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Abstract. Computational histopathology studies have shown that stain
color variations considerably hamper the performance. Stain color varia-
tions indicate the slides exhibit greatly different color appearance due to
the diversity of chemical stains, staining procedures, and slide scanners.
Previous approaches tend to improve model robustness via data aug-
mentation or stain color normalization. However, they still suffer from
generalization to new domains with unseen stain colors. In this study, we
address the issue of unseen color domain generalization in histopathol-
ogy images by encouraging the model to adapt varied stain colors. To
this end, we propose a novel data augmentation method, stain mix-
up, which incorporates the stain colors of unseen domains into train-
ing data. Unlike previous mix-up methods employed in computer vision,
the proposed method constructs the combination of stain colors with-
out using any label information, hence enabling unsupervised domain
generalization. Extensive experiments are conducted and demonstrate
that our method is general enough to different tasks and stain methods,
including H&E stains for tumor classification and hematological stains
for bone marrow cell instance segmentation. The results validate that
the proposed stain mix-up can significantly improves the performance
on the unseen domains.
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1 Introduction

Computer-aided diagnosis based on histopathology images, such as whole slide
images (WSIs) and field of views (FoVs) of tissue sections, gains significant
progress owing to the great success of machine learning algorithms in digital
pathology. Tissue sections are typically stained with various stains to make
tissues visible under the microscope. However, tissue manipulation, staining,
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Fig. 1. Comparisons among different methods for model capacity generalization for
histological images analysis. (a) There exists the domain gap between domain A (red
dots) and domain B (purple cycles) due to the color variation; (b) Data augmentation is
adopted to increase the color variations of domain A; (c) Color normalization transfers
domain B to the color patterns of domain A to avoid color variation; (d) In this paper,
we propose stain mix-up for randomly augmenting the domain A according to the stain
color matrices of domain B and thus generalize the model to domain B. Moreover, the
proposed domain generalization technique is unsupervised where data labels on domain
B are not required. (Color figure online)

and even scanning often result in substantial color appearance variations in
histopathology images, and degrade machine learning algorithms due to the
domain gap of colors. Thus, it is crucial to take color appearance variations into
account when developing machine learning algorithms for histopathology image
analysis. Specifically, two strategies are widely used, including 1) augmenting
color patterns of training data to enhance model robustness; and 2) normaliz-
ing all histopathology images to a single color pattern so that the unfavorable
impact of color variations in the subsequent process can be alleviated.

To augment color patterns of training data, most techniques conduct bright-
ness, contrast and hue perturbations [7,19]. Specifically, Bug et al. [3] utilize
principle component analysis (PCA) to decompose images into a low-dimensional
space spanned by a few principle components where augmentation of H&E
images is carried out by perturbing the main components. Tellez et al. [17] divide
H&E images into the hematoxylin, eosin, and residual color channels by color
deconvolution [14]. Then, stain-specific transformation by perturbing each chan-
nel is used to complete augmentation.

Another way for addressing color variations is to normalize all images to have
similar color patterns. Several color normalization methods have been proposed
to achieve it. Given a source image and a target image, Reinhard et al. [13]
convert images to the lαβ space and normalize the source image by aligning the
mean and standard deviation of the source and target images. Other methods
decompose stain colors into a stain color matrix and a stain density map, and
apply the stain color matrix of the target image onto the source image. Macenko
et al. [10] use singular value decomposition while Vahadane et al. [18] employ
sparse non-negative matrix factorization (SNMF) to decompose the stain color
matrix. Nadeem et al. [12] adopt Wasserstein barycenter to normalize images.

We observe that highly effective methods [17,18] eliminate color variations
by decomposing stain color matrices for further transferring or augmenting. It
implies that stain color matrices can reliably encode the color patterns. However,
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current studies [13,17,18] consider stain color matrices decomposed from only a
single domain and thus may restrict their generalization abilities.

In this paper, we propose a novel method stain mix-up for data augmenta-
tion. It randomly interpolates a new stain color matrix between different domains
during training and can improve the generalization performance accordingly. The
Mix-up technique [20] has become essential to data augmentation for recognition
[6] or domain adaption [9,11] in computer vision. In contrast to Mix-up [20] which
mixes images and labels, the proposed method is label-free. It mixes stain color
matrices between different domains and can synthesize various types of stain col-
ors for learning color-invariant representations. In Fig. 1, we describe the concept
of different approaches for generalizing histology image analysis, including data
augmentation, stain normalization and the proposed stain mix-up. Extensive
experiments are conducted on two kinds of stains and tasks, i.e., tumor classifi-
cation on H&E stained images and bone marrow cell instance segmentation on
hematological stained images. Since both tasks have multiple sources (domains)
of images, we train the model on one domain where data were collected from one
medical center, and test it on others. To this end, the training center is denoted
as the source domain which consists of images and labels whereas other centers
are denoted as the target domain which only have images but no labels. The stain
color matrices of the target domain are mixed with those of the source domain
to synthesize new training samples in the source domain for on-the-fly augmen-
tation. The results show that the proposed stain mix-up achieves the-state-of-art
generalization performance on both tasks.

The main contributions of this work are summarized as follows. First, we
propose a novel data augmentation approach, namely stain mix-up, to achieve
unsupervised domain generalization for histology image analysis. Second, we
perform extensive experiments to demonstrate the effectiveness of the proposed
method. It turns out that our method consistently achieves the state-of-the-art
performance on different tasks and stains. To the best of our knowledge, the
proposed method is the first work for unsupervised domain generalization in
histology image analysis.

2 Method

This section describes the proposed method, which is composed of two stages:
stain separation and stain mix-up augmentation. The former is conducted to
extract color characteristics from histology images of different domains. It esti-
mates stain color matrices that represent chromatic components and stain den-
sity maps of each domain. The latter uses the estimated matrices of different
domains to augment training images on-the-fly through the proposed stain mix-
up, enabling unsupervised domain generalization. Details of the two stages are
elaborated as follows. Figure 2 illustrates the pipeline of our method.

2.1 Stain Separation via SNMF

Stains are optical absorption materials that occlude certain spectra of light, mak-
ing tissues visible in the complementary colors. They help visualize tissues for



120 J.-R. Chang et al.

Fig. 2. Pipeline of the proposed stain mix-up augmentation. (a) Given a labeled image
Ii from the source domain and an unlabeled image Ij from the target domain, stain
separation decomposes the optical density of Ii derived via Beer-Lambert transforma-
tion (BLT), i.e. Vi, into its stain color matrix Wi and density map Hi. Similarly, we
have Wj and Hj from Vj . (b) Stain mix-up augmentation is carried out by applying
inverse BLT to a mixed stain color matrix W ∗

ij and a perturbed density map H∗
i .

medical diagnosis. Stained tissue colors result from light attenuation, depending
on the type and amount of stains that tissues have absorbed. This property can
be mathematically formulated by Beer-Lambert law [2] defined as follows:

V = − log
I

I0
= WH , (1)

where I ∈ R
3×n is a histology image in the RGB color space, I0 is the illu-

minating light intensity of sample with I0 = 255 for 8-bit images in our cases,
W ∈ R

3×m is the stain color matrix to encode the color appearance of each
stain, and H ∈ R

m×n is the density map of each stain, for an m-stained n-
pixel image. Given a histology image I, its optical density V can be derived via
Beer-Lambert transformation (BLT) in Eq. 1. Stain separation aims to estimate
the corresponding stain color matrix W and density map H. In this work, we
follow [18] and solve W and H of a histology image I through SNMF in the
experiments.

2.2 Stain Mix-Up Augmentation

The proposed stain mix-up for data augmentation aims to reduce the domain
gaps caused by color appearance variations between different sources. It syn-
thesizes diversified images for augmentation and can increase the potential data
coverage. As shown in Fig. 2, we carry out this task by mixing the stain color
characteristics of both the source and target domains. Specifically, we randomly
sample a pair of histological images Ii and Ij from the source domain and the
target domain respectively, followed by decomposing them into the stain color
matrices Wi and Wj and the stain density maps Hi and Hj through BLT and
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Fig. 3. Comparisons among different augmentation methods. The top two rows show
images from CAMELYON17 [1] and the bottom two rows show images from Hema.
(a) shows the training images from the source domain. (b), (c), and (d) are the aug-
mented training images generated via three baseline methods which cannot include
target domain information. The results of our proposed stain mix-up are demonstrated
in (e). By mixing the stain matrices from (a) source domain image and target domain
images (upper-left corners in (e)), the stain mix-up yields more realistic stain color com-
pared with the other augmentations. Therefore, our generated images can effectively
help accommodate the model to the target domain.

SNMF. A mixed stain color matrix W ∗
ij is a linear interpolation between Wi and

Wj with a coefficient α randomly sampled from a uniform distribution, namely,

W ∗
ij = αWi + (1 − α)Wj , where α ∼ U(0, 1). (2)

Random interpolation between stain color matrices increases the diversity of
stain color appearance while keeping the mixed stain color matrices realistic,
thus improving the generalization ability to the target domain.

Similar to [17], we perturb the stain density map Hi to simulate the extents
of stain concentrations and color fading,

H∗
i = sHi, where s ∼ U(1 − δ, 1 + δ), (3)

where s is a scaling factor randomly drawn from a uniform distribution controlled
by δ ∈ [0, 1]. By referring to the interpolated stain color matrix W ∗

ij in Eq. 2 and
the perturbed map H∗

i in Eq. 3, the resulting augmented image I∗
ij is generated

by the inverse BLT,
I∗
ij = I0 exp (−W ∗

ijH
∗
i ). (4)

Figure 3 shows several examples of the augmented images.
In this study, the histological images are collected from multiple medical cen-

ters, and their stained color appearances may vary considerably due to different
staining processes. We aim to generalize the model trained on labeled data of one
center (source domain) to unlabeled data of other centers (target domains). To
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this end, the proposed stain mix-up is applied for augmentation. Unlike exist-
ing augmentation methods such as [13,17,18] where only source domain data
are considered, our method leverages data from both source and target domains
to synthesize augmented data that are more consistent with the target domain.
Compared with existing domain generalization methods such as [20], our method
make use of image data without labels in the target domain, and hence enables
unsupervised domain generalization. The properties described above make the
stain mix-up a simple yet efficient module that can augment images on-the-fly
to achieve a state-of-the-art performances on various tasks.

3 Experiments

In this section, after describing materials, implementation details, and evaluation
metrics of our proposed method, we present and elaborate the results of the
experiments. Two datasets, namely CAMELYON17 and Hema, are adopted to
experiment with different augmentation methods on different types of computer
vision tasks in histology image analysis. To better understand how stain matrix
augmenting affects the model generalization, we also perform an ablation study
on CAMELYON17 for validating the effect from perturbing W and H.

3.1 Datasets

CAMELYON17. We use the CAMELYON17 [1] dataset to evaluate the perfor-
mance of the proposed method on tumor/normal classification. In this dataset, a
total of 500 H&E stained WSIs are collected from five medical centers (denoted
by C1, C2, ... C5 respectively), 50 of which include lesion-level annotations. All
positive and negative WSIs are randomly split into training/validation/test sets
with the following distributions: C1 : 37/22/15, C2 : 34/20/14, C3 : 43/24/18,
C4 : 35/20/15, C5 : 36/20/15. We extract image tiles in a size of 256×256 pixels
from the annotated tumors for positive patches and from tissue regions of WSIs
without tumors for negative patches.

Hema. We evaluate the proposed method on a custom hematology dataset for
bone marrow cell instance segmentation. In the Hema dataset, a total of 595
WSIs of hematological stained bone marrow smears are collected from two med-
ical centers, denoted by M1 and M2 respectively. We sample 21,048 FoVs from
M1 as training data and 311 FoVs from M2 as testing data. All FoVs are in a
size of 1, 149× 1, 724. This dataset has a total of 662,988 blood cell annotations,
which are annotated by a cohort of ten annotators, consisting of senior hema-
tologists and medical technicians with an average of over ten years of clinical
experience.

3.2 Implementation Details

For the CAMELYON17 dataset, we train five ResNet-50 [5] classifiers on each
center individually and test each classifier on the test data of all centers to
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Table 1. (Top) Mean AUC of different methods for tumor classification on the CAME-
LYON17 [1] dataset. (Bottom) Ablation studies on the components of our method.

Method C1 C2 C3 C4 C5 Average (95% CI)

No manipulation 0.947 0.753 0.854 0.777 0.861 0.838 (0.824, 0.852)

Vahadane normalization [18] 0.943 0.826 0.898 0.853 0.707 0.846 (0.829, 0.861)

HSV-aug. 0.984 0.844 0.954 0.937 0.845 0.913 (0.902, 0.924)

HED-aug. [17] 0.984 0.925 0.903 0.861 0.908 0.916 (0.909, 0.924)

Stain mix-up (ours) 0.979 0.948 0.946 0.965 0.942 0.956 (0.953, 0.959)

Ablation study

H perturb 0.984 0.925 0.903 0.861 0.908 0.916 (0.909, 0.924)

W , H perturb 0.979 0.948 0.911 0.965 0.939 0.948 (0.944, 0.953)

W mix-up, H perturb 0.979 0.948 0.946 0.965 0.942 0.956 (0.953, 0.959)

evaluate the effectiveness of generalization. Since the CAMELYON17 dataset
contains H&E stained images, we decompose each image into a stain color matrix
W ∈ R

3×2 and a density map H ∈ R
2×n. The parameter δ in Eq. 3 is set to 0.2.

All models are trained with AdamW [8], a learning rate of 0.001, and a batch
size of 32 for 100,000 iterations with an Nvidia Quadro RTX8000.

For the Hema dataset, we adopt Mask R-CNN [4] with the ResNet-50 back-
bone pre-trained on ImageNet [15] for instance segmentation. The stain of WSIs
in Hema is composed of three chemicals, namely methylene blue, eosin, and
azur. Thereby, we factorize each image into a stain color matrix W ∈ R

3×3 and
a density map H ∈ R

3×n. The parameter δ is set to 0.5. The model is trained
on M1 with SGD, a learning rate of 0.02, a momentum of 0.9, a batch size of
4, and weight decay 0.0001 for 12 epochs with an Nvidia V100. After data aug-
mentation and model fine-tuning, we evaluate the generalization performance on
M2.

Please note that the stain matrices are calculated using SNMF before training
for saving computational time. That is, we only compute stain matrices once
and use them repeatedly during training. The computational time of SNMF
decomposition for a single image in CAMELYON17 and Hema takes 1.14 and
2.40 s, respectively, measured on an Intel Xeon CPU E5-2697 v3.

3.3 Results on the CAMELYON17 Dataset

In Table 1, we compare the proposed stain mix-up with existing augmentation
methods for tumor classification on the CAMELYON17 dataset. It is consistent
with previous findings [16,21] that models trained without color augmentations
result in weaker performance and a larger performance fluctuation when testing
on images from other centers (AUC = 0.838, 95% CI 0.824 − 0.852), which
reveals the domain gaps among different centers. The models trained with data
augmented by the proposed stain mix-up achieves significant performance gains
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Table 2. Performance in mAP of bone marrow cell instance segmentation using dif-
ferent augmentation methods on the Hema dataset.

Method Box Mask

AP AP50 AP75 AP AP50 AP75

No manipulation 48.3 52.5 51.2 49.6 52.5 52.0

HSV-augmentation 48.7 53.4 52.1 50.2 53.4 52.9

HED-augmentation [17] 48.1 52.4 51.5 49.5 52.5 52.0

Stain mix-up (ours) 50.3 55.4 54.5 52.1 55.5 55.1

over HSV-augmentation and HED-augmentation [17]. In addition, the stain mix-
up method helps reach stable performance when evaluated on images of different
centers, while other competing methods show larger performance variations. We
attribute these advantages to the cross-domain interpolation of the stain color
matrices in the proposed stain mix-up, while the competing methods such as
HSV-augmentation and HED-augmentation refer to only images of the source
domain. The augmented images by our method are realistic and more consistent
with those in the target domain, leading to a better generalization ability.

Cross-domain interpolation is the key component of the proposed stain mix-
up for unsupervised and diversified stain color matrix generation. While the stain
color matrix W can be interpolated between the source and target domains, it
can be self-perturbed with random degrees sampled from a uniform distribution.
The implementation details of the self-perturbed W is described in the supple-
mentary material. In the ablation study, we explore how different perturbation
methods contribute to the model generalization. Some example patches gener-
ated by using random W,H perturbation are visualized in Fig. 3d. As shown in
the bottom of Table 1, stochastic fluctuations in W achieve the AUC of 0.948
(95% CI 0.944 − 0.953), which is inferior to models trained with the stain mix-
up. This result suggests that: 1) Models can benefit from perturbing interaction
between color channels, and 2) with the identified stain matrix of centers in
advance, interpolating combinations of matrices can be more effective for model
adaptation across different centers.

3.4 Results on the Hema Dataset

In addition to tumor classification, we evaluate the proposed stain mix-up for cell
instance segmentation on the Hema dataset. As shown in Table 2, our method
consistently outperforms baseline methods by substantial margins, more than
2.0% in box mAP and mask mAP in most cases. We observe that the baseline
methods, HSV-augmentation and HED-augmentation, make no improvement on
this dataset. The major reason is that the large domain gap makes augmenta-
tion based on only the source domain, which is irrelevant to the target domain.
By taking the stain color matrices of unlabeled data of the target domain into
consideration, our method can effectively accomplish domain generalization in
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an unsupervised manner. The results validate that our model can alleviate the
domain gaps between different histology image collections even on the challeng-
ing instance segmentation task.

4 Conclusions

We have presented stain mix-up, a simple yet effective data augmentation
method for unsupervised domain generalization in histological image analysis.
Our stain mix-up constructs various virtual color patterns by random linear
interpolation of two stain color matrices, one from the source domain and one
from the target domain. Cross-domain interpolation refers to color distributions
of both domains, and color patterns that are realistic and more consistent to
the target patterns can be synthesized, facilitating model adaptation to the
target domain. Since accessing only stain color matrices is label-free, the pro-
posed method carries out unsupervised domain generalization. Through exten-
sive experiments, we have shown that the proposed stain mix-up significantly
improves the generalization ability on diverse tasks and stains, such as tumor
classification on the H&E stained images and bone marrow cell segmentation
on the hematological stained images. We believe the proposed stain mix-up can
advance the community of digit pathology for practical usage.
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