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Abstract. Transformer architecture has emerged to be successful in a
number of natural language processing tasks. However, its applications
to medical vision remain largely unexplored. In this study, we present
UTNet, a simple yet powerful hybrid Transformer architecture that inte-
grates self-attention into a convolutional neural network for enhancing
medical image segmentation. UTNet applies self-attention modules in
both encoder and decoder for capturing long-range dependency at dif-
ferent scales with minimal overhead. To this end, we propose an effi-
cient self-attention mechanism along with relative position encoding
that reduces the complexity of self-attention operation significantly from
O(n?) to approximate O(n). A new self-attention decoder is also pro-
posed to recover fine-grained details from the skipped connections in the
encoder. Our approach addresses the dilemma that Transformer requires
huge amounts of data to learn vision inductive bias. Our hybrid layer
design allows the initialization of Transformer into convolutional net-
works without a need of pre-training. We have evaluated UTNet on the
multi-label, multi-vendor cardiac magnetic resonance imaging cohort.
UTNet demonstrates superior segmentation performance and robustness
against the state-of-the-art approaches, holding the promise to generalize
well on other medical image segmentations.

1 Introduction

Convolutional networks have revolutionized the computer vision field with out-
standing feature representation capability. Currently, the convolutional encoder-
decoder architectures have made substantial progress in position-sensitive tasks,
like semantic segmentation [6,11,14,17,20]. The used convolutional operation
captures texture features by gathering local information from neighborhood pix-
els. To aggregate the local filter responses globally, these models stack multiple
convolutional layers and expand the receptive field through down-samplings.
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Fig. 1. (a) The hybrid architecture of the proposed UTNet. The proposed efficient self-
attention mechanism and relative positional encoding allow us to apply Transformer to
aggregate global context information from multiple scales in both encoder and decoder.
(b) Pre-activation residual basic block. (¢) The structure of Transformer encoder block.

Despite the advances, there are two inherent limitations of this paradigm. First,
the convolution only gathers information from neighborhood pixels and lacks the
ability to capture long-range (global) dependency explicitly [5,25,26]. Second,
the size and shape of convolution kernels are typically fixed thus they can not
adapt to the input content [15].

Transformer architecture using the self-attention mechanism has emerged to
be successful in natural language processing (NLP) [18] with its capability of cap-
turing long-range dependency. Self-attention is a computational primitive that
implements pairwise entity interactions with a context aggregation mechanism,
which has the ability to capture long-range associative features. It allows the
network to aggregate relevant features dynamically based on the input content.
Preliminary studies with simple forms of self-attention have shown its usefulness
in segmentation [4,16], detection [24] and reconstruction [9].

Although the application of image-based Transformer is promising, training
and deploying of Transformer architecture has several daunting challenges. First,
the self-attention mechanism has O(n?) time and space complexity with respect
to sequence length, resulting in substantial overheads of training and inference.
Previous works attempt to reduce the complexity of self-attention [10,28], but are
still far from perfection. Due to the time complexity, the standard self-attention
can be only applied patch-wise, e.g. [3,27] encode images using 16 x 16 flat-
tened image patches as input sequences, or on top of feature maps from CNN
backbone, which are already down-sampled into low-resolution [4,22]. However,
for position-sensitive tasks like medical image segmentation, high-resolution fea-
ture plays a vital role since most mis-segmented areas are located around the
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boundary of the region-of-interest. Second, Transformers do not have inductive
bias for images and can not perform well on a small-scale dataset [3]. For exam-
ple, Transformer can be beneficial from pre-training through a large-scale dataset
like full JFT-300M [3]. But even with pre-training on ImageNet, Transformer is
still worse than the ResNet [7,12], not to mention medical image datasets with
much less available amounts of medical data.

In this paper, we propose a U-shape hybrid Transformer Network: UTNet,
integrating the strength of convolution and self-attention strategies for medical
image segmentation. The major goal is to apply convolution layers to extract
local intensity features to avoid large-scale pretraining of Transformer, while
using self-attention to capture long-range associative information. We follow the
standard design of UNet, but replace the last convolution of the building block in
each resolution (except for the highest one) to the proposed Transformer module.
Towards enhanced quality of segmentation, we seek to apply self-attention to
extract detailed long-range relationships on high-resolution feature maps. To
this end, we propose an efficient self-attention mechanism, which reduces the
overall complexity significantly from O(n?) to approximate O(n) in both time
and space. Furthermore, we use a relative position encoding in the self-attention
module to learn content-position relationships in medical images. Our UTNet
demonstrates superior segmentation performance and robustness in the multi-
label, multi-vendor cardiac magnetic resonance imaging cohort. Given the design
of UTNet, our framework holds the promise to generalize well on other medical
image segmentations.

2 Method

2.1 Revisiting Self-attention Mechanism

The Transformer is built upon the multi-head self-attention (MHSA) module
[18], which allows the model to jointly infer attention from different represen-
tation subspaces. The results from multiple heads are concatenated and then
transformed with a feed-forward network. In this study, we use 4 heads and
the dimension of multi-head is not presented for simplicity in the following for-
mulation and in the figure. Consider an input feature map X € RE*H*W
where H,WW are the spatial height, width and C is the number of channels.
Three 1 x 1 convolutions are used to project X to query, key, value embeddings:
Q, K, V¢ R>HXW "where d is the dimension of embedding in each head. The
Q, K, V is then flatten and transposed into sequences with size n x d, where
n = HW. The output of the self-attention is a scaled dot-product:

QK'
Vd

Attention(Q, K, V) = softmax( 'V (1)
P

Note that P € R™ "™ is named context aggregating matrix, or similarity
matrix. To be specific, the i-th query’s context aggregating matrix is P; =
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Fig. 2. The proposed efficient multi-head self-attention (MHSA). (a) The MHSA used
in the Transformer encoder. (b) The MHSA used in the Transformer decoder. They
share similar concepts, but (b) takes two inputs, including the high-resolution features
from skip connections of the encoder, and the low-resolution features from the decoder.

a;K'
Vd
duction between ¢; and each element in the keys. The context aggregating matrix

is then used as the weights to gather context information from the values. In
this way, self-attention intrinsically has the global receptive field and is good at
capturing long-range dependence. Also, the context aggregating matrix is adap-
tive to input content for better feature aggregation. However, the dot-product
of n x d matrices leads to O(n?d) complexity. Typically, n is much larger than d
when the resolution of feature map is large, thus the sequence length dominates
the self-attention computation and makes it infeasible to apply self-attention
in high-resolution feature maps, e.g. n = 256 for 16 x 16 feature maps, and
n = 16384 for 128 x 128 feature maps.

softmax( ), P, € RY™", which computes the normalized pair-wise dot pro-

2.2 Efficient Self-attention Mechanism

As images are highly structured data, most pixels in high-resolution feature maps
within local footprint share similar features except for the boundary regions.
Therefore, the pair-wise attention computation among all pixels is highly ineffi-
cient and redundant. From a theoretical perspective, self-attention is essentially
low rank for long sequences [21], which indicates that most information is con-
centrated in the largest singular values. Inspired by this finding, we propose an
efficient self-attention mechanism for our task as seen in Fig. 2.

The main idea is to use two projections to project key and value: K,V €
R™*4 into low-dimensional embedding: K,V € R**? where k = hw < n, h and
w are the reduced size of feature map after sub-sampling. The proposed efficient
self-attention is now:

QK o
\/8

Pnxk

Attention(Q, K, V) = softmax( (2)

kxd
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By doing so, the computational complexity is reduced to O(nkd). Notably,
the projection to low-dimensional embedding can be any down-sampling opera-
tions, such as average/max pooling, or strided convolutions. In our implementa-
tion, we use 1x 1 convolution followed by a bilinear interpolation to down-sample
the feature map, and the reduced size is 8.

2.3 Relative Positional Encoding

Standard self-attention module totally discards the position information and is
perturbation equivariant [1], making it ineffective for modeling image contents
that are highly structured. The sinusoidal embedding in previous works [13]
does not have the property of translation equivariance in convolutional layers.
Therefore, we use the 2-dimensional relative position encoding by adding relative
height and width information [1]. The pair-wise attention logit before softmax
using relative position encoding between pixel ¢ = (i,,4,) and pixel j = (jz, jy)

'
1,7 \/a

where g; is the query vector of pixel i, k; is the key vector for pixel j, T}-’Z_im
and 77 _,

l (kj + rVor ) (3)

Ja—1z Jy—tly

, are learnable embeddings for relative width j, —i, and relative height
Jy — iy respectively. Similar to the efficient self-attention, the relative width and
height are computed after low-dimensional projection. The efficient self-attention
including relative position embedding is:

vl rel rel
QK + S +SW)v )
\/a kxd

Attention(Q, K, V) = softmax(

Pnxk

rel qrel c RHWXh'uJ

where S%", Sy are matrics of relative position logits along

height and width dimensions that satisfy S7¢[i,j] = qfrﬁ_iy,s%l[tj] =
T, W
Qi Vo —in-

2.4 Network Architecture

Figure 1 highlights the architecture of UTNet. We seek to combine the strength
from both convolution and self-attention mechanism. Therefore, the hybrid archi-
tecture can leverage the inductive bias of image from convolution to avoid large-
scale pretraining, as well as the capability of Transformer to capture long-range
relationships. Because the mis-segmented region usually locates at the bound-
ary of region-of-interest, the high-resolution context information could play a
vital role in segmentation. As a result, our focus is placed on the proposed
self-attention module, making it feasible to handle large-size feature maps effi-
ciently. Instead of naively integrating the self-attention module on top of the
feature maps from the CNN backbone, we apply the Transformer module to each
level of the encoder and decoder to collect long-range dependency from multiple
scales. Note that we do not apply Transformer on the original resolution, as
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adding Transformer module in the very shallow layers of the network does not
help in experiments but introduces additional computation. A possible reason
is that the shallow layers of the network focus more on detailed textures, where
gathering global context may not be informative. The building block of UTNet
is shown in Fig.1 (b) and (c), including residual basic block and Transformer
block. For both blocks, we use the pre-activation setting for identity mapping in
the short cut. This identity mapping has been proven to be effective in vision
[8] and NLP tasks [19].

3 Experiment

3.1 Experiment Setup

We systematically evaluate the UTNet on the multi-label, multi-vendor cardiac
magnetic resonance imaging (MRI) challenge cohort [2], including the segmenta-
tion of left ventricle (LV), right ventricle (RV), and left ventricular myocardium
(MYO). In the training set, we have 150 annotated images from two different
MRI vendors (75 images of each vendor), including A: Siemens; B: Philips. In the
testing set, we have 200 images from 4 different MRI vendors (50 images of each
vendor), including A: Siemens; B: Philips; C: GE; D: Canon, where vendor C
and D are completely absent in the training set (we discard the unlabeled data).
The MRI scans from different vendors have marked differences in appearance,
allowing us to measure model robustness and compare with other models under
different settings. Specifically, we have performed two experiments to highlight
the performance and robustness of UTNet. First, we report primary results with
training and testing data are both from the same vendor A. Second, we further
measure the cross-vendor robustness of models. Such setting is more challenging
since the training and testing data are from independent vendors. We report
Dice score and Hausdorff distance of each model to compare the performance.

3.2 Implementation Detail

For data preprocessing, we resample the in-plane spacing to 1.2 x 1.2 mm, while
keeping the spacing along the z-axis unchanged. We train all models from scratch
for 150 epochs. We use the exponentially learning rate scheduler with a base
learning rate of 0.05. We use the SGD optimizer with a batch size of 16 on
one GPU, momentum and weight decay are set to 0.9 and le — 4 respectively.
Data augmentation is applied on the fly during model training, including ran-
dom rotation, scaling, translation, additive noise and gamma transformation.
All images are randomly cropped to 256 x 256 before entering the models. We
use the combine of Dice loss and cross-entropy loss to train all networks.

3.3 Segmentation Results

We compare the performance of UTNet with multiple state-of-the-art segmen-
tation models. UNet [14] builds on top of the fully convolutional networks with
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Table 1. Segmentation performance in term of Dice score and efficiency comparison.
All models are trained and tested using data from vendor A. The Hausdorff distant
result is reported in the supplementary.

UNet | ResUNet | CBAM | Dual-Attn | UTNet
LV 91.8 |92.2 92.2 92.4 93.1
MYO 81.7 |82.5 82.1 82.3 83.5
RV 85.6 |86.2 87.7 86.4 88.2
Average 86.4 |86.9 87.3 87.0 88.3
Params/M 7.07 19.35 9.41 9.69 9.53
Inference Time/s | 0.085 | 0.115 0.149 |0.118 0.145
88.2 884 88.5
: /\ o 88
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Fig. 3. Ablation study. (a) Effect of different self-attention position. (b) Effect of
reduce size and projection of efficient self-attention. (c) Effect of Transformer encoder,
Transformer decoder, and the relative positional encoding.

a U-shaped architecture to capture context information. The ResUNet is similar
to UNet in architecture, but it uses residual blocks as the building block. CBAM
[23] uses two sequential convolutional modules to infer channel and spatial atten-
tion to refine intermediate feature maps adaptively. Dual attention network [4]
uses two kinds of self-attention to model the semantic inter-dependencies in
spatial and channel dimensions, respectively. We have implemented CBAM and
dual attention in ResUNet backbone for better comparison. The dual attention
is only applied in the feature maps after 4 down-samplings due to its quadratic
complexity.

As seen in Tablel, UTNet demonstrates leading performance in all seg-
mentation outcomes (LV, MYO and RV). By introducing residual connections,
ResUNet is slightly improved than the original UNet. The spatial and channel
attention from CBAM are inferred from convolutional layers, it still suffers from
limited receptive field. Thus CBAM only has limited improvement compared
with ResUNet. We also recognize that dual-attention approach was almost the
same as ResUNet, as it suffers from quadratic complexity that can not process
higher resolution feature maps to fix errors in the segmentation boundary. Mean-
while, our UTNet presents less parameters than dual-attention approach and it
can capture global context information from high-resolution feature maps.
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Table 2. Robustness comparison, measured with Dice score. All models are trained
on data from vendor A,B, and are tested on data from vendor A,B,C,D. The number
in brackets of C and D indicates the performance drop compared with the average of
A and B.

Vendor | ResUNet CBAM UTNet
A B |C D A B |C D A B C D
LV 92.5/90.1 | 88.7 (]2.6)  87.2 (]4.1) |93.3 | 91.0 | 89.4 (]2.8)  88.8 (13.4) |93.1 | 91.4|89.8 (]2.5) |90.5 (]/1.8)
MYO |83.6]85.3 82.8 (11.7)]80.2 (14.3) |83.9|85.882.6 (12.3) |80.8 (14.1) | 83.7 | 85.9|83.7 (|1.1) | 82.6 (|2.2)
RV 87.487.5/85.9 (]1.6) 85.3 (]2.2) |88.4 | 88.485.3 (]3.1) 86.4 (]2.0) | 89.4 | 88.886.3 (]2.8) |87.3 (]1.8)
( ( ( (132)

AVG | 87.9]87.6|85.7 (12.0) |84.2 (13.5)|88.5 |88.4|85.5 (|2.7)|85.3 (13.2) | 88.7 | 88.7|86.6 (|2.1) |86.2 (|2.5)

¥

Input Image ResUNet CBAM Dual Attention UTNet

Fig. 4. Hard cases visualization on unseen testing data from vendor C and D. First
two rows and the bottom two rows present the results and a zoom-in view of vendor
C and D, respectively. The outline indicates the ground-truth annotation. Best viewed
in color with LV(green), MYO(yellow), and RV(red). The test case from vendor C is
blur due to motion artifacts, while the test case from vendor D is noisy and has low
contrast in the boundary. Only UTNet provides consistent segmentation, which demon-
strates its robustness. More visualization of segmentation outcomes are presented in
the supplementary. (Color figure online)

Ablation Study. Figure3 (a) shows the performance of different self-attention
positions. The number in the x-axis indicates the level where self-attention is
places, e.g., ‘34’ means the level where 3 and 4 times down-samplings are per-
formed. As the level goes up, the self-attention can gather more fine-grained
detail information with increased performance. However, the curve saturates
when adding to the original resolution. We reason this as the very shallow layer
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tends to be more focused on local texture, where global context information is
not informative anymore. Figure 3 (b) shows the result of efficient self-attention’s
reduced size of 4, 8, 16. The reduced size 8 results in the best performance. The
interpolation down-sampling is slightly better than using max-pooling. Figure 3
(c) shows the effect of the Transformer encoder, decoder, and the relative posi-
tional encoding using the optimal hyper-parameter from (a) and (b). The com-
bination of the Transformer encoder and decoder gives the optimal performance.
The relative positional encoding also plays a vital role, as removing it causes a
large performance drop.

For a head-to-head comparison with standard self-attention on space and
time complexity, we further apply dual attention in four resolutions (1, 2, 3, 4,
same as UTNet), and use the same input image size and batch size (256 x 256 x
16) to test the inference time and memory consumption. UTNet gains superior
advantage over dual attention with quadratic complexity, where GPU memory:
3.8 GB vs 36.9 GB and time: 0.146s vs 0.243s.

Robustness Analysis. Table 2 shows results on training models with data from
vendor A and B, and then test the models on vendor A, B, C, and D, respectively.
When viewing results on C and D vendors, competing approaches suffer from
vendor differences while UTNet retains competitive performance. This observa-
tion can probably be attributed to the design of self-attention on multiple levels
of feature maps and the content-position attention, allowing UTNet to be better
focused on global context information instead of only local textures. Figure4
further shows that UTNet displays the most consistent results of boundaries,
while the other three methods are unable to capture subtle characteristics of
boundaries, especially for RV and MYO regions in cardiac MRI.

4 Conclusion

We have proposed a U-shape hybrid Transformer network (UTNet) to merge
advances of convolutional layers and self-attention mechanism for medical image
segmentation. Our hybrid layer design allows the initialization of Transformer
into convolutional networks without a need of pre-training. The novel self-
attention allows us to extend operations at different levels of the network in both
encoder and decoder for better capturing long-range dependencies. We believe
that this design will help richly-parameterized Transformer models become
more accessible in medical vision applications. Also, the ability to handle long
sequences efficiently opens up new possibilities for the use of the UTNet on more
downstream medical image tasks.
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