
A Deep Discontinuity-Preserving Image
Registration Network

Xiang Chen1(B), Yan Xia1,2, Nishant Ravikumar1,2,
and Alejandro F. Frangi1,2,3,4

1 Center for Computational Imaging and Simulation Technologies in Biomedicine,
School of Computing, University of Leeds, Leeds, UK

scxc@leeds.ac.uk
2 Biomedical Imaging Department, Leeds Institute for Cardiovascular and Metabolic

Medicine, School of Medicine University of Leeds, Leeds, UK
3 Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
4 Department of Electrical Engineering, KU Leuven, Leuven, Belgium

Abstract. Image registration aims to establish spatial correspondence
across pairs, or groups of images, and is a cornerstone of medical image
computing and computer-assisted-interventions. Currently, most deep
learning-based registration methods assume that the desired deformation
fields are globally smooth and continuous, which is not always valid for
real-world scenarios, especially in medical image registration (e.g. cardiac
imaging and abdominal imaging). Such a global constraint can lead to
artefacts and increased errors at discontinuous tissue interfaces. To tackle
this issue, we propose a weakly-supervised Deep Discontinuity-preserving
Image Registration network (DDIR), to obtain better registration perfor-
mance and realistic deformation fields. We demonstrate that our method
achieves significant improvements in registration accuracy and predicts
more realistic deformations, in registration experiments on cardiac mag-
netic resonance (MR) images from UK Biobank Imaging Study (UKBB),
than state-of-the-art approaches.
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registration · Discontinuity-preserving image registration

1 Introduction

Image registration is a fundamental component of several applications in medi-
cal imaging. Recent years have seen a shift from traditional iterative methods to
deep learning (DL)-based registration approaches. Although training DL-based
approaches is time-consuming, inference is rapid, involving just a single forward
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pass through the network. Consequently, DL-based approaches offer substan-
tial acceleration for pair-/group-wise image registration relative to traditional
approaches, achieving near-real-time performance in certain applications.

Most existing DL-based registration methods constrain deformation fields to
be globally smooth and continuous, through various means [3,4,7]. However, this
assumption is often violated in medical image registration applications, as tissue
boundaries are naturally discontinuous. This is especially pronounced in cardiac
or abdominal imaging, which involve large deformations of multiple tissue-types,
and organ motion/sliding at tissue boundaries. Variability in the physical prop-
erties of different tissue-types results in discontinuities at native tissue bound-
aries [5,6]. Hence, enforcing deformation fields to be globally smooth can gener-
ate unrealistic deformations and lead increased errors near these boundaries.

Discontinuity-preserving image registration is an active area of research in
the context of traditional registration methods [6,11,13,15]. For example, Hua et
al. [6] proposed a discontinuous registration approach that utilised enriched B-
spline basis functions at control points near discontinuous tissue boundaries,
achieving significant improvement in registration accuracy, relative to other
existing discontinuity-preserving registration methods. In contrast, only one
study thus far has proposed a discontinuous DL-based image registration frame-
work. Ng et al. [10] proposed a custom discontinuity-preserving regulariser on
the deformation fields (used with a typical unsupervised registration network), to
preserve discontinuities, while ensuring local smoothness within specific regions.
They formulated a regularisation term based on the unsigned area of the par-
allelogram spanned by two displacement vectors associated with moving image
voxels. However, without additional boundary information for guidance, such a
discontinuity regularisation term alone is insufficient to preserve strong discon-
tinuities in deformation fields.

This paper assumes that the desired deformation fields are locally smooth,
but discontinuities may exist between different regions/organs at tissue interfaces.
Therefore, we generate distinct smooth deformation fields for different regions
of interest and compose them to obtain the final registration field, used to warp
the moving image. Such a locally-smooth and globally-discontinuous registra-
tion scheme is achieved using a novel Deep Discontinuity-preserving Image Reg-
istration network, or DDIR. The contributions of this paper are two-fold: (1) we
designed a novel framework, DDIR for discontinuous DL-based image registration.
This is the first study to incorporate discontinuity in DL network structure and
training strategy, and not only in terms of a custom regularisation term in the loss
function. (2) Our proposed DDIR achieves significant improvement in registra-
tion accuracy over state-of-the-art registration methods, and preserves key cardiac
morphological indices post-registration, not afforded by the latter.

2 Method

Pair-wise image registration aims to establish spatial correspondence between
the moving image IM and fixed image IF and is formulated as,

φ(x) = x + u(x), (1)
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where, x represents voxels/pixels in the moving image IM , u(x) denotes the
displacement field, and φ(◦) represents the deformation function.

To generate deformation fields that are locally smooth and discontinuous at
the boundaries of different organs/regions, we propose to generate deformation
fields for different sub-regions, and compose them to obtain the final deforma-
tion field. Sub-regions in the images to be registered must first be segmented
either manually or automatically. With short-axis (SAX) cardiac cine-magnetic
resonance (CMR) images, manual and automatic segmentation results for left
ventricle blood pool (LVBP), left ventricle myocardium (LVM) and right ven-
tricle (RV) are generally available in public data sets, large-scale imaging ini-
tiatives (e.g. UK Biobank) and from previous studies on automatic CMR seg-
mentation [2]. As the focus of this paper is on SAX-CMR image registration, we
explicitly model discontinuities along cardiac boundaries by splitting the images
into four sub-regions, namely, LVBP, LVM, RV, and background. These sub-
regions are subsequently used to train our DDIR approach and register CMR
images in manner that preserves discontinuities at their boundaries.
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Fig. 1. Schema of DDIR. The registration network applies four different channels
extracting features from pairs of LVBP, LVM, RV and background. Based on them, we
obtain four sub-deformation fields for different regions. The final deformation field is
obtained by composing these four deformation fields with corresponding segmentation.
The cardiac MR images were reproduced by kind permission of UK Biobank c©.

Network Architecture. Most previous DL-based registration methods apply
an encoder-decoder network (generally U-Net [12]) to extract feature maps from
the concatenated input moving image and fixed image. However, as shown in
Fig. 1, in DDIR the original moving image and fixed image (at 128 × 128 × 32)
are divided into four image pairs, i.e. LVBP, LVM, RV and background, using
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segmentation masks for the corresponding regions. In each of these pairs, voxels
in corresponding regions are preserved while the rest are set at zero. Each pair is
concatenated and fed as input to a distinct U-Net block, which extracts region-
specific feature maps. These four U-Nets have the same architecture, including
four down-sampling layers and three corresponding up-sampling layers. Using
this multi-channel encoder-decoder structure, we obtain four sets of feature
maps (64 × 64 × 16) corresponding to different sub-regions. We use the same
U-Net architecture (with identical hyper-parameters) in all DL-based registra-
tion approaches investigated in this study.

Discontinuity Composition. Using the region-specific feature maps learned
by the U-Nets, we first predict four different smooth deformation fields (corre-
sponding to each region) and then compose them to obtain the final deformation
field, to preserve local smoothness and discontinuity at the interfaces. Similar to
previous papers [4,7], we assume the transformation function (denoted as φz) is
parametrised by stationary velocity fields (SVF) (zi, i ∈ [0, 3]), which are sam-
pled from a multivariate Gaussian distribution. With the predicted feature map,
we compute the mean μi and variance Σi of zi (using two different convolu-
tion layers). Based on them, four SVFs (z0, z1, z2, z3) corresponding to different
regions (LVBP, LVM, RV and background) are sampled. With the corresponding
integration layer and up-sampling layer, we obtain four diffeomorphic deforma-
tion fields φz0 , φz1 , φz2 and φz3 . As before, we use region-specific segmentation
masks to extract each region of interest from the obtained deformation fields
(setting the remaining voxels to zero) and compose them to generate the final
deformation field. Denoting the segmented regions of LVBP, LVM, RV and back-
ground as SLV BP , SLV M , SRV and Sbackground respectively, the composition can
be formulated as,

φz = φz0 × SLV BP + φz1 × SLV M + φz2 × SRV + φz3 × Sbackground. (2)

Loss Function. The loss function includes two terms, a dissimilarity and a reg-
ularisation term. The former is the distance between the warped moving image
and the fixed image, while, the latter constrains the estimated deformation fields
to be locally smooth (i.e. within each region), to avoid unrealistic deformations.
The dissimilarity loss in DDIR captures the dissimilarity on both images and
segmentations. We use normalised cross-correlation (NCC) LNCC to evaluate
the similarity between the warped moving image and the fixed image. As the
region-wise segmentation masks are available, we also compute the region-wise
dice loss, denoted LDice as in [9].

To preserve discontinuity at the interfaces of the organs/regions while ensur-
ing local smoothness, a global smoothness constraint is not enforced on the com-
posed deformation field. The composition of different deformation fields preserves
discontinuities at interfaces, therefore, we only need to guarantee the defor-
mation field of each sub-region smooth. This is achieved by regularising each
sub-deformation field. Following Voxelmorph-diff [4], we calculate the Kullback-
Leibler (KL) divergence between the approximate posterior qψ(z|IF ; IM ) and
the prior p(z) (p(z) = N (z; 0, Σz)) of each velocity field z, formulated as,
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R = KL(qψ(z|IF ; IM )||p(z|IF ; IM )),

LR =
1
4
(RLV BP + RLV M + RRV + Rbackground),

(3)

where R denotes the regularisation for each deformation field and LR is the
combined regularisation term. The qψ(z|IF ; IM ) = N(z;μz|IF ,IM , Σz|IF ,IM ) is a
multivariate normal, where, μz|IF ,IM and Σz|IF ,IM are the mean and variance of
the distribution, learned by convolution layers. The complete loss function used
to train the network is, Ltotal = λ0 × LNCC + λ1 × LDice + λ2 × LR, where, λ0,
λ1 and λ2 are used to weight the importance of each loss term.

3 Experiments and Results

Data and Implementation. The registration performance of the proposed
approach is evaluated on SAX-CMR images (spatial resolution at ∼1.8×1.8×10
mm3), available from UKBB. We chose images from 2,000 subjects at random,
and used images at end-diastole (ED) and end-systole (ES) for intra-subject
registration. Among these, 1,600 subjects’ data was chosen at random for train-
ing DDIR, equating to 3,200 image pairs (ED-to-ES or ES-to-ED registration).
Image pairs from the remaining 400 subjects were used for testing. All CMR
images were resampled to 1.50 × 1.50 × 3.15 mm3 using bi-cubic interpolation,
and cropped to a size of 128×128×32 (with zero-padding for images with fewer
than 32 slices). The region-wise segmentation masks for all CMR images were
obtained automatically using the segmentation method proposed in [2]. DDIR
was implemented using Python and Keras on a Tesla M60 GPU machine. The
Adam optimiser was used for training, with a learning rate of 1e − 4. The batch
size was set to 2, and the hyper-parameters λ0, λ1 and λ2 were set to 20, 200, 0.1
(determined empirically), respectively. The source code will be publicly available
on the Github1.

Quantitative Comparison and Analysis. To demonstrate the superiority
of our approach, we compare DDIR with both traditional registration and DL-
based registration methods. For the former, we choose Symmetric Normalisa-
tion (SyN) registration (3 resolution level, with 100 iterations in each sampling
level) in ANTS [1], Demons (Fast Symmetric Forces Demons [14] with 800 itera-
tions and standard deviations 1.0) in SimpleITK and B-spline registration (max
iteration step is 2000, sampling 6000 random points per iteration) in SimpleE-
lastix [8], for comparison. For the latter, DDIR is compared with Voxelmorph-
diff [4]. As DDIR uses segmentation masks during training and inference, it is
a weakly-supervised registration method. For fair comparison, we build three
weakly-supervised versions of Voxelmorph - VM-Dice, VM(img+seg) and VM-
Dice(img+seg). VM-Dice uses a Dice loss LDice term and binary cardiac seg-
mentation masks for the fixed and moving images during training, but does not
require the latter for inference. In VM(img+seg), we concatenate the fixed and

1 https://github.com/cistib/DDIR.

https://github.com/cistib/DDIR


A Deep Discontinuity-Preserving Image Registration Network 51

moving images with their corresponding multi-class masks (i.e. distinct labels
for each region) and use these to train the network. While, VM-Dice(img+seg)
is a combination of the previous two methods. We did not compare with the
DL-based discontinuity-preserving method proposed in [10], as there is no corre-
sponding source code publicly available. This strategy to register different sub-
regions and compose corresponding deformation fields is also applicable to the
aforementioned networks. Hence, we also apply this strategy during inference,
for trained Voxelmorph-diff and VM-Dice models (as they only require sub-
images as input on the inference), for comparison with DDIR. These are denoted
Voxelmorph-diff(compose) and VM-Dice(compose). These two approaches are
different to DDIR as the composition of sub-deformation fields is not learned
end-to-end during training (as in DDIR).

To demonstrate the advantage of incorporating discontinuity in the DL-based
registration network, we also build a baseline for DDIR, DDIR(baseline), where
the predicted feature maps from the four different channels are concatenated
and used to compute a single diffeomorphic deformation field (instead of four
sub-deformation fields, as in DDIR).

Qualitative Results. Registration results obtained using DDIR and the other
methods investigated are assessed visually in Fig. 2. Here, the moving and fixed
images are shown in the first column. The corresponding warped moving images,
deformation fields, and Jacobian determinants (rows 1–3) obtained following reg-
istration using SyN, B-spline, Voxelmorph-diff, DDIR(baseline) and DDIR, are
shown in columns 2–6. The warped moving images obtained by both traditional
registration methods distinctly different to fixed image, although the B-spline
result appears visually more similar than obtained by SyN. All warped moving
images obtained using DL-based methods look more similar to the fixed image,
than the former. The deformation fields and their corresponding Jacobian deter-
minants estimated using each approach indicate that distinct boundaries for the
left and right ventricle are retained using DDIR, not afforded by the rest.

Table 1. Quantitative comparison between DDIR and state-of-the-art methods using
the DS of LVBP, LVM, RV and average Dice (denoted as Avg. DS) and HD. Statistically
significant improvements in registration accuracy (DS and HD) are highlighted in bold.
Besides, LVEDV and LVMM indices with no significant difference from the reference
are also highlighted in bold.

Methods LVBP DS (%) LVM DS (%) RV DS (%) Avg. DS (%) HD (mm) LVEDV LVMM

before Reg 57.68 ± 6.21 30.88 ± 8.68 55.13 ± 7.51 47.90 ± 6.33 12.91 ± 2.48 143.76 ± 32.13 83.67 ± 21.06

B-spline 74.44 ± 11.50 68.06 ± 7.20 61.76 ± 12.05 68.09 ± 8.76 13.72 ± 3.57 131.14 ± 40.64 81.11 ± 22.60

Demons 80.29 ± 10.00 69.96 ± 5.50 64.86 ± 9.67 71.70 ± 6.96 13.06 ± 3.12 138.00 ± 34.15 80.00 ± 21.25

SyN 70.92 ± 9.36 57.88 ± 10.59 60.30 ± 8.35 63.03 ± 8.29 12.98 ± 2.68 120.09 ± 41.83 83.12± 21.20

Voxelmorph-diff 81.73 ± 8.71 72.04 ± 4.65 65.73 ± 9.62 73.16 ± 6.26 12.96 ± 3.14 137.16 ± 32.59 78.65 ± 21.68

VM-Dice 82.28 ± 8.75 72.53 ± 4.59 66.30 ± 9.67 73.70 ± 6.28 13.00 ± 3.24 139.58 ± 32.79 78.98 ± 21.57

VM (img+seg) 82.54 ± 8.50 72.66 ± 4.80 66.69 ± 9.64 73.96 ± 6.28 12.68 ± 3.21 138.29 ± 33.00 80.83 ± 21.62

VM-Dice (img+seg) 81.97 ± 8.53 71.23 ± 4.79 70.20 ± 12.05 74.47 ± 6.79 11.28 ± 4.35 144.33 ± 32.93 80.17 ± 22.02

Voxelmorph-diff
(compose)

78.82 ± 6.38 67.41 ± 8.80 75.10 ± 6.97 73.78 ± 6.10 11.74 ± 3.08 119.30 ± 38.71 91.39 ± 23.07

VM-Dice (compose) 79.59 ± 5.91 68.81 ± 7.81 77.93 ± 6.63 75.44 ± 5.36 11.14 ± 3.12 120.90 ± 38.14 94.89 ± 25.96

DDIR (baseline) 84.25 ± 8.63 75.02 ± 4.50 71.42 ± 10.32 76.90 ± 6.58 11.85 ± 3.38 141.73 ± 32.29 79.01 ± 21.40

DDIR 84.63 ± 8.07 75.27 ± 5.03 74.07 ± 8.73 77.99 ± 5.47 10.65 ± 3.51 141.84 ± 32.59 81.92 ± 21.86
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Quantitative Results. To quantitatively evaluate the performance of our app-
roach, we compare DDIR with previous methods using Dice score (DS) and the
Hausdorff Distance (HD). DS is computed for LVBP, LVM and RV. These values
and the average DS and HD across all regions are reported in Table 1. Besides,
to demonstrate the clinical value of DDIR, we also compute two clinical indices,
LV end-diastolic volume (LVEDV) and LV myocardial mass (LVMM). The for-
mer is computed using ED segmentations, while the latter, is computed using
ED and ES segmentations, pre- and post-registration. Pre-registration, LVEDV
and LVMM are computed based on the moving and fixed segmentations (used
as reference values). Post-registration, we compute them based on the warped
moving segmentation. Therefore, as we perform both ED-to-ES and ES-to-ED
registration for each subject, the LVMM values reported in Table 1 represent
the average computed at both ED and ES, across all subjects. Thus the closer
LVEDV and LVMM (post-registration) are to the reference values, the better
the registration performance.

DL-based approaches outperform traditional registration methods in terms
of both DS and HD. The weakly-supervised variants of Voxelmorph-diff provide
improvements over Voxelmorph-diff, consistent with previous research [4]. Using
segmentation masks as additional input channels to the network (VM(img+seg))
yields better results than using them just to compute the loss and drive gradient
updates (VM-Dice) (73.96% vs 73.70%). However, conversely the former requires
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Fig. 2. Visual comparison of deformation fields estimated using DDIR and state-of-
the-art methods. Left column: Moving and fixed images; Right column: correspond-
ing warped moving image (first row), deformation fields (second row) and Jacobian
Determinant (last row). Colours in the Jacobian determinant images, from blue to red
represent the intensity from low to high. The cardiac MR images were reproduced by
kind permission of UK Biobank c©. (Color figure online)
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segmentation masks during inference, while the latter do not. The combination
of these two strategies (VM-Dice(img+seg)) further improves registration per-
formance (∼0.5% in terms of average DS). Composing sub-deformation fields
also improves registration accuracy of the trained networks, with Voxelmorph-
diff (compose) achieving 0.6% higher average DS than Voxelmorph-diff (73.78%
vs 73.16%), and VM-Dice (compose) achieving ∼1.7% higher average DS than
VM-Dice (75.44% vs 73.70%). We found that the DDIR(baseline) achieves ∼1%
higher average DS than VM-Dice(img+seg) (76.90% vs 75.93%), which high-
lights the advantage of using a multi-channel encoder-decoder network. Com-
pared with DDIR, we found that incorporating discontinuity further improves
the average DS (77.99% vs 76.90%). Correspondingly, DDIR also obtains the best
performance in terms of the DS for LVBP, LVM and HD, while its RV DS is lower
than VM-Dice(compose). We evaluated the statistical significance of these results
using paired t-tests and found that DDIR significantly outperforms Voxelmorph-
diff, VM-Dice, VM(img+seg) and VM-Dice(img+seg) on all DS and HD metrics
(P-value < 0.05). DDIR also significantly outperforms DDIR(baseline) in terms
of average DS, RV DS and HD. Each sub-deformation field generated by DDIR
are smooth (without foldings). After composing, the discontinuity only exists at
the interface of different sub-regions, which demonstrates that DDIR can gener-
ate locally-smooth but globally-discontinuous deformation fields.

The clinical indices, LVEDV and LVMM, show no significant differences (P-
value > 0.05) post-registration using DDIR to the reference values, not afforded
by other approaches. This demonstrates the superiority and clinical value of
our method. To analyse the discontinuity on the deformation fields, we visualise
the deformation fields generated using DDIR and DDIR (baseline) (presented in
the supplementary material), where the discontinuity is observed for the former
along the LV and RV boundaries. To further demonstrate the robustness and
generalisability of our approach, we apply the models trained on UKBB data,
to the publicly available Automatic Cardiac Diagnosis Challenge (ACDC) data
set. The qualitative and quantitative results are included in the supplementary
material for brevity. As cardiac motion in ACDC images is not as pronounced
as in UKBB (in some cases, the images in ED are very similar to ES), only
marginal differences in registration performance are observed between DDIR and
the other composition-based methods in terms of DS and HD. However, as before,
DDIR outperforms Voxelmorph-diff and traditional state-of-the art methods.
Additionally, the clinical indices quantified (LVEDV, LVMM) post registration
using DDIR show no significant differences to the reference, not afforded by any
of the other methods investigated. This demonstrates the potential for applying
DDIR in real clinical scenarios.

4 Conclusion

We proposed a novel weakly-supervised discontinuity-preserving registration net-
work, DDIR, which significantly outperformed the state-of-the-art, in intra-
patient CMR registration. DDIR preserves LV clinical indices post-registration,
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not afforded by the other approaches. This makes it compelling as a tool for use
in clinical applications as it ensures that common diagnostic biomarkers for the
LV are preserved post-registration.
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