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Abstract. Diffusion-weighted (DW) magnetic resonance imaging is
essential for the diagnosis and treatment of ischemic stroke. DW images
(DWIs) are usually acquired in multi-slice settings where lesion areas
in two consecutive 2D slices are highly discontinuous due to large slice
thickness and sometimes even slice gaps. Therefore, although DWIs con-
tain rich 3D information, they cannot be treated as regular 3D or 2D
images. Instead, DWIs are somewhere in-between (or 2.5D) due to the
volumetric nature but inter-slice discontinuities. Thus, it is not ideal
to apply most existing segmentation methods as they are designed for
either 2D or 3D images. To tackle this problem, we propose a new neural
network architecture tailored for segmenting highly discontinuous 2.5D
data such as DWIs. Our network, termed LambdaUNet, extends UNet
by replacing convolutional layers with our proposed Lambda+ layers. In
particular, Lambda+ layers transform both intra-slice and inter-slice con-
text around a pixel into linear functions, called lambdas, which are then
applied to the pixel to produce informative 2.5D features. LambdaUNet
is simple yet effective in combining sparse inter-slice information from
adjacent slices while also capturing dense contextual features within a
single slice. Experiments on a unique clinical dataset demonstrate that
LambdaUNet outperforms existing 3D/2D image segmentation methods
including recent variants of UNet. Code for LambdaUNet is available.
(URL: https://github.com/YanglanOu/LambdaUNet.)
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1 Introduction

In the United States, stroke is the second leading cause of death and the third
leading cause of disability [9]. About 795,000 people in the US have a stroke
each year [12]. A stroke happens when some brain cells suddenly die or are
damaged due to lack of oxygen when blood flow to parts of the brain is lost or
reduced due to blockage or rupture of an artery [14]. Locating the lesion areas
where brain tissue is prevented from getting oxygen and nutrients is essential for
accurate evaluation and timely treatment. Diffusion-weighted imaging (DWI) is a
commonly performed magnetic resonance imaging (MRI) sequence for evaluating
acute ischemic stroke and is sensitive in detecting small and early infarcts [11].

2-Dimensional 3-Dimensional2.5-Dimensional

Contextual AreaTarget Pixel

Fig. 1. Comparison of 2D, 2.5D, and 3D feature extraction methods. When extracting
features for a target pixel, our 2.5D method restricts the context area in adjacent slices
to focus on the most relevant pixels to reduce noise and improve generalization.

Segmenting stroke lesions on DWIs manually is time-consuming and sub-
jective [10]. With the advancement of deep learning, numerous automatic seg-
mentation methods based on deep neural networks (DNNs) have emerged to
detect stroke lesions. Some of them perform segmentation on each 2D slice indi-
vidually [2,4], while others treat DWIs as 3D data and apply 3D segmentation
networks [19]. Beyond methods for lesion segmentation in DWIs, there have been
many successful methods for general medical image segmentation. For instance,
UNet [16] has shown the advantage of skip-connections on biomedical image
segmentation. Based on UNet, Oktay et al. proposed Attention UNet by adding
attention gates that filter the features propagated through the skip connections
in U-Net [13]; Chen et al. proposed TransUNet, as they find that transformers
make strong encoders for medical image segmentation [3]. Çiçek [5] extend UNet
to 3D field for volumetric segmentation. Wang et al. proposed volumetric atten-
tion combined with Mask-RCNN to address the GPU memory limitation of 3D
U-net. Zhang et al. [19] proposed a 3D fully convolutional and densely connected
convolutional network which is derived from the powerful DenseNet [8].
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Although previous medical image segmentation methods work well for 2D or
3D data by design, they are not well suited for DWIs, which have contextual
characteristics between 2D and 3D. We term such data type as 2.5D [18].1 Differ-
ent from 2D data, DWIs contain 3D volumetric information by having multiple
DWI slices. However, unlike typical 3D medical images that are isotropic or near
isotropic in all three dimensions, DWIs are highly anisotropic with slice dimen-
sion at least five times more than in-plane dimensions. Therefore, neighboring
slices can have abrupt changes around the same area which is especially prob-
lematic for early infarcts that are small and do not extend beyond a few slices.
Due to the 2.5D characteristics of DWIs, if we apply 2D segmentation methods
to DWIs, we lose valuable 3D contextual information from neighboring slices
(Fig. 1 (left)). On the other hand, if we apply a traditional 3D CNN-based seg-
mentation method, due to the high discontinuity between slices, many irrelevant
features from neighboring slices are processed by the network (Fig. 1 (right)),
which adds substantial noise to the learning process and also makes the network
prone to over-fitting.

In this work, our goal is to design a segmentation network tailored for images
with 2.5D characteristics like DWIs. To this end, we propose LambdaUNet which
adopts the UNet [16] structure but replaces convolutional layers with our pro-
posed Lambda+ layers which can capture both dense intra-slice features and
sparse inter-slice features effectively. Lambda+ layers are inspired by the Lambda
layers [1] which transform both global and local context around a pixel into linear
functions, called lambdas, and produce features by applying these lambdas to
the pixel. Although Lambda layers have shown strong performance for 2D image
classification, they are not suitable for 2.5D DWIs because they are designed for
2D data and cannot capture sparse inter-slice features. Our proposed Lambda+
layers are designed specifically for 2.5D DWI data, where they consider both
the intra-slice and inter-slice contexts of each pixel. Here the inter-slice con-
text of a pixel consists of pixels at the same 2D location but in neighboring
slices (Fig. 1 (middle)). Note that, unlike many 3D feature extraction methods,
Lambda+ layers do not consider pixels in neighboring slices that are at different 2D
locations, because these pixels are less likely to contain relevant features and we
suppress them to reduce noise and prevent over-fitting. Lambda+ layers transform
the inter-slice context into a different linear function–inter-slice lambda–which
complements other intra-slice Lambdas to derive sparse inter-slice features. As
illustrated in Fig. 1, the key design of Lambda+ layers is that they treat intra-
slice and inter-slice features differently by using a dense intra-slice context and
a sparse inter-slice context, which suits well the 2.5D DWI data.

Existing works in 2.5D segmentation [7,17,20] also recognize the anisotropy
challenge of CT scans. However, they simply combine 3D and 2D convolutions
without explicitly considering the anisotropy. To our knowledge, the proposed
LambdaUNet is the first 2.5D segmentation model that is designed specifically for
2.5D data like DWIs and treats intra-slice and inter-slice pixels differently. Exten-

1 Note that our definition of 2.5D is different from that in computer vision, where
2.5D means the 2D retinal projections of 3D environments.
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sive experiments on a large annotated clinical DWI dataset of stroke patients
show that LambdaUNet significantly outperforms previous art in terms of seg-
mentation accuracy.

2 Methods

Denote a DWI volume as I ∈ R
T×H×W×C , where T is the number of DWI slices,

H and W are the spatial dimensions (in pixels) of each 2D slice, respectively,
and C is the number of DWI channels. The DWI volumes are preprocessed by
skullstripping to remove non-brain tissues in all the DWI channels.

Our goal is to predict the segmentation map O ∈ R
T×H×W of stroke lesions.

The spatial resolution within each slice is 1 mm between adjacent pixels while
the inter-slice resolution is 6 mm between slices. We can observe that the inter-
slice resolution of DWIs is much lower than the intra-slice resolution, which
leads to the high discontinuity between adjacent slices—the main characteristic
of 2.5D data like DWIs. As discussed in Sect. 1, both 3D and 2D segmentation
models are not ideal for DWIs, because common 3D models are likely to overfit
irrelevant features in neighboring slices, while 2D models completely disregard
3D contextual information. This motivates us to propose the LambdaUNet, a
2.5D segmentation model specifically designed for DWIs. Below, we will first
provide an overview of LambdaUNet and then elaborate on how its Lambda+
layers effectively capture 2.5D contextual features.

LambdaUNet. The main structure of our LambdaUNet follows the UNet [16]
for its strong ability to preserve both high-level semantic features and low-level
details. The key difference of LambdaUNet from the original UNet is that we
replace convolutional layers in the UNet encoder with our proposed Lambda+
layers (detailed in Sect. 2.1), which can extract both dense intra-slice features
and sparse inter-slice features effectively. Since all layers except Lambda+ layers in
LambdaUNet are identical with those in UNet, they require 2D features as input;
we address this by merging the slice dimension T with the batch dimension
to reshape 3D features into 2D features for non-Lambda+ layers, while Lambda+
layers undo this reshaping to recover the slice dimension and regenerate a 3D
input that is used to extract both intra- and inter-slice features. The final output
of LambdaUNet is the lesion segmentation mask O ∈ R

T×H×W . The Binary
Cross-Entropy (BCE) loss is used to train LambdaUNet for the pixel-wise binary
classification task.

2.1 Lambda+ Layers

Lambda+ layers are an enhanced version of Lambda layers [1], which transform
context around a pixel into linear functions, called lambdas, and mimic the atten-
tion operation by applying lambdas to the pixel to produce features. Different
from attention, the lambdas can encode positional information as we will elab-
orate later, which affords them a stronger ability to model spatial relations.
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Lambda+ layers extend Lambda layers, which are designed for 2D data, by adding
inter-slice lambdas with a restricted context region to effectively extract features
from 2.5D data such as DWIs.

The input to a Lambda+ layer is a 3D feature map X ∈ R
|n|×|c|, where |c|

is the number of channels and n is the linearized pixel index into both spatial
(height H and width W ) and slice (T ) dimensions of the feature map, i.e., n
iterates over all pixels P inside the 3D volume, and |n| equals the total number
of pixels |P|. Besides input X, we also have context C ∈ R

|m|×|c| where C = X
(same as self-attention) and m also iterates over all pixels P in the 3D volume.
Importantly, when extracting features for each pixel n, we restrict the region
of context pixels m to a 2.5D area A(n) ⊂ P. As shown in Fig. 2 (a), the 2.5D
context area consists of the entire slice where pixel n is in, as well as pixels with
the same 2D location in adjacent T slices where T is the inter-slice kernel size.

Similar to attention, Lambda+ layer computes queries Q = XWQ ∈ R
|n|×|k|,

keys K = CWK ∈ R
|m|×|k|×|u|, and values V = CW V ∈ R

|m|×|v|×|u|, where
WQ ∈ R

|c|×|k|, WK ∈ R
|c|×|k|×|u| and W V ∈ R

|c|×|v|×|u| are learnable projec-
tion matrices, |k| and |v| are the dimensions of queries (keys) and values, and
|u| is an additional dimension to increase model capacity. We normalize the keys
across pixels using softmax: K̄ = softmax(K). We denote qn ∈ R

|k| as the n-th
query in Q for a pixel n. We also denote K̄m ∈ R

|k|×|u| and V m ∈ R
|v|×|u| as

the m-th key and value in K and V for a context pixel m.
For a target pixel n ∈ P inside a slice t, a lambda+ layer computes three

types of lambdas (linear functions) as illustrated in Fig. 2: (1) a global lambda
that encodes global context within slice t, (2) a local lambda that summarizes
the local context around pixel n in slice t, and (3) an inter-slice lambda that
captures inter-slice features from adjacent slices.

(b) Global Lambda (c) Local Lambda (d) Inter-Slice Lambda(a) All Lambdas

Joint Context Area Global Context Area Local Context Area Inter-Slice Context Area

= + +

Target Pixel

Fig. 2. Context areas of the global lambda, local lambda, and inter-slice lambda.

Global Lambda. As shown in Fig. 2(b), the global lambda aims to encode the
global context within slice t where the target pixel n is in, so the context area
G(n) of the global lambda includes all pixels within slice t. For each context pixel
m ∈ G(n), its contribution to the global lambda is computed as:

μG
m = K̄mV T

m , m ∈ G(n) . (1)
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The global lambda λG
n is the sum of the contributions from each pixel m ∈ G(n):

λG
n =

∑

m∈G(n)

μG
m =

∑

m∈G(n)

K̄mV T
m ∈ R

|k|×|v| . (2)

Note that λG
n is invariant for all n within the same slice as G(n) is the same.

Local Lambda. The local lambda encodes the context of a local R × R area
L(n) centered around the target pixel n in slice t (see Fig. 2(c)). Compared
with the global lambda, besides the difference in context areas, the local lambda
uses learnable relative-position-dependent weights Enm ∈ R

|k|×|u| to encode the
position-aware contribution of a context pixel m to the local lambda:

μL
nm = EnmV T

m , m ∈ L(n) . (3)

Note that the weights Enm are shared for any pairs of pixels (n,m) with the
same relative position between n and m. The local lambda λL is obtained by:

λL
n =

∑

m∈L(n)

μL
nm =

∑

m∈L(n)

EnmV T
m ∈ R

|k|×|v| . (4)

Inter-Slice Lambda. The inter-slice lambda defines a context area S(n) includ-
ing pixels in adjacent slices sharing the same 2D location with the target pixel
n, as shown in Fig. 2(d). As discussed before, we use this restricted context area
for extracting inter-slice features due to the high discontinuity between slices
for 2.5D data like DWIs. Although one context pixel per adjacent slice seems
very restrictive, one pixel of a feature map at coarse (downsampled) 2D scales
in LambdaUNet corresponds to a large area in the original scale. Furthermore,
LambdaUNet employs multiple Lambda+ layers, so information from other pixels
in adjacent slices can first propagate to pixels in S(n) and then to the target pixel
n. Thus, our design of the restricted context area makes the network focus on
the most-informative pixels inside S(n) and suppress less-relevant pixels, while
still allowing long-range interactions as pixels outside the area can indirectly
contribute to the feature through multiple Lambda+ layers.

Similar to the local lambda, the inter-slice lambda λS
n uses learnable weights

F nm ∈ R
|k|×|u| to encode position-aware contribution of context pixels:

μS
nm = F nmV T

m , m ∈ S(n) , (5)

λS
n =

∑

m∈S(n)

μS
nm =

∑

m∈S(n)

F nmV T
m ∈ R

|k|×|v| . (6)

Applying Lambdas. After computing the global lambda λG
n, local lambda λL

n,
and inter-slice lambda λS

n, we are ready to apply them to the query qn of the
target pixel n. The output feature yn for the target pixel n is:

yn = qT
n

(
λG
n + λL

n + λS
n

)
∈ R

|v| . (7)
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The final output of Lambda+ layer is a 3D feature map Y ∈ R
|n|×|v| formed by

the output features yn of all pixels n ∈ P. Although the above procedure for
computing lambdas is for a single pixel n, we can easily parallelize the computa-
tion for all pixels using standard convolution operations, which makes Lambda+
layers computationally efficient. We refer readers to the pseudocode in the sup-
plementary materials for detailed implementation.

3 Experiments

The primary focus of our experiments is to answer the following questions: (1)
Does LambdaUNet predict lesion segmentation maps more accurately than base-
lines? (2) Is our 2.5D Lambda+ layer more effective than the 2D or 3D Lambda
layer? (3) Based on qualitative results, does LambdaUNet has clinical significance?

Dataset. The clinical data we use to evaluate our model is provided by an
urban academic hospital. We sampled 99 acute ischemic stroke cases with large
(n = 42) and small (n = 57) infarct size. The data has an equal distribution
of samples from stroke with the left or right middle cerebral artery (MCA),
posterior cerebral artery (PCA), and anterior cerebral artery (ACA) origins.
The cases contain a mix of 1.5T and 3.0T scans. Certain cases even have a
mix of MCA and ACA. The ischemic infarcts are manually segmented by three
experts based on diffusion-weighted imaging (DWI) (b = 1000 s/mm2) and the
calculated exponential apparent diffusion map (eADC) using MRIcro v1.4. We
use the eADC and DWI images from ischemic stroke patients to form the two
channels of input DWIs I. We use 67 of the 99 fully labeled cases for training and
the remaining 32 fully labeled cases for validation and testing. More specifically,
we split the 32 cases into three folds of roughly the same size. Two of the three
folds are used for validation and one remaining fold is used for testing. Each of
the three folds is used for testing once, and the average result is reported as the
final testing result. The 32 cases used for testing were carefully chosen to make
sure the stroke size, location, and type are nicely balanced in the testing set.

Implementation Details. Our implementation is using the PyTorch [15] and
the Lightning [6] frameworks. All experiments are conducted using four NVIDIA
Quadro RTX 6000 GPUs with 24 GB memory. For Lambda+ layers, both the
inter-slice kernel size T and the local kernel size R are set to 3. We train the
model for 100 epochs using the RMSprop optimizer; an initial learning rate of
1e-4 is used for 20 epochs and then the learning rate is linearly reduced to
0. We randomly select 12 DWI sequence segments of 8 slices to form a mini-
batch during training. The whole training process takes about 4 h to finish. The
training converges after 40 epochs. For testing, we select the model that gives
the highest dice score for validation data.

Baselines and Metrics. We compare our method against well-known and
recent 2D segmentation methods, U-Net [16], AttnUNet [13], and TransUNet [3],
as well as one 3D segmentation method: 3D UNet [5]. All the baseline methods
are reproduced based on their open-sourced code with careful hyperparameter
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tuning. Besides, we also report the results of two variants of LambdaUNet to fur-
ther evaluate the effectiveness of the proposed 2.5D lambda+ layer. We use four
common evaluation metrics—dice score coefficient (DSC), recall, precision, and
F1 score—for stroke lesion segmentation to provide quantitative comparisons.

3.1 Results

In the first group of Table 1, we show the slice-level accuracy of all baselines on
our stroke lesion dataset. One can observe that the proposed LambdaUNet has sig-
nificant improvements over baselines, e.g., performance gains range from 3.06%
to 8.31% for average DSC. The improvement suggests that our Lambda+ layers
are more suitable for feature extraction of 2.5D DWI data. In the second group,
we compare LambdaUNet with its 2D and 3D variants. LambdaUNet2D directly
removes the inter-slice lambda from the LambdaUNet while LambdaUNet3D uses
a 3D local context area L(n) instead of the inter-slice lambda. As indicated in
Table 1, both variants perform worse than LambdaUNet in terms of DSC and the
F1 score. This demonstrates the effectiveness of the 2.5D design of the proposed
Lambda+ layers. Although LambdaUNet does not achieve the highest precision or
recall over the baselines and variants, it can maintain a good balance between
recall and precision, which sometimes cancel each other out (e.g., AttnUNet and
3D UNet). This is further confirmed by the superior F1 score of LambdaUNet.

Table 1. Segmentation performance comparison between different models.

Method 2D/3D DSC Recall/Precision F1 Score

UNet [16] 2D 82.15 80.28/86.29 81.61

AttnUNet [13] 2D 81.83 77.45/86.74 80.82

TransUNet [3] 2D 83.45 83.24/87.15 84.48

3D UNet [5] 3D 78.20 83.54/78.39 78.21

(Ours) LambdaUNet-2D 2D 84.03 82.27/87.10 84.19

(Ours) LambdaUNet-3D 3D 84.76 79.92/89.86 84.09

(Ours) LambdaUNet 2.5D 86.51 81.76/89.39 84.84

Figure 3 visualizes the predicted segmentation masks on five consecutive slices
for one stroke case. We can see that the masks produced by our LambdaUNet (last
column) are the closest to the ground truth than the baselines. For instance, in
slice 3 (S3), the baselines either miss some details (UNet, AttnUNet, TransUNet)
indicated by the white areas or generate some false positive predictions (3D
UNet) denoted by the red areas, while our LambdaUNet captures the irregular
shape of lesions well. S4 and S5 also show that LambdaUNet performs the best on
difficult small lesions. More results are provided in the supplementary materials.
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LambdaUNet

Inputs

eADC DWI UNet AttnUNet TransUNet 3D UNet

S1

S2

S3

S4

S5

Results

Fig. 3. Qualitative results on five consecutive slices of one ischemic stroke clinical case.
Green indicates the correct predictions. White areas are false negative while red areas
are false positive. Red circles show a close-up view of the lesion areas. (Color figure
online)

3.2 Discussion

Our LambdaUNet not only shows advantages on both quantitative and qualitative
measurements, the way it extracts features is more like clinicians. As clinicians
consider all adjacent slices but only focus on the most informative areas, our
Lambda+ layers capture intra- and inter-slice features and automatically sup-
press irrelevant 3D interference. Lesion areas of acute stroke are an important
end-point for clinical trials, as proper treatment relies on measuring the infarc-
tion core volume and estimating salvageable tissue. Therefore, an accurate and
reproducible DWI-suited segmentation model like LambdaUNet will be of high
interest in clinical practice.

4 Conclusion

We defined DWIs as 2.5D data for their dense intra-slice resolution and sparse
inter-slice resolution. Based on the 2.5D characteristics, we proposed a segmen-
tation network LambdaUNet, which includes a new 2.5D feature extractor, termed
Lambda+ layers. Lambda+ layers effectively capture features in 2.5D data by using
dense intra-slice and sparse inter-slice context areas. This design allows the net-
work to focus on informative features while suppressing less relevant features
to reduce noise and improve generalization. Experiments on the clinical stroke
dataset verify that our LambdaUNet outperforms state-of-the-art segmentation
methods and shows strong potential in clinical practice.
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