
Co-generation and Segmentation
for Generalized Surgical Instrument
Segmentation on Unlabelled Data

Megha Kalia1(B) , Tajwar Abrar Aleef2 , Nassir Navab3, Peter Black4,
and Septimiu E. Salcudean1

1 Electrical and Computer Engineering, University of British Columbia,
Vancouver, Canada

{mkalia,tims}@ece.ubc.ca
2 School of Biomedical Engineering, University of British Columbia,

Vancouver, Canada
tajwaraleef@ece.ubc.ca

3 Computer Aided Medical Procedures, Technical University of Munich,
Munich, Germany

nassir.navab@tum.de
4 Vancouver Prostate Centre, Vancouver, Canada

peter.black@ubc.ca

Abstract. Surgical instrument segmentation for robot-assisted surgery
is needed for accurate instrument tracking and augmented reality over-
lays. Therefore, the topic has been the subject of a number of recent
papers in the CAI community. Deep learning-based methods have shown
state-of-the-art performance for surgical instrument segmentation, but
their results depend on labelled data. However, labelled surgical data is
of limited availability and is a bottleneck in surgical translation of these
methods. In this paper, we demonstrate the limited generalizability of
these methods on different datasets, including robot-assisted surgeries on
human subjects. We then propose a novel joint generation and segmen-
tation strategy to learn a segmentation model with better generalization
capability to domains that have no labelled data. The method leverages
the availability of labelled data in a different domain. The generator
does the domain translation from the labelled domain to the unlabelled
domain and simultaneously, the segmentation model learns using the
generated data while regularizing the generative model. We compared
our method with state-of-the-art methods and showed its generalizabil-
ity on publicly available datasets and on our own recorded video frames
from robot-assisted prostatectomies. Our method shows consistently high
mean Dice scores on both labelled and unlabelled domains when data is
available only for one of the domains.
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1 Introduction

Surgical instrument segmentation is fundamental to Augmented Reality (AR) in
image-guided robot-assisted surgery (RAS) [11] and has been an active topic of
research, with convolutional neural network (CNN)-based methods surpassing
prior methods by a significant margin [2,5,10]. CNN-based methods depend on
the availability of annotated surgical data, which may be difficult to obtain [9].
Their performance has been reported for publicly available ex-vivo and porcine
in-vivo RAS surgeries, but not in human RAS.

Recently, many generative approaches have been proposed to mitigate the
problem of limited clinical labelled data [4,7,13]. For laparoscopic instrument
segmentation, [13] proposed a generative adversarial network (GAN)-based
method to use a small amount of labelled data. In [7], labelled data from cadaver
surgery was transferred to in-vivo surgery. Then a separate segmentation model
was trained using either the translated cadaver data or translated in-vivo data to
the cadaver domain. In [4], an image-to-image (I2I) mapping of simulated to real
surgical instruments was proposed, with blending into the camera background.
In the above methods, the translated data was used to train a segmentation
model. Finding validated quantitative metrics for the quality of translated data
is difficult and is the topic of on-going research [6,15]. In many cases, the genera-
tive models change the surgical instruments’ shape and introduce artefacts while
the overall accuracy decreases [Fig. 1]; this is undesirable for clinical application.
Hence, a segmentation strategy leveraging the power of generative models to alle-
viate the problem of unlabelled clinical data while addressing the predominant
current challenges of generative models is imperative.

Therefore, in the current paper, we present a joint unpaired I2I mapping
and segmentation strategy for better generalizability of a surgical instrument
segmentation model to a domain with no labelled data. The generative and seg-
mentation models are trained together and reach convergence in a synergistic
manner. The generative model maps from a source domain with labelled data
to a target domain with unlabelled data with constant feedback from the seg-
mentation model. The segmentation model trains in parallel on the generated
target images and on the labelled source images. The convergence criterion of
this joint-system is the segmentation quality. The segmentation model also regu-
larizes the generative model that can otherwise change the shape of the surgical
instruments during the I2I mapping. We call our method coSegGAN. The closest
method to it is presented in [7]. However, unlike in [7], our segmentation model is
not pre-trained. It provides feedback to the generators as it learns using the gen-
erated data, thus seeing much more varied data. Unlike prior work, we provide
an explicit shape constraint on latent space to provide intermediate supervision
during generative training. Through evaluation on real surgical sequences and
publicly available datasets, we show that coSegGAN has better generalizability
than existing methods. The main contribution of the paper is presenting a joint
generation and segmentation framework that provides state of the art (SOTA)
results to segment surgical instruments on unlabelled data. The method per-
forms better than using a generative model for data augmentation as a separate
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Fig. 1. (Left) Table showing the limited generalizability of state of the art (SOTA)
methods across domains. Mean Dice scores are shown for different methods on datasets
Endovis, UCL, and Surgery. (Right) Figures showing the problem with cycleGAN where
the intermediate generated output can be unrealistic while overall cycle consistency loss
is low. Figures A, B, and C show the original, translated, and reconstructed domain.

step. To the best of our knowledge, this is the first method that segments surgical
instruments with no labelled data by jointly training the generative and segmen-
tation model as a joint feedback system to perform an I2I mapping between the
labelled and the unlabelled domain.

2 Methods

2.1 Network Details

The generative part of coSegGAN uses a cycleGAN like architecture with two
generators and two discriminators [16]. Let xai and xbi denote the two ith images
in the domains ψA and ψB , respectively, and xa and xb denote the set of all
images in domains a and b, respectively. yai denotes the corresponding individual
label for the ith xai image and ya is the set of all such labels. GA and GB

are the two generators estimating the mappings, with GA : xb→a and GB :
xa→b, respectively. The discriminator DA is responsible to discriminate between
given true images in domain ψA and generated images GA(xb). Similarly, DB is
responsible for discriminating between the true domain ψB and generated images
GB(xa). Both GA and GB have a U-Net-like architecture [12] with a contracting
and expanding path. The contracting path consists of four 4 × 4 convolutional
layer with stride 2 + Leaky ReLu + Instance normalization [14] blocks where
in each subsequent block the output is halved and the channel numbers are
doubled. The expanding path consists of three blocks with each block having an
up-sampling layer + 4 × 4 convolution with a stride of 1 + ReLu activation
+ Instance normalization. The output of each block was concatenated with the
low-level features from the contracting path by skip connections and then passed
as an input to the next block. The output of the final block was passed though
a convolutional layer followed by a tanh activation. For the discriminator, we
used a patchGAN similar to [16]. For the segmentation model (S) in coSegGAN
we used the original U-Net architecture but with 16 base filters to prevent over-
fitting and to reduce computation. This did not decrease the performance of
segmentation when compared to the original U-Net, as determined empirically.
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Fig. 2. Overview of the training setup for the generation and segmentation side. The
diagram on the left shows the A to B mapping side of the cycleGANs that is modified
to incorporate shape loss and structural loss during training. The grey blocks indicate
the different losses used for updating the weights of the generator. On the right side,
the input and loss used for the segmentation model training are shown. Any network
indicated by ‘∼’ in this figure indicates it has frozen weights.

2.2 Training Strategy

We trained the generators, discriminators & the segmentation model in an alter-
native fashion. In the first run, the weights through the generators, GA and GB

were back-propagated while freezing the weights of the discriminators and the
segmentation model. Then in the next run, the discriminators as well as the seg-
mentation model, DA, DB , & S were trained and updated. For training S, both
xa and GB(xa) were fed as the input. Since the generated images are translated
versions of the real image, the corresponding labels for GB(xa) are the same
as xa. Note that S is seeing different variations of the generated target domain
images in every epoch because the generators and S are learning in parallel.
While the quality of the I2I mapping from the generators increases, the quality
of the images seen by S also increases. Details can be seen in Fig. 2.

2.3 Loss Functions

Segmentation Model. In order not to overwhelm the loss with the higher
number of background pixels, we used an α-balanced variant of focal loss, Lfoc

[8], a modification of cross-entropy, where the γ factor controls the contribution
of high-probability samples in the loss calculation. We used the hyper-parameters
γ and α as 2.0 and 0.25, respectively. The total segmentation loss, Lseg, is

Lseg = Lfoc (xa, ya) + Lfoc (GB (xa) , ya) (1)

Generative Model. For cycleGAN we used an adversarial loss, LGAN , and a
pixel-level cycle consistency loss Lcyc proposed in [16]. Although Lcyc reduces
the number of possibilities when mapping across domains and regularizes the
cycleGAN, it does not suffice to preserve the higher-level semantics in the image.
This can change the shapes of surgical instruments during the translation, which
is not desirable. Therefore we included feedback from the segmentation model
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in the total generative loss. This penalizes the generation of unrealistic surgical
instrument shapes in GB (xa). Since we are interested in the mapping from xa

to xb, which later is fed as an input to the segmentation model, we included this
constraint only on the generator GB . This shape preservation loss, Lshape, is

Lshape = Lfoc (GB (xa, ) ya) (2)

In cycleGAN models, LcycTotal is the sum of two cycle consistency losses such
that, LcycTotal = Lcyc(xa, GA(GB(xa))) + Lcyc(xb, GB(GA(xb))). These losses
enforce pixel level constraints between the original inputs xa and xb and recon-
structed outputs GA(GB(xa)) and GA(GB(xa)), where the two GANs are opti-
mized together. There is no intermediate supervision after each generative step
GA : xb→a and GB : xa→b. Thus GA and GB can produce unrealistic images
while the total Lcyc is reduced (Shown in Fig. 1, (right)). In particular, the map-
ping across domains should change only the ‘appearance’ of the scene while
retaining the domain-invariant structural elements. To preserve the structural
properties of the scene across domains, we introduce an explicit, intermediate,
feature level, latent space loss. This latent space loss, and the total generated
loss, are:

Lstructure = E [‖eA(xa) − eB(GB(xa))‖1] + E [‖eB(xb) − eA(GA(xb))‖1] (3)
Lgenerator = λ1LGANTotal + λ2LcycTotal + λ3Lshape + λ4Lstructure + λ5LI .(4)

where, eA and eB are encoders in GB and GA, respectively, LGANTotal =
LGAN (GB ,DB , xa, xb) + LGAN (GA,DA, xb, xa) and LI is the identity mapping
loss as given in [16]. Values of λ1, λ2, λ3, λ4, and λ5 are 1, 10, 1, 5, and 1,
respectively. These values were tuned during the hyper-parameter tuning phase.

Training Details and Hyper-Parameters. For training and testing our mod-
els, we use Tensorflow & Keras API on a NVIDIA Tesla V100 GPU (16 GB). For
training the proposed models, we used a batch size of 8, and Adam optimizer
with β1 and β2 of 0.9 and 0.999, respectively, with a learning rate of 10−3. We
trained our models for 100 epochs (approximately 12 h) and saved weights of the
segmentation model with the highest validation Dice score [17]. Code is available
at: https://github.com/tajwarabraraleef/coSegGAN.

3 Experiments

Datasets: Endovis Challenge, 2017, in-vivo Dataset [1]: It is a porcine
surgery procedure with a training set consisting of 8 videos of 225 frames each
and a test set consisting of 8 videos of 75 frames and 2 videos of 300 frames
each. We used 6 videos for training and 2 videos for validation from the training
set. We used 8 videos from the test set for testing; these were not used for
validation. In the paper, we refer to this dataset as Endovis. In Table 1 Endovis
is abbreviated as Endo.

https://github.com/tajwarabraraleef/coSegGAN
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UCL ex-vivo Dataset [3]: The dataset consists of 14 videos with different
animal tissues as background. Similar to [3], we used 8, 2 and 4 videos for
training, validation and testing, respectively.

Prostatectomy Dataset. We prepared the training dataset from 5 videos of
robot-assisted radical prostatectomy procedures with the da Vinci Si surgical
system from Vancouver General Hospital, Vancouver, Canada. We manually
selected 1327 frames to isolate surgical instruments from other visible objects
in the surgical field of view. These frames do not have corresponding labels. To
evaluate the performance of the various methods on actual surgical data, we
prepared a test set of 182 frames taken from 4 different surgeries independent
from the training set. The test data represents approximately 12% of the entire
surgical data used. We manually labelled surgical instruments in these frames
only for the purpose of testing coSegGAN and existing methods. All the frames
were center cropped to give a final size of 721 × 503 pixels. We will refer to this
dataset as Surgery in the rest of the paper. Ethics to collect data was obtained
from the Institutional Clinical Research Ethics Board. For all three datasets, we
resized the frames to 256 × 256 to accelerate the computation.

Evaluation. We compared coSegGAN with Ternausnet, the best performing
method in the Endovis Challenge [1] for binary segmentation and RASnet,
reporting a mean 94.65% Dice coefficient on Endovis. For a fair comparison
to coSegGAN, we performed data augmentation with the cycleGAN architec-
ture given in Sect. 2. The cycleGAN model was run for 50 epochs in all cases
as it converged in 50 epochs. After cycleGAN I2I translation from source (with
labels) to target domain, the SOTA segmentation models were trained with both
the translated and original domain data. We also performed an ablation experi-
ment comparing coSegGAN with and without the proposed Lstructure loss. We
refer to RASnet, Ternausnet, and our U-Net variant with focal loss, trained
using the augmented data generated from a separate cycleGAN (unlike our joint
strategy) as RASnet+, Ternausnet+ and U -NetFL+ respectively. The coSeg-
GAN network without Lstructure is called coSegGAN−. We performed evalua-
tion of four combinations of datasets for labelled and unlabelled domains. For
ease of reporting, we refer to Endovis (labelled) + Surgery (Unlabelled), UCL
(labelled) + Surgery (Unlabelled), Endovis (labelled) + UCL (Unlabelled), and
UCL (labelled) + Endovis (Unlabelled) data combinations as case 1, case 2, case
3, and case 4, respectively. Since, we want to quantify the generalizability of our
method across labelled and unlabelled domains, for a particular dataset combi-
nation, we also calculated an absolute difference in the Dice scores, Δ Dice, and
absolute difference in Intersection over Union (IoU), Δ IoU , between labelled
domain A and unlabelled domain B. The lower the Δ Dice and Δ IoU , the
higher is the generalizability between domains (refer to Table 1).
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Table 1. Comparison of Mean Dice and IoU scores of coSegGAN with SOTA methods

Method Dom A DomB
(Unlabelled)

Domain A Domain B
(Unlabelled)

Δ V alues

Dice IoU Dice IoU Dice IoU

coSegGAN Case 1 Endo Surgery 93.7% 88.4% 92.8% 84.7% 0.9% 3.7%

Case 2 UCL Surgery 91.1% 84.2% 74.3% 59.8% 16.8% 24.4%

Case 3 Endo UCL 93.2% 88.3% 90.0% 82.2% 3.2% 6.1%

Case 4 UCL Endo 93.5% 91.1% 79.4% 66.8% 14.1% 24.3%

RASnet+ Case 1 Endo Surgery 88.3% 79.9% 78.1% 64.7% 10.2% 15.2%

Case 2 UCL Surgery 92.3% 85.8% 47.8% 33.0% 44.5% 52.8%

Case 3 Endo UCL 88.4% 80.0% 83.3% 71.9% 5.1% 8.1%

Case 4 UCL Endo 92.4% 85.9% 66.8% 52.9% 25.6% 33.0%

Ternaus+ Case 1 Endo Surgery 94.2% 89.9% 88.7% 80.4% 5.5% 9.5%

Case 2 UCL Surgery 95.8% 92.1% 46.0% 31.3% 49.8% 60.8%

Case 3 Endo UCL 93.3% 89.2% 41.7% 29.0% 51.6% 60.2%

Case 4 UCL Endo 93.4% 87.8% 55.0% 41.2% 38.4% 46.6%

U -NetFL+ Case 1 Endo Surgery 91.8% 85.7% 58.0% 42.5% 33.8% 43.5%

Case 2 UCL Surgery 93.2% 87.4% 36.0% 22.9% 57.2% 64.5%

Case 3 Endo UCL 83.9% 73.5% 23.3% 13.6% 60.7% 31.5%

Case 4 UCL Endo 74.6% 61.2% 56.5% 42.0% 18.1% 19.2%

coSegGAN– case 1 Endo Surgery 94.1% 89.6% 92.3% 86.0% 1.8% 3.6%

Case 2 UCL Surgery 93.5% 93.0% 74.5% 69.7% 19.0% 23.3%

Case 3 Endo UCL 93.3% 88.2% 90.8% 83.0% 2.5% 5.2%

Case 4 UCL Endo 94.2% 89.2% 74.4% 64.8% 19.8% 24.4%

4 Results and Discussion

For case 1, the proposed coSegGAN network gave significantly higher Dice
(92.8%) and IoU scores (84.7%) on unlabelled domain B (Surgery) when com-
pared to RASnet+, Ternausnet+ and U -NetFL+ which have Dice scores
of 78.1% (IoU = 64.7%), 88.7% (IoU = 80.4%), and 84.1% (IoU = 42.5%),
respectively. For case 2 as well, the Dice score for coSegGAN on unlabelled
domain (Surgery) is 74.3% (IoU = 59.8%) while RASnet+, Ternausnet+, and
U -NetFL+ have lower Dice scores of 47.8% (IoU =33.0% ), 46.0% (IoU = 31.3%),
and 45.6% (IoU = 22.9%), respectively. Similarly, for case 3, the Dice (IoU =
82.2%) score for coSegGAN on unlabelled data (UCL) is 90%, which is higher
than RASnet+, Ternausnet+ and U -NetFL+ with Dice scores of 83.3% (IoU
= 71.9%), 41.7% (IoU = 29.0%), and 81.8% (IoU = 13.6%), respectively. For
case 4, the Dice score for coSegGAN on unlabelled Endovis data is 79.4% (IoU
= 66.8%), which, similar to other cases, is higher than the rest of the methods;
Dice scores of RASnet+, Ternausnet+ and U -NetFL+ being 66.8% (IoU =
52.9%), 55.0% (IoU = 52.9%) and 56.5% (IoU = 42.0%), respectively.
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The Δ Dice, for coSegGAN for case 1 is much lower 0.9% (IoU = 3.7%)
while for RASnet+, Ternausnet+, and U -NetFL+ it is 10.2% (IoU = 15.2%),
5.5% (IoU = 9.5%), and 33.8% (IoU = 43.5%), respectively. For case 2, Δ Dice
for coSegGAN is 16.8% (IoU = 24.4%), while for RASnet+, Ternausnet+ and
U -NetFL+ it is 44.5% (IoU = 52.8%), 49.8% (IoU = 60.8%) and 57.2% (IoU =
64.5%), respectively. For case 3, Δ Dice, for coSegGAN is 3.2% (IoU = 6.1%),
which is much lower than RASnet+, Ternausnet+ and U -NetFL+ with Δ Dice
of 5.1% (IoU = 8.1%), 51.6% (IoU = 60.2%), and 60.7% (IoU = 31.5%), respec-
tively. For case 4, similarly, the Δ Dice for coSegGAN is 14.1% (IoU = 24.3%)
when compared to RASnet+, Ternausnet+, and U -NetFL+ with Δ Dice of
25.6% (IoU = 33.0%), 38.4% (IoU = 46.6%), and 18.1% (IoU = 19.2%), respec-
tively. Consistently higher Dice and IoU on unlabelled data and significantly
lower Δ Dice and Δ IoU of coSegGAN show its generalizability when compared
to all other methods for all the cases.

For coSegGAN, in cases 2 and 4, when the mapping is from UCL (labelled)
to either Surgery or Endovis, the Δ Dice is higher than cases 1 and 3, showing
comparatively less generalizability. This could be because the UCL data is an
ex-vivo dataset where data distribution potentially differs from a real surgery,
with remarkably different lighting and background. Also, there is only one type
of surgical instrument visible in the UCL dataset, which might have hindered
the mapping to multiple types of instruments.

In the ablation experiment, coSegGAN–, i.e., coSegGAN without the
Lstructure, showed comparable performance with coSegGAN, except case 4,
where the performance of coSegGAN is significantly higher (approximately 5%)
on the unlabelled Endovis dataset. coSegGAN– has higher Δ Dice for all cases
except case 4, showing that with the Lstructure loss coSegGAN generalizes better
to both labelled and unlabelled datasets.

A qualitative comparison of coSegGAN with other methods for different surg-
eries can be seen in Fig. 3. As can be seen (column 1), coSegGAN performs better
in preserving overall tool structure, with finer details, when compared to other
methods. In comparison to Ternausnet+ and RASnet+, the method also pro-
duces fewer false positives [Fig. 3 (column 2)]. Although coSegGAN performs
better than SOTA methods in identifying tools, it occasionally fails to identify
the tool in the presence of blood where surgical instrument blends in with the
background. Usually this happens at the image periphery where the region is
relatively dark compared to the well-lit image center. Figure 3 (column 4) shows
one such failure case.
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Fig. 3. Figure showing a qualitative comparison of our method with other methods.
It can be seen that overall, our method preserves the shape of the instruments better
with fewer false positives. (column 1) Inset showing preservation of instrument shape
in our method. (column 4) Inset showing a failure case of our method.

5 Conclusion

We presented a joint generative and segmentation strategy, coSegGAN, that out-
performs SOTA methods in its generalization capability to unlabelled domain
data. The evaluated SOTA methods use separate I2I mapped data augmentation
and segmentation steps. The proposed losses helped to preserve finer tool struc-
ture. The method is easy to adapt to other deep learning segmentation methods
and thus can significantly improve the existing methods. The method aims to
utilize unlabelled surgical data, which is much easier to acquire than labelled
data, to improve any instrument segmentation model in a simple yet effective
manner. Therefore, coSegGAN has the potential to significantly facilitate surgi-
cal translation of current and future surgical tool segmentation methods because
it effectively alleviates the problem of unlabelled data. Current testing of coSeg-
GAN has been limited to footage from prostatectomy procedures. A thorough
performance analysis for different types of RAS surgeries is part of future work.
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