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Abstract. Self-supervised learning provides a possible solution to
extract effective visual representations from unlabeled histopathologi-
cal images. However, existing methods either fail to make good use
of domain-specific knowledge, or rely on side information like spa-
tial proximity and magnification. In this paper, we propose CS-CO, a
hybrid self-supervised visual representation learning method tailored for
histopathological images, which integrates advantages of both generative
and discriminative models. The proposed method consists of two self-
supervised learning stages: cross-stain prediction (CS) and contrastive
learning (CO), both of which are designed based on domain-specific
knowledge and do not require side information. A novel data augmenta-
tion approach, stain vector perturbation, is specifically proposed to serve
contrastive learning. Experimental results on the public dataset NCT-
CRC-HE-100K demonstrate the superiority of the proposed method for
histopathological image visual representation. Under the common lin-
ear evaluation protocol, our method achieves 0.915 eight-class classi-
fication accuracy with only 1,000 labeled data, which is about 1.3%
higher than the fully-supervised ResNet18 classifier trained with the
whole 89,434 labeled training data. Our code is available at https://
github.com/easonyang1996/CS-CO.

Keywords: Self-supervised learning · Stain separation · Contrastive
representation learning · Histopathological images

1 Introduction

Extracting effective visual representations from histopathological images is the
cornerstone of many computational pathology tasks, such as image retrieval
[26,29], disease prognosis [1,30], and molecular signature prediction [7,9,18].
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Due to the powerful representation ability, deep learning-based methods grad-
ually replace the traditional handcraft-feature extraction methods and become
the mainstream. Deep learning-based methods usually rely on a large amount
of labeled data to learn good visual representations, while preparing large-scale
labeled datasets is expensive and time-consuming, especially for medical image
data. Therefore, to avoid this tedious data collection and annotation procedure,
some researchers take a compromise and utilize the ImageNet-pretrained con-
volutional neural network (CNN) to extract visual representations from medical
images [9,30]. However, this compromise ignores not only the data distribution
difference [21] between medical and natural images, but also the domain-specific
information.

Considering the aforementioned dilemma, self-supervised learning is one of
the feasible solutions, which attracts the attention of a growing number of
researchers in recent years. Self-supervised learning aims to learn representa-
tions from large-scale unlabeled data by solving pretext tasks. In the past
few years, research on self-supervised visual representation learning has made
great progress. The existing self-supervised learning methods in computer vision
field can be categorized into generative model-based approaches and discrim-
inative model-based approaches in the light of the type of associated pretext
tasks [16,22]. In earlier times, generative pretext tasks like image inpainting [24]
and image colorization [31,32] are proposed to train an autoencoder for fea-
ture extraction; discriminative self-supervised pretext tasks such as rotation
prediction [10], Jigsaw solving [23], and relative patch location prediction [8],
are designed to learn high-level semantic features.

Recently, contrastive learning [13], which also belongs to discriminative
approaches, achieves great success in self-supervised visual representation learn-
ing. The core idea of contrastive learning is to attract different augmented views
of the same image (positive pairs) and repulse augmented views of different
images (negative pairs). Based on this core idea, MoCo [14] and SimCLR [4]
are proposed for self-supervised visual representation learning, which greatly
shrink the gap between self-supervised learning and fully-supervised learning.
The success of MoCo and SimCLR shows the superiority of contrastive learning.
Furthermore, the following related work BYOL [12] and SimSiam [5] suggest that
negative pairs are not necessary for contrastive learning, and they have become
the new state-of-the-art self-supervised visual representation learning methods.

Above studies are about natural images. As for medical images, Chen et
al. [3] developed a self-supervised learning model based on image context restora-
tion and proved the effectiveness on several tasks. Specific to histopathological
images, Gildenblat [11] and Abbet [1] utilized the unique spatial proximity infor-
mation of whole slide images (WSIs) to establish self-supervised learning meth-
ods, relying on the plausible assumption that adjacent patches share similar
content while distant patches are distinct. Xie [28] and Sahasrabudhe [25] also
proposed self-supervised learning approaches based on magnification informa-
tion, specially for histopathological image segmentation. However, using such
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Fig. 1. The framework of the proposed CS-CO method.

side information limits the applicability of these methods. As far as we know,
there is still a lack of universal and effective self-supervised learning methods for
extracting visual representations from histopathological images.

In this paper, we present CS-CO, a novel hybrid self-supervised histopatho-
logical image visual representation learning method, which consists of Cross-
Stain prediction (generative) and COntrastive learning (discriminative). The
proposed method takes advantage of domain specific knowledge and does not
require side information like image magnification and spatial proximity, result-
ing in better applicability. Our major contributions are summarized as follows.

– We design a new pretext task, i.e. cross-stain prediction, for self-supervised
learning, aiming to make good use of the domain specific knowledge of
histopathological images.

– We propose a new data augmentation approach, i.e. stain vector perturbation,
to serve histopathological image contrastive learning.

– We integrate the advantages of generative and discriminative approaches and
build a hybrid self-supervised visual representation learning framework for
histopathological images.
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2 Methodology

2.1 Overview of CS-CO

As illustrated in Fig. 1, the CS-CO method is composed of two self-supervised
learning stages, namely cross-stain prediction and contrastive learning, both of
which are specially designed for histopathological images. Before self-supervised
learning, stain separation is firstly applied to original H&E-stained images to
generate single-dye staining results, which are called H channel and E chan-
nel images respectively. These stain-separated images are used at the first self-
supervised learning stage to train a two-branch autoencoder by solving the novel
generative pretext task of cross-stain prediction. Then, at the second stage, the
learned HE encoder is trained again in a discriminative contrastive learning man-
ner with the proposed stain vector perturbation augmentation approach. The HE
decoder learned at the first stage is also retained as a regulator at the second
stage to prevent model collapse. After the two-stage self-supervised learning, the
learned HE encoder can be used to extract effective visual representations from
stain-separated histopathological images.

2.2 Stain Separation

In histopathology, different dyes are used to enhance different types of tissue
components, which can be regarded as domain-specific knowledge implicit in
histopathological images. For the commonly used H&E stain, cell nuclei will
be stained blue-purple by hematoxylin, and extracellular matrix and cytoplasm
will be stained pink by eosin [2]. The stain results of hematoxylin and eosin are
denoted as H channel and E channel respectively. To restore single-dye staining
results from H&E stain images and reduce the stain variance to some extent, we
utilize the Vahadane method [27] for stain separation.

To be specific, for an H&E stained image, let I ∈ IRm×n be the matrix of
RGB intensity, V ∈ IRm×n be the relative optical density, W ∈ IRm×r be the
stain color matrix, and H ∈ IRr×n be the stain concentration matrix, where
m = 3 for RGB images, r is the number of stains, and n is number of pixels.
According to the Beer-Lambert law, the relation between V and H,W can be
formulated as Eq. (1), where I0 = 255 for 8-bit RGB images.

V = log
I0
I

= WH (1)

Then, W and H can be estimated by solving the sparse non-negative matrix
factorization problem as Eq. (2) proposed by [27].

min
W,H

1
2
||V − WH||2F + λ

r∑

j=1

||H(j, :)||1,

s.t. W,H ≥ 0, ||W (:, j)||22 = 1

(2)
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From the estimated stain concentration matrix H, the H channel and E channel
images Ih and Ie can be restored as Eq. (3).

Ih = I0 exp(−H[0, :]), Ie = I0 exp(−H[1, :]) (3)

2.3 Cross-stain Prediction

At the first stage of the proposed self-supervised learning scheme, a deep neural
network is trained to learn visual representations by solving the novel pretext
task of cross-stain prediction. The deep model is composed of two independent
autoencoders: one is for predicting E channel images from corresponding H chan-
nel images (H2E), and the other is the inverse (E2H). We denote the encoder
and decoder of H2E branch as φh2e and ψh2e. The E2H branch is denotated
similarly. For the sake of simplicity, we also denote the combination of φh2e and
φe2h as HE encoder φ, and the combination of ψh2e and ψe2h as HE decoder ψ.

As shown in Fig. 1(b), restored H channel and E channel images are input
into the two autoencoders separately, and the mean square error (MSE) losses
are computed between the predicted and true images in both two branches.

Ipred e = ψh2e(φh2e(Ih)), Ipred h = ψe2h(φe2h(Ie)) (4)

Lcs = MSELoss(Ipred e, Ie) + MSELoss(Ipred h, Ih) (5)

By solving this proposed generative pretext task, the HE encoder can capture
low-level general features from histopathological images. In addition, based on
the characteristics of H&E stain mentioned in Sect. 2.2, the HE encoder is also
expected to be sensitive to details which imply the correlation between nuclei
and cytoplasm.

2.4 Contrastive Learning

Based on the two-branch autoencoder learned at the first stage, we adopt con-
trastive learning at the second stage to learn discriminative high-level features.
Inspired by [5], we reorganize our model into the Siamese architecture, which is
composed of the HE encoder φ, a projector f , and a predictor g. All parameters
are shared across two branches. The HE decoder ψ is also kept in one branch
as an untrainable regulator to prevent model collapse. The weights of φ and ψ
learned at the first stage are loaded as initialization.

During contrastive learning, a pair of H channel and E channel images of
the same H&E stained image is regarded as one data sample. As shown in
Fig. 1(c), for each data sample, two transformations t and t′ are sampled from
the transformation family T for data augmentation. The transformation fam-
ily includes stain vector perturbation, RandomFlip, RandomResizedCrop, and
GaussianBlur. After transformation, the derived two randomly augmented views
(Ih, Ie) and (I ′

h, I ′
e) are input into the Siamese network separately. For each aug-

mented view, the contained H channel and E channel images are firstly encoded
by φh2e and φe2h respectively. The outputs are pooled and concatenated together
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(a) H&E stain (b) Stain separation (c) Stain vector perturbation

Fig. 2. Stain vector perturbation. (a) The original H&E stain image. (b) Stain sepa-
ration results using Vahadane [27] method. (c) Stain separation results with proposed
stain vector perturbation (σ = 0.05). The red box outlines the visible differences. (Color
figure online)

as one vector. Subsequently, the projector f and predictor g are applied to the
vector sequentially.

For two augmented views, denoting the outputs of the projector f as z �
f(φ(Ih, Ie)) and z′ � f(φ(I ′

h, I ′
e)) and the outputs of predictor g as q � g(z) and

q′ � g(z′), we force q to be similar to z′ and q′ to be similar to z by minimizing
the symmetrized loss:

Lco =
1
2
||q̃ − z̃′||22 +

1
2
||q̃′ − z̃||22 (6)

where x̃ � x
||x||2 and || · ||2 is �2-norm. z and z′ are detached from the computa-

tional graph before calculating the loss.
As for the frozen pretrained HE decoder ψ, it constrains the generalization

of features extracted by the HE encoder φ by minimizing Eq. (5), so as to ensure
no collapse occurs on the HE encoder φ. The total loss is formulated as Eq. (7),
where α is the weight coefficient (in our implementation, α = 1.0).

Ltot = Lco + αLcs (7)

Stain Vector Perturbation. Since the input images are gray, many transfor-
mations of colorful image cannot be used for contrastive learning. To guarantee
the strength of transformation, we customize a new data augmentation app-
roach called stain vector perturbation for histopathological images. Inspired by
the error of stain vector estimation in stain separation, we disturb elements of
the estimated W with ε ∼ N(0, σ2) to obtain the perturbed stain vector matrix
W ′. With W ′, another stain concentration matrix H ′ can be derived, and the
corresponding H channel and E channel images can be restored from H ′. The
results of stain vector perturbation are shown in Fig. 2.

2.5 Representation Extraction

After two-stage self-supervised learning, the learned HE encoder φ can be used
for visual representation extraction. As shown in Fig. 1(d), for an H&E stained
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image, the corresponding H and E channel images are firstly restored via stain
separation and then input into the learned HE encoder φ. The outputs are pooled
and concatenated together as the extracted visual representation.

3 Experimental Results

Dataset. We evaluate our proposed CS-CO method on the public dataset NCT-
CRC-HE-100K [17]. The dataset contains nine classes of histopathological images
of human colorectal cancer and healthy tissue. The predefined training set con-
tains 100,000 images and the test set contains 7180 images. The overall nine-
class classification accuracy on test set is 0.943 as reported in [19], which is
achieved by fully-supervised learning with VGG19. It is worth noting that we
exclude images belonging to the background (BACK) class for training and test-
ing when we evaluate visual representation learning methods. The reason is that
background is always non-informative and can be easily distinguished by simple
threshold-based methods. The final sizes of training and test set are 89,434 and
6333 respectively, and the eight-class classification accuracy on the test set is
reported as the evaluation metric.

Implementation Details. For the proposed CS-CO method, we use
ResNet18 [15] as the backbone of the encoders φh2e and φe2h. The decoders
ψh2e and ψe2h are composed of a set of upsampling layers and convolutional
layers. The projector f and predictor g are both instantiated by the multi-layer
perceptron (MLP), which consists of a linear layer with output size 4096 fol-
lowed by batch normalization, rectified linear units (ReLU), and a final linear
layer with output dimension 256. At the first training stage, we use SGD to
train our model on the whole training set. The batch size is 64 and the learning
rate is 0.01. At the second stage, for fast implementation, we train the model
with Adam on 10,000 randomly selected training data. The batch size is 96, the
learning rate is 0.001, and the weight decay is 1 × 10−6. Early stopping is used
at both stages for avoiding over-fitting.

According to the common evaluation protocol [20], a linear classifier is trained
for evaluating the capacity of representation. The linear classifier is implemented
by a single linear layer and trained with SGD. The batch size is 32 and the
learning rate is 0.001. Early stopping is also used for avoiding over-fitting.

Method Comparison. We firstly train a ResNet18 model with the whole eight-
class training data to establish the fully-supervised baseline. Then, we choose
three types of methods to compared with our proposed CS-CO method. The
first type contains two fixed ResNet18 models, one is random initialized, and
the other is pretrained on ImageNet [6]. The second type contains two state-of-
the-art contrastive learning methods: BYOL [12] and Simsiam [5]. The last type
also contains two methods specifically proposed for medical images by Chen et
al. [3] and Xie et al. [28] respectively. Except that the two ResNet18 models of
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Table 1. Linear evaluation results (5-fold cross-validation) with different size (n) of
training data.

Fully-supervised ResNet18 0.903 ± 0.015

Methods n = 100 n = 1000 n = 10000

Random initialized ResNet18 0.134 ± 0.050 0.181 ± 0.070 0.427 ± 0.003

ImageNet pretrained ResNet18 0.628 ± 0.040 0.802 ± 0.012 0.844 ± 0.002

BYOL [12] 0.811 ± 0.011 0.898 ± 0.007 0.891 ± 0.005

SimSiam [5] 0.797 ± 0.029 0.897 ± 0.004 0.890 ± 0.005

Chen’s method [3] 0.215 ± 0.067 0.661 ± 0.014 0.711 ± 0.003

Xie’s method [28] 0.109 ± 0.042 0.507 ± 0.007 0.586 ± 0.009

CS-CO 0.834± 0.018 0.915± 0.004 0.914± 0.002

Fig. 3. Ablation study results (5-fold cross-validation).

the first type don’t need to be trained, both our CS-CO method and the latter
two types of self-supervised learning methods are firstly trained using the whole
training data as unlabeled data.

Rather than using the whole training set, we randomly sample 100, 1000,
and 10000 data from the training set and extract their visual representations
with each method for the following linear classifier training. In this way, the
impact of large data size can be stripped, and the classification accuracies on
the test set can more purely reflect the representation capacity of each method.
As shown in Table 1, our proposed CS-CO method demonstrates superior rep-
resentation capacity compared to other methods. Furthermore, with only 1,000
labeled data and the linear classifier, our CS-CO method even outperforms the
fully-supervised ResNet18 which is trained on the whole training set.

Ablation Study. We conduct ablation studies to explore the role of the following
three key components of the proposed CS-CO method. 1) Contrastive learning: To
verify whether the contrastive learning enhances the visual representation capac-
ity, we do linear evaluation on the CS model, which is only trained by solving the
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cross-stain prediction task. In the cases of different amount of training data, the
average test accuracies of CS model are 0.782, 0.873, and 0.892, which shows obvi-
ous gaps from the original CS-CO model. 2) Stain-vector perturbation: To demon-
strate the effectiveness of stain-vector perturbation, we remove it from the trans-
formation family of contrastive learning, and train another CS-CO model which is
denoted as no-SVP. As shown in Fig. 3, the performance of no-SVP model is even
worse than CS model, which suggests that stain-vector perturbation is crucial for
contrastive learning. 3) Frozen-decoder: We also make the HE decoder trainable at
the second training stage to train the CS-CO model, which is denoted as decoder-
unfixed. As Fig. 3 shows, the decoder-unfixed model doesn’t collapse but performs
slightly worse than the original CS-CO model.

4 Conclusion

In this paper, we have proposed a novel hybrid self-supervised visual repre-
sentation learning method specifically for histopathological images. Our method
draws advantages from both generative and discriminative models by solving the
proposed cross-stain prediction pretext task and doing contrastive learning with
the proposed stain-vector perturbation augmentation approach. The proposed
method makes good use of domain-specific knowledge and has good versatil-
ity. Linear evaluation results on dataset NCT-CRC-HE-100K suggest that our
method outperforms current state-of-the-art self-supervised visual representa-
tion learning approaches. In future work, we intend to use the representations
extracted by the proposed CS-CO method to solve downstream tasks such as
disease prognosis and molecular signature prediction, so as to further prove the
effectiveness of the proposed method in practice.
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