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Abstract. A long-standing challenge in multimodal brain network anal-
yses is to integrate topologically different brain networks obtained from
diffusion and functional MRI in a coherent statistical framework. Exist-
ing multimodal frameworks will inevitably destroy the topological differ-
ence of the networks. In this paper, we propose a novel topological learn-
ing framework that integrates networks of different topology through
persistent homology. Such challenging task is made possible through the
introduction of a new topological loss that bypasses intrinsic computa-
tional bottlenecks and thus enables us to perform various topological
computations and optimizations with ease. We validate the topological
loss in extensive statistical simulations with ground truth to assess its
effectiveness of discriminating networks. Among many possible appli-
cations, we demonstrate the versatility of topological loss in the twin
imaging study where we determine the extent to which brain networks
are genetically heritable.

Keywords: Topological data analysis · Persistent homology ·
Wasserstein distance · Multimodal brain networks · Twin brain
imaging study

1 Introduction

In standard brain network modeling, the whole brain is usually parcellated
into a few hundred disjoint regions [7,17,27]. For instance, well established,
widely used Automated Anatomical Labeling (AAL) parcellates the brain into
116 regions [27]. These disjoint regions form nodes in a brain network. Subse-
quently, functional or structural information is overlaid on top of the parcella-
tion to obtain brain connectivity between the regions. Structural connectivity
is obtained from diffusion MRI (dMRI), which traces the white matter fibers
in the brain. Strength of the structural connectivity is determined by the num-
ber of fibers connecting the parcellations. Resting-state functional connectivity
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Fig. 1. Schematic of topological learning. (a) AAL partitions the human brain into
116 disjoint regions. (b, c) Functional network G is obtained from resting-state fMRI.
The template structural network P is obtained from dMRI. The structural network P
is sparse while the functional network G is densely connected with many cycles. (d)
We learn network Θ that has the topological characteristics of both functional and
structural networks.

obtained from functional MRI (fMRI) is often computed using the Pearson corre-
lation coefficient between average fMRI time series in the parcellations [7]. While
the structural connectivity provides information whether the brain regions are
physically connected through the white matter fibers, the functional connectiv-
ity can exhibit relations between two regions without a direct neuroanatomi-
cal connection [14]. Thus, functional brain networks are often very dense with
thousands of loops or cycles [7] while structural brain networks are expected to
exhibit sparse topology without many cycles. Both the structural and functional
brain networks provide topologically different information (Fig. 1). Nonetheless,
not much research has been done thus far on integrating the brain networks at
the localized connection level. Existing integration frameworks will inevitably
destroy the topological difference in the process [16,30]. There is a need for a
new multimodal brain network model that can integrate networks of different
topology in a coherent statistical framework.

Persistent homology [7,9,15,17,25] provides a novel approach to the long-
standing challenge in multimodal brain network analyses. In persistent homol-
ogy, topological features such as connected components and cycles are measured
across different spatial resolutions represented in the form of barcodes. It was
recently proposed to penalize the barcodes as a loss function in image segmenta-
tion [15]. Though the method allows to incorporate topological information into
the problem, it is limited to an image with a handful of topological features due
to its expensive optimization process with O(n3). This is impractical in brain
networks with a far larger number of topological features comprising hundreds of
connected components and thousands of cycles. In this paper, we propose a more
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Fig. 2. (a) Graph filtration of G. β0 is monotonically increasing while β1 is monoton-
ically decreasing over the graph filtration. Connected components are born at edge
weights w3, w5, w6 while cycles die at edge weights w1, w2, w4. 0D barcode is repre-
sented by a set of birth values B(G) = {w3, w5, w6}. 1D barcode is represented by
a set of death values D(G) = {w1, w2, w4}. (b) The weight set W = {w1, ..., w6} is
partitioned into 0D birth values and 1D death values: W = B(G) ∪ D(G).

principled and scalable topological loss with O(n log n). Our proposed method
bypasses the intrinsic computational bottleneck and thus enables us to perform
various topological computations and optimizations with ease.

Twin studies on brain imaging phenotypes provide a well established way to
examine the extent to which brain networks are influenced by genetic factors.
However, previous twin imaging studies have not been well adapted beyond
determining heritability of a few brain regions of interest [2,4,12,21,24]. Mea-
sures of network topology are worth investigating as intermediate phenotypes
that indicate the genetic risk for various neuropsychiatric disorders [3]. Deter-
mining heritability of the whole brain network is the first necessary prerequisite
for identifying network based endophenotypes. With our topological loss, we
propose a novel topological learning framework where we determine heritability
of the functional brain networks while integrating the structural brain network
information (Fig. 1). Our method increases statistical sensitivity to subtle topo-
logical differences, yielding more connections as genetic signals.

2 Method

Barcodes in Graph Filtration. Consider a network represented as a weighted
graph G = (V,w) comprising a node set V and edge weights w = (wij) with
positive and unique weights. The number of nodes and edges are denoted by |V |
and |E|. Network G is a complete graph with |E| = |V |(|V | − 1)/2. The binary
graph Gε = (V,wε) of G is defined as a graph consisting of the node set V and
binary edge weight wε,ij = 1 if wij > ε or 0 otherwise. The binary network Gε is
the 1-skeleton, a simplicial complex consisting of nodes and edges only [22]. In 1-
skeleton, 0-dimensional (0D) holes are connected components and 1-dimensional
(1D) holes are cycles [7]. The number of connected components and cycles in
the binary network Gε are referred to as the 0-th Betti number β0(Gε) and the
1-st Betti number β1(Gε). A graph filtration of G is defined as a collection of
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nested binary networks [7,17]: Gε0 ⊃ Gε1 ⊃ · · · ⊃ Gεk , where ε0 < ε1 < · · · < εk

are filtration values. By increasing the filtration value ε, we are thresholding at
higher connectivity resulting in more edges being removed, and thus the 0-th
and 1-st Betti numbers change.

Persistent homology keeps track of appearances (birth) and disappearances
(death) of connected components and cycles over filtration values ε, and asso-
ciates their persistence (lifetimes measured as the duration of birth to death) to
them. Long lifetimes indicate global topological features while short lifetimes
indicate small-scale topological features [11,20,29]. The persistence is repre-
sented by 0D and 1D barcodes comprising a set of intervals [bi, di], each of which
tabulates a lifetime of a connected component or a cycle that appears at the fil-
tration value bi and vanishes at di (Fig. 2). Since connected components are born
one at a time over increasing filtration values [7], these connected components
will never die once they are born. Thus, we simply ignore their death values at
∞ and represent 0D barcode as a set of only birth values B(G) = ∪i{bi}. Cycles
are considered born at −∞ and will die one at a time over the filtration. Ignoring
the −∞, we represent 1D barcode as a set of only death values D(G) = ∪i{di}.

Theorem 1. The set of 0D birth values B(G) and 1D death values D(G) parti-
tion the weight set W = {wij} such that W = B(G)∪D(G) with B(G)∩D(G) =
∅. The cardinality of B(G) and D(G) are |V | − 1 and 1+ |V |(|V |−3)

2 respectively.

The proof is given in the supplementary material. Finding 0D birth values
B(G) is equivalent to finding edge weights of the maximum spanning tree (MST)
of G using Prim’s or Kruskal’s algorithm [17]. Once B is computed, D is simply
given as the remaining edge weights. Thus, the barcodes are computed efficiently
in O(|E| log |V |).

Topological Loss. Since networks are topologically completely characterized
by 0D and 1D barcodes, the topological dissimilarity between two networks can
be measured through barcode differences. We adapt the Wasserstein distance
to quantify the differences between the barcodes [9,15,23]. The Wasserstein dis-
tance measures the differences between underlying probability distributions on
barcodes through the Dirac delta function [10]. Let Θ = (V,wΘ) and P = (V,wP )
be two given networks. The topological loss Ltop(Θ,P ) is defined as the optimal
matching cost

Ltop(Θ,P ) = min
τ0

∑

b∈B(Θ)

[
b − τ0(b)

]2 + min
τ1

∑

d∈D(Θ)

[
d − τ1(d)

]2
, (1)

where τ0 is a bijection from B(Θ) to B(P ) and τ1 is a bijection from D(Θ) to
D(P ). By Theorem 1, the bijections τ0 and τ1 always exist. The first term mea-
sures how close two networks are in terms of 0D holes (connected components)
and is referred to as 0D topological loss L0D. The second term measures how
close two networks are in terms of 1D holes (cycles) and is called 1D topological
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loss L1D. Connected components represent an integration of a brain network
while cycles represent how strong the integration is [6]. The optimization can be
done exactly as follows:

Theorem 2

L0D = min
τ0

∑

b∈B(Θ)

[
b − τ0(b)

]2 =
∑

b∈B(Θ)

[
b − τ∗

0 (b)
]2

, (2)

where τ∗
0 maps the i-th smallest birth value in B(Θ) to the i-th smallest birth

value in B(P ) for all i.

L1D = min
τ1

∑

d∈D(Θ)

[
d − τ1(d)

]2 =
∑

d∈D(Θ)

[
d − τ∗

1 (d)
]2

, (3)

where τ∗
1 maps the i-th smallest death value in D(Θ) to the i-th smallest death

value in D(P ) for all i.

The proof is given in the supplementary material. We can compute the opti-
mal matchings τ∗

0 and τ∗
1 between Θ and P in O

(|B(Θ)| log |B(Θ)|) and
O

(|D(Θ)| log |D(Θ)|) by sorting edge weights and matching them.

Topological Learning. Let G1 = (V,w1), · · · , Gn = (V,wn) be observed net-
works used for training a model. Let P = (V,wP ) be a network expressing a
prior topological knowledge. In brain network analysis, Gk can be a functional
brain network of k-th subject obtained from resting-state fMRI, and P can be a
template structural brain network obtained from dMRI. The functional networks
can then overlay the template network (Fig. 1).

We are interested in learning the model Θ = (V,wΘ) using both the func-
tional and structural brain networks. At the subject level, we train Θ using
individual network Gk by optimizing

Θ̂k = arg min
Θ

LF (Θ,Gk) + λLtop(Θ,P ), (4)

where the squared Frobenius loss LF (Θ,Gk) = ||wΘ −wk||2F measures the good-
ness of fit between the model and the individual network. The parameter λ
controls the amount of topological information of network P that is introduced
to Gk. The larger the value of λ, the more we are learning toward the topology
of P . If λ = 0, we no longer learn the topology of P but simply fit the model Θ
to the individual network Gk.

In numerical implementation, Θ = (V,wΘ) can be estimated iteratively
through gradient descent efficiently by Theorems 1 and 2. The topological gradi-
ent with respect to edge weights wΘ = (wΘ

ij) is given as

∂Ltop(Θ,P )
∂wΘ

ij

=

{
2
(
wΘ

ij − τ∗
0 (wΘ

ij)
)

if wΘ
ij ∈ B(Θ);

2
(
wΘ

ij − τ∗
1 (wΘ

ij)
)

if wΘ
ij ∈ D(Θ).

(5)
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Fig. 3. (a) Two modular networks with d = 24 nodes and c = 3 modules were generated
using p = 0.6 and 0.8. (b) The run time of graph matching cost between two modular
networks of node size d plotted in the logarithmic scale. The run time of topological
loss grows in a minuscule rate with the node size as opposed to the exponential run
times of the graph matching algorithms.

By updating the edge weight wΘ
ij , we adjust either a 0D birth value or a 1D

death value, which changes topology of the model Θ. At each current iteration,
we take a step in the direction of negative gradient with respect to an updated
Θ from the previous iteration. As wΘ

ij is moved through its optimal matching,
the topology of Θ gets close to that of P while the Frobenius norm keeps Θ
close to the observed network Gk. The time complexity of topological gradient
is dominated by the computation of the MST with O(|E| log |V |).

3 Statistical Validation

We evaluated discriminative performance of the topological loss against four well-
known graph matching algorithms: graduated assignment (GA) [13], spectral
matching (SM) [18], integer projected fixed point method (IPFP) [19] and re-
weighted random walk matching (RRWM) [5] using simulated networks.

We simulated random modular network X with d number of nodes and c
number of modules where the nodes are evenly distributed among modules. We
used d = 12, 18, 24 and c = 2, 3, 6. Each edge connecting two nodes within the
same module was then assigned a random weight following a normal distribution
N (μ, σ2) with probability p or Gaussian noise N (0, σ2) with probability 1 − p.
Edge weights connecting nodes between different modules had probability 1 − p
of being N (μ, σ2) and probability p of being N (0, σ2). Any negative edge weights
were set to zero. With larger value of within-module probability p, we have more
pronounced modular structure (Fig. 3-a). The network X exhibits topological
structures of connectedness. μ = 1, σ = 0.25 and p = 0.6 were universally used
as network variability.

We simulated two groups of random modular networks X1, · · · ,Xm and
Y1, · · · ,Yn. If there is group difference in network topology, an average topologi-
cal loss within group LW =

∑
i<j L(Xi,Xj)+

∑
i<j L(Yi,Yj)

(m2 )+(n2)
is expected to be smaller

than an average topological loss between groups LB =
∑m

i=1
∑n

j=1 L(Xi,Yj)

mn . We

measured the group disparity as the ratio statistic φL = LB

/
LW . If φL is large,

the groups differ significantly in network topology. If φL is small, it is likely
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Table 1. Performance results are summarized as average p-values for various parameter
settings of d (number of nodes) and c (number of modules).

d c GA SM RRWM IPFP Ltop

12 vs. 12 2 vs. 3 0.45 ± 0.27 0.48 ± 0.30 0.28 ± 0.31 0.34 ± 0.28 0.08± 0.16

3 vs. 6 0.40 ± 0.29 0.35 ± 0.28 0.24 ± 0.26 0.35 ± 0.28 0.06± 0.13

18 vs. 18 2 vs. 3 0.25 ± 0.23 0.41 ± 0.26 0.26 ± 0.24 0.42 ± 0.28 0.01± 0.02

3 vs. 6 0.28 ± 0.24 0.37 ± 0.31 0.21 ± 0.24 0.37 ± 0.30 0.01± 0.01

24 vs. 24 2 vs. 3 0.23 ± 0.25 0.30 ± 0.26 0.14 ± 0.20 0.31 ± 0.28 0.00± 0.01

3 vs. 6 0.24 ± 0.26 0.29 ± 0.28 0.10 ± 0.13 0.37 ± 0.26 0.00± 0.00

12 vs. 12 2 vs. 2 0.49 ± 0.27 0.46 ± 0.30 0.51 ± 0.30 0.47 ± 0.28 0.53 ± 0.29

3 vs. 3 0.45 ± 0.32 0.44 ± 0.26 0.47 ± 0.27 0.51 ± 0.30 0.46 ± 0.31

6 vs. 6 0.57 ± 0.30 0.51 ± 0.28 0.56 ± 0.29 0.45 ± 0.26 0.58 ± 0.29

that there is no group difference. Similarly, we also defined the ratio statistic
for the baseline algorithms. Since the distributions of the ratio statistics were
unknown, the permutation test was used. In each simulation, we generated two
groups with 10 modular networks each. We then computed 200000 permuta-
tions by shuffling group labels and obtained the p-values. The simulations were
independently performed 50 times and the average p-value was reported.

The baseline graph matching algorithms are of polynomial time and not scal-
able compared to our method. For networks with d = 100 nodes, the run times
of all the baselines are more than 100 times longer than that of topological loss
(Fig. 3-b). When there is network difference (first three rows in Table 1), small
p-value indicates that a method performs well at discriminating networks. In all
the parameter settings, topological loss outperformed the other graph matching
algorithms. Topological loss also consistently outperformed the baseline algo-
rithms for other values of c, d and p. In the case of no network difference (last
row in Table 1), small p-value indicates a method falsely detects the network
difference when there is none. Since p-values of all the methods were not statis-
tically significant, they all performed well. We also get similar results for other
values of c, d and p. The graph matching algorithms are unable to detect topo-
logical differences while topological loss is able to easily detect such differences
in subtle topological patterns with the minimal amount of run time. The MAT-
LAB code for the simulation study is available at https://topolearn.github.io/
topo-loss. The SM algorithm used in this simulation study and methods pro-
posed in [1,26] rely on the same spectral graph theory and are expected to show
analogous performance results.

4 Application to a Twin Imaging Study

Dataset and Preprocessing. dMRI and resting-state fMRI data were
obtained from the Human Connectome Project [28]. fMRI went through fur-
ther preprocessing including motion correction, scrubbing, bandpass filtering and

https://topolearn.github.io/topo-loss
https://topolearn.github.io/topo-loss
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Fig. 4. Most heritable connections with 100% heritability using (a) Pearson correlation
matrices and (b) topologically learned networks.

outlier removal among others. AAL was used to parcellate the brain into 116
regions [27]. fMRI were spatially averaged across voxels within each brain region
resulting in 116 average fMRI time series per subject. There are 124 monozy-
gotic (MZ) twin pairs and 70 same-sex dizygotic (DZ) twin pairs. For dMRI,
about one million fiber tracts per subject were generated to compute biologi-
cally accurate brain connectivity [8]. AAL was used to parcellate the brain into
116 regions. The subject-level connectivity matrices were constructed by count-
ing the number of tracts between the regions. The template structural network P
was obtained by computing one sample t-statistic map over all the subjects and
rescaling the t-statistic between 0 to 2 through the hyperbolic tangent function
then adding 1 (Fig. 1). The t-statistic map from [8] is made publicly available at
http://stat.wisc.edu/∼mchung/softwares/dti.

Genetic Heritability. For the k-th subject, functional connectivity ρk
ij between

regions i and j was computed using the Pearson correlation between time series.
We converted the correlation into a metric through wk = (wk

ij), where wk
ij =√

(1 − ρk
ij)

/
2 and obtained a subject-level functional brain network Gk = (V,wk)

[7]. The topological learning was applied to estimate the subject-level model Θk

by minimizing the objective function (4) using the individual network Gk and
the template structural network P . The model Θk was initialized to Gk. To
determine an optimal subject-level λ, we searched over different λ’s to find a
value that minimized the total loss LF + Ltop for each subject. The average of
the optimal λ’s across all the subjects was λ = 1.0000 ± 0.0002, a highly stable
result. Thus, we globally used λ = 1 for all the subjects. We then investigated
if the learned networks Θ̂k are genetically heritable. We used the ACE model
where the heritability index (HI) is estimated using Falconer’s formula [6].

Results and Discussion. We computed the HI using the initial Pearson corre-
lation matrices as a baseline versus the topologically learned networks. Figure 4,
which displays resulting HI thresholded at 100% heritability, shows far more con-
nections for the learned networks as opposed to the Pearson correlation matri-
ces. The learned networks are expected to inherit sparse topology without many

http://stat.wisc.edu/~mchung/softwares/dti
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cycles from the template network P (Fig. 1). This suggests that short-lived cycles
were removed from the initial functional networks, improving the statistical sen-
sitivity. For the learned networks, the connection with the highest HI is between
left superior parietal lobule and left amygdala among many other connections
with 100% heritability, suggesting that genes influence the development of these
connections. Our findings can be used as a baseline for studying more complex
relations between brain networks and other phenotypes.
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