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Abstract. Domain Adaptation (DA) methods are widely used in med-
ical image segmentation tasks to tackle the problem of differently dis-
tributed train (source) and test (target) data. We consider the super-
vised DA task with a limited number of annotated samples from the
target domain. It corresponds to one of the most relevant clinical setups:
building a sufficiently accurate model on the minimum possible amount
of annotated data. Existing methods mostly fine-tune specific layers of
the pretrained Convolutional Neural Network (CNN). However, there is
no consensus on which layers are better to fine-tune, e.g. the first layers
for images with low-level domain shift or the deeper layers for images
with high-level domain shift. To this end, we propose SpotTUnet – a
CNN architecture that automatically chooses the layers which should
be optimally fine-tuned. More specifically, on the target domain, our
method additionally learns the policy that indicates whether a specific
layer should be fine-tuned or reused from the pretrained network. We
show that our method performs at the same level as the best of the non-
flexible fine-tuning methods even under the extreme scarcity of annotated
data. Secondly, we show that SpotTUnet policy provides a layer-wise
visualization of the domain shift impact on the network, which could
be further used to develop robust domain generalization methods. In
order to extensively evaluate SpotTUnet performance, we use a publicly
available dataset of brain MR images (CC359), characterized by explicit
domain shift. We release a reproducible experimental pipeline (https://
github.com/neuro-ml/domain shift anatomy).
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1 Introduction

Whenever a model, trained on one distribution, is given some data, belonging to
another distribution, a detrimental effect called domain shift might pop up and
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decrease the inference quality [18]. This problem is especially acute in the field of
medical imaging since any data collection instance (e.g., MRI apparatus) might
appear to sample data, belonging to the domain of its own due to peculiarities
of a model or the scanning protocol [5]. Besides, preserving quality on the new
data (i.e., domain adaptation) is of utter importance because of the industry
standards. A realistic set-up is that of supervised domain adaptation (sDA):
some data from the new (target) domain is labeled and should be utilized for
fine-tuning the model, pre-trained on the source domain.

The central question of sDA research is how should the net be fine-tuned.
A great number of works adopt the transfer learning approach of fine-tuning
the last layers only, which is underpinned by the notion of feature complexity
increasing with depth [19]. It is assumed, that low-level features should be shared
across domains, while high-level ones are more prone to domain shift and should
be therefore fine-tuned. However, in a number of Domain Adaptation papers the
presence of low-level domain shift is demonstrated [3,12,21].

SpotTune [6] is a Transfer Learning (TL) approach, allowing for Adaptive
Fine-tuning, providing, therefore, a domain shift stamp of each task by learning
the corresponding fine-tuning policy. We employ SpotTune approach for get-
ting better insight into the anatomy of domain shift in the problem of Domain
Adaptation.

Our contribution is threefold:

• To the best of our knowledge, we are the first to propose SpotTUnet: Spot-
Tune adapted for supervised DA in medical image segmentation

• We introduce interpretable regularization, with which SpotTune performs on
par with the best of the alternative fine-tuning methods across the entire data
availability spectrum

• We study the optimal fine-tuning strategies for different data availability
scenarios and provide intuition for the obtained results.

2 Related Work

In this paper, we focus on the supervised DA setup in medical image segmenta-
tion. Our approach is motivated by SpotTune [6], which learns a policy to choose
between fine-tuning and reusing pretrained network layers and at the same time
fine-tunes chosen layers on the Target data (see details in Sect. 3). Previous
approaches in both supervised and unsupervised medical image DA mostly rely
on the explicit choice of layers to fine-tune or to split the adversarial head from.
We detail the most relevant approaches below.

The authors of [19] have extensively evaluated features transferability in the
image classification task. Their study suggests that features from the first layers
of the network could be transferred between tasks, while the last layers should be
re-trained. Contrary, convolutional filter reconstruction [1] is designed to tackle
the low-level domain shift under unsupervised DA setup showing that the first
layers are susceptible to domain shift more than the later ones.
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DA methods for medical image segmentation also tackle domain shift problem
differently: the earlier approaches follow the motivation of [19], thus fine-tune the
later layers of the network. According to the approach of [10] fine-tuning of only
the last CNN layer is performed, which yields improvement over transferring
without adaptation. However, no comparison is provided with other supervised
DA methods or various transferring strategies. Similarly, in [15] the last CNN
layer is fine-tuned, but the authors focus more on the training cases selection
procedure rather than on the fine-tuning method development. Several works
[4,16] provide a comparison between the outcomes of various numbers of the
later layers being fine-tuned. Notably, in [4] fine-tuning of the whole network
is added to comparison, with better results demonstrated for a smaller number
of the later layers fine-tuned. In the unsupervised DA setup, [8] achieves better
results adapting features from all the layers except for the first block, but the
layers choice strategy remains unlearnable.

In contrast, later approaches follow the motivation of [1], arguing that med-
ical images (e.g. MRI) mostly contain low-level domain shift, which is due to
varying intensity profiles but similar high-level structures, thus the first layers
should be targeted. In [12] fine-tuning of the first layers is compared to fine-
tuning of the last layers and of the whole network. The conclusion is that fine-
tuning of the first layers is superior to fine-tuning of the last ones and is even
preferable to fine-tuning of the whole network in the case of annotated Target
data scarcity. In [9], an adaptive image normalization module is developed for
the unsupervised test-time DA, which is conceptually close to fine-tuning of the
first layers. Approaches of [3,21] are also motivated by the same hypothesis and
adapt the first layers in the unsupervised DA setup.

To this end, we compare SpotTUnet with the best unlearnable layer choice
strategies within the supervised DA setup and show it to be a reliable tool for
domain shift analysis. While authors of [13] demonstrate SpotTune to perform
worse than histogram matching preprocessing in the medical image classifica-
tion task, we argue that histogram matching is a task-specific method and show
its extremely poor segmentation quality in our task. Many approaches compet-
itive to SpotTune have been developed recently, but their focus is more narrow:
obtaining the best score on the Target domain rather than analyzing domain
shift properties. Therefore, we further study only the SpotTune-based approach.

3 Method

The majority of supervised DA methods in medical image segmentation are
based on the explicit choice of layers to fine-tune. However, as indicated in Sect.
2, it is not always clear, whether the first or the last layers are to be targeted.
Moreover, state-of-the-art architectures consist of skip-connections and residual
paths [2], while residual networks behave like ensembles of shallow networks [17].
Therefore, it is also unclear which layers are actually the first across the most
meaningful shallow sub-parts of the residual network.

We introduce an extension of SpotTune [6] on the supervised DA for medical
image segmentation called SpotTUnet. SpotTUnet consists of two copies of
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the main (segmentation) network and a policy network (see Fig. 1). The main
network is pretrained on the Source domain and then duplicated: the first copy
has frozen weights (Fig. 1, blue blocks), while the second copy is fine-tuned on
the Target domain (Fig. 1, orange blocks). The policy network predicts N pairs
of logits for each of N segmentation network blocks (residual blocks or separate
convolutions). For each pair of logits, we apply softmax and interpret the result
as probabilities in a 2-class classification task: class 0 corresponds to the choice
of a frozen block, while class 1 means choosing to fine-tune the unfrozen copy.
Then, for the l-th level of the network (frozen block is denoted Fl and fine-tuned
block F̃l) we define its output as xl = Il(x)Fl(xl−1) + (1 − Il(x))F̃l(xl−1), where
Il(x) is the indicator of choosing the frozen block (i.e. class 0 probability > 0.5).
Here, we use Gumbel-Softmax to propagate the gradients through the binary
indicator Il(x) exactly reproducing the methodology of SpotTune [6]. Thus, we
simultaneously train the policy network and fine-tune the duplicated layers.

Fig. 1. SpotTUnet architecture for the supervised DA in medical image segmentation.
We use U-Net architecture from [12] as the segmentation backbone, which is pretrained
on the Source domain. The pretrained segmentation network is frozen (blue blocks)
and has a copy (orange blocks) that is fine-tuned on the Target domain. The policy
network is simultaneously trained on the Target domain to output binary decisions for
each pair of blocks from the segmentation networks: use the frozen block (blue) vs use
the fine-tuned block (orange). (Color figure online)

Authors of SpotTune also propose a compact global policy (Global-k), which,
via additional losses, constrains all the images to fine-tune the same k blocks and
aims at reducing the memory and computational costs while possibly decreasing
the overall quality. We propose a simplified regularization approach that more-
over yields higher quality in the cases of annotated data scarcity. Effectively,
we apply L1 regularization term in the Global-0 SpotTune case, simultaneously
minimizing the total number of fine-tuned blocks and achieving a more deter-
ministic policy (exactly 0 or 1, which is due to L1 properties). The resulting loss
is

L = Lsegm + λ

N∑

l=1

(1 − Il(x)) , (1)
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where λ is the balance parameter of the regularization term. Our motivation
is different from the original: we assume that fewer blocks should be optimally
fine-tuned in case of limited annotated data so that to avoid possible overfitting.
Our regularization has only 1 parameter compared to 3 parameters of the origi-
nal SpotTune regularization, and this parameter (λ) could be optimized during
preliminary validation. The intuition behind λ is simple: the less annotated data
is available the larger λ value should be.

4 Experiments

4.1 Technical Details

Data. We report our results on a publicly available dataset CC359 [14]. CC359
consists of 359 MR images of head with the task being skull stripping. The
dataset is split into 6 equal domains which are shown [12] to contain domain
shift resulting in a severe score deterioration. The data preprocessing steps are:
interpolation to 1 × 1 × 1 mm voxel spacing and scaling intensities into 0 to 1
interval. All splits and setups are detailed in Sect. 4.2.

Metric. To evaluate different approaches, we use surface Dice Score [11] at the
tolerance of 1 mm. While preserving the consistency with the methodology of
[12], we also find surface Dice Score to be a more representative metric for the
brain segmentation task than the standard Dice Score.

Architecture and Training. The experimental evaluation provided in [12]
shows that neither architecture nor training procedure variations, e.g. augmenta-
tion, affect the relative performance of conceptually different approaches. There-
fore, in all our experiments we consistently use 2D U-Net architecture imple-
mentation from [12]. We also use a ResNet architecture [7] as the policy network
backbone. In all the experiments we minimize Binary Cross-Entropy loss (Lsegm)
via stochastic gradient descent. Baseline and oracle (see Sect. 4.2) are trained
for 100 epochs (100 iterations per epoch) with the learning rate of 10−2 reduced
to 10−3 at the 80-th epoch. All fine-tuning methods are trained for 60 epochs
with the learning rate of 10−3 reduced to 10−4 at the 45-th epoch. We ensure
all the models reach the loss plateau. All models are trained with batch size 16.
The training takes about 4 h on a 16 GB nVidia Tesla V100 GPU [20].

4.2 Experimental Setup

Baseline and Oracle. The models trained on a single domain form the baseline
of our study. The transfer of such a model (without fine-tuning) on the other 5
unseen domains results in quality deterioration, which is also shown in [12]. We
also obtain scores within each domain (the oracle) via 3-fold cross-validation,
thereby setting the upper bound for various DA methods.
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SpotTUnet Validation. Six domains yield 30 Source-Target pairs, thus, 30 super-
vised DA experiments. In order to avoid overfitting, we separate one Source
domain (Siemens, 1.5T) and, correspondingly, 5 Source-Target pairs for Spot-
TUnet validation and use the other 25 pairs for testing various DA approaches.
On the 5 validation pairs, we firstly adjust the temperature parameter of
Gumbel-Softmax (τ) via grid-search over τ ∈ {.01, .1, .5, 1, 2, 5}. The number
of annotated slices from the Target domain, in this case, is 270 (one 3D image).
Secondly, we search for the optimal λ for each amount of annotated Target data
considered via grid-search over λ ∈ {0, 1, 3, 5, 7, 10, 12, 15, 20 (×10−3)}. In both
validation and testing experiments, we study the same setups of the annotated
Target data scarcity: 8, 12, 24, 45, 90, 270, and 800 slices available for fine-
tuning. The optimal value of λ is fixed for each data scarcity setup and used for
SpotTUnet when testing on the remaining 25 pairs.

Supervised DA Methods. On the rest of the 25 testing pairs, we compare 4
methods: fine-tuning of the first network layers, fine-tuning of the whole network
from [12], histogram matching from [13], and SpotTUnet. We load a baseline
model pretrained on the corresponding Source domain and then fine-tune it via
one of the methods or preprocess the Target data in case of histogram matching.
We compare methods by averaging surface Dice Scores over the Target images,
separated for test (omitted when fine-tuning).

4.3 Results and Discussion

We firstly find and fix hyperparameters for SpotTUnet through validation: the
temperature of Gumbel-Softmax is set to τ = 0.1 and the optimal regularization
λ is set to the optimal value for each data scarcity setup (see Fig. 2). We also
note that Gumbel-Softmax training stability is extremely sensitive to τ choice,
thus suggest to validate different values of τ at one of the first stages of deploying
SpotTune-like architectures. Positive regularization term benefits almost all data
scarcity setups: surface Dice Score of the optimal λ is significantly higher (p <
10−3, one-sided Wilcoxon signed-rank test) than the surface Dice Score of the
corresponding model without the regularization. The only exception is the case
of 800 available Target slices (or three 3D images), where the optimal λ is close
to 0, and the quality drops with the increase of λ (see Fig. 2). We conclude that
while SpotTUnet learns the optimal policy without regularization when there is
no Target data shortage, regularization improves DA performance significantly
in case of Target data scarcity.

We further compare SpotTUnet with Fine-Tuning All Layers, Fine-Tuning
the First Layers, and histogram matching. We present both distributions of the
surface Dice Score (violin plots) and their average values (corresponding lines)
in Fig. 3. Histogram matching achieves only 0.29 average surface Dice Score,
which is even lower than the baseline average score of 0.55; we exclude both
methods from the comparison in Fig. 3. Here, we show that SpotTune performs
at the same level as the best of the other methods regardless of the Target data
scarcity severity.
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Fig. 2. The validation performance of SpoTUnet dependence on the regularization
parameter λ. In each point, the average surface Dice Score over 5 validation experiments
is calculated. Each line corresponds to some amount of available annotated data from
the Target domain. The bold points indicate the optimal λ values in terms of surface
Dice Score.

Fig. 3. The methods performance dependence on the amount of available Target data.
Baseline and histogram matching yield poor quality, thus not included.
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Finally, we track SpotTUnet policy on the test data: for each layer, we calcu-
late the frequency of choosing the fine-tuned one instead of the pretrained and
frozen one. The layer-wise visualization is given in Fig. 4. We find that blocks
from the encoder part of U-Net are more likely to be fine-tuned, especially in the
case of annotated data scarcity. However, these are not exactly the first layers
(e.g., preserving the original resolution), which opposes the conclusion of [12].
We further hypothesize, that SpotTUnet policy indicates layers that should be
fine-tuned for the optimal solution. Consequently, feature maps preceding these
frequently fine-tuned layers might be marked with drastic domain shift. We note
that it is worth evaluating if unsupervised DA approaches [8,21] would benefit
from passing these SpotTUnet indicated domain shift reach feature maps to the
adversarial heads and leave this hypothesis validation for the future research.

We attribute the difference between the policies observed and those presented
in the original SpotTune paper [6] (mostly final layers fine-tuned) to the fun-
damental difference between Transfer Learning (TL) and DA. In TL one deals
with data of varying nature, thus the later layers should be addressed; in DA,
the datasets contain semantically homogeneous data (e.g., brain MRI scans),
thus domain shift is mostly low-level and the first layers should be targeted.
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Fig. 4. SpotTUnet learnt policy visualization for the cases of 12 (upper-left), 45
(bottom-left), 270 (upper-right), and 800 (bottom-right) available Target slices. Col-
ored blocks correspond to either residual blocks or convolutions. Triangular blocks are
the convolutions that perform ×2 up- or down-sampling.

5 Conclusion

We propose a fine-tuning approach for supervised DA in medical image segmen-
tation called SpotTUnet. Our experiments demonstrate SpotTUnet to preserve
the quality of the alternative methods while eliminating the need for switching
between various methods depending on the Target data availability. Besides, it
learns automatically, which layers are to be optimally fine-tuned on the target
domain, therefore providing a policy, indicative of the network layers most sus-
ceptible to domain shift. We believe that SpotTUnet generated policy might be
used for developing more robust unsupervised DA methods, which is the goal of
our future research.
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