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Abstract. Radiomics can quantify the properties of regions of interest
in medical image data. Classically, they account for pre-defined statis-
tics of shape, texture, and other low-level image features. Alternatively,
deep learning-based representations are derived from supervised learn-
ing but require expensive annotations and often suffer from overfitting
and data imbalance issues. In this work, we address the challenge of
learning the representation of a 3D medical image for an effective quan-
tification under data imbalance. We propose a self-supervised represen-
tation learning framework to learn high-level features of 3D volumes as a
complement to existing radiomics features. Specifically, we demonstrate
how to learn image representations in a self-supervised fashion using a
3D Siamese network. More importantly, we deal with data imbalance
by exploiting two unsupervised strategies: a) sample re-weighting, and
b) balancing the composition of training batches. When combining the
learned self-supervised feature with traditional radiomics, we show signif-
icant improvement in brain tumor classification and lung cancer staging
tasks covering MRI and CT imaging modalities. Codes are available in
https://github.com/hongweilibran/imbalanced-SSL.
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1 Introduction

Great advances have been achieved in supervised deep learning, reaching expert-
level performance on some considerably challenging applications [11]. However,
supervised methods for image classification commonly require relatively large-
scale datasets with ground-truth labels which is time- and resource-consuming
in the medical field. Radiomics is a translational field aiming to extract objec-
tive and quantitative information from clinical imaging data. While traditional
radiomics methods, that rely on statistics of shape, texture and others [1], are
proven to be generalizable in various tasks and domains, their discriminativeness
is often not guaranteed since they are low-level features which are not specifically
optimized on target datasets.

Self-supervised learning for performing pre-text tasks have been explored in
medical imaging [24,25], that serve as a proxy task to pre-train the deep neu-
ral networks. They learn representations commonly in a supervised manner on
proxy tasks. Such methods depend on heuristics to design pre-text tasks which
could limit the discriminativeness of the learnt representations. In this work, we
investigate self-supervised representation learning which aims to directly learn
the representation of the data without a proxy task.

Recent contrastive learning-based methods [6,15,20] learn informative repre-
sentations without human supervision. However, they often rely on large batches
to train and most of them work for 2D images. To this end, due to the high
dimensionality and limited number of training samples in medical field, apply-
ing contrastive learning-based methods may not be practically feasible in 3D
datasets. Specially, in this study, we identify two main differences required to
adapt self-supervised representation learning for radiomics compared to natural
image domain: i) Medical datasets are often multi-modal and three dimensional.
Thus, learning representation methods in 3D medical imaging would be computa-
tionally expensive. ii) heterogeneous medical datasets are inherently imbalanced,
e.g. distribution disparity of disease phenotypes. Existing methods are built upon
approximately balanced datasets (e.g. CIFAR [18] and ImageNet [10]) and do
not assume the existence of data imbalance. Thus, how to handle data imbalance
problem is yet less explored in the context of self-supervised learning.

Related Work. Radiomic features have drawn considerable attention due to
its predictive power for treatment outcomes and cancer genetics in personalized
medicine [12,23]. Traditional radiomics include shape features, first-, second-,
and higher- order statistics features.

Self-supervised representation learning [3,6,7,13,15,22] have shown steady
improvements with impressive results on multiple natural image tasks, mostly
based on contrastive learning [14]. Contrastive learning aims to attract positive
(or similar) sample pairs and rebuff negative (or disimilar) sample pairs. Pos-
itive sample pairs can be obtained by generating two augmented views of one
sample, and the remaining samples in the batch can be used to construct the
negative samples/pairs for a given positive pair. In practice, contrastive learning
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methods benefit from a large number of negative samples. In medical imaging,
there are some existing work related to contrastive learning [2,17,21]. Chaitanya
et al.’s work [5] is the most relevant to our study, which proposed a represen-
tation learning framework for image segmentation by exploring local and global
similarities and dissimilarities. Though these methods are effective in learning
representations, they require a large batch size and/or negative pairs, which
make them difficult to apply to 3D medical data. Chen et al. [8] demonstrates
that a Siamese network can avoid the above issues on a 2D network. The Siamese
network, which contains two encoders with shared weights, compares two simi-
lar representations of two augmented samples from one sample. Importantly, it
neither uses negative pairs nor a large batch size. Considering these benefits, we
borrow the Siamese structure and extend it to 3D imbalanced medical datasets.

Contributions. Our contribution is threefold: (1) We develop a 3D Siamese
network to learn self-supervised representation which is high-level and discrim-
inative. (2) For the first time, we explore how to tackle the data imbalance
problem in self-supervised learning without using labels and propose two effec-
tive unsupervised strategies. (3) We demonstrate that self-supervised represen-
tations can complement the existing radiomics and the combination of them
outperforms supervised learning in two applications.

2 Methodology

The problem of interest is how to learn high-level, discriminative representa-
tions on 3D imbalanced medical image datasets in a self-supervised manner.
The schematic view of the framework is illustrated in Fig. 1. First, a pre-trained
3D encoder network, denoted as Ea, takes a batch of original images X with
batch size N as input and outputs N representation vectors. The details of the
3D encoder is shown in Table 4 of the Supplementary. The features are fed into
the RE/SE module to estimate their individual weights or to resample the batch.

Then each image x in the batch X is randomly augmented into two images
(or called an image pair). They are processed and compared by a 3D Siamese
network, nicknamed 3DSiam, which enjoys relatively low memory without rely-
ing on large training batch of 3D data. The proposed 3DSiam extends original
2D Siamese network [8] from processing 2D images to 3D volumes while inherits
its advantages. Since medical datasets are inherently imbalanced, by intuition
sole 3DSiam would probably suffer from imbalanced data distribution. In the
following, we first introduce RE/SE module to mitigate this issue.

RE/SE Module to Handle Imbalance. Since there is no prior knowledge
on the data distribution available, the way to handle imbalance must be unsu-
pervised. The vectors mentioned above are fed into a RE/SE module before
training the 3DSiam network. The k -means algorithm is used first to cluster the
representation vectors into k centers. We then proposed two simple yet effective
strategies: a) sample re-weighting (RE), and b) sample selection (SE):
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Fig. 1. Our proposed framework learns invariance from extensive 3D image augmen-
tation within four categories: I) affine transform, II) appearance enhancement, III)
contrast change, and IV) adding random noise. First, an image batch X is fed into an
initialized 3D encoder to obtain its representation F. The RE/SE module first estimates
its distribution by k-means based clustering and uses two strategies including sample
re-weighting (RE) or sample selection (SE) to alleviate data imbalance issue. Each
image is randomly augmented into two positive samples {X1, X2} which are then used
to train a 3D Siamese network by comparing their representations from two encoders
{Ea, Ef} with shared weights. p is a two-layer perceptron to transform the feature.

a) Sample re-weighting (RE). Denote a batch with N samples as X = {xi|i =
1, 2, ..., N}. Given k clusters, denote the distribution of k clusters of features
as F = {fj |j = 1, 2, ..., k} over N samples. fj denotes the frequency of cluster
j. Then we assign different weights to the samples in each cluster j. For each
sample xi, representation vector of which belongs to cluster j, we assign it
a weight of N/fj to penalize the imbalanced distribution during the batch
training. In practice, we further normalize it by re-scaling to guarantee the
minimum weight is 1 for each input batch.

b) Sample selection (SE). Denoting the clusters’ centroids as C = {c1, c2, ...ck},
we find the maximum Euclidean distance maxi,j∈[1,k],i �=jd(ci, cj) among all
pairs of centroids. k is a hyper-parameter here. We hypothesize that the
clusters with maximum centroid distance are representation vectors from
different groups. To select m samples from the original N samples to form
a new batch, denoted by Bc = {x1, x2, ..., xm}, we sample m

2 nearest sample
points centered on each of the selected maximum-distance centroids. m is
set to be smaller than N

k for low computation complexity and efficient sam-
pling. The selected new batch is then used to train our 3DSiam network. A
motivation behind the selection strategy is outlined in Supplementary.
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3D Siamese Network. The 3DSiam takes as input two randomly augmented
views x1 and x2 from a sample x. The two views are processed by two 3D
encoder networks with shared weights. One of the encoder has frozen weights
when training (denoted as Ef ) and the other one is with active weights (denoted
as Ea). Before training, Ef is always updated to the weights of Ea. Ea is followed
by a two-layer perceptron called predictor to transform the features. The final
objective is to optimize a matching score between the two similar representations
t1 � p (Ea(x1)) and r2 � Ef (x2). 3DSiam minimizes their negative cosine
similarity, which is formulated as:

S (t1, r2) = − t1
‖t1‖2

· r2
‖r2‖2

, (1)

where ‖ · ‖2 is L2-norm. Following [6], we define a symmetrized loss to train the
two encoders, formulated as:

L =
1
2
S (t1, r2) +

1
2
S (t2, r1) , (2)

where t2 � p (Ef (x2)), r1 � Ef (x1). This loss is defined and computed for each
sample with re-weighting in the batch X or the new batch Bc with equal weights.
Notably the encoder Ef on x2 receives no gradient from r2 in the first term of
Eq. (2), but it receives gradients from t2 in the second term (and vice versa for
x1). This training strategy avoids collapsing solutions, i.e., t1 and r2 outputs a
constant over the training process. When training is finished, r2 is used as the
final representation.

3 Experiments

Datasets and Preprocessing. The evaluation of our approach is performed
on two public datasets: 1) a multi-center MRI dataset (BraTS ) [4,19] including
326 patients with brain tumor. The MRI modalities include FLAIR, T1, T2
and T1-c with a uniform voxel size 1× 1 × 1 mm3. Only FLAIR is used in our
experiment for simplicity of comparisons. 2) a lung CT dataset with 420 non-
small cell lung cancer patients (NSCLC-radiomics) [1,9]1. The effectiveness of
the learnt representations is evaluated on two classification tasks (also called
‘down-stream task’): a) discriminating high grade (H-grade) and low grade tumor
(L-grade), and b) predicting lung cancer stages (i.e. I, II or III). The BraTS
dataset is imbalanced in two aspects: a) the distribution of ground truth labels
(H-grade vs. L-grade); b) the distribution of available scans among different
medical centers. For NSCLC-radiomics, the distribution of ground truth labels
are imbalanced as well, with ratio of 2:1:6 for stage I, II and III respectively. For
BraTS, we make use of the segmentation mask to get the centroid and generate
a 3D bounding box of 96× 96 × 96 to localize the tumour. If the bounding box
exceeds the original volume, the out-of-box region was padded with background
1 Two patients were excluded as the ground truth labels are not available.
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intensity. For NSCLC-radiomics, we get the lung mask by a recent public lung
segmentation tool [16], and then generate a 224 × 224 × 224 bounding box to
localize the lung. The lung volume was then resized to 112 × 112 × 112 due to
memory constraint. The intensity range of all image volumes was rescaled to [0,
255] to guarantee the success of intensity-based image transformations.

Configuration of the Training Schedule. We build a 3D convolutional neu-
ral network with two bottleneck blocks as the encoder for all experiments (details
in Supplementary). In the beginning, we pre-train 3DSiam for one epoch with a
batch size of 6. Then we use it to extract features for the RE/SE module. After
first epoch, the encoder from the last iteration is employed for dynamic feature
extraction. For down-stream task evaluations, we use the last-layer feature of the
encoder. For 3D data augmentation, we apply four categories shown in Fig. 1,
including random rotations in [−20, 20] degrees, random scale between [0.7, 1.3],
and random shift between [−0.05, 0.05], Gamma contrast adjustment between
[0.7, 1.5], image sharpening, and Gaussian blurring, considering the special trait
of medical images. For optimization, we use Adam with 10−2 learning rate and
10−4 weight decay. Each experiment is conducted using one Nvidia RTX 6000
GPU with 24 GB memory. The number of cluster k is set to 3 in all experiments.
Its effect is analyzed in the last section.

Computation Complexity. For 3DSiam without RE/SE module, the training
takes only around four hours for 50 epochs for the results reported for brain
tumor classification task. We do not observe significant improvement when
increasing the number of epochs after 50. We train 3DSiam with RE/SE mod-
ule for around 2000 iterations (not epochs) to guarantee that similar number of
training images for the models of comparison are involved. In RE/SE module,
the main computation cost is from k -means algorithm. We have observed that
the overall computation time has increased by 20% (with i5-5800K CPU). It is
worth noting that RE/SE module is not required during the inference stage,
thus there is no increase of the computational cost in testing.

Feature Extraction and Aggregation. For each volume, we extract a set
of 107 traditional radiomics features2 including first- and second-order statis-
tics, shape-based features and gray level co-occurrence matrix, denoted as ftrad.
For the self-supervised learning one, we extract 256 features from the last fully
connected layer of the encoder Ea, denoted as fSSL. To directly evaluate the
effectiveness of SSL-based features, we concatenate them to a new feature vector
f = [ftrad, fSSL]. Note that ftrad and fSSL are always from the same subjects.

Evaluation Protocol, Classifier and Metrics. For evaluation, we follow
the common protocol to evaluate the quality of the pre-trained representations
by training a supervised linear support vector machine (SVM) classifier on the
2 https://github.com/Radiomics/pyradiomics.

https://github.com/Radiomics/pyradiomics
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training set, and then evaluating it on the test set. For binary classification
task (BraTS), we use the sensitivity and specificity as the evaluation metrics.
For multi-class classification task (lung cancer staging), we report the overall
accuracy and minor-class (i.e. stage II) accuracy considering all testing samples.
We use stratified five-fold cross validation to reduce selection bias and validate
each model. In each fold, we randomly sample 80% subjects from each class as
the training set, and the remaining 20% for each class as the test set. Within
each fold, we employ 20% of training data to optimize the hyper-parameters.

4 Results

Quantitative Comparison. We evaluate the effectiveness of the proposed self-
supervised radiomics features on two classification tasks: a) discrimination of low
grade and high grade of brain tumor and b) staging of lung cancer.

Table 1. Comparison of the performances of different kinds of features in two down-
stream tasks using stratified cross-validation. We further reduce 50% training data
in each fold of validation to show the effectiveness against supervised learning. Our
method outperforms supervised learning in both scenarios.

Methods BraTS Lung cancer staging

Sensitivity/Specificity Overall/Minor-class accuracy

Full labels 50% labels Full labels 50% labels

Trad. radiomics 0.888/0.697 0.848/0.697 0.490/0.375 0.481/0.325

Rubik’s cube [25] 0.744/0.526 0.680/0.486 0.459/0.325 0.433/0.275

3DSiam 0.844/0.407 0.808/0.526 0.459/0.300 0.445/0.300

3DSiam+SE 0.848/0.513 0.824/0.566 0.471/0.350 0.443/0.325

3DSiam+RE 0.868/0.486 0.828/0.605 0.459/0.375 0.445/0.325

Trad.+3DSiam 0.904/0.645 0.804/0.566 0.495/0.350 0.486/0.350

Trad.+3DSiam+SE 0.916/0.711 0.848/0.763 0.538/0.375 0.519/0.350

Trad.+3DSiam+RE 0.920/0.711 0.804/0.763 0.524/0.425 0.502/0.40

Supervised learning 0.888/0.711 0.804/0.566 0.526/0.375 0.467/0.325

Effectiveness of RE/SE Module. From the first row of Table 1, one can observe
that traditional radiomics itself brings powerful features to quantify tumor char-
acteristics. On BraTS dataset, the comparison between traditional radiomics
and vanilla self-supervised radiomics (3DSiam) confirms our hypothesis that
features learned by vanilla self-supervised method behave poorly, especially on
the minor class (poor specificity). However, self-supervised radiomics with RE or
SE module surpasses 3DSiam in specificity by a large margin. The aggregation
of the vanilla self-supervised representation and traditional radiomics does not
show significant improvement. More importantly, with RE/SE module added,
the specificity increased by 6.6%, from 64.5% to 71.1%, which indicates a large
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boost in predicting the minor class (i.e. L-grade). Both comparisons of rows 4, 5,
6 and rows 7, 8, 9 demonstrate the success of our RE/SE module in tacking class
imbalance, i.e., promoting the recognition of the minor class, while preserving
the accuracy of the major class.

Comparison with State-of-the-Art. Our method (Trad.+3DSiam+SE in Table 2)
outperforms the supervised one in two scenarios in two classification tasks, the
result of which is achieved by using the same encoder backbone with a weighted
cross-entropy loss. When it is trained with 50% less labels, the performance
of supervised model decrease drastically. On lung cancer staging with three
classes, although the overall accuracy of self-supervised radiomics is lower than
the traditional one, with the RE/SE module, the combination of two kinds of
radiomics achieves the topmost overall accuracy. This demonstrates the proposed
self-supervised radiomics is complementary to existing radiomics. In the second
row, we show the result of one self-supervised learning method trained by play-
ing Rubik cubes [25] to learn contextual information with a same encoder. We
observe that the representation learned in proxy task is less discriminative than
the one directly from representation learning.

Fig. 2. Covariance analysis of the representations before and after the SE module.
Across all 326 tumor patients, each feature was correlated with other ones, thereby
generating the correlation coefficients. The density map show that the vanilla repre-
sentation before SE module are more correlated (redundant) than the one after.
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Analysis of Representations and Hyperparameters

Feature Covariance. For a better understanding of the role of the pro-
posed module in relieving data imbalance problem, we further analyze
the feature covariance to understand the role of the SE module. Con-
sider two paired variables (xi, xj) in the representation R. Given n sam-
ples {(xi1, xj1), (xi2, xj2), ..., (xin, xjn)}, Pearson’s correlation coefficient rxixj

is
defined as: rxixj

= cov(xi,xj)
σxi

σxj
, where cov is the covariance and σ is the standard

deviation. We found that the features after SE module become more compact
as shown in Fig. 2 and more discriminative compared to the features without SE
module.

Effect of the Number of Clusters k. The hyper-parameter k in the SE module
is the number of clusters, which plays a vital role in constructing new batch. To
evaluate its effect, we use different k to train 3DSiam and evaluate it through
classification task. To fairly compare different values of k, we keep the size m of
the new batch Bc fixed to 6 which is also the batch size when k = 0 (without
SE module). The initial batch size N is set to k × q where q is empirically set
to 10 in the comparison. The AUC achieves the highest when k = 3. With
k = 5, the AUC drops. This is probably because when k becomes large, the
sampling may be biased when only considering a pair of clustering centers. For
details, please refer to the curves of AUC over the number of clusters in Table 3
in Supplementary.

5 Conclusion

In this work, we proposed a 3D self-supervised representation framework for
medical image analysis. It allows us to learn effective 3D representations in
a self-supervised manner while considering the imbalanced nature of medical
datasets. We have demonstrated that data-driven self-supervised representation
could enhance the predictive power of radiomics learned from large-scale datasets
without annotations and could serve as an effective compliment to the existing
radiomics features for medical image analysis. Dealing with imbalance is an
important topic and we will explore other strategies in the future.
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