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Abstract. We aim to elucidate the mechanism of the foot by automated
measurement of its multiple bone movement using 2D-3D registration
of bi-plane x-ray video and a stationary 3D CT. Conventional analyses
allowed tracking of only 3 large proximal tarsal bones due to the require-
ment of manual segmentation and manual initialization of 2D-3D registra-
tion. The learning-based 2D-3D registration, on the other hand, has been
actively studied and demonstrating a large capture range, but the accu-
racy is inferior to conventional optimization-based methods. We propose
a fully automated pipeline using a cost function that seamlessly incorpo-
rates the reprojection error at the landmarks in CT and x-ray detected by
off-the-shelf CNNs into the conventional image similarity cost, combined
with the automated bone segmentation. We experimentally demonstrated
that the pipeline allowed a robust and accurate 2D-3D registration to track
all 12 tarsal bones, including the metatarsals at the foot arch,which is espe-
cially important in the foot biomechanics but has been unmeasurable with
previous methods. We evaluated the proposed fully automated pipeline in
studies using a bone phantom and real x-ray images of human subjects.
The real image study showed the registration error of 0.38 ± 1.95 mm in
translation and 0.38 ± 1.20◦ in rotation for the proximal tarsal bones.

Keywords: 2D/3D registration · Automated segmentation ·
Automated initialization

1 Introduction

The foot consists of flexible structures of bones, joints, muscles, and soft tissues,
allowing complex movements and shock absorption in human motion. We aim
to accurately track the foot bones for biomechanical analysis (e.g., interaction
between the small bones at multiple joints). While its importance is acknowl-
edged, especially in injury prevention and rehabilitation of the ankle disease,
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most conventional methods are limited to either static anatomical analyses using
CT [1,2] or skin-marker-based motion capture [3–5] which is prone to error due
to the skin movement.

Some recent studies employ a 2D-3D registration between x-ray videos
acquired by a biplane imaging system and a CT image for the analysis of the 3D
bone movement [6,7]. The approach demonstrated a high accuracy, however, the
target bones have been limited to only the proximal tarsal bones, namely talus,
calcaneus, and navicular bones, and the methods required laborious manual seg-
mentation of each bone from the CT and manual initialization of the 2D-3D
registration. While Esteban et al. [8] and Grupp et al. [9] studied 2D-3D regis-
tration in the analysis of pelvis anatomy using a CNN-based landmark detection
for initialization of the intensity-based registration, both works assumed man-
ual segmentation of the target anatomy in CT, which is prohibitive especially
in the clinical analysis of the foot bones. On the other hand, several attempts
have been made by training CNNs for directly solving the 2D-3D alignment in
an end-to-end manner (e.g. [10,11]), showing better stability due to a large cap-
ture range but inferior accuracy compared to the conventional intensity-based
method. Our approach is to achieve stable and accurate registration using a
cost function incorporating similarities of both intensity and landmark positions,
unlike landmark only for the initialization.

We propose a fully automated pipeline of 2D-3D registration between x-ray
video and CT for the motion analysis of all 12 tarsal bones (i.e., 3 proximal tarsal,
4 distal tarsals, and 5 metatarsal bones) and tibia-fibula (as one rigid object).
The contribution of this paper is threefold: (1) Proposal of a 4D foot analy-
sis system including the movement of the foot arch (metatarsal bones) which
was previously unmeasurable, (2) introduction of a cost term in 2D-3D regis-
tration that incorporates reprojection error of the landmarks detected by CNNs
allowing robust and accurate registration without any manual interactions, (3)
quantitative evaluation of impacts of the errors in automated segmentation and
landmark detection on the final registration accuracy.

2 Method

2.1 Overview of the Proposed Pipeline

Figure 1 shows the overview of the proposed pipeline. The input CT and biplane
x-ray videos are first processed by CNNs, Bayesian U-net [14] for bone seg-
mentation and landmark extraction in CT, and DeepLabCut [13] for landmark
extraction in x-ray video. Then the intensity-based 2D-3D registration is per-
formed frame-by-frame using the proposed cost terms incorporating information
of the landmark and intensity similarities, resulting in a robust and accurate
registration for multiple small bones in the foot.

2.2 Automated Segmentation and Landmark Detection

Segmentation of each lower leg and foot bones (2 lower leg bones, 7 tarsal
bones, 5 metatarsal bones, and 14 phalanges bones) in CT is performed by
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Fig. 1. Overview of the proposed automated pipeline for 4D analysis of the foot bones.
The CT images and biplane x-ray video are automatically annotated (segmentation
and landmarking) using CNNs and the movement of each tarsal and metatarsal bones
are estimated using the proposed intensity-based 2D-3D registration.

the Bayesian U-net [14], that previously demonstrated a significantly superior
accuracy than the previous multi-atlas method in segmentation of the hip and
thigh muscles and bones. Our implementation including the network architec-
ture, hyper-parameters, and pre- and post-processing follows [14]1 except for the
size of convolution kernel of 7× 7 for leveraging a larger receptive field. Figure 2
shows detail of the target bones.

Bone name Color Bone name Color Bone name Color

Tibia 1st metatarsal 2nd middle phalanges

Fibula 2nd metatarsal 3rd middle phalanges

Talus 3rd metatarsal 4th middle phalanges

Calcaneus 4th metatarsal 5th middle phalanges

Navicular 5th metatarsal 1st distal phalanges

Medial cuneiform 1st proximal phalanges 2nd distal phalanges

Intermediate cuneiform 2nd proximal phalanges 3rd distal phalanges

Lateral cuneiform 3rd proximal phalanges 4th distal phalanges

Cuboid 4th proximal phalanges 5th distal phalanges

5th proximal phalanges

Fig. 2. List of the foot bones annotated in this study. (note that the phalanges bones
are not included in our 2D-3D registration analysis due to the limited field-of-view of
the x-ray video).

1 Source code was obtained from https://github.com/yuta-hi/bayesian unet.

https://github.com/yuta-hi/bayesian_unet
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2.3 2D-3D Registration Incorporating Landmark Reprojection
Error

The intensity-based 2D-3D registration optimizes similarity between the x-ray
image (fixed image) and digitally reconstructed radiograph (DRR) generated
from CT (moving image). DRRs were generated using the tri-linear interpo-
lation ray-tracing algorithm [12] implemented on the graphics processing unit
(GPU). In this study, we parameterized the rigid transformation of each bone
with a 6 degree-of-freedom variable (3 rotation parameters represented as Euler
angle around the geometrical centroid of each bone and 3 translation parame-
ters), resulting in a 6N parameter optimization problem for N bones. Following
[12], we employed covarience matrix adaptation evolutionary strategy (CMA-
ES) [15] for optimization and the gradient correlation similarity measure [16]
for the cost function. Initialization of the translation parameters was derived
by the paired point registration of the landmarks for each frame independently,
assuming all bones moved rigidly. The registration of 14 bones (bones in Fig. 2
except for the 14 phalanges bones) was split into 3 stages, 1) proximal tarsal,
tibia, and fibula (5 bones), distal tarsal (4 bones), and metatarsals (5 bones), to
reduce the optimization parameters. The proposed cost function incorporating
the landmark reprojection error derived from CNNs and the conventional image
similarity is defined as follows.

Θ̂ = argmin
Θ

{(1 − α)Clandmark(p2Di , p3Di ,Θ)

−αGC(IXp,
N∑

k=1

IDRR
k (Θ)) + λgrigidity(Θ)}

(1)

The parameter α changes balance between the two data fitness terms, the land-
mark fitness and the image fitness defined by the gradient correlation (denoted
by GC) between the X-ray image IXp and sum of DRRs of each bone IDRR

k .
The third term encourages rigidity of the target bones and λ is the weight
parameter. The rigidity term was effective only for the bones with no landmark
identified, such as metatarsal bones in this study. Clandmark(p2Di , p3Di ,Θ) =∑M

i=1 ||p2Di − P (T (Θ))p3Di || represents the reprojection error of ith landmark,
where p2Di and p3Di are the landmark location identified by CNNs in 2D and
3D. grigidity(Θ) =

∑N
k=2 d(T1(Θ), Tk(Θ)), Tk(Θ) is the transformation of kth

bone, P (Tk) is the projection matrix with the extrinsic parameter defined by
Tk, and d(T1, Tk) indicates difference between the two transformations (in our
implementation, assuming small difference, we first concatenate T1 and T−1

k ,
convert it to 3 translation and 3 rotation parameters, and calculate Euclidean
distance between the two 6-element vectors). Our implementation of the 2D-3D
registration is available at https://github.com/YoshitoOtake/4DFoot.

3 Experiment and Results

After evaluation of the accuracy of individual automated segmentation and
landmark detection components by the cross-validation, accuracy of the 2D-3D

https://github.com/YoshitoOtake/4DFoot
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registration was evaluated using; 1) the bone phantom with metallic beads
attached to 14 anatomical landmarks, providing the ground truth using the
radio stereometric analysis, and 2) the images from 5 volunteer subjects with
fully manual annotations. Firstly, using the ground truth in the phantom image,
we validate that registration using manually annotated segmentation and land-
marks can be used as the quasi-ground-truth. Then, using the manually anno-
tated quasi-ground-truth, we evaluate the accuracy of the proposed fully auto-
mated pipeline for real subjects’ images.

3.1 Experimental Materials

Thirty-five CTs of the lower leg and the foot obtained from 35 patients, and
18 biplane x-ray videos of the foot during the gait obtained from 5 healthy
volunteers, were used in the experiment. The phase from heel contact to toe-
off was manually identified by an expert surgeon and used in the experiment.
The field of view of the CTs was 323–486 mm2, the matrix size was 512 × 512,
and the slice interval was 0.625 mm. All individual bone regions shown in Fig. 2
and 17 anatomical landmarks (on the tibia and 3 proximal tarsal bones) in the
CTs and 12 landmarks (on the same bone for each view) in all frames of the
x-ray video were manually annotated by an expert orthopedic surgeon. Since
we could not find a sufficient number of 3D landmarks visible in two views
simultaneously, 5 landmarks were used only in one x-ray view, the other 5 were
used only in the other view, and the remaining 7 were used in both views. Thus,
(5 + 7) = 12 landmarks were used in each 2D view, which amounts to 17 in
3D. The biplane x-ray imager was equipped so that the two views are aligned
to the patient’s right-left direction (referred to as lateral view) and the oblique
direction (referred to as oblique view). The distance between the x-ray source
and detector was approximately 1200 mm for both views. The matrix size of
the x-ray image was 512 × 512, and the pixel spacing was 0.558× 0.558 mm.
Geometric calibration of the two imagers was performed by obtaining 12 x-ray
images of a cube-shaped calibration phantom (edge length of 110 mm) having 8
metallic spheres of 10 mm diameter at each corner. In our system, the two x-ray
views were not synchronized. They record images alternately at 15 fps with half
a frame (1/30 sec) phase offset. In order to obtain a pseudo synchronized pair
of videos, a CNN-based video interpolation method, SuperSloMo [18], with a
pre-trained model was used to double the frame rate of each video.

3.2 Evaluation of Automated Segmentation and Landmark
Detection

Three-fold cross-validation using the 35 CTs was performed to evaluate the seg-
mentation accuracy. In training, the right and left sides of the foot were split
at the middle of the axial slice, and the right foot was flipped for the data
augmentation purpose (note that the training/test split in the cross-validation
was performed patient-wise since the right and left side of the same patient
are similar). The dice coefficient for each bone used in the 2D-3D registration
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in the following experiments is summarized in Fig. 3. The dice for the lower
leg, tarsal bones, and metatarsal bones were 0.990 ± 0.012, 0.971 ± 0.053, and
0.975 ± 0.022. The phalanges bones were not used in the 2D-3D registration but
included in the segmentation target. The dice coefficients were 0.956 ± 0.050,
0.847 ± 0.154, and 0.794 ± 0.210 for phalanx proximalis, medialis, and distalis.

MetatarsalTarsal bonesTibia, Fibula

Fig. 3. Results of automated segmentation of the foot bones. Red dots indicates the
five cases that were used in the 2D-3D registration experiment.

14 Metallic beads were attached

After 
inpainting

Before 
inpainting

Beads were inpainted
(a)

Acquisition of simulated walking
Identified 
beads 
center

(b)

Fig. 4. Accuracy evaluation experiment using the bone phantom. (a) Experimental
setting, and (b) preprocessing of the x-ray videos. The ground truth was obtained
by radio stereometric analysis (RSA) using the metallic beads attached to the bones.
Metallic beads in the x-ray image and CT were removed by inpainting in order to avoid
the bias in the 2D-3D registration due to the strong gradient created by the beads.

The landmark detection in CT was performed by the U-net using the
heatmap approach [17] with the σ (radius of the Gaussian representing the
landmark) of 5 mm. As the result of three-fold cross-validation, the Euclidean
distance errors of landmarks on the tibia, talus, calcaneus, and navicular were
4.27 ± 2.26, 3.65 ± 2.04, 4.07 ± 2.01, and 4.13 ± 2.41 mm, respectively.
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The landmark detection in the x-ray video was performed using DeepLab-
Cut [13]. We used the pre-trained Resnet-50 with fine-tuning using our own
training data set. The leave-one-patient-out evaluation demonstrated the aver-
age Euclidean distance error of all the landmarks for the lateral and oblique view
was 3.01 ± 2.29 and 2.73 ± 2.00 mm, respectively.

The landmark detection errors in CT and x-ray video were comparable to
those reported in [17], where the authors applied their state-of-the-art method
in the spine CT data set.

(a) Biplane x-ray image (b) Registered DRR (c) Overlay of DRR edges and polygon models
Zoom Zoom Zoom

Fig. 5. A representative registration result. The intensity-based 2D-3D registration
optimized the similarity between (a) the original biplane x-ray image and (b) DRR.
The overlay of the DRR edges and polygon models in (c) demonstrate the accurate
alignment between the two images indicating the 3D position of each bone was correctly
estimated.

3.3 Evaluation of 2D-3D Registration Using Bone Phantom

The bone phantom and its x-ray videos used in the experiment were shown in
Fig. 4. The phantom was moved by hands to simulate the gate. The 14 metallic
beads attached to the phantom were localized in the x-ray images first manually
and then refined by the Gaussian fitting search at their vicinity. To avoid the
strong image gradient at the edge of the beads affecting registration accuracy,
the bead regions were inpainted [19] (see Fig. 4b). The localized beads position
with the geometric calibration provided the ground truth movement of each
bone, while the inpainted x-ray videos were used for the 2D-3D registration.
The experimental results were shown in Fig. 6a. The average absolute translation
error was 0.40 ± 0.28 mm, and the rotation error was 0.66 ± 0.59◦. Thus, we
confirmed that 2D-3D registration based on manual annotation is of a level that
can be used as a quasi-ground-truth in terms of the clinically required accuracy.
The larger error in the navicular bone was likely attributed to its small size
and rotationally symmetric shape. Relatively larger error in Y translation and
smaller error in X rotation could be attributed to the sensitivity to the imaging
direction (i.e., movement in the out-of-plane direction is less sensitive to the
in-plane direction).
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Fig. 6. Quantitative evaluation of the 3D tracking of each bone for the experiment
with (a) the bone phantom and (b) real subject images.

3.4 Evaluation of 2D-3D Registration Using Images of Real
Subjects

Figure 5 demonstrates a representative registration result using real subject
images. DRR at the registered position correctly aligned with the x-ray image
providing a visual assessment of the registration accuracy. Figure 6b and Table 1
show the quantitative results. As described above, the registration result using
manual segmentation and manual landmark detection was used as the quasi-
ground-truth in this experiment. In order to evaluate the effect of using
automated annotation in the registration, the results in three scenarios were
compared, 1) automated segmentation (Auto)/automated landmark detection
(Auto), 2) Auto/Manual, 3) Manual/Auto. Overall, registration of proximal
tarsal bones showed excellent accuracy (<0.5-mm translation and <0.5-degree
rotation), comparable to the bone phantom experiment regardless of the annota-
tion method. The insensitivity of the registration results to the landmark detec-
tion error suggests that the error was in an acceptable range in our 2D-3D
registration application.
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The distal tarsal bones and metatarsal bones showed relatively lower accu-
racy (∼3 mm translation and ∼1.5◦ rotation), especially when we used auto-
mated segmentation, likely due to their small size increasing sensitivity to the
segmentation error. Parameters for the CMA-ES optimizer were: population size
1000, stopping criterion 0.01 (mm or deg), the two-level multi-resolution pyra-
mid with down-sampling by a factor of 2 and 1. One registration trial required
approximately 60,000 function evaluations (i.e., DRR generation and cost cal-
culation), and the computation time was approximately 20 s on a workstation
with AMD EPYC 7742 64-core processor and two nVidia GeForce RTX3090.

Table 1. Comparison of the registration accuracy using automated- and manual- seg-
mentation and landmark (trans: translation error, rot: rotation error, bone phantom
experiment used manual segmentation and manual landmark)

Segmentation/
Landmark

Proximal tarsal bones Distal tarsal bones Metatarsal bones

trans(mm) rot(deg) trans(mm) rot(deg) trans(mm) rot(deg)

mean std mean std mean std mean std mean std mean std

Auto/Auto 0.38 1.95 0.38 1.20 3.09 4.46 1.41 2.06 3.25 7.79 1.30 2.88

Auto/Manual 0.15 0.90 0.27 0.90 2.79 4.16 1.28 1.95 3.04 8.81 1.21 2.95

Manual/Auto 0.39 2.07 0.34 1.48 1.66 4.93 0.72 1.98 1.88 9.04 0.63 2.79

(bone phantom) 0.40 0.28 0.66 0.59 — — — — — — — —

4 Discussion and Conclusion

We have presented a fully automated pipeline of segmentation and 2D-3D reg-
istration for 4D analysis of the foot bones and evaluated the accuracy with fully
manually annotated data sets. Our primary contribution has been the proposal
and quantitative evaluation of the registration cost incorporating reprojection
error at landmarks derived by CNNs with a conventional image similarity cost.
We showed that the combination of simple off-the-shelf CNN-based image recog-
nition and the conventional intensity-based registration allowed highly accurate
4D tracking of the complex movement of small foot bones, including the foot
arch, whose shock absorption function is critical in the analysis of foot biome-
chanics but has been unmeasurable with previous methods. Furthermore, the
experiment suggested that the error in the automated segmentation had a larger
impact on the registration accuracy than the landmark detection error, espe-
cially for the distal part, namely the distal tarsal and metatarsal bones, which
is small in size and symmetric in shape. The lower accuracy in those bones is
attributed partly to the lack of landmarks since our current landmarks are placed
only on the proximal tarsal bones as shown in Fig. 1 and the distal bones are
associated with landmarks placed on the bones close to them. We plan to add
several landmarks on those distal parts to improve accuracy. Application in a
clinical routine and the analysis of patients with ankle disease are also underway.
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