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Abstract. Self-training based unsupervised domain adaptation (UDA)
has shown great potential to address the problem of domain shift, when
applying a trained deep learning model in a source domain to unlabeled
target domains. However, while the self-training UDA has demonstrated
its effectiveness on discriminative tasks, such as classification and seg-
mentation, via the reliable pseudo-label selection based on the softmax
discrete histogram, the self-training UDA for generative tasks, such as
image synthesis, is not fully investigated. In this work, we propose a
novel generative self-training (GST) UDA framework with continuous
value prediction and regression objective for cross-domain image syn-
thesis. Specifically, we propose to filter the pseudo-label with an uncer-
tainty mask, and quantify the predictive confidence of generated images
with practical variational Bayes learning. The fast test-time adaptation is
achieved by a round-based alternative optimization scheme. We validated
our framework on the tagged-to-cine magnetic resonance imaging (MRI)
synthesis problem, where datasets in the source and target domains were
acquired from different scanners or centers. Extensive validations were
carried out to verify our framework against popular adversarial training
UDA methods. Results show that our GST, with tagged MRI of test sub-
jects in new target domains, improved the synthesis quality by a large
margin, compared with the adversarial training UDA methods.

1 Introduction

Deep learning has advanced state-of-the-art machine learning approaches and
excelled at learning representations suitable for numerous discriminative and
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generative tasks [14,21,22,29]. However, a deep learning model trained on labeled
data from a source domain, in general, performs poorly on unlabeled data from
unseen target domains, partly because of discrepancies between source and tar-
get data distributions, i.e., domain shift [15]. The problem of domain shift in
medical imaging arises, because data are often acquired from different scanners,
protocols, or centers [17]. This issue has motivated many researchers to investi-
gate unsupervised domain adaptation (UDA), which aims to transfer knowledge
learned from a labeled source domain to different but related unlabeled target
domains [30,33].

There has been a great deal of work to alleviate the domain shift using UDA
[30]. Early methods attempted to learn domain-invariant representations or to
take instance importance into consideration to bridge the gap between the source
and target domains. In addition, due to the ability of deep learning to disen-
tangle explanatory factors of variations, efforts have been made to learn more
transferable features. Recent works in UDA incorporated discrepancy measures
into network architectures to align feature distributions between source and tar-
get domains [18,19]. This was achieved by either minimizing the distribution
discrepancy between feature distribution statistics, e.g., maximum mean dis-
crepancy (MMD), or adversarially learning the feature representations to fool a
domain classifier in a two-player minimax game [18].

Recently, self-training based UDA presents a powerful means to counter
unknown labels in the target domain [33], surpassing the adversarial learning-
based methods in many discriminative UDA benchmarks, e.g., classification and
segmentation (i.e., pixel-wise classification) [23,26,31]. The core idea behind
the deep self-training based UDA is to iteratively generate a set of one-hot
(or smoothed) pseudo-labels in the target domain, followed by retraining the
network based on these pseudo-labels with target data [33]. Since outputs of
the previous round can be noisy, it is critical to only select the high confidence
prediction as reliable pseudo-label. In discriminative self-training with softmax
output unit and cross-entropy objective, it is natural to define the confidence
for a sample as the max of its output softmax probabilities [33]. Calibrating the
uncertainty of the regression task, however, can be more challenging. Because of
the insufficient target data and unreliable pseudo-labels, there can be both epis-
temic and aleatoric uncertainties [3] in self-training UDA. In addition, while the
self-training UDA has demonstrated its effectiveness on classification and seg-
mentation, via the reliable pseudo-label selection based on the softmax discrete
histogram, the same approach for generative tasks, such as image synthesis, is
underexplored.

In this work, we propose a novel generative self-training (GST) UDA frame-
work with continuous value prediction and regression objective for tagged-to-
cine magnetic resonance (MR) image synthesis. More specifically, we propose
to filter the pseudo-label with an uncertainty mask, and quantify the predictive
confidence of generated images with practical variational Bayes learning. The
fast test-time adaptation is achieved by a round-based alternative optimization
scheme. Our contributions are summarized as follows:
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Fig. 1. Illustration of our generative self-training UDA for tagged-to-cine MR image
synthesis. In each iteration, two-step alternative training is carried out.

• We propose to achieve cross-scanner and cross-center test-time UDA of
tagged-to-cine MR image synthesis, which can potentially reduce the extra
cine MRI acquisition time and cost.

• A novel GST UDA scheme is proposed, which controls the confident pseudo-
label (continuous value) selection with a practical Bayesian uncertainty mask.
Both the aleatoric and epistemic uncertainties in GST UDA are investigated.

• Both quantitative and qualitative evaluation results, using a total of 1,768
paired slices of tagged and cine MRI from the source domain and tagged
MR slices of target subjects from the cross-scanner and cross-center target
domain, demonstrate the validity of our proposed GST framework and its
superiority to conventional adversarial training based UDA methods.

2 Methodology

In our setting of the UDA image synthesis, we have paired resized tagged
MR images, xs ∈ R

256×256, and cine MR images, ys ∈ R
256×256, indexed

by s = 1, 2, · · · , S, from the source domain {XS ,YS}, and target samples
xt ∈ R

256×256 from the unlabeled target domain XT , indexed by t = 1, 2, · · · , T .
In both training and testing, the ground-truth target labels, i.e., cine MR images
in the target domain, are inaccessible, and the pseudo-label ŷt ∈ R

256×256 of xt is
iteratively generated in a self-training scheme [16,33]. In this work, we adopt the
U-Net-based Pix2Pix [9] as our translator backbone, and initialize the network
parameters w with the pre-training using the labeled source domain {XS ,YS}.
In what follows, alternative optimization based self-training is applied to gradu-
ally update the U-Net part for the target domain image synthesis by training on
both {XS ,YS} and XT . Figure 1 illustrates the proposed algorithm flow, which
is detailed below.
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2.1 Generative Self-training UDA

The conventional self-training regards the pseudo-label ŷt as a learnable latent
variable in the form of a categorical histogram, and assigns all-zero vector label
for the uncertain samples or pixels to filter them out for loss calculation [16,
33]. Since not all pseudo-labels are reliable, we define a confidence threshold
to progressively select confident pseudo-labels [32]. This is akin to self-paced
learning that learns samples in an easy-to-hard order [12,27]. In classification
or segmentation tasks, the confidence can be simply measured by the maximum
softmax output histogram probability [33]. The output of a generation task,
however, is continuous values and thus setting the pseudo-label as 0 cannot drop
the uncertain sample in the regression loss calculation.

Therefore, we first propose to formulate the generative self-training as a uni-
fied regression loss minimization scheme, where pseudo-labels can be a pixel-
wise continuous value and indicate the uncertain pixel with an uncertainty
mask mt = {mt,n}256×256

n=1 , where n indexes the pixel in the images, and
mt,n ∈ {0, 1},∀t, n:

min
w,mt

∑

s∈S

N∑

n=1

||ys,n − ỹs,n||22
︸ ︷︷ ︸

Ls
reg(w)

+
∑

t∈T

N∑

n=1

||(ŷt,n − ỹt,n)mt,n||22
︸ ︷︷ ︸

Lt
reg(w,mt)

(1)

s.t. mt,n =

{
1 ut,n < ε

0 ut,n > ε
; ε = min{top p% sorted ut,n}, (2)

where xs,n, ys,n, xt,n, ŷt,n ∈ [0, 255]. For example, ys,n indicates the n-th pixel of
the s-th source domain ground-truth cine MR image ys. ỹs,n and ỹt,n represent
the generated source and target images, respectively. Ls

reg(w) and Lt
reg(w,mt)

are the regression loss of the source and target domain samples, respectively.
Notably, there is only one network parameterized with w, which is updated
with the loss in both domains. ut,n is the to-be estimated uncertainty of a pixel
and determines the value of the uncertainty mask mt,n with a threshold ε. ε
is a critical parameter to control pseudo-label learning and selection, which is
determined by a single meta portion parameter p, indicating the portion of pixels
to be selected in the target domain. Empirically, we define ε in each iteration,
by sorting ut,n in increasing order and set ε to minimum ut,n of the top p ∈ [0, 1]
percentile rank.

2.2 Bayesian Uncertainty Mask for Target Samples

Determining the mask value mt,n for the target sample requires the uncertainty
estimation of ut,n in our self-training UDA. Notably, the lack of sufficient target
domain data can result in the epistemic uncertainty w.r.t. the model parameters,
while the noisy pseudo-label can lead to the aleatoric uncertainty [3,8,11].

To counter this, we model the epistemic uncertainty via Bayesian neural net-
works which learn a posterior distribution p(w|XT , ŶT ) over the probabilistic
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model parameters rather than a set of deterministic parameters [25]. In par-
ticular, a tractable solution is to replace the true posterior distribution with
a variational approximation q(w), and dropout variational inference can be a
practical technique. This can be seen as using the Bernoulli distribution as the
approximation distribution q(w) [5]. The K times prediction with independent
dropout sampling is referred to as Monte Carlo (MC) dropout. We use the mean
squared error (MSE) to measure the epistemic uncertainty as in [25], which
assesses a one-dimensional regression model similar to [4]. Therefore, the epis-
temic uncertainty with MSE of each pixel with K times dropout generation is
given by

uepistemic
t,n =

1
K

K∑

k=1

||ỹt,n − μt,n||22; μt,n =
1
K

K∑

k=1

ỹt,n, (3)

where μt,n is the predictive mean of ỹt,n.
Because of the different hardness and divergence and because the pseudo-

label noise can vary for different xt, the heteroscedastic aleatoric uncertainty
modeling is required [13,24]. In this work, we use our network to transform xt,
with its head split to predict both ỹt and the variance map σ2

t ∈ R
256×256; and its

element σ2
t,n is the predicted variance for the n-th pixel. We do not need “uncer-

tainty labels” to learn σ2
t prediction. Rather, we can learn σ2

t implicitly from a
regression loss function [11,13]. The masked regression loss can be formulated
as

Lt
reg(w,mt, σ

2
t ) =

∑

t∈T

N∑

n=1

(
1

σ2
t,n

||(ŷt,n − ỹt,n)mt,n||22 + βlogσ2
t,n), (4)

which consists of a variance normalized residual regression term and an uncer-
tainty regularization term. The second regularization term keeps the network
from predicting an infinite uncertainty, i.e., zero loss, for all the data points.
Then, the averaged aleatoric uncertainty of K times MC dropout can be mea-
sured by ualeatoric

t,n = 1
K

∑K
k=1 σ2

t,n [11,13].
Moreover, minimizing Eq. (4) can be regarded as the Lagrangian with a

multiplier β of min
w

∑
t∈T

N∑
n=1

1
σ2
t,n

||(ŷt,n − ỹt,n)mt,n||22; s.t.
∑
t∈T

N∑
n=1

logσ2
t,n < C1,

where C ∈ R
+ indicates the strength of the applied constraint. The condi-

tion term essentially controls the target domain predictive uncertainty, which
is helpful for UDA [7]. Our final pixel-wise self-training UDA uncertainty
ut,n = uepistemic

t,n + ualeatoric
t,n is a combination of the two uncertainties [11].

2.3 Training Protocol

As pointed out in [6], directly optimizing the self-training objectives can be
difficult and thus the deterministic annealing expectation maximization (EM)

1 It can be rewritten as min
w

F = { ∑

t∈T

N∑

n=1

1
σ2
t,n

||(ŷt,n− ỹt,n)mt,n||22+β(
∑

t∈T

N∑

n=1

logσ2
t,n−

C)}. Since β, C ≥ 0, an upper bound on F can be obtained as F ≤ Lt
reg.
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algorithms are often used instead. Specifically, the generative self-training can
be solved by alternating optimization based on the following a) and b) steps.

a) Pseudo-label and uncertainty mask generation. With the current w,
apply the MC dropout for K times image translation of each target domain
tagged MR image xt. We estimate the pixel-wise uncertainty ut,n, and calculate
the uncertainty mask mt with the threshold ε. We set the pseudo-label of the
selected pixel in this round as ŷt,n = μt,n, i.e., the average value of K outputs.
b) Network w retraining. Fix ŶT = {ŷt}T

t=1, MT = {mt}T
t=1 and solve:

min
w

∑

s∈S

N∑

n=1

||ys,n − ỹs,n||22 +
∑

t∈T

N∑

n=1

(
1

σ2
t,n

||(ŷt,n − ỹt,n)mt,n||22 + βlogσ2
t,n)

(5)

to update w. Carrying out step a) and b) for one time is defined as one round
in self-training. Intuitively, step a) is equivalent to simultaneously conducting
pseudo-label learning and selection. In order to solve step b), we can use a typical
gradient method, e.g. Stochastic Gradient Descent (SGD). The meta parameter
p is linearly increasing from 30% to 80% alongside the training to incorporate
more pseudo-labels in the subsequent rounds as in [33].

3 Experiments and Results

We evaluated our framework on both cross-scanner and cross-center tagged-to-
cine MR image synthesis tasks. For the labeled source domain, a total of 1,768
paired tagged and cine MR images from 10 healthy subjects at clinical center A
were acquired. We followed the test time UDA setting [10], which uses only one
unlabeled target subject in UDA training and testing.

For fair comparison, we adopted Pix2Pix [9] for our source domain training as
in [20], and used the trained U-Net as the source model for all of the comparison
methods. In order to align the absolute value of each loss, we empirically set
weight β = 1 and K = 20. Our framework was implemented using the PyTorch
deep learning toolbox. The GST training was performed on a V100 GPU, which
took about 30 min. We note that K times MC dropout can be processed parallel.
In each iteration, we sampled the same number of source and target domain
samples.

3.1 Cross-Scanner Tagged-to-Cine MR Image Synthesis

In the cross-scanner image synthesis setting, a total of 1,014 paired tagged and
cine MR images from 5 healthy subjects in the target domain were acquired at
clinical center A with a different scanner. As a result, there was an appearance
discrepancy between the source and target domains.

The synthesis results using source domain Pix2Pix [9] without UDA train-
ing, gradually adversarial UDA (GAUDA) [2], and our proposed framework are



144 X. Liu et al.

Fig. 2. Comparison of different UDA methods on the cross-scanner tagged-to-cine MR
image synthesis task, including our proposed GST, GST-A, and GST-E, adversarial
UDA [2]*, and Pix2Pix [9] without adaptation. * indicates the first attempt at tagged-
to-cine MR image synthesis. GT indicates the ground-truth.

shown in Fig. 2. Note that GAUDA with source domain initialization took about
2 h for the training, which was four times slower than our GST framework. In
addition, it was challenging to stabilize the adversarial training [1], thus yielding
checkerboard artifacts. Furthermore, the hallucinated content with the domain-
wise distribution alignment loss produced a relatively significant difference in
shape and texture within the tongue between the real cine MR images. By con-
trast, our framework achieved the adaptation with relatively limited target data
in the test time UDA setting [10], with faster convergence time. In addition,
our framework did not rely on adversarial training, generating visually pleasing
results with better structural consistency as shown in Fig. 2, which is crucial for
subsequent analyses such as segmentation.

For an ablation study, in Fig. 2, we show the performance of GST without
the aleatoric or epistemic uncertainty for the uncertainty mask, i.e., GST-A or
GST-E. Without measuring the aleatoric uncertainty caused by the inaccurate
label, GST-A exhibited a small distortion of the shape and boundary. Without
measuring the epistemic uncertainty, GST-E yielded noisier results than GST.

The synthesized images were expected to have realistic-looking textures, and
to be structurally cohesive with their corresponding ground truth images. For
quantitative evaluation, we adopted widely used evaluation metrics: mean L1
error, structural similarity index measure (SSIM), peak signal-to-noise ratio
(PSNR), and unsupervised inception score (IS) [20]. Table 1 lists numerical com-
parisons using 5 testing subjects. The proposed GST outperformed GAUDA [2]
and ADDA [28] w.r.t. L1 error, SSIM, PSNR, and IS by a large margin.
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Table 1. Numerical comparisons of cross-scanner and cross-center evaluations. ± stan-
dard deviation is reported over three evaluations.

Methods Cross-scanner Cross-center

L1 ↓ SSIM ↑ PSNR ↑ IS ↑ IS ↑
w/o UDA [9] 176.4± 0.1 0.8325± 0.0012 26.31± 0.05 8.73± 0.12 5.32± 0.11

ADDA [28] 168.2± 0.2 0.8784± 0.0013 33.15± 0.04 10.38± 0.11 8.69± 0.10

GAUDA [2] 161.7± 0.1 0.8813± 0.0012 33.27± 0.06 10.62± 0.13 8.83± 0.14

GST 158.6± 0.2 0.9078± 0.0011 34.48± 0.05 12.63± 0.12 9.76± 0.11

GST-A 159.5± 0.3 0.8997± 0.0011 34.03± 0.04 12.03± 0.12 9.54± 0.13

GST-E 159.8± 0.1 0.9026± 0.0013 34.05± 0.05 11.95± 0.11 9.58± 0.12

Fig. 3. Comparison of different UDA methods on the cross-center tagged-to-cine MR
image synthesis task, including our proposed GST, GST-A, and GST-E, adversarial
UDA [2]*, and Pix2Pix [9] without adaptation. * indicates the first attempt at tagged-
to-cine MR image synthesis.

3.2 Cross-Center Tagged-to-Cine MR Image Synthesis

To further demonstrate the generality of our framework for the cross-center
tagged-to-cine MR image synthesis task, we collected 120 tagged MR slices of
a subject at clinical center B with a different scanner. As a result, the data at
clinical center B had different soft tissue contrast and tag spacing, compared
with clinical center A, and the head position was also different.
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The qualitative results in Fig. 3 show that the anatomical structure of the
tongue is better maintained using our framework with both the aleatoric and
epistemic uncertainties. Due to the large domain gap present in the datasets
between the two centers, the overall synthesis quality was not as good as the
cross-scanner image synthesis task, as visually assessed. In Table 1, we provide
the quantitative comparison using IS, which does not need the paired ground
truth cine MR images [20]. Consistently with the cross-scanner setting, our GST
outperformed adversarial training methods, including GAUDA and ADDA [2,
28], indicating the self-training can be a powerful technique for the generative
UDA task, similar to the conventional discriminative self-training [16,33].

4 Discussion and Conclusion

In this work, we presented a novel generative self-training framework for UDA
and applied the framework to cross-scanner and cross-center tagged-to-MR
image synthesis tasks. With a practical yet principled Bayesian uncertainty
mask, our framework was able to control the confident pseudo-label selection. In
addition, we systematically investigated both the aleatoric and epistemic uncer-
tainties in generative self-training UDA. Our experimental results demonstrated
that our framework yielded the superior performance, compared with the popular
adversarial training UDA methods, as quantitatively and qualitatively assessed.
The synthesized cine MRI with test time UDA can potentially be used to segment
the tongue and to observe surface motion, without the additional acquisition cost
and time.

Acknowledgments. This work is supported by NIH R01DC014717, R01DC018511,
and R01CA133015.
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