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Abstract. Recent deep learning-based methods have shown promising
results and runtime advantages in deformable image registration. How-
ever, analyzing the effects of hyperparameters and searching for optimal
regularization parameters prove to be too prohibitive in deep learning-
based methods. This is because it involves training a substantial number
of separate models with distinct hyperparameter values. In this paper,
we propose a conditional image registration method and a new self-
supervised learning paradigm for deep deformable image registration. By
learning the conditional features that are correlated with the regulariza-
tion hyperparameter, we demonstrate that optimal solutions with arbi-
trary hyperparameters can be captured by a single deep convolutional
neural network. In addition, the smoothness of the resulting deformation
field can be manipulated with arbitrary strength of smoothness regular-
ization during inference. Extensive experiments on a large-scale brain
MRI dataset show that our proposed method enables the precise con-
trol of the smoothness of the deformation field without sacrificing the
runtime advantage or registration accuracy.

Keywords: Controllable regularization · Conditional image
registration · Deformable image registration

1 Introduction

Deformable image registration and the subsequent quantitative assessment are
crucial in a variety of medical imaging studies. Recent deep learning-based
image registration (DLIR) methods [3,5,17,30,31] have achieved remarkable
results and showed immense potential for time-sensitive medical imaging studies
such as image-guided surgery and motion tracking. Unsupervised DLIR meth-
ods [3,12,23,24] circumvent costly iterative optimization in conventional image
registration approaches by re-formulating the image registration problem as a
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learning problem with convolutional neural networks (CNN), resulting in fast
image registration. While DLIR methods have a learning formulation that dif-
fers from the conventional image registration approaches [1,2,28,29], the tradeoff
between registration accuracy and the smoothness of the deformation field, which
is often controlled with a hyperparameter in the objective function, cannot be
circumvented by DLIR methods. Typically, the optimal hyperparameter is deter-
mined using grid searching on the validation dataset [3,23]. Ironically, despite
the runtime advantage of DLIR methods, searching for the optimal hyperpa-
rameter value is notoriously time-consuming and computationally intensive in
DLIR methods as the hyperparameters are fixed throughout the learning and
inference phase. In DLIR methods, each grid search value requires a new DLIR
model trained with the distinct hyperparameter value, and each DLIR model
requires up to ∼20 h to a few days to train from scratch [3]. As such, ana-
lyzing the effect of hyperparameters and searching for optimal regularization
parameters prove to be too prohibitive in DLIR methods, leading to suboptimal
registration results and limited clinical applications. Despite the computational
cost of the hyperparameter searching technique, the traditional hyperparameter
searching technique may not be a good solution for unsupervised DLIR methods
for two thoughtful reasons. First, the optimal regularization parameter is subject
to the degree of misalignment between the input images, image modality, and
intensity distribution. Second, the prior knowledge of the learned model cannot
be utilized in the traditional hyperparameter searching technique, resulting in a
substantial computational redundancy.

In recent years, a pioneering work of Gatys et al. [9] demonstrate that CNN
encodes both the content and style information of an image. Subsequent studies
[4,7,14,15] further illustrate that the image information can be separated by
manipulating the statistics of the feature maps with feature-wise linear modula-
tion [6] in CNN. In this paper, motivated by these studies [7,14,15], we propose
a novel conditional image registration method and a new self-supervised learning
paradigm for deformable image registration to address the inefficiency of exist-
ing hyperparameter searching technique in DLIR methods. Instead of training
multiple models for searching the optimal hyperparameter, we propose utilizing
a single conditional model with self-supervised learning for efficient hyperparam-
eter tuning.

Parallel to our work, Hoopes et al. [13] propose to learn the effects of reg-
istration hyperparameters on deformation field with Hypernetworks [10], which
leverage a secondary network to generate the conditioned weights for the entire
network layers. While the Hypernetworks-based method offers immense mod-
ulation potential, it adds an enormous number of parameters to the original
image registration method. Alternatively, we propose a more parameter-efficient
and scalable approach based on conditional instance normalization. Our method
learns the effect of the regularization parameters and conditions on the feature
statistics of high-dimensional layers such that the smoothness of the solution
can be manipulated via arbitrary hyperparameter values during the inference
phase. We further introduce a novel distributed mapping network to generate
non-linear embedding with the condition variable. We present extensive exper-
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iments, demonstrating that our formulation enables the precise control of the
smoothness of the deformation field during the inference phase and rapid grid
search of an optimal hyperparameter without sacrificing the runtime advantage
or the registration accuracy of the original DLIR method.

Fig. 1. Overview of the proposed (a) conditional deformable image registration method
and (b) the conditional image registration module. For clarity and simplicity, we depict
the first pyramid level only and illustrate the 2D formulation of our method in the
figure.

2 Methods

Deformable image registration establishes a dense non-linear correspondence
between a fixed image F and a moving image M , and the solution φ is often
subject to a weighted smoothness regularization. DLIR methods often formulate
the deformable image registration problem as a learning problem φ = fθ(F,M),
in which fθ is parameterized with CNN. Therefore, in contrast to conventional
image registration approaches, the strength of the smoothness regularization is
fixed throughout the training and inference phase. To address this limitation, we
extend the common formulation of DLIR methods to a conditional deformable
image registration setting. Instead of learning to adapt a particular weighted
smoothness regularization, our proposed method learns the conditional features
that correlated with arbitrary hyperparameter values. In the following sections,
we describe the methodology of our proposed method.

2.1 Conditional Deformable Image Registration

Given a fixed F , a moving 3D image scan M , and a conditional variable c,
we parametrize the proposed conditional image registration method as a func-
tion fθ(F,M, c) = φ with CNN. The proposed method works with any CNN-
based DLIR methods and conditional variables. Specifically, we parametrize an
example of the function fθ with the deep Laplacian pyramid image registration
network (LapIRN) and set the conditional variable to the smoothness regu-
larization parameter λ. To condition a CNN model on a conditional variable,
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a concatenation-based conditioning approach [6,21,32,33] in generative models
is to directly concatenate the condition variable with the input image scans.
However, based on our experiments, we observed that the concatenation-based
conditioning approach cannot capture a wide range of regularization parameters
and bias to a limited range of hyperparameter values.

Therefore, we depart from the concatenation-based conditioning approach
and extend the feature-wise linear modulation approach [4,15] instead. We con-
dition the hidden layers on the regularization parameter directly. In particu-
lar, the network architecture of LapIRN is comprised of L CNN-based registra-
tion networks (CRN). Each CRN consists of three major components: a feature
encoder, a set of N residual blocks, and a feature decoder. We replace the N
residual blocks with our proposed conditional image registration modules, as
shown in Fig. 1(a). The feature encoder extracts the necessary low-level features
for deformable image registration, while the feature decoder upsamples and out-
puts the targeted displacement fields. We only condition the hidden layers in each
conditional image registration module on the hyperparameter of the smoothness
regularization. We set L and N to 3 and 5 in our experiments, respectively.

2.2 Conditional Image Registration Module

Based on the assumption that the characteristics of the deformation field, i.e.
smoothness, can be captured and separated by CNN, we design the conditional
image registration module that takes input hidden feature maps and the regular-
ization hyperparameter as input, and outputs hidden features with shifted fea-
ture statistics based on conditional instance normalization (CIN) [7]. Specifically,
the proposed conditional image registration module adopts the pre-activation
structure [11] and includes two CIN layers, each followed by a leaky rectified
linear unit (LeakyReLU) activation [18] with a negative slope of 0.2 and a con-
volutional layer with 28 filters, as depicted in Fig. 1(b). A skip connection is
added to preserve the identity of the features.

Conditional Instance Normalization. While the centralized mapping net-
work [15] generates a conditional representation with less memory consumption
and computational cost, we argue that the effective representation of the hyper-
parameter should be diverse and adaptable to different layers in CNN. Chen et
al. [4] demonstrate that modulating layers with various depths of CNN results in
inconsistent performance, which implies that hidden features of different depths
hold distinct feature statistics and non-linearly correspondence to the latent
code.

To maintain diverse conditional representations of the hyperparameter for
each hidden level, we propose to include distributed mapping networks that learn
a separate intermediate non-linear latent variable for each conditional image
registration module, which is shared among all the CIN layers. Formally, given
a normalized regularization hyperparameter λ ∈ λ̄, the distributed mapping
network g : λ̄ → Z first maps λ to latent code z ∈ Z. Then, the CIN layers



Conditional Deformable Image Registration 39

Fig. 2. Example axial MR slices of resulting warped images and deformation fields
from the baseline method and our proposed method (CIR-DM) with λ ∈ [0.1, 1, 4, 8].
The standard deviation of the Jacobian determinant is shown at the upper-right corner
of each resulting deformation fields.

learn a set of parameters that specialize z to the regularization smoothness.
The distributed mapping network is parameterized with a 4-layer multilayer
perceptron (MLP). For simplicity, we set the number of perceptrons in each
MLP layer and the dimensionality of the latent space to 64. The middle layers
in the distributed mapping network use the LeakyReLU activation to further
introduce the non-linearity into the latent code. The CIN operation for each
feature map hi is defined as

h′
i = γθ,i(z)

(
hi − μ(hi)

σ(hi)

)
+ βθ,i(z), (1)

where γθ,i, βθ,i ∈ R are affine parameters learned from the latent code z, and
μ(hi), σ(hi) ∈ R are the channel-wise mean and standard deviation of feature
map hi in channel i. In other words, the control of smoothness regularization
is learned by normalizing and shifting the feature statistics of the feature map
with corresponding affine parameters γθ,i and βθ,i for each channel in the hidden
feature map h.

2.3 Self-supervised Learning

The objective of our proposed method is to compute the optimal deformation
field corresponding to the hyperparameter of smoothness regularization. For-
mally, this task is defined as

φ∗ = arg min
φ

Lsim(F,M(φ)) + λpLreg(φ), (2)

where φ∗ denotes the optimal displacement field φ, Lsim(·, ·) denotes the dissim-
ilarity function, Lreg(·) represents the smoothness regularization function and
λp is uniformly sampled over a predefined range. We set the predefined range of
λp to [0, 10] empirically such that the optimal deformation field with maximum
λp is diffeomorphic in most cases. The only difference between the objective in
common unsupervised DLIR methods [3,12,23,24] and our objective is that we
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learn to optimize the objective function over a predefined range of hyperparame-
ter instead of a fixed hyperparameter value. To exemplify our proposed learning
paradigm, we follow [24] and instantiate the objective function with a similar-
ily pyramid and a diffusion regularizer on the spatial gradients of displacement
fields. We also adopt a progressive training scheme to train the network in a
coarse-to-fine manner. Mathematically, the objective function for each pyramid
level l ∈ L is defined as

Ll(F,M(φ), φ, λp) =
∑

i∈[1..l]

− 1
2(l−i)

NCCw(Fi,Mi(φ)) + λp||∇φ||22, (3)

where λp is sampled uniformly in [0, 10] for each iteration and NCCw(·, ·) denotes
the local normalized cross-correlation (NCC) with window size w, in which w is
set to 1 + 2i. It is worth noting that our proposed learning paradigm does not
introduce extra computational cost to the original objective function and can be
easily transferred to various DLIR applications with minimum efforts.

3 Experiments

Data and Pre-processing. We evaluate our method on brain atlas registra-
tion tasks. We use 425 T1-weighted brain MR scans from the OASIS [19,20]
dataset and 40 brain MR scans from the LPBA40 [26,27] dataset. The OASIS
dataset contains subjects aged from 18 to 96, and 100 of the included subjects
were diagnosed with very mild to moderate Alzheimer’s disease. We follow [24]
and perform standard pre-processing, including skull stripping, affine spatial nor-
malization, intensity normalization, and subcortical structures segmentation, for
each MR scan using FreeSurfer [8]. For the OASIS dataset, subcortical segmenta-
tion maps of 26 anatomical structures serve as the ground truth for the evaluation
of our method. For the LPBA40 dataset, the brain MR scans in atlas space and
its subcortical segmentation map of 56 anatomical structures, which are delin-
eated by experts, are used in our experiments. We resample all MR scans with
isotropic voxel sizes of 13mm and center-cropped all the pre-processed image
scans to 144 × 192 × 160. We randomly split the OASIS dataset into 255, 20,
and 150 volumes and split the LPBA40 dataset into 28, 2, and 10 volumes for
training, validation, and test sets, respectively. We randomly select 3 and 2 MR
scans from the test sets as atlases in OASIS and LPBA40, respectively. Finally,
we register each subject to the chosen atlas using the baseline method and differ-
ent conditional deformable image registration methods. In summary, there are
441 and 16 combinations of test scans from OASIS and LPBA40, respectively,
included in the evaluation.

Implementation. Our proposed method and the other baseline methods are
implemented with PyTorch 1.7 [25] and deployed on the same machine, equipped
with an Nvidia Titan RTX GPU and an Intel Core (i7-4790) CPU. We build our
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method on top of the official implementation of LapIRN available in [22]. We
adopt Adam optimizer [16] with a fixed learning rate 0.0001. We normalize λ̄
to [0,1]. We train all the methods from scratch (60000 iterations in OASIS and
40000 iterations in LPBA40). The source code will be published online.

Baseline Methods. We compare our method with the original LapIRN
[24] with a fixed hyperparameter (denoted as baseline). Specifically, we train
seven distinct LapIRNs with different regularization hyperparameters λ ∈
[0.1, 0.5, 1, 2, 4, 8, 10]. For each hyperparameter value λ, we select the top-3 mod-
els with the highest Dice score on the validation set for evaluation to alleviate
the model variation. We further compare it with a concatenation-based condi-
tioning approach (denoted as the traditional method) [6,21,33], which simply
concatenates the regularization hyperparameter with the input scans in LapIRN
to achieve conditional image registration. An ablation study of the variant of our
proposed method is performed using either the 8-layer MLP centralized mapping
network [15] with latent space 256 (denoted as CIR-CM) and the proposed dis-
tributed mapping network (denoted as CIR-DM). For each condition deformable
image registration method, we adopt the same training scheme and select the
top-3 models with the highest Dice score (λ = 0.1) on the validation set for
evaluation.

Table 1. Quantitative results of the mean DSC and mean std(|Jφ|) over seven hyper-
parameter values on the OASIS and LPBA40 datasets. Initial: spatial normalization.

Method
OASIS LPBA40

DSC %DSC std(|Jφ|) %std(|Jφ|) Ttrain Ttest DSC %DSC std(|Jφ|) %std(|Jφ|) Ttrain Ttest

Initial 0.552 - - - - - 0.560 - - - - -

Baseline 0.770 - 1.157 - 200.3h 0.204s 0.729 - 0.697 - 143.2h 0.206s

Traditional 0.780 +1.41% 0.970 +4.62% 28.4h 0.212s 0.722 -1.01% 0.440 -12.35% 20.3h 0.210s

CIR-CM 0.767 -0.57% 0.900 -5.23% 28.8h 0.227s 0.721 -1.14% 0.473 -5.73% 20.5h 0.225s

CIR-DM 0.770 -0.19% 0.963 -3.78% 28.5h 0.216s 0.728 -0.17% 0.552 -3.89% 20.4h 0.218s

Measurement. We register each scan in the test set to an atlas, propagate the
anatomical segmentation map of the moving image using the resulting deforma-
tion field with the nearest-neighbour interpolation, and measure the overlap of
the segmentation maps using Dice similarity coefficient (DSC). We also measure
the standard deviation of the Jacobian determinant on the deformation fields
(std(|Jφ|)), representing the smoothness and local orientation consistency of the
deformation field. Moreover, we compare each individual solution from all condi-
tional methods to the solution of the corresponding test case generated from the
baseline method, and measure the average difference (in percentage) of the mean
Dice score (%DSC) and the standard deviation of the Jacobian determinant on
the deformation fields (%std(|Jφ|)) over the total number of test cases. Finally,
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we measure the total training time in hours (Ttrain) and the average inference
time per case in seconds (Ttest) for each method. We repeat the experiment with
seven distinct hyperparameter values λ. An ideal conditional image registration
algorithm should achieve comparably registration accuracy and quality with the
baseline method.

Results and Discussions. Table 1 presents a comprehensive summary of the
results of each method in the OASIS and LPBA40 datasets. Figure 2 illustrates
qualitative results compare to the baseline method and Fig. 3 shows detail results
of each method over seven distinct hyperparameter values in the OASIS dataset.
We demonstrate that not only does our method achieves highly consistent results
with the baseline method, our method significantly reduces the total training
time needed to generate solutions with diverse complexities.

Fig. 3. Quantitative results over seven distinct hyperparameter values on the OASIS
dataset. First row: the boxplot of Dice scores and the mean absolute error (MAE)
of DSC compared to the baseline method. Second row: the boxplot of std(|Jφ|) and
the MAE of std(|Jφ|) compared to the baseline method. The MAE of DSC (and the
std(|Jφ|)) is computed by averaging the absolute difference of individual solutions
between the targeting methods and baseline method over the total number of test
cases.

Specifically, all methods under our proposed conditional framework only
required one trained model to generate solutions with seven distinct hyperpa-
rameter values of the smoothness regularization λ, resulting in ∼7x faster total
training time than the baseline method. Interestingly, we find that the complex-
ity of the resulting deformation fields (std(|Jφ|)) at λ = 0.1 declines significantly
(−32% to −41%) while maintains comparable Dice scores with the baseline
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method, indicating that our methods produce even more desirable (smoother)
solutions than the baseline method. In contrast to methods based on conditional
instance normalization, the traditional method achieves a consistently higher
average Dice score and standard deviation of the Jacobian determinant than the
baseline method on the OASIS dataset when λ ≥ 2 as shown in Fig. 3, indicat-
ing the traditional method tends to bias to a limited range of λ. Compare to
CIR-CM, our distributed mapping network design is in every way superior to
the centralized mapping network in the context of conditional deformable image
registration, as shown in Fig. 3. Importantly, our method achieves only −0.19%
(−0.17% on LPBA40) difference of mean Dice score compared to the results of
baseline method on OASIS, and the average inference time of CIR-DM is ∼0.21
seconds, highlighting the fact that CIR-DM is the only method that enables
precise control of the deformation field regarding diverse λ without sacrificing
the registration accuracy or the runtime advantage of DLIR methods.

4 Conclusion

In summary, we have presented a novel conditional deformable image registra-
tion framework and self-supervised learning paradigm for deep learning-based
deformable image registration. Our method learns the conditional features that
are correlated with the regularization hyperparameter by shifting the feature
statistics. It is demonstrated that our method enables precise control of the
smoothness regularization in the inference phase without sacrificing the runtime
advantage or the registration accuracy of the original DLIR method. Extensive
experiments on brain atlas registration have been carried out, demonstrating
that the results of our method consistently align with the results of the original
DLIR method, and our method is superior to the common conditional approaches
with diverse hyperparameter values. In principle, the proposed conditional image
registration framework can be easily transferred to arbitrary CNN-based image
registration approaches for controllable regularization of the deformation field
and rapid hyperparameter tuning.
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