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Abstract. Monte-Carlo simulation of radiotherapy dose remains an
extremely time-consuming task, despite being still the most precise tool
for radiation transport calculation. To circumvent this issue, deep learn-
ing offers promising avenues. In this paper, we extend ConvLSTM to
handle 3D data and introduce a 3D recurrent and fully convolutional
neural network architecture. Our model’s purpose is to infer a computa-
tionally expensive Monte Carlo dose calculation result for VMAT plans
with a high number of particles from a sequence of simulations with a low
number of particles. We benchmark our framework against other learn-
ing methods commonly used for denoising and other medical tasks. Our
model outperforms the other methods with regards to several evaluation
metrics used to assess the clinical viability of the predictions. Code is
available at https://git.io/JcbxD.
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1 Introduction

In photon radiotherapy, accurate dose modelling is crucial for the treatment plan-
ning process in order to target tumours while leaving surrounding healthy tissues
unharmed. For that purpose, Monte-Carlo (MC) methods remain unmatched by
conventional algorithms such as pencil beam [9] and collapsed cone [1] in terms
of precision. MC methods are based on probabilistic simulation of the behaviour
of billions of particles in matter. However, due to the full particle transport mod-
eling, MC methods are still extremely computationally expensive which prevents
their extensive clinical adoption. Recent research partially addressed this issue
by taking advantage of hardware acceleration and using efficient GPU imple-
mentations [4,11].

Modern treatment techniques require the calculation of radiation from com-
plex beam configurations. Intensity-modulated radiation therapy (IMRT) allows
only a few distinct gantry angles (the direction of the radiation source) while
volumetric modulated arc therapy (VMAT) relies on the continuous movement
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of the gantry around the center of the tumor. The latter presents less monitor
units, more conformity and its delivery time is faster than IMRT [13], improving
patient care. On the other hand, the large irradiated area in VMAT requires
more simulated particles and therefore more time to reach high quality dose
simulations. This is due to the inherent noise present in MC simulations. As the
number of simulated particles increase, the noise that corrupts the underlying
true dose decreases. Enabling deep neural network architectures to learn the
underlying mechanisms of this causal relationship would lead to a flexible dose
prediction framework which would be more resilient to various anatomies and
allow efficient denoising of MC simulations of VMAT cases.

In this work, we generalize a recurrent neural network structure called a
ConvLSTM cell to cope with three dimensional inputs for denoising of dose maps.
Our contributions are threefold: (i) we present one of the first deep learning
based denoising algorithms on VMAT plans, (ii) we introduce a 3D, recurrent
and fully convolutional deep learning model that infers low uncertainty MC dose
distributions from sequences of high uncertainty and low time complexity MC
simulations, (iii) we release our VMAT dataset (dose distributions) and code.
To the best of our knowledge, this is one of the first time convolutional LSTMs
are investigated in a fully 3D setting, which could boost a big range of medical
imaging applications, such as [2].

2 Related Work

Artificial intelligence and in particular deep learning, offer promising avenues
for the clinical integration of MC methods through a colossal gain in terms
of simulation time. Deep learning engines for denoising anatomy specific MC
simulations have been proposed recently in the literature. In [12] the authors
proposed an encoder-decoder architecture to predict high precision simulations
from low precision ones in rectal cancer patients treated with IMRT. Neph et
al. [10] used combined UNets [14] coupled with additional CT scans as input to
solve the same problem in MR-guided beamlet dose for head and neck patients.
Vasudevan et al. [18] investigated Generative Adversarial Networks [3] (GANs)
to denoise dose simulations in water phantoms reporting promising results.

In the deep learning domain, convolutional architectures which extract rele-
vant features from spatial information differ from recurrent architectures which
exploit sequential correlations. ConvLSTM cells [16] were introduced to take
advantage of both spatial and sequential information in a two-dimensional set-
ting. This is a generalisation of Long Short-Term Memory (LSTM) [5] and fully
convolutional LSTMs [17] architectures. This study aims to demonstrate that
this novel recursive framework harnesses its strength from the sequential nature
of its input and its ability to derive correlation between the levels of noisiness
induced by the different number of particles simulated in the 3D space.
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3 Methodology

3.1 Formulation of the Monte-Carlo Progressive Denoising Task

A MC simulation of radiotherapy dose requires inferring the dose deposited by
billions of photons in the human body. The method consists in drawing inde-
pendent random samples from an unknown distribution by means of sequentially
sampling empirical measures that describe the dose deposition of individual pho-
tons. Let us denote by MNi

∈ R
d1×d2×d3
+ the 3D dose volume result of a sim-

ulation performed with Ni photons. Since several MC dose simulations for the
same patient are independent from each other, the following equation holds:

MNi
+ MNj

= MNi+Nj

Repeating this addition multiple times allows us to achieve simulations with
a high number of samples. We can then assess this cumulative process as a
temporal one, where the indices Ni correspond to consecutive time steps. In
that case, a dose simulation can be represented by a stochastic variable XNi

that we observe over time, as the number of simulated photons grows. Then,
considering a sequence (XN1 , . . . , XNT

) with T observations of that variable,
our denoising problem amounts to predicting the most likely observation XNT+1

based on the given sequence:

XNT+1 = argmax
XNT+1

p(XNT+1 |XN1 , ...,XNT
)

where p denotes an unknown probability. For our denoising task, an observa-
tion of XNi

is the radiotherapy dose delivered to a patient at each time step, i.e.
MNi

. Hence, there is a need to exploit both spatial and temporal information
of the given sequence before inferring the highly sampled dose. This formula-
tion allows us to exploit the temporal and spatial coherence in the process of
simulation.

3.2 LSTM and ConvLSTM Cells

LSTMs are a special type of recurrent neural networks (RNNs), able to exploit
long-term temporal dependencies. The major asset of LSTM lies in its memory
cell which can accumulate information as a cell state Ct. This cell is modified
depending on whether the controlling gates are activated. As the input state it
enters the LSTM, it is processed by an activation function whose final value can
activate the forget gate ft. When the forget gate is on, the past cell status Ct−1

may be “forgotten”. The current cell state is then propagated to the final state
ht in a way that is determined by the output gate ot. The notation follows [16].

The memory cell allows LSTMs to circumvent the vanishing gradient problem
that occurs in the regular RNN model. However, the LSTM only models 1D
temporal information and does not make use of potential spatial information.
ConvLSTMs overcome the latter limitation of LSTM. They can process 2D data
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Fig. 1. Proposed architectures and inner structure of the 3D ConvLSTM. The number
of output channels after each block appears above or below the layers’ output volumes.

such as images by replacing transitional multiplications with convolutions. This
innovation allows the model to infer a pixel’s next state from its own past status
as well as its neighbours.

3.3 Proposed 3DConvLSTM MC Denoiser

3DConvLSTM Cells. As we are considering data that present spatial infor-
mation in three dimensions, we extended the ConvLSTM framework to deal with
temporal sequences of 3D volumes. This can be achieved by using 3D convolu-
tional operators indicated by ∗. In that structure, Wz and bz in the equations
below denote the parameters (filters and bias) of the considered convolutional
layers. � stands for the Hadamard product and σ for the sigmoid function. The
following Eqs. (1–5) describe how gates are activated and states modified:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci � Ct−1 + bi) (1)

ft = σ(Wxf ∗ Xt + Whf ∗ Ht−1 + Wcf � Ct−1 + bf ) (2)

Ct = ft � Ct−1 + it � tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (3)

ot = σ(Wxo ∗ Xt + Wco � Ct + bo) (4)

Ht = ot � tanh(Ct) (5)
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Figure 1 presents the structure of the 3D ConvLSTM. All the states of the
3DConvLSTM cell are initialized with zeros which corresponds to ignorance of
the future states. To ensure that dimensions match between the input and the
various states inside the cell, padding is applied before convolutions. Therefore,
the output of the 3DConvLSTM has the same spatial dimensions as the input.

This extension of ConvLSTM allows processing of medical volumetric sequen-
tial data in a fully convolutional manner. Each voxel’s future state can be seam-
lessly predicted using contextual information brought by both temporal and
spatial features from its own and its neighbours’ past states in all dimensions.
In the following subsections we present the two different setups that we used to
integrate the 3DConvLSTM cells.

Proposed Model with Stacked 3DConvLSTM Cells: The model consists of 7
3DConvLSTM cells stacked on top of each other, without introducing any spa-
tial downsampling. All convolutional layers in the 3DConvLSTM cells contain
3 × 3 × 3 filters. Figure 1 shows the architecture of the Stacked ConvLSTM
model. The spatial dimensions remain equal to that of the input through all
propagation.

Proposed UNet with 3DConvLSTM Cells as Skip Connections: We also intro-
duce a model based on the 3DUNet [21] architecture and enhanced with 3D
ConvLSTM cells in the skip connections to further extract features at each
of the 5 down-sampling steps. Down-sampling is performed using max pooling
with kernel size and stride of 2 and comprises two identical convolutional layers.
All convolutions have 3 × 3 × 3 filters. The bottleneck has two identical con-
volutions with a residual connection to further exploit the deep features. The
up-sampling blocks have a transpose convolution for up-sampling and a regu-
lar convolutional layer for further processing. Each convolutional layer is ended
with a LeakyReLU [8] activation function, and batch normalization [6] is used
for faster convergence. Details regarding the number of channels at each stage
are shown in Fig. 1. This model is trained in the same setting as the proposed
model with stacked 3D ConvLSTM cells.

To train all these models, we use a hybrid loss function that adds the Struc-
tural Similarity Index Measure (SSIM) [20] and the L1 loss. The parameters of
the models are optimized by minimizing the following loss function (6):

L =
Nsamples∑

i=0

(∣∣∣
∣∣∣X(i,estimated)

NT+1
− Xi

NT+1

∣∣∣
∣∣∣
1

+ SSIM
(
X

(i,estimated)
NT+1

,Xi
NT+1

))

(6)
where X

(i,estimated)
NT+1

is the model’s estimation of the i-th denoised dose volume
sample. The SSIM metric is renown for giving a quantitative idea of the perceived
quality of an image by measuring the similarity between two images. The L1 loss
is well known to help keep track of fine grained details while training a model.
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4 Dataset Construction

The patient cohort encompasses 50 patients treated with external beam photon
therapy using the VMAT technique. Anatomies are diverse, including 22 pelvic
and 28 head and neck cases. The dataset was split to 40, 5 and 5 patients for
training, validation and test respectively. Anatomies were distributed as evenly
as possible between these sets.

A model for a 6 MeV photon beam with standard fluence of a Varian True-
beam linear accelerator was constructed using schematics and phase space data
available in the IEAE phase space database. Each patient plan comprises two
VMAT arcs. For each patient, the multileaf collimator (MLC) shapes and gantry
angles were extracted from the original clinical plans. MC simulations of such
plans were computed with 5 × 108, 109, 5 × 109 particles for the noisy dose vol-
umes and 1011 particles for the ground-truth dose. The particle transport was
simulated using OpenGate [15] with Geant4. The resolution of the simulation
was set to 2 mm3. For the fully sampled dose, the maximum uncertainty in areas
within 20%–100% of the dose maximum remained below the clinically accepted
3% threshold. One complete simulation of a 2 arcs VMAT plan required over
4k hours of computation time on CPU without using any variance reduction
technique.

4.1 Implementation Details

A patch-based training was implemented by randomly selecting sub-volumes
from the 3D input sequences - ground-truth pairs, in areas within 30%–100% of
the dose maximum. The patch size was 64 mm3 subvolumes, i.e. 12.8 cm3. We
used Adam optimizer with learning rate, weight decay, beta1, beta2 and epsilon
parameters set to 10−5, 10−4, 0.9, 0.999 and 10−8 respectively. The learning rate
was reduced by half when the validation loss stagnated, i.e. when difference in
loss was inferior to 1e−2 for more than 200 iterations. The batch size was set to
8. All models were trained for 3 ·105 iterations. The final model we kept was the
one that performed best on the validation set.

The input sequence comprises 3 decreasingly noisy dose volumes simulated
with 5 × 108, 109 and 5 × 109 particles of the same patient case. We use random
horizontal and vertical flipping as sole augmentation techniques. The ground-
truth was the corresponding highly sampled simulation with 1011 particles. Each
sample was selected and fed to the model along the axial view.

5 Experimental Results

We compare our method with other commonly used learning based denoising
methods in the literature. Our first benchmarking model is a 3DUNet [21] with
5 down-sampling blocks. The second one is Pix2Pix [7], a generative adversarial
framework. Pix2Pix has been adapted to a 3D setting. Moreover, since we are
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Table 1. Evaluation metrics for the performance of the models on the test set.

Method SSIM GPR L1 # parameters

Inputs 5e9 particles 58.1 ± 0.1 59.1 ± 2.1 0.149 ± 0.050

3DUNet [14] 80.0 ± 2.4 61.2 ± 2.8 0.088 ± 0.007 10 M

Pix2Pix 3D [7] 55.4 ± 8.6 66.6 ± 14.4 0.102 ± 0.009 120 M

3D BiONet [19] 93.0 ± 0.2 90.6 ± 1.2 0.080 ± 0.001 178 M

Proposed 3DUNet ConvLSTM 64.5 ± 6.1 79.1 ± 1.2 0.037 ± 0.004 36 M

Proposed Stacked 2D ConvLSTM 81.6 ± 3.2 74.1 ± 3.1 0.021 ± 0.003 1.5 M

Proposed Stacked 3D ConvLSTM 97.9 ± 0.9 94.1 ± 1.2 0.004 ± 0.001 5 M

considering smaller data in terms of height and width, we remove one down-
sampling block and the corresponding decoding block from the generative model.
The adapted generator thus consists of 5 down-sampling blocks, giving a fair
comparison with the proposed 3DUNet architecture. Since these models don’t
handle sequential data, the input is the last volume of the sequence fed to the
recurrent architecture, i.e. the least noisy simulation of the sequence. Finally,
we also compared with the recently proposed BiONet architecture [19] after
adapting it to 3D data and also limiting the number of down-sampling blocks.

Extensive quantitative comparison using the L1 error, SSIM and gamma
passing rate (GPR) for each model on the test set are presented in Table 1. We
evaluate the GPR criteria with a dose to agreement and tolerance on dose val-
ues of 3%/3 mm within 30%–100% of maximum dose. Results show that Stacked
3DConvLSTM outperforms all benchmark models in all metrics while having
the lowest number of trainable parameters. We also trained the original ConvL-
STMs, on slices of dose volumes. Results in Table 1 reveal that the 2D version
still performs better than 3DUNet and Pix2Pix3D with regards to all metrics
with only 1.5 million parameters indicating the need of sequential data for this
task. Nevertheless, it does not outperform its 3D counterpart nor 3D BiONet.
This fact highlights that our 3D model as well as 3D BiONet extract volumetric
features that greatly improve the quality of the predictions. Moreover, Stacked
3D ConvLSTM achieves the lowest L1 value and displays GPR scores with stan-
dard deviations of 1.2. Although BiONet also shows comparative robustness in
its predictions, the quality of the denoised dose volumes remain inferior to that
of our proposed models. Another remark stemming from these results is that,
despite having a higher SSIM than Pix2Pix3D, 3DUNet’s GPR is lower. This
might indicate that 3DUNet is able to infer structural coherence in the dose vol-
umes but lacks in precision at a voxel level. In contrast, the proposed recurrent
3DUNet outperforms 3DUNet on the GPR by 18% even though its SSIM score
fails to match the 3DUNet.

Figure 2 shows the predictions of the best performing models, namely BiONet
and the Stacked 3DConvLSTM, on a test case. Both models reproduce high
dose regions well. To further assess the denoising ability of the models, dose pro-
files are provided in Fig. 3. Both models succeed in smoothing the noise of the
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Fig. 2. On the first row from left to right: a single slice of the 5 · 109 dose volume,
BiONet’s, Stacked 3D ConvLSTM’s predictions and ground-truth 1 ·1011 dose volume.
On the second row from right to left error maps for the three different representations.

Fig. 3. a) DVH curves, showing that the dose gradients are reproduced faithfully. b)
Dose profile along the line indicated on the ground truth image of Fig. 2.

low-simulation input. Error maps between predictions and ground-truth dose
associated with BiONet point out that BiONet globally overestimates the dose
in low dose gradient regions. Stacked 3DConvLSTM performs better in those
regions but underestimates dose in high dose gradient regions where denoising
is expected to be more challenging. However, we can notice that both models
unfortunately tend to smooth fine details of the Monte-Carlo ground-truth sim-
ulation. Figure 3 plots the dose volume histogram (DVH) corresponding to the
patient studied in Fig. 2. Both models substantially improve the DVHs towards
the ground-truth DVHs. Nevertheless, the DVHs of BiONet indicate that the
model still slightly overestimates the dose in voxels, in contrary to the Stacked
3DConvLSTMs.
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6 Conclusions

Independently of GPU-accelerated computation, MC simulation time can be fur-
ther decreased using deep learning based frameworks. The goal of this work is
to highlight how considering the MC simulation task as a spatiotemporal prob-
lem can be an asset to reach accurate and fast computation of dose. Extensive
experiments and comparisons with other state of the art methods highlight the
potential of our method. However, the fact that our model does not perform
any spatial down-sampling implies that the required GPU memory usage could
still be reduced. Achieving high GPR scores while decreasing the computational
load could enable real-time Monte-Carlo dose simulation. Future work aims to
reduce the number of simulated particles, or in other words increase the level of
noise of the input dose volumes.
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