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Abstract. Image denoising is of great importance for medical imag-
ing system, since it can improve image quality for disease diagnosis
and downstream image analyses. In a variety of applications, dynamic
imaging techniques are utilized to capture the time-varying features of
the subject, where multiple images are acquired for the same subject
at different time points. Although signal-to-noise ratio of each time
frame is usually limited by the short acquisition time, the correlation
among different time frames can be exploited to improve denoising
results with shared information across time frames. With the success
of neural networks in computer vision, supervised deep learning meth-
ods show prominent performance in single-image denoising, which rely
on large datasets with clean-vs-noisy image pairs. Recently, several self-
supervised deep denoising models have been proposed, achieving promis-
ing results without needing the pairwise ground truth of clean images.
In the field of multi-image denoising, however, very few works have been
done on extracting correlated information from multiple slices for denois-
ing using self-supervised deep learning methods. In this work, we propose
Deformed2Self, an end-to-end self-supervised deep learning framework
for dynamic imaging denoising. It combines single-image and multi-image
denoising to improve image quality and use a spatial transformer net-
work to model motion between different slices. Further, it only requires
a single noisy image with a few auxiliary observations at different time
frames for training and inference. Evaluations on phantom and in vivo
data with different noise statistics show that our method has compara-
ble performance to other state-of-the-art unsupervised or self-supervised
denoising methods and outperforms under high noise levels.
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1 Introduction

Noise is inevitable in medical images. A variety of sources lead to noisy images,
such as acquisition with better spatial resolution in MRI [12] and reduction
of radiation dose PET [30] and CT [27]. Further complicating the task is the
complex noise statistics in different medical imaging modalities, which is not
limited to additive white Gaussian noise. For example, the noise can be related
to pixel intensity like Rician noise in magnitude images of MRI [31] or it can be
affected by geometry parameters of the scanner like in CT [23]. Thus, a robust
method for noise reduction plays an important role in medical image processing
and also serves as a core module in many downstream analyses.

In many applications, more than one image is acquired during the scan to cap-
ture the dynamic of the subject, e.g., cine images for cardiac MRI [20], abdominal
dynamic contrast-enhanced (DCE) MRI [11], and treatment planning 4D tho-
racic CT [4]. Image denoising is more necessary for dynamic imaging methods,
since they often adopt fast imaging techniques to improve temporal resolution,
which may reduce signal-to-noise ratio of each time frame. Dynamic imaging also
provides more information for denoising as the images at different time frames
have similar content and often follow the same noise model.

In recent years, a number of deep learning based methods have been proposed
for image denoising [6,10,15,32]. Similar methods are also applied to medical
image denoising, e.g., low-dose PET [29], CT [5] and MRI [28] denoising. These
methods train a convolution neural network (CNN) that maps the noisy image to
its clean counterpart. However the supervised training process requires a large-
scale dataset with clean and noisy image pairs which can be difficult to acquire,
especially in the field of medical imaging. Recently, there are several studies
on learning a denoising network with only noisy images. The Noise2Noise [16]
method trains the model on pairs of noisy images with the same content but
different noises so that the network estimates the expectation of the underlaying
clean image. However, in practice, it is difficult to collect a set of different noisy
realizations of the same image. The Noise2Void [14] and Noise2Self [2] methods
try to learn denoising network using a dataset of unpaired noisy images and use
the blind-spot strategy to avoid learning a identity mapping. Yet, to achieve
good performance, these two methods still require the test images to be similar
to the training images in terms of image content and noise model. To address this
problem, some denoising methods have been developed that only train networks
with internal information from a single noisy image and do not rely on large
training set. Ulyanov et al. introduced deep image prior (DIP) for single-image
recovery [26]. Recently, Quan et al. proposed Self2Self [21] method, where it uses
dropout [25] to implement the blind-spot strategy.

In terms of denosing methods for dynamic imaging, Benou et al. proposed
a spatio-temporal denoising network for DCE MRI of brain, where the motion
is negligible. Another category of methods first apply conventional registration
method to register the images and then perform denoising on the registered



Deformed2Self 27

images [18,23]. However, traditional optimization methods are time consuming [1]
and registering noisy images directly may reduce the accuracy of registration.

In this work, we propose a deep learning framework for dynamic imag-
ing denoising, named Deformed2Self, where we explore similarity of images in
dynamic imaging by deforming images at different time frames to the target
frame and utilize the fact that noises of different observations are independent
and following similar noise model. Our method has the following features: 1) The
whole pipeline can be trained end-to-end, which is efficient for optimization. 2)
Our method is fully self-supervised, i.e., we only need noisy images without
ground-truth clean images. 3) The model can be trained on a single image (with
a few auxiliary observations) and has no prerequisite on large training dataset,
making it suitable for applications with scarce data.

2 Methods

2.1 Problem Formulation

Let yo be the noisy image we want to denoise, which is generated with some
noise models, e.g., for additive noise,

Yo = To + Mo, (1)

where x( denotes the unknown clean image, and ny denotes the random mea-
surement noise. The goal of single-image denoising is to find a mapping f that
can recover g from yo, i.e., Zg = f(yo) = xg.

In dynamic imaging, multiple images are acquired for the same subject at
different time frames. Suppose we have another N frames besides the target
frame yo. The noisy observations of these N frames and their unknown clean
counterparts are denoted as {y1, ..., yn } and {z1, ..., zy } respectively, where y;, =
T +ng, k=1,..., N. For dynamic imaging denoising, information from different
time frames are aggregated to estimate the clean image at target frame (frame
0), &0 = f(yo,¥1,...,yn). In many cases, the motion of subject occur during the
scan is not negligible. Let ¢; be the deformation field between the target frame
and frame k, o = x o ¢r. The noisy observation y; can be rewritten as

yk:xk—l—nk:ajooqblzl—i—nm k=0,1,...,N. (2)

where ¢g = I is the identity mapping. Equation 2 indicates that the observed
noisy images {yk}ffvzo is generated from the target clean image x following
certain motion models and noise statistics. Therefore the auxiliary images from
different time frames provide information for estimating the clean image at target
frame.

2.2 The Deformed2Self Framework

Inspired by the data model above, we proposed a self-supervised denoising frame-
work for dynamic imaging named Deformed2Self (Fig. 1), which consists of three



28 J. Xu and E. Adalsteinsson

@ concatenate
© dropout
® grid sampler

Fig. 1. Overview of the proposed self-supervised denoising framework. a) The architec-
ture of Deformed2Self, where fs and f,, are single- and multi-image denoising networks
respectively. b) Details of the STN module, where f, is a registration network.

modules: 1) a single-imaging denoising network to provide coarse estimation of
the clean image, 2) a spatial transformer network (STN) [9] for matching spatial
content of images from other time frames (k = 1, ..., N) to the target frame, and
3) a multi-image denoising network to generate a refined estimation of the clean
image at target frame.

Single-Image Denoising: The first step of the proposed framework is single-
image denoising, where we use a UNet-based [22] network f; to denoise each
frame separately. The benefit of this step is two-fold: 1) It provides a coarse esti-
mation of the clean image utilizing only the information of each frame, which
serves as a good initialization for the multi-image denoising to accelerate conver-
gence. 2) It also improves the registration accuracy in the following STN module,
since the prediction of deformation field suffers heavily from image noise.

To denoise images with internal information of each frame, we adopt the
dropout-based blind-spot strategy [14,21]. Given a noisy observation yg, k €
{0, ..., N}, we use a dropout layer to mask out some pixels in y; before feeding
it to the network. The output can be written as Ty = fs(bx ® yx), where by is a
random binary mask and @ is the Hadamard product. The network f is trained
to recover the missing pixels based on information from the remaining pixels.
The network’s best guess would be the expected pixel value [14], and therefore
the output image T can be considered as the denoised version of yy.

The network f is trained by minimizing the following loss function, which is
the mean squared error (MSE) between the network output and the noisy image
on the masked pixels.

L, NHZHl—bk © (@ — )l 3)

Spatial Transformer Network: Let 7, be the residual between the denoised
image Ty and the underlying clean image xy, i.e., Ny = Tx — Tk, and thus
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T = To O ¢;1 + ng. Suppose we can estimate ¢, the deformation field between
frame k and the target frame, and apply it to the denoised image zj, then
Zpogr = xo+NEodE = To+0y, 1., T 0Py is an image that is spatially matched
with z¢ but is corrupted by noise ) = ni 0 ¢y. Note that {Zo, Z10¢1, ..., Enodn}
can be considered as a set of images that share the same spatial content but have
different noise and can be used for multi-image denoising later.

We estimate the motion between the target frame and other frames using
a STN module (Fig. 1b). A network f, is used to predict the deformation field
given pairs of moving image Z; and target image Zg, gz~5k = fr(Zk, To). Then &y, is
deformed with a grid sampler, Zy_.q = Ty © (;NS;C We adopt the architecture in [1]
for f, and optimize it to minimize the following loss function,

N

. ) ) .

ﬁr:NE:||17k—>0*$0||§+>‘”v¢k||3’ )
k=1

where ) is a weighting coefficient. The first term is the MSE between the warped
image & 0 ¢y, and the target image 7, which is the similarity metric. The second
term is the L2 norm of spatial gradient of ¢, serving as a regularization for the
deformation field [1].

Multi-image Denoising: We now have two sets of images, the denoised
and deformed images {Zg,Z1-0,...,2n—0} and the original noisy images
{y0,y1,---»yn}. In the final stage, we aggregate all these images to generate
a refined estimation of the target clean image. We adopt the blind-spot method
similar to the single-image denoising stage but concatenate all images as input
and produce an estimation for the target frame, o = f,,(Zo, 150, .-, TN—0,0O
Y0, Y1, ---, YN ), where ¢ is the final estimation and f,, is the multi-image denois-
ing network. Again, we use dropout to remove some pixels in yy to avoid learn-
ing a identity mapping. f,, shares the same architecture with f; except for the
number of input channels. Similar to Eq. 3, a masked MSE loss is used to train
network f,,

Em:H(l_b)@(ﬁo—yo)H%- (5)

2.3 Training and Inference

As mentioned above, all the three modules in the proposed method is trained in
unsupervised or self-supervised manners. Besides, we can train this pipeline end-
to-end with gradient descent based methods. Another advantage of our frame-
work is that it can be trained on a single noisy image (with several auxiliary
observations) without large-scale external dataset. In summary, the total loss
function for our proposed model is £ = ALy + AL, + L,,, where Ay and A\,
are weighting coefficients. During training, the networks are updated for N¢yqin
iterations to learning a specific denoising model for the input images. At each
iteration, input images are randomly rotated for data augmentation and the
dropout layers sample different realizations of binary masks {b,bg,...,by} so
that the denoising networks can learn from different parts of the image.
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For inference, we run forward pass of the model for N;.4 times with dropout
layers enabled and average output Zp’s to generate the final prediction.

3 Experiments and Results

3.1 Datasets and Experiments Setup

We use the following two datasets to evaluate our proposed denoising framework.

PINCAT: The PINCAT phantom [17,24] simulates both cardiac perfusion
dynamics and respiration with variability in breathing motion. The spatial
matrix size of the phantom is 128 x 128, which corresponds to a resolution
of 1.5mm x 1.5mm. The intensity of the phantom is normalized to [0, 1]. The
middle frame of the series is selected as the target frame.

ACDC: The ACDC dataset [3] consists of short-axis cardiac cine MRI of
100 subjects. The in-plane resolution and gap between slices range from
0.7mm X 0.7mm to 1.92mm x 1.92mm and 5mm to 10 mm respectively. For
pre-processing, we linearly normalize the image intensity to [0,1] and crop or
pad them to a fixed size of 224 x 224. For each subject, we extract the sequence
of the middle slice and use the end-systole (ES) and end-diastole (ED) phases
as target frames.

In all the experiments, we use another four noisy images from the same
sequences as auxiliary observations (two adjacent frames before and after the
target frame), i.e., N = 4. We set A = 0.1, and Ay = A\, = 1 in the loss func-
tion. For dropout layers, a dropout rate of 0.3 is used. We train the model
using an Adam optimizer [13] with a learning rate of 1 x 107%. Ny.qip, is set
to 2000 for PINCAT dataset and 4000 for ACDC dataset. Nyes: is set to 100
for both datasets. The neural networks are implemented with PyTorch 1.5, and
trained and evaluated on a Titan V GPU. For PINCAT dataset, we simulate
Gaussian noise and Poisson noise at different noise levels. The standard devi-
ation o of Gaussian noise is set to 15%, 20% and 25%. The noisy observation
y under Poisson noise is generated by y = z/P, where z ~ Pois(Pz), x is the
truth intensity and P is a parameter to control noise level. We set P = 40, 20,
and 10 in the experiments. For ACDC dataset, we simulate Gaussian noise and
Rician noise [8], with o = 5%, 10%, and 15%. We compare our proposed method
(D2S) with other state-of-the-art denoising methods, including deep image prior
(DIP) [26], Self2Self (S2S) [21], BM3D [7] and VBM4D [19]. For DIP and S2S,
we use the same learning rate mentioned above and tune the number of itera-
tions on our datasets. We adopt the peak signal to noise ratio (PSNR) and the
structural similarity index measure (SSIM) as evaluation metrics. The reference
PyTorch implementation for Deform2Self is available on GitHub!.

! https://github.com/daviddmec/Deform2Self.
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3.2 Results

Comparison with Other Approaches: Table 1 shows the quantitative results
on PINCAT and ACDC dataset. The proposed method achieves comparable
or even better performance than other methods. Specifically, D2S has similar
results to VBM4D in terms of Gaussian noise, and outperforms VBM4D for
other noise models, especially for high noise levels. Besides, D2S outperforms
S2S consistently, indicating that information from other time frames can largely
boost performance of denoising models.

Figure2 and 3 show example slices under Gaussian and Rician noise with
o = 15% and the denoised results using different methods. The D2S method
has not only better statistical but also better perceptual results compared with
other methods. Single-image methods such as BM3D and S2S, only use single
noisy image, and therefore have not enough information to recover details that
are corrupted by noise, resulting in blurred estimation. The DIP method suffers
from significant structural artifacts in high noise levels. Though retrieving some
details from adjacent frames, VBM4D also brings subtle artifacts to the denoised
images. D2S is able to recover more detail structures with higher image quality.

Table 1. Quantitative results on PINCAT dataset for Gaussian and Poisson noise at
different noise levels. The best results are indicated in red.

PINCAT

Method | Gaussian Poisson

o =15% o =20% o =25% P =40 P =20 P =10
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
Noisy 16.55 |0.300 | 14.05 |0.208 | 12.11 |0.151 |22.42 |0.603 |19.40 |0.472 |16.19 |0.346
BM3D 29.97 |0.918 27.98 | 0.881 |26.38 |0.843 |32.56 |0.954 |30.38 |0.930 |27.63 |0.890
VBM4D | 31.36 |0.936 |29.65 |0.913 | 28.28 |0.886 | 32.35 |0.953 | 29.92 | 0.930 | 27.65 | 0.899

DIP 28.28 | 0.879 |26.85 |0.837 |24.63 |0.759 | 31.96 |0.949 |30.99 |0.935  26.54 |0.868
S28 30.27 |0.928 1 28.04 | 0.900 | 27.68 | 0.883 |33.05 |0.962 |31.25 |0.951 | 30.55 |0.939
D2S 31.77 |0.946 | 30.14 |0.919 [29.10 |0.891 [35.13 |0.978 [33.74 [0.969 |31.67 |0.951
ACDC
Method | Gaussian Rician

o=5% o =10% o =15% o =5% o =10% o =15%

PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
Noisy 26.02 | 0.769 | 20.00 |0.518 | 16.48 |0.369 |25.70 |0.742 |19.66 |0.513 | 16.07 |0.368
BM3D |32.32 |0.953 | 28.54 | 0.905 |26.45 | 0.860 |29.58 | 0.874 |23.69 |0.777 |19.78 |0.689
VBM4D | 32.54 |0.957 | 28.96 |0.911 |26.88 |0.863 |29.79 |0.879 |23.94 |0.791 |19.93 |0.707

DIP 26.95 |0.875|25.55 |0.815|23.48 |0.718 | 26.10 |0.811 |22.76 |0.736 | 19.10 |0.629
S28 30.41 |0.942 1 28.45 0.912|26.90 | 0.880 |28.28 |0.861 |23.51 |0.784 |19.73 |0.709
D2S 32.16 |0.960 |30.26 |0.936 |28.22 |0.887|29.37 |0.879 |24.25 |0.812|20.20 |0.743

Ablation Study: We perform ablation studies to evaluate different components
in our framework. We evaluate models that ablate the single-image denoising
module and STN module respectively.
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Noisy(16.48) BM3D(26.36) VBM4D(26.95) DIP(23.89) 525(26.88) D25(28.70) GT(PSNR)

Fig. 2. Visualization results of different methods for ACDC dataset under Gaussian
noise with o = 15%.

Noisy(15.96) BM3D(19.14) VBM4D(19.22) DIP(19.12) 5$25(19.03) D25(19.64)

¥ i =

Fig. 3. Visualization results of different methods for ACDC dataset under Rician noise
with o = 15%.

The ablated and full models are evaluated on the ACDC dataset with Gaus-
sian and Rician noise (o = 10%). To investigate how single-image denoising
improve registration accuracy and how image registration help match image
content for the following multi-image denoising, we compute evaluation metrics
PSNR and SSIM on the region of interest (ROI) that involves cardiac motion.
The ROI masks include left ventricle, myocardium and right ventricle, which are
annotated in the ACDC dataset [3].

Results of ablation studies (Table 2) indicate that the single-image denoising
module improves the performance of the D2S model. It improves the accuracy of
motion estimation in the registration network, and provides a good initialization
for multi-image denoising. Besides, the registration module also makes contribu-
tion to the performance of our model. It registers images at different time frames
to the same template so that the multi-channel input for the following denoising
network is spatially matched, making the denoising task easier.
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Table 2. Quantitative results of ablation studies.

Method Gaussian (o = 10%) Rician (o = 10%)
ROI-PSNR | ROI-SSIM | ROI-PSNR | ROI-SSIM

D2S 28.01 0.894 27.55 0.889

D2S w/o single-image denoising | 27.81 0.888 27.34 0.884

D2S w/o image registration 27.68 0.887 27.24 0.883

4 Conclusions

In this work, we proposed Deformed2Self, a self-supervised deep learning method
for dynamic imaging denoising, which explores the similarity of image content
at different time frames by estimating the motion during imaging and improve
image quality with sequential single- and multi-image denoising networks. In
addition, the proposed method only relies on the target noisy image with a
small number of observations at other time frames and has no prerequisite on
a large training dataset, making it more practical for applications with scarce
data. Experiments on a variety of noise settings show that our method has
comparable or even better performance than other state-of-the-art unsupervised
or self-supervised denoising methods.
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