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2 Max Planck Institute for Intelligent Systems, Tübingen, Germany

Abstract. Image-to-image translation plays a vital role in tackling vari-
ous medical imaging tasks such as attenuation correction, motion correc-
tion, undersampled reconstruction, and denoising. Generative adversarial
networks have been shown to achieve the state-of-the-art in generating
high fidelity images for these tasks. However, the state-of-the-art GAN-
based frameworks do not estimate the uncertainty in the predictions
made by the network that is essential for making informed medical deci-
sions and subsequent revision by medical experts and has recently been
shown to improve the performance and interpretability of the model. In
this work, we propose an uncertainty-guided progressive learning scheme
for image-to-image translation. By incorporating aleatoric uncertainty as
attention maps for GANs trained in a progressive manner, we generate
images of increasing fidelity progressively. We demonstrate the efficacy of
our model on three challenging medical image translation tasks, includ-
ing PET to CT translation, undersampled MRI reconstruction, and MRI
motion artefact correction. Our model generalizes well in three differ-
ent tasks and improves performance over state of the art under full-
supervision and weak-supervision with limited data. Code is released
here: https://github.com/ExplainableML/UncerGuidedI2I.
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1 Introduction

In the medical domain, each imaging modality reflects particular physical prop-
erties of the tissue under examination. This results in images with different
dimensionality, spatial resolution, and contrast. Various imaging modalities pro-
vide a complimentary stream of information for clinical diagnostics or technical
pre and post-processing steps. Moreover, acquiring medical images is susceptible
to various kinds of noise and modality-specific artefacts. To remedy these issues,
translating images between different domains is of great importance.

Inter-modal image-to-image translation can potentially replace additional
acquisition procedures, reducing examination costs and time. Besides, intra-
modality image-to-image translation enables complex artefact and noise cor-
rection. For example, attenuation correction of positron emission tomography
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(PET) data is challenging in situations where no density distribution is avail-
able from computed tomography (CT) data, as in the case for stand-alone PET
scanners or combined PET/magnetic resonance imaging (MRI). In these situ-
ations, the generation of pseudo-CTs from PET data can be helpful. Further
examples are related to image reconstruction and/or correction in MRI: Recon-
struction of undisturbed artifact-free images is hard to achieve with traditional
methods; deep-learning-based image-to-image translation can solve this chal-
lenge. In particular, generative adversarial networks (GAN) based on convolu-
tional neural networks (CNN) have proven to provide a high visual quality of
the generated synthetic images. However, predictions of GANs can be unreliable,
and particularly in medical applications, the quantification of uncertainty is of
high importance for the interpretation of the results. In this work, we propose a
generic end-to-end model that introduces high-capacity conditional progressive
GANs to synthesize high-quality images, using aleatoric uncertainty estimates
as the guide to focus on improving image quality in regions where the network
is highly uncertain about the prediction. We perform experiments on three chal-
lenging and vital medical imaging tasks: PET to CT translation, undersampled
MRI reconstruction, and motion correction in MRI. Moreover, we empirically
demonstrate the efficacy of our model under weak supervision with limited data.

2 Related Works

Traditional machine learning techniques for medical image translation rely on
explicit feature representations [6,12,17,35]. More recently, convolutional neural
networks have been proposed for various image translation tasks [3–5,8,13,19]
and state-of-the-art performance is achieved by generative adversarial networks
[1,2,7,9,15,21,22,29–32]. The existing methods propose conditional GAN archi-
tectures with deterministic outputs that typically uses L1/L2-based fidelity loss
for the generator assumes a pixel-wise homoscedasticity and also assumes the
pixel-wise error (i.e., residual) to be independent and identically distributed (i.i.d)
following a Laplace or Gaussian distribution. This is a limiting assumption as
explained in [10,23,25]. While these methods can provide synthetic images of
high visual quality, the image content may still deviate significantly from the
corresponding ground-truth. This results in overconfidence or misinterpretation
with negative consequences, particularly in the medical domain. There have been
recent works on quantifying aleatoric and epistemic uncertainty in task-specific
medical imaging algorithms like classification, segmentation, super-resolution
etc. [14,20,25–27] quantifying it for general image-to-image translation prob-
lem largely remains unexplored. Thus, the central motivation of our work is to
provide measures of uncertainty for image-to-image translation tasks that can
contribute to safe applications of results.

Moreover, recent work has shown that high-capacity generators that are
progressive in nature lead to high-quality results as described in [1,2,9]. How-
ever, the progressive generation of high-quality images remains unguided without
specifically attending to poorly translated regions. Prior works indicate a corre-
lation between estimated uncertainty and prediction error [20,23,33]. We exploit
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Fig. 1. Uncertainty-guided Progressive GANs (UP-GAN): The primary GAN takes the
input image from domain A, while subsequent GANs absorb outputs from the preceding
GAN (see Eq. 3 and 4). Explicitly guided by the attention maps, the uncertainty maps
are estimated from the preceding GAN.

this relationship for the progressive enhancement of synthetic images, which has
not been investigated by prior work before.

3 Uncertainty-Guided Progressive GAN (UP-GAN)

Let A and B be two image domains with a set of images SA := {a1, a2...an} and
SB := {b1, b2...bm} where ai and bi represent the ith image from domain A and
B respectively. Let each image drawn from an underlying unknown probability
distribution PAB , i.e., (ai, bi) ∼ PAB∀i have K pixels, and uik represent the kth

pixel of a particular image ui. Our goal is to learn a mapping from domain A to
B (A → B) in a paired manner, i.e., learning the underlying conditional distri-
bution PB|A from the set of given samples {(ai, bi)}, following the distribution
PAB . For a given image ai in domain A, the estimated image in domain B is
called b̂i. The pixel wise error is defined as εij = b̂ij − bij . While the existing
framework models the residual as the i.i.d as described above, we relax that
assumption by modelling the residual as non i.i.d variables and learning the
optimal distribution from the dataset, as described in the following.

Figure 1 shows our model that consists of cascaded GANs, where each gen-
erator is capable of estimating the aleatoric uncertainty, along with generat-
ing images. Our solution alleviates the aforementioned limitations of recent
methods by modelling the underlying per-pixel residual distribution as inde-
pendent but non-identically distributed zero-mean generalized Gaussian distri-
bution (GGD) as in [23], where the network learns to predict the optimal scale
(α) and shape (β) of the GGD for every pixel, Therefore, b̂ij = bij + εij with,
εij ∼ GGD(ε; 0, αij , βij) ≡ βij(2αijΓ (β−1

ij ))−1 exp
(−α−1

ij |ε|βij
)

. We gener-
ate images in multiple phases, with each phase generating output images along
with the aleatoric uncertainty estimates. The outputs from one phase serve as
the input to the subsequent GAN in the next phase, explicitly guided by the
attention map derived from uncertainty estimates. Importantly, this uncertainty-
based guidance enforces the model to focus on refining the uncertain regions that
are likely to be poorly synthesized, resulting in progressively improving quality.
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Our framework is composed of a sequence of M GANs, where the mth GAN
is represented by a pair of networks, generator and discriminator, given by,
(Gm(·; θm),Dm(·;φm)). Both the generator and discriminator can have arbitrary
network architecture as long as generator can estimate aleatoric uncertainty as
described in [23]. We choose all the discriminators to be the patch discriminators
from [7] and generators to be modified U-Net [16], where the head is split into
three to estimate the parameters of the GGD as shown in Fig. 1 and in [23].

Primary GAN. We train the first GAN (G0) using the dataset SA and SB.
The predictions of the generator are given by (α̂[0]i, β̂[0]i, b̂[0]i). The network is
trained with an adaptive fidelity loss function LG

αβ [23] and an adversarial loss
LG
adv [36], combined as LG

tot for the generator (G0(·; θ0) : A → B):

LG
αβ(b̂[0]i, α̂[0]i, β̂[0]i, bi) =

1

K

∑∑∑

j

(
|b̂[0]ij − bij |

α̂[0]ij

)β̂[0]ij

− log
β̂[0]ij

α̂[0]ij
+ log Γ (β̂−1

[0]ij) (1)

LG
adv = L2(D1(b̂[0]i), 1) and LG

tot = λ1LG
αβ + λ2LG

adv. (2)

The patch discriminator (D1) is trained using the adversarial loss from [36]
given by LD

adv = L2(DA(bi), 1) + L2(DA(b̂[0]i), 0).

Subsequent GANs. The mth GAN (where m > 0) takes the output produced
by the (m − 1)th GAN, i.e. (α̂[m−1]i, β̂[m−1]i, b̂[m−1]i), along with the original
sample ai from domain A as its input and generates a refined output. The image
estimated by the (m−1)th GAN along with its uncertainty map learns to create
the input feature f[m]i for the mth GAN, where the uncertainty map serves as an
attention mechanism to highlight the uncertain regions in the image. The input
a[m]i for the mth generator is given by concatenating ai and f[m]i, i.e.,

σ̂[m−1]i = α̂[m−1]i

√√
√
√Γ (3/β̂[m−1]i)

Γ (1/β̂[m−1]i)
, and f[m]i = b̂[m−1]i � σ̂[m−1]i∑∑∑

j σ̂[m−1]ij
(3)

a[m]i = concat(f[m]i, ai) (4)

The input a[m]i for the mth GAN encourages the generator to further refine
the highly uncertain regions in the image given the original input context. The
generator and the discriminator are trained using LG

tot and LD
adv, respectively.

Progressive Training Scheme. We initialize the parameters θ∪φ sequentially.
First, we initialize θ1 ∪ φ1 using the training set (SA, SB) to minimize the loss
function given by LG

tot and LD
adv. Then, for the subsequent GANs, we initialize

the θm ∪ φm (m > 1) by fixing the weights of all the previous generators and
training the mth GAN alone (see Eq. 3 and 4 with losses LG

tot and LD
adv). Once

all the parameters have been initialized (i.e., θm ∪ φm∀m), we do further fine
tuning by training all the networks end-to-end by combining the loss functions
of all the intermediate phases and a significantly smaller learning-rate.
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4 Experiments

In this section, we first detail the experimental setup and comparative methods
in Sect. 4.1, and present the corresponding results in Sect. 4.2.

4.1 Experimental Setup

Tasks and Datasets. We evaluate our method on the following three tasks.

(i) PET to CT translation: We synthesize CT images from PET scans to
be used for the attenuation correction, e.g. for PET-only scanners or
PET/MRI. We use paired data sets of non-attenuation-corrected PET and
the corresponding CT of the head region of 49 patients acquired on a state-
of-the-art PET/CT scanner (Siemens Biograph mCT), approved by ethics
committee of the Medical Faculty of the University of Tübingen. Data is
split into 29/5/15 for training/val/test sets. Figure 2 shows exemplary slices
for co-registered PET and CT.

(ii) Undersampled MRI reconstruction: We translate undersampled MRI
images to fully-sampled MRI images. We use MRI scans from the open-
sourced IXI1 dataset that consists of T1-weighted (T1w) MRI scans. We use
a cohort of 500 patients split into 200/100/200 for training/val/test, and
retrospectively create the undersampled MRI with an acceleration factor of
12.5×, i.e., we preserve only 8% of the fully-sampled k-space measurement
(from the central region) to obtain the undersampled image.

(iii) MRI Motion correction: We generate sharp images from motion corrupted
images. We retrospectively create the motion artefacts in the T1w MRI
from IXI following the transformations in the k-space as described in [18].
Figure 3-(ii) shows the input MRI scan with artefacts and ground-truth.

Training Details and Evaluation Metrics. All GANs are first initialized
using the aforementioned progressive learning scheme with (λ1, λ2) in Eq. 2 set to
(1, 0.001). We use Adam [11], with the hyper-parameters β1 := 0.9, β2 := 0.999,
an initial learning rate of 0.002 for initialization and 0.0005 post-initialization
that decays based on cosine annealing over 1000 epochs, using a batch size of 8.
We use three widely adopted metrics to evaluate image generation quality: PSNR
measures 20 log MAXI/

√
MSE, where MAXI is the highest possible intensity

value in the image and MSE is the mean-squared-error between two images. SSIM
computes the structural similarity between two images [28]. MAE computes the
mean absolute error between two images. Higher PSNR, SSIM, and lower MAE
indicate a higher quality of the generated images (wrt ground-truth).

Compared Methods. We compare our model to representative state-of-the-art
methods for medical image translation, including Pix2pix [7], a baseline condi-
tional adversarial networks for image-to-image translation tasks using GANs,

1 From https://brain-development.org/ixi-dataset/.

https://brain-development.org/ixi-dataset/
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Fig. 2. Outputs from different phases of UP-GAN (with M = 3). (Top) The input
(uncorrected PET), the corresponding ground-truth CT, mean residual values over
different phases, mean uncertainty values over different phases. (Bottom) Each row
shows the predicted output, the residual between the prediction and the ground-truth,
the predicted scale (α) map, the predicted shape (β) map, the uncertainty map, and
the uncertainty in high residual regions.

PAN [24], and MedGAN [2], a GAN-based method that relies on external-pre-
trained feature extractors, with a generator that refines the generated images
progressively. MedGAN is shown to perform superior to methods like, Fila-
sGAN [34], ID-cGAN [32], and achieve state-of-the-art performance for several
medical image-to-image translation problems.

4.2 Results and Analysis

Qualitative Results. Figure 2 visualizes the (intermediate) outputs of the gen-
erators at different phases of the framework. The visual quality of the gener-
ated image content increasingly improves along the network phases (as shown
in the first column, second row onward). At the same time, prediction error and
uncertainty decrease continuously (second column and fifth column, second row
onward, respectively). High uncertainty values are found in anatomical regions
with fine osseous structures, such as the nasal cavity and the inner ear in the
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Fig. 3. Qualitative results. (Top) PET to CT translation. (Bottom) Undersampled
MRI reconstruction (left), and MRI motion correction (right).

petrous portion of the temporal bone. Particularly in such regions of high uncer-
tainty, we achieve a progressive improvement in the level of detail.

Figure 3-(Top) visualizes the generated CT images from the PET for all
the compared methods along with our methods. We observe that more high-
frequency features are present in our prediction compared to the previous state-
of-the-art model (MedGAN). We also observe that the overall residual is signifi-
cantly lower for our method compared to the other baselines. MedGAN performs
better than pix2pix in synthesizing high-frequency features and sharper images.
Figure 3-(Bottom) shows similar results for the undersampled MRI reconstruc-
tion task and MRI motion correction task. In both cases, our model yields supe-
rior images, as can be seen via relatively neutral residual maps.

Quantitative Results. Table 1 shows the quantitative performance of all the
methods on the three tasks; for all the tasks, our method outperforms the recent
models. In particular, for the most challenging task, PET to CT translation,
our method with uncertainty-based guide outperforms the previous state-of-the-
art method, MedGAN (that relies on task-specific external feature extractor),
without using any external feature extractor. Therefore, the uncertainty guid-
ance reduces the burden of having an externally trained task-specific feature
extractor to achieve high fidelity images. The same trend holds for undersam-
pled MRI reconstruction and motion correction in MRI. The statistical tests on
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Fig. 4. Quantitative results in the presence of limited labeled training data.

Table 1. Evaluation of various methods on three medical image translation tasks.

Methods PET to CT Undersampled MRI Recon MRI Motion Correction

SSIM PSNR MAE SSIM PSNR MAE SSIM PSNR MAE

pix2pix [7] 0.89±0.04 26.0± 2.0 38.5± 10.7 0.92± 0.03 28.5± 0.9 27.6± 9.3 0.94± 0.06 29.6± 1.4 26.3± 8.2

PAN [24] 0.90± 0.08 26.5± 4.5 37.2± 15.6 0.93± 0.05 28.8± 0.7 26.2± 10.4 0.95± 0.10 30.1± 2.8 24.9± 9.7

MedGAN [2] 0.90± 0.04 27.1± 2.5 35.4± 11.8 0.94± 0.02 29.7± 1.9 24.2± 8.7 0.95± 0.04 30.8± 1.8 23.6± 9.1

UP-GAN 0.95±0.05 28.9±0.4 24.7±12.9 0.97±0.07 29.4± 2.1 24.1±7.5 0.96±0.03 32.1±0.3 22.8±11.1

SSIM values of MedGAN and our UP-GAN gives us a p-value of 0.016 for PET-
to-CT translation, 0.021 for undersampled MRI reconstruction, and 0.036 for
MRI motion correction. As all the p-values are < 0.05, results are statistically
significant.

Ablation Study. We study the model that does not utilize the estimated
uncertainty maps as attention maps and observe that the model without the
uncertainty as the guide performs inferior to the UP-GAN with a performance
(SSIM/PSNR/MAE) of (0.87/25.4/40.7), (0.93/27.3/38.7), and (0.92/26.2/35.1)
for PET to CT translation, undersampled MRI reconstruction, and MRI motion
correction, respectively. UP-GAN model leverages the uncertainty map to refine
the predictions where the model is uncertain, which is also correlated to the
regions where the translation is poor. The model without uncertainty-based
guidance does not focus on the regions mentioned above in the prediction and
is unable to perform as well as UP-GAN.

Evaluating Models with Weak Supervision. We evaluate all the models for
PET to CT synthesis by limiting the number of paired image samples used for
training. We define five supervision levels corresponding to different amounts of
cross-domain pairwise training sample slices. For this experiment, we train the
recent state-of-the-art models with a varying number of patients in the training
stage, i.e., we use 5, 10, 15, 20, and 29 patients, respectively. Figure 4 shows
the performance of all the models at varying supervision levels. We observe
that our model with uncertainty guidance outperforms all the baselines at full
supervision (with 29 patients). Moreover, our model sharply outperforms the
baselines with limited training data (with < 29 patients). UP-GAN produces
intermediate uncertainty maps that have higher values under weak supervision
(compared to the full supervision case), but this still allows UP-GAN to focus
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on highly uncertain regions, that the current state-of-the-art models do not have
access to, hence are not able to leverage that to refine the predicted images.

5 Conclusion

In this work, we propose a new generic model for medical image translation
using uncertainty-guided progressive GANs. We demonstrate how uncertainty
can serve as an attention map in progressive learning schemes. We demonstrate
the efficacy of our method on three challenging medical image translation tasks,
including PET to CT translation, undersampled MRI reconstruction, and motion
correction in MRI. Our method achieves state-of-the-art in various tasks. More-
over, it allows the quantification of uncertainty and shows better generalizability
with smaller sample sizes than recent approaches.
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