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Abstract. Deformable registration is required to achieve laparoscopic
augmented reality but still is an open problem. Some of the existing meth-
ods reconstruct a preoperative model and register it using anatomical
landmarks from a single image. This is not accurate due to depth ambigui-
ties. Othermethods require of non-standard devices unadapted to the clin-
ical practice. A reasonable way to improve accuracy is to combine multiple
images from a monocular laparoscope. We propose three novel registra-
tion methods exploiting information from multiple images. The first two
are based on rigidly-related images (MV-B and MV-C) and the third one
on non-rigidly-related images (MV-D). We evaluated registration accu-
racy quantitatively on synthetic and phantom data, and qualitatively on
patient data, comparing our results with state of the art methods. Our
methods outperforms, reducing the partial visibility and depth ambiguity
issues of single-view approaches. We characterise the improvement mar-
gin, which may be slight or significant, depending on the scenario.
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1 Introduction

Laparoscopic liver surgery is less invasive than open surgery, reducing patient
trauma and recovery time. However, it is difficult for the surgeon to localise the
inner structures such as vessels and tumours. This is mainly caused by the large
size of the liver and its proximity to the laparoscope. Augmented Reality (AR)
can provide aid to surgery by showing these internal structures, hence improv-
ing resection planning. Concretely, AR overlays a preoperative 3D model recon-
structed from CT data onto the laparoscopic images. AR requires one to register
the preoperative 3D model to the 2D laparoscopic images. This is done using
anatomical landmarks present on the liver’s surface. Because the liver deforms
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significantly between the preoperative and intraoperative states, the registration
must be a 3D-2D deformable one. This is a difficult and currently open problem.
Existing works have addressed the cases of monocular laparoscopes [1–3] and of
stereoscopic laparoscopes, possibly with external tracking [4–10]. Methods [1,2]
are single-view. They use sparse landmarks, leaving ambiguities on the regis-
tration. Method [3] is multi-view and reconstructs an intraoperative shape by
Structure-from-Motion (SfM), solving registration by ICP and 3D landmarks.
This method was however only tested with animal data as the required corre-
spondences are not available in real surgery cases. Finally, methods [4–10] per-
form rigid registration only. The monocular case is important because it forms
the standard in many operating rooms. Therefore, there is a need for an unam-
biguous monocular registration method compatible with the clinical constraints
and the desired clinical outcomes, studied in [13].

We propose to use multiple monocular laparoscopic images to solve
deformable registration without unrealistic requirements. Our methods solve reg-
istration for cases where images are rigidly-related and non-rigidly-related. We
assume that the images show the liver from multiple viewpoints. Our methods
are inspired by [1], a method named SV (for Single-View) hereinafter. Concretely,
we deform the preoperative 3D model using a particle system with biomechan-
ical properties and position-based dynamics [15]. For the rigidly-related case,
we propose two methods. The first one, named MV-B (for Multi-View Base),
guides deformation using the landmarks from all the images and the inter-image
rigidity as constraints. The second one, named MV-C (for Multi-View Corre-
spondences), extends MV-B by exploiting the liver’s texture information via
inter-image keypoint correspondences. For the non-rigidly-related case, we pro-
pose the MV-D method (for Multi-View Deformable Correspondences) which,
compared to MV-C, does not use the inter-image rigidity and produces several
registered shapes. These methods are illustrated in Fig. 1. By exploiting multiple
images, our methods solve the partial visibility and depth ambiguity issues inher-
ent to SV. We evaluated our methods on synthetic, phantom and patient data.
For the synthetic and phantom case, target registration errors (TRE) were mea-
sured on uniformly-distributed control points inside the liver models. For the
patient case, we measured the liver’s 2D reprojection errors on control views.
We aim to have a TRE lower than 1 cm, as it is the resection margin advised
for Hepato-Cellular Carcinoma (HCC) interventions [17]. We do not measure
TRE on patient data as having a reliable ground-truth is not possible with the
available devices in the surgery room.

2 Background

SV uses a volumetric deformable model M to predict image contours C. M is
modeled using the isotropic Neo-Hookean elastic model [15] with generic values
for the human liver’s mechanical parameters [16]. We use this model as it can
simulate large deformations in a computationally inexpensive way and is vali-
dated for the hepatic tissue [11,12]. The constraints given by the elastic model
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Fig. 1. Characteristics of the state-of-the-art and proposed registration methods.

are denoted as Ωdef . The predicted contours C should match the observed image
contours C∗. As shown in Fig. 1, SV uses three types of contours: the ridge con-
tour, which has a very distinctive profile; the falciform ligament contour; and the
silhouette contour which corresponds to the occluding boundaries of the liver.
The constraints given by this set of contours are denoted as Ωctr. SV uses a con-
vergent algorithm of alternating projections to solve the registration problem.
As such, it finds the closest model M to the constraints Ωdef and Ωctr:

min
M

dist(M,Ωdef ) + dist(M,Ωctr) (1)

where dist is the distance between the model and the constraints.

3 Methodology

The common principle of our methods is to use several laparoscopic images to
solve registration. These images should present a noticeable change in camera
pose, while keeping some overlap. This can be done by tilting and panning
the laparoscope. Views from different trocars can also be used, should they
sufficiently overlap. Using multiple images is especially useful for the liver case
as it helps to overcome the partial visibility and, thus, the low precision issues
inherent to single-view methods.

These methods try to solve registration in two situations: when the liver
does not deform across images, e.g. during the exploratory phase (rigidly-related
case) and when it does, e.g. during surgical manipulation (non-rigidly-related
case). For the rigidly-related case, MV-B and MV-C take advantage of the liver’s
rigidity to constrain registration. Thus, they produce a single deformed shape,
along with the corresponding camera poses for each of the views. In order to
have suitable images for this case, the surgeon can pause the artificial ventilation
system for a very short period of time (about 10 s), while the scene is filmed.
Compared to MV-B, MV-D makes use of inter-image correspondences which
helps to improve the registration accuracy. However, MV-B is still useful in
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cases where enough valid correspondences cannot be obtained. For the non-
rigidly-related case, MV-D also makes use of inter-image correspondences and
produces several deformed shapes, according to the number of views used.

Figure 2 illustrates the general pipeline followed by MV-B, MV-C and MV-D
to solve registration. The principle is similar for the three methods, taking SV
as basis and adding the necessary steps to use the inter-image rigidity and the
correspondences as constraints.

1. Marking of 2D and 3D contours 
in all views

2. Full SV registra�on on every 
view

3. Shape refinement on every view 
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6. Difference between current and 
previous models is less than a ε?
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correspondences and computa�on 

of warps
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Fig. 2. Pipeline followed by the MV-B, MV-C and MV-D methods. (Color figure online)
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3.1 Multi-View Rigid Base (MV-B)

MV-B extends SV to solve registration on N rigidly-related laparoscopic images
simultaneously. At every iteration, it computes an average model M from all
the views after an SV refinement has been done on every view. A single general
model is thus produced from each view’s individual contribution. Equation (1)
becomes:

min
M

N∑

i=1

dist(M,Ωdefi) +
N∑

i=1

dist(M,Ωctri) (2)

The algorithm that solves this problem is composed by the blue and green
stages from Fig. 2. The computation of the average model is the key to impose
the inter-image rigidity. It converges when the difference between models from
previous and current iterations ΔM < 10−3. This criterion was found after
running our methods for a large number of iterations on a variety of synthetic,
phantom and patient data.

3.2 Multi-View Rigid with Inter-image Correspondences (MV-C)

MV-C extends MV-B to exploit inter-image correspondences. These correspon-
dences are obtained using SIFT and mismatches rejected using FBDSD [18].
Our key idea is to measure the consistency between the registration and the
correspondences using the P particles xp, p ∈ [1, P ], representing the deformable
model. These correspondences are related to each other by the warp transforma-
tion function ηji, which is based on the Rigid-Perspective Thin-Plate Spline [14].
Such function ηji lets us transfer any point from image j to image i, as shown
in Fig. 3. Like MV-B, MV-C generates a single general model from each view’s
individual contribution by using the inter-image rigidity and the available inter-
image correspondences Ωcorr as constraints:

min
M

N∑

i=1

dist(M,Ωdefi) +
N∑

i=1

dist(M,Ωctri) +
N∑

i=1

dist(M,Ωcorri) (3)

The algorithm that solves this problem is composed by the blue, yellow and
green stages from Fig. 2. It adds the necessary steps to use the keypoint corre-
spondences as constraints, and it also converges when ΔM < 10−3.

3.3 Multi-View Deformable Correspondences (MV-D)

MV-D modifies MV-C to avoid using the inter-image rigidity to solve registra-
tion, as well as to use the inter-image correspondences in the SV-refinement
stage. In this way, MV-D produces multiple shapes MN according to the num-
ber of images used and the deformations exerted by the liver on each of them.
This is especially useful in cases where the liver is being manipulated by tools
or other external forces. Consequently, MV-D can be seen as:
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Fig. 3. Warp-based sight-line for particle location update. The particle locations are
updated as follows: pixel motion is preliminary computed for all image-pairs i, j and
the warps robustly estimated; during an iteration of the optimization algorithm, for
every image i, a particle xp is updated such that its new location corresponds to its
orthogonal projection onto its warp-based sight line, namely the backprojections of the
barycenter of the imaged particles ηji(Πj(xp)) through the warps.

min
M1,...,MN

N∑

i=1

dist(Mi, Ωdefi) +
N∑

i=1

dist(Mi, Ωctri) +
N∑

i=1

dist(Mi, Ωcorri) (4)

The algorithm that solves this problem is composed by the blue and yellow
stages from Fig. 2, avoiding the usage of the inter-image rigidity. It also converges
when ΔM < 10−3.

4 Experimental Results

4.1 Rigidly-Related Views

Synthetic Data: We reconstructed a virtual 3D liver model from a patient’s CT
and synthesized 10 virtual deformations using Abaqus [19], by simulating gravity,
the pneumoperitoneum and the action of surgical instruments. We generated 10
images of each deformation by simulating a virtual moving laparoscope. We esti-
mated registration for a varying number of images, going from 1 to 8, and mea-
sured TRE as the average prediction error for uniformly sampled points within
the virtual liver. It should be noted that, while the contour marking is done
manually, it does not take more than 5 min to mark all the 8 views used as the
maximum case for our experiments. Thus, the impact on the surgical workflow
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is minimal. We use 8 views as a maximum to keep the computation time reason-
able. We repeated the estimation 10 times for each number of images, randomly
selecting the images being used. The results are shown in Fig. 4(a). We observe
that the TRE for SV is steady around (9.57 ± 7.99) mm, while for MV-B and
MV-C it consistently decreases as the number of views increases. The decrease
is notable in both average and standard deviation, reaching (7.99 ± 7.34) mm
and (5.95 ± 4.46) mm respectively for MV-B and MV-C.

Phantom Data: We 3D printed the synthetic deformations generated in
Abaqus using PLA (Polylactic Acid). We then used a surgical laparoscope and
a pelvitrainer box to take 10 pictures of each printed model. Similarly to the
synthetic case, 10 combinations of 8 views were generated per deformation and
experiments were run using 1 to 8 views for every combination. Distances were
also measured between the registered and ground truth control points, for which
the average and standard deviation are shown in Fig. 4(b). As for the synthetic
case, SV remains steady around (11.96 ± 7.72) mm, while for MV-B and MV-C it
consistently decreases as the number of views increases. We can see a decrease in
both average and standard deviation, especially for MV-C. MV-B remains close
to SV, reaching (11.59 ± 10.95) mm, while MV-C decreases to and (8.30 ± 4.59)
mm.

Patient Data: We collected data for 5 patients, for which we had IRB approval
(IRB8526-2019-CE58, CPP Sud-Est VI). We kept 9 images per patient. Out of
these images, we singled one out to serve as a control view. The control view
is not used to compute registration but as a means to verify registration, using
the landmark prediction error expressed in px (number of pixels). The control
view error is a weak measure of TRE because it only concerns the visible liver
surface. We measure such reprojection errors due to the difficulty of having a
reliable groundtruth to evaluate the registration accuracy in 3D. It is shown
in Fig. 5(a). We run both MV-B and MV-C with 8 images. We observe a clear
benefit of using multiple images and of using the inter-image correspondences.

4.2 Non-rigidly-related Views

Synthetic Data: From the previously generated synthetic data, 10 combina-
tions of 8 views were taken to assess MV-D, with every view corresponding to a
different deformation. As for the rigidly-related case, we estimated registration
for a varying number of images and measured TRE as the average prediction
error for uniformly sampled points within the virtual liver. The results are shown
in Fig. 4(c). For the experiments using 8 views, SV has a TRE of (21.83 ± 32.61)
mm on the control points, while that for MV-D is (20.87 ± 32.96) mm.

Phantom Data: From the generated phantom data, and similarly to the non-
rigidly-related synthetic case, experiments were done on 10 combinations of 8
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views, with every view corresponding to a different deformation. TRE results on
a varying number of images are shown in Fig. 4(d). For the experiments using 8
views, SV has a TRE of (11.59 ± 6.95) mm on the control points, while MV-D’s
one is (10.71 ± 6.35) mm.

Patient Data: From the previously acquired patient data we have selected
9 images per patient. Here, the liver exerts significant deformation across the
images. As for the rigidly-related case, we singled one image out to serve as a
control view. Landmark prediction error is computed on the control views and
expressed in px (number of pixels). It is shown in Fig. 5(b). We run both MV-B
and MV-C with 8 images. We observe a slight benefit of using multiple images
to solve registration.
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Fig. 4. Mean TRE and standard deviations on (a) synthetic data usisng the rigidly-
related methods, (b) phantom data using the rigidly-related methods, (c) synthetic
data using the non-rigidly-related methods, (d) phantom data using the non-rigidly-
related methods.
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Patient SV MV-B MV-C
1 26.07 21.98 19.49

2 58.40 10.28 09.49

3 42.78 32.24 29.75

4 17.13 21.72 21.13
5 26.71 15.46 16.95

average 34.28 20.33 19.36

Patient SV MV-D
1 32.47 30.14

2 63.08 57.62

3 46.24 49.79
4 25.07 21.31

5 31.85 29.75

average 39.74 37.73

)b()a(

Fig. 5. Control view errors (px) on patient data for (a) rigidly-related methods with
best results in bold and second best underlined and (b) non-rigidly-related methods
with best results in bold.

5 Conclusions

We proposed 3 multi-view methods for 3D-2D deformable registration of preop-
erative CT data into intraoperative images for laparoscopy of liver. They aim to
solve registration on rigidly- and non-rigidly-related views. Results on synthetic
data show that MV-B improves the mean registration accuracy by 1.58 mm,
while MV-C improves it by 3.62 mm compared to SV. MV-D shows a slight
improvement of 1 mm compared to SV. On phantom data, MV-B has a similar
performance to SV with a difference of 0.37 mm, while MV-C improves registra-
tion by 3.66 mm. MV-D also shows a similar performance to SV with a difference
of 0.88 mm. On patient data, the reprojection error measured on control views
is improved by 13.95 px, 14.92 px and 2.01 px for MV-B, MV-C and MV-D
respectively. It means that, for the rigidly-related case, we can see an improve-
ment with respect to SV as we increment the number of views, with registration
errors below 1 cm for MV-C. For the non-rigidly-related case, MV-D behaves
similarly to SV, with a slight improvement of 1 mm. Visual inspection on the
error distribution shows that TRE follows an unimodal distribution with posi-
tive skewness. It is worth noting that TRE is measured on the whole 3D model,
including the visible and hidden regions. Hidden regions can increase the global
TRE as they are less accurately registered than the visible ones. As future work,
we will focus on (i) performing extended validation on clinical patient data, (ii)
developing a real-time non-rigidly tracking strategy taking the multi-view initial
registration as basis, and (iii) using other visual information with improved reg-
istration approaches to increase the registration accuracy, such as surgical tools
pose and Structure-from-Motion.
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