I, ṽn, σ2) =
1

(
√

2πσ2)M
exp

(
− 1

2σ2
‖I ◦ φn − In‖22

)
. (5)

Here σ2 denotes a noise variance, M is the number of image voxels, and φn is
an inverse Fourier transform of φ̃n at time point t = 1. It is worth mentioning
that other noise models such as spatially varying noises [24] can also be applied.

Prior. To ensure the smoothness of transformation fields, we define a prior on
each initial velocity field ṽn as a complex multivariate Gaussian distribution

p(ṽn |αn) =
1

(2π)
M
2 |L̃−1

n (αn)| exp
(

−1
2
〈L̃n(αn)ṽn, L̃(αn)ṽn〉

)
, (6)

where | · | is matrix determinant. The Fourier coefficients of a discrete Lapla-

cian operator is L̃n(ξ1, . . . , ξd) =
(
−2αn

∑d
j=1 (cos(2πξj) − 1) + 1

)3

, with
(ξ1, . . . , ξd) being a d-dimensional frequency vector.

Hyperprior. We treat the subject-specific regularization parameter αn of the
prior distribution (6) as a random variable generated from Gamma distribution,
which is a commonly used prior to model positive real numbers [23]. Other prior
such as inverse Wishart distribution [11] can also be applied. The hyperprior of
our model is formulated as

p(αn | k, β) =
αk−1

n exp(−αn/β)

Γ (k)βk
, (7)
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with k and β being positive numbers for shape and scale parameters respectively.
The Gamma function Γ (k) = (k − 1)! for all positive integers of k. We finally
arrive at the log posterior of the diffeomorphic transformation and regularization
parameters as

E(ṽn, αn, I, σ, k, β) � ln
N∏

n=1

p(In | I, ṽn, σ2) · p(ṽn |αn) · p(αn | k, β)

=
N∑

n=1

1
2

ln|Ln| − M ln σ − ‖I ◦ φn − In‖22
2σ2

− 1
2
(L̃ṽn, L̃ṽn)

(k − 1) ln αn − αn

β
− k ln β − ln Γ (k) + const. (8)

3.1 Model Inference

We develop an MCEM algorithm to infer the model parameter Θ, which includes
the image atlas I, the noise variance of image intensities σ2, the initial veloci-
ties of diffeomorphic transformations ṽn, and the hyperparameters k and β. We
treat the regularization parameter αn as latent random variables and integrate
them out from the log posterior in Eq. (8). Computations of two main steps
(expectation and maximization) are illustrated below.

Expectation: HMC. Since the E-step does not yield a closed-form solution,
we employ a powerful Hamiltonian Monte Carlo (HMC) sampling method [9] to
approximate the expectation function Q with respect to the latent variables αn.
For each αn, we draw a number of S samples from the log posterior (8) by using
HMC from the current estimated parameters Θ̂. The Monte Carlo approximation
of the expectation Q is

Q(Θ|Θ̂) ≈ 1
S

N∑

n=1

S∑

j=1

ln p(αnj | In; Θ̂). (9)

To produce samples of αn, we first define the potential energy of the Hamilto-
nian system H(αn, γ) = U(αn)+W (γ) as U(αn) = − ln p(αn|In;Θ). The kinetic
energy W (γ) is a typical normal distribution on an auxiliary variable γ. This
gives us Hamilton’s equations to integrate

αn

dt
=

∂H

∂γ
= γ,

dγ

dt
= − ∂H

∂αn
= −∇αn

U. (10)

Since αn is a Euclidean variable, we use a standard “leap-frog” numerical inte-
gration scheme, which approximately conserves the Hamiltonian and results in
high acceptance rates. The gradient of U with respect to αn is

∇αn
U =

3
2S

S∑

j=1

[
d∑

i=1

Ãi

αnjÃi + 1
− 〈2(αnjÃ + 1)5Ãṽnj , ṽnj〉], (11)
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where Ã = −2
∑d

i=1 (cos(2πξi) − 1). Here Ã denotes a discrete Fourier Laplacian
operator with a d-dimensional frequency vector.

Starting from the current point αn and initial random auxiliary variable γ,
the Hamiltonian system is integrated forward in time by Eq. (10) to produce a
candidate point (α̂n, γ̂). The candidate point α̂n is accepted as a new point in the
sample with probability p(accept) = min(1,−U(α̂n) − W (γ̂) + U(αn) + W (γ)).

Maximization: Gradient Ascent. We derive the maximization step to update
the parameters Θ = {I, ṽn, σ2, k, β} by maximizing the HMC approximation of
the expectation Q in Eq. (9).

For updating the atlas image I, we set the derivative of the Q function with
respect to I to zero. The solution for I gives a closed-form update

I =

∑S
j=1

∑N
n=1(In ◦ φ−1

nj ) · |Dφ−1
nj |

∑S
j=1

∑N
n=1|Dφ−1

nj |
. (12)

Similarly, we obtain the closed-form solution for the noise variance σ2 after
setting the gradient of Q w.r.t. σ2 to zero

σ2 =
1

MNS

N∑

n=1

S∑

j=1

‖I ◦ φnj − In‖22. (13)

The closed-form solutions for hyperparameters k and β are

k = ψ−1(
1

NS

N∑

i=1

S∑

j=1

ln αnj − ln β), β =
1

NSk

N∑

n=1

S∑

j=1

αnj . (14)

Here ψ is a digamma function, which is the logarithmic derivative of the gamma
function Γ (·). The inverse of digamma function ψ−1 is computed by using a
fixed-point iteration algorithm [20].

As there is no closed-form update for initial velocities, we employ a gradient
ascent algorithm to estimate ṽnj . The gradient ∇ṽnj

Q is computed by a forward-
backward sweep approach. Details are introduced in the FLASH algorithm [30].

4 Experimental Evaluation

We compare the proposed model with LDDMM atlas building algorithm that
employs single-penalty regularization with manually tuned parameters on 3D
brain images [30]. In HMC sampling, we draw 300 samples for each subject,
with initialized value of α = 10, k = 9.0, σ = 0.05, and β = 0.1. An averaged
image of all image intensities is used for atlas initialization.
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Data. We include 100 3D brain MRI scans with segmentation maps from a
public released resource Open Access Series of Imaging Studies (OASIS) for
Alzheimer’s disease [10]. The dataset covers both healthy and diseased subjects,
aged from 55 to 90. The MRI scans are resampled to 1283 with the voxel size of
1.25 mm3. All MRIs are carefully prepossessed by skull-stripping, intensity nor-
malization, bias field correction, and co-registration with affine transformation.

Experiments. We estimate the atlas of all deformed images by using our
method and compare its performance with LDDMM atlas building [30]. Final
results of atlases estimated from both our model and the baseline algorithm are
reported. We also compare the time and memory consumption of proposed model
with the baseline that performs HMC sampling in a full spatial domain [31]. To
measure the sharpness of estimated atlas I, we adopt a metric of normalized
standard deviation computed from randomly selected 3000 image patches [15].
Given N(i), a patch around a voxel i of an atlas I, the local measure of the
sharpness at voxel i is defined as sharpness(I(i)) = sdN(i)(I)/avgN(i)(I), where
sd and avg denote the standard deviation and the mean of Ni.

To further evaluate the quality of estimated transformations, we perform
atlas-based segmentation after obtaining transformations from our model. For
a fair comparison, we fix the atlas for both methods and examine the registra-
tion accuracy by computing the dice similarity coefficient (DSC) [8] between
the propagated segmentation and the manual segmentation on six anatomical
brain structures, including cerebellum white matter, thalamus, brain stem, lat-
eral ventricle, putamen, caudate. The significance tests on both dice and sharp-
ness between our method and the baseline are performed.

Results. Figure 1 visualizes a comparison of 3D atlas on real brain MRI scans.
The top panel shows that our model substantially improves the quality of atlas
with sharper and better details than the baseline with different values of manu-
ally set regularization parameters, e.g., α = 0.1, 3.0, 6.0, 9.0. Despite the observa-
tion of a smaller value of α = 0.1 produces sharper atlas, it breaks the smoothness
constraints on the transformation fields hence introducing artifacts on anatom-
ical structures (outlined in purple boxes). The mean and standard deviation of
our estimated hyperprior parameters k and β in Eq. (7) over 30 pairwise image
registrations are 47.40/7.22, and 0.036/0.005. The bottom panel quantitatively
reports the sharpness metric of all methods. It indicates that our algorithm out-
performs the baseline by offering a higher sharpness score while preserving the
topological structure of brain anatomy.

Figure 2 reports results of fixed-atlas-based segmentation by performing the
baseline with various regularization parameters and our algorithm. It shows the
dice comparison on six anatomical brain structures of all image pairs. Our algo-
rithm produces better dice coefficients without the need of parameter tuning.
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Fig. 1. Top: atlases estimated by baseline with different α and our model (artifacts
introduced by small regularization are outlined in purple boxes). Bottom: sharpness
measurement of atlas for all methods with different patch size w. The mean of the
sharpness metric of our method vs. the best performance of baseline without artifacts
(α = 3) is 0.290/0.264, 0.362/0.323, 0.405/0.360.

Fig. 2. A comparison of dice evaluation for fixed-atlas-based segmentation on six brain
structures (cerebellum white matter (WM), thalamus (Th), brain stem (BS), lateral
ventricle (LV), putamen (Pu), caudate (Ca)).
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The runtime of our atlas building on 100 3D brain MR images are 4.4 hours
with 0.89GB memory consumption. The p-values of significance differences test
on both dice (p = 0.002) and sharpness (p = 0.0034) reject the null hypothesis
that there’s no differences between our model estimation and baseline algorithms.

5 Conclusion

This paper presents a novel hierarchical Bayesian model for unbiased diffeo-
morphic atlas building with subject-specific regularization. We design a new
parameter choice rule that allows adaptive regularization to control the smooth-
ness of image transformations. We introduce a hierarchical prior that provides
prior information of regularization parameters at multiple levels. The developed
MCEM inference algorithm eliminates the need of manual parameter tuning,
which can be tedious and infeasible in multi-parameter settings. Experimental
results show that our proposed algorithm yields a better registration model as
well as an improved quality of atlas. While our algorithm is presented in the
setting of LDDMM, the theoretical development is generic to other deformation
models, e.g., stationary velocity fields [4]. In addition, this model can be easily
extended to multi-atlas building where a much higher degree of variations exist
in the population studies. Our future work will focus on conducting subsequent
statistical shape analysis in the resulting atlas space.
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19. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy.
J. Math. Imaging Vis. 24(2), 209–228 (2006)

20. Minka, T.: Estimating a Dirichlet distribution (2000)
21. Pohl, K.M., Fisher, J., Grimson, W.E.L., Kikinis, R., Wells, W.M.: A Bayesian

model for joint segmentation and registration. NeuroImage 31(1), 228–239 (2006)
22. Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R., Jr.: Evaluation of atlas selec-

tion strategies for atlas-based image segmentation with application to confocal
microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)

23. Simpson, I.J., et al.: Probabilistic non-linear registration with spatially adaptive
regularisation. Med. Image Anal. 26(1), 203–216 (2015)

24. Simpson, I.J., Woolrich, M.W., Andersson, J.L., Groves, A.R., Schnabel, J.A.: A
probabilistic non-rigid registration framework using local noise estimates. In: 2012
9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 688–691.
IEEE (2012)

25. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image regis-
tration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput.
Vis. 97(2), 229–241 (2012)

26. Vialard, F.X., Risser, L., Holm, D.D., Rueckert, D.: Diffeomorphic atlas estimation
using Karcher mean and geodesic shooting on volumetric images. In: MIUA, pp.
55–60 (2011)

https://doi.org/10.1007/978-3-319-66182-7_37
https://doi.org/10.1007/978-3-642-33454-2_7
https://doi.org/10.1007/978-3-642-33454-2_7
https://doi.org/10.1007/978-3-030-32248-9_41
http://arxiv.org/abs/1903.02959
https://doi.org/10.1007/3-540-45786-0_79


86 J. Wang and M. Zhang

27. Wang, J., Xing, W., Kirby, R.M., Zhang, M.: Data-driven model order reduction
for diffeomorphic image registration. In: Chung, A.C.S., Gee, J.C., Yushkevich,
P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 694–705. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-20351-1 54

28. Wells, W.M., III., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal
volume registration by maximization of mutual information. Med. Image Anal.
1(1), 35–51 (1996)

29. Yeo, B.T., Sabuncu, M.R., Desikan, R., Fischl, B., Golland, P.: Effects of regis-
tration regularization and atlas sharpness on segmentation accuracy. Med. Image
Anal. 12(5), 603–615 (2008)

30. Zhang, M., Fletcher, P.T.: Fast diffeomorphic image registration via Fourier-
approximated lie algebras. Int. J. Comput. Vis. 127(1), 61–73 (2019)

31. Zhang, M., Singh, N., Fletcher, P.T.: Bayesian estimation of regularization and
atlas building in diffeomorphic image registration. In: Gee, J.C., Joshi, S., Pohl,
K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 37–48.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2 4

https://doi.org/10.1007/978-3-030-20351-1_54
https://doi.org/10.1007/978-3-642-38868-2_4

	Bayesian Atlas Building with Hierarchical Priors for Subject-Specific Regularization
	1 Introduction
	2 Background: Atlas Building with Fast LDDMM
	3 Our Model: Bayesian Atlas Building with Hierarchical Priors
	3.1 Model Inference

	4 Experimental Evaluation
	5 Conclusion
	References




