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Abstract. Despite the success of deep learning methods in medical
image segmentation tasks, the human-level performance relies on mas-
sive training data with high-quality annotations, which are expensive
and time-consuming to collect. The fact is that there exist low-quality
annotations with label noise, which leads to suboptimal performance of
learned models. Two prominent directions for segmentation learning with
noisy labels include pixel-wise noise robust training and image-level noise
robust training. In this work, we propose a novel framework to address
segmenting with noisy labels by distilling effective supervision informa-
tion from both pixel and image levels. In particular, we explicitly esti-
mate the uncertainty of every pixel as pixel-wise noise estimation, and
propose pixel-wise robust learning by using both the original labels and
pseudo labels. Furthermore, we present an image-level robust learning
method to accommodate more information as the complements to pixel-
level learning. We conduct extensive experiments on both simulated and
real-world noisy datasets. The results demonstrate the advantageous per-
formance of our method compared to state-of-the-art baselines for med-
ical image segmentation with noisy labels.
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1 Introduction

Image segmentation plays an important role in biomedical image analysis. With
rapid advances in deep learning, many models based on deep neural networks
(DNNs) have achieved promising segmentation performance [1]. The success
relies on massive training data with high-quality manual annotations, which
are expensive and time-consuming to collect. Especially for medical images, the
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annotations heavily rely on expert knowledge. The fact is that there exist low-
quality annotations with label noise. Many studies have shown that label noise
can significantly affect the accuracy of the learned models [2]. In this work, we
address the following problem: how to distill more effective information on noisy
labeled datasets for the medical segmentation tasks?

Many efforts have been made to improve the robustness of a deep classifi-
cation model from noisy labels, including loss correction based on label transi-
tion matrix [3–5], reweighting samples [6,7], selecting small-loss instances [8,9],
etc. Although effective on image classification tasks, these methods cannot be
straightforwardly applied to the segmentation tasks [10].

There are some deep learning solutions for medical segmentation with noisy
labels. Previous works can be categorized into two groups. Firstly, some methods
are proposed to against label noise using pixel-wise noise estimation and learn-
ing. For example, [11] proposed to learn spatially adaptive weight maps and
adjusted the contribution of each pixel based on meta-reweighting framework.
[10] proposed to train three networks simultaneously and each pair of networks
selected reliable pixels to guide the third network by extending the co-teaching
method. [12] employed the idea of disagreement strategy to develop label-noise-
robust method, which updated the models only on the pixel-wise predictions of
the two models differed. The second group of methods concentrates on image-
level noise estimation and learning. For example, [13] introduced a label quality
evaluation strategy to measure the quality of image-level annotations and then
re-weighted the loss to tune the network. To conclude, most existing methods
either focus on pixel-wise noise estimation or image-level quality evaluation for
medical image segmentation.

However, when evaluating the label noise degree of a segmentation task, we
not only judge whether image-level labels are noisy, but also pay attention to
which pixels in the image have pixel-wise noisy labels. There are two types of
noise for medical image segmentation tasks: pixel-wise noise and image-level
noise. Despite the individual advances in pixel-wise and image-level learning,
their connection has been underexplored. In this paper, we propose a novel two-
phase framework PINT (Pixel-wise and Image-level Noise Tolerant learning) for
medical image segmentation with noisy labels, which distills effective supervision
information from both pixel and image levels.

Concretely, we first propose a novel pixel-wise noise estimation method and
corresponding robust learning strategy for the first phase. The intuition is that
the predictions under different perturbations for the same input would agree
on the relative clean labels. Based on agreement maximization principle, our
method relabels the noisy pixels and further explicitly estimates the uncertainty
of every pixel as pixel-wise noise estimation. With the guidance of the estimated
pixel-wise uncertainty, we propose pixel-wise noise tolerant learning by using
both the original pixel-wise labels and generated pseudo labels. Secondly, we
propose image-level noise tolerant learning for the second phase. For pixel-wise
noise-tolerant learning, the pixels with high uncertainty tends to be noisy. How-
ever, there are also some clean pixels which show high uncertainty when they lie
in the boundaries. If only pixel-wise robust learning is considered, the network
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Fig. 1. Illustration of proposed pixel-wise noise tolerant learning framework. We gen-
erate multiple mini-batches of synthetic inputs {X̂m}Mm=1 with different perturbations.

The synthetic mini-batch images go through the network ˜θ to get their predictions. We
regard the mean predictions as the pseudo labels and choose the predictive entropy
as the metric to estimate uncertainty. The rectified total loss is calculated with Lseg

and Lpse guided by factor α based on uncertainty map. The image-level noise tolerant
learning has the similar pipeline.

will inevitably neglect these useful pixels. We extend pixel-wise robust learning
to image-level robust learning to address this problem. Based on the pixel-wise
uncertainty, we calculate the image-level uncertainty as the image-level noise
estimation. We design the image-level robust learning strategy according to the
original image-level labels and pseudo labels. Our image-level method could dis-
till more effective information as the complement to pixel-level learning. Last, to
show that our method improves the robustness of deep learning on noisy labels,
we conduct extensive experiments on simulated and real-world noisy datasets.
Experimental results demonstrate the effectiveness of our method.

2 Method

2.1 Pixel-Wise Robust Learning

Pixel-Wise Noise Estimation. In this section, we apply the agreement max-
imization principle to tackle the problem of noisy labels. The motivation is that
the predictions under different perturbations for the same input would agree on
the relatively clean pixel-wise labels, and it is unlikely for these predictions to
agree on relatively incorrect pixel-wise labels. Inspired by this, we propose our
pixel-wise robust learning. Figure 1 shows the pixel-wise noise tolerant learning
framework. We study the segmentation tasks with noisy labels for 3D medical
images. To satisfy the limitations of GPU memory, we follow the inspiration
of mean-teacher model [14]. We formulate the proposed PINT approach with
two deep neural networks. The main network is parameterized by θ and the
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auxiliary network is parameterized by ˜θ, which is computed as the exponen-
tial moving average (EMA) [14] of the θ. At training step t, ˜θ is updated with
˜θt = γ˜θt−1 + (1 − γ)θt, where γ is a smoothing coefficient.

For each mini-batch of training data, we generate synthetic inputs {X̂m}Mm=1

on the same images with different perturbations. Formally, we consider a mini-
batch data (X,Y ) sampled from the training set, where X = {x1, · · · , xK} are
K samples, and Y = {y1, · · · , yK} are the corresponding noisy labels. In our
study, we choose Gaussian noises as the perturbations. Afterwards, we perform
M stochastic forward passes on the auxiliary network ˜θ and obtain a set of
probability vector {pm}Mm=1 for each pixel in the input. In this way, we choose
the mean prediction as the pseudo label of v-th pixel: p̂v = 1

M

∑

m pvm, where pvm
is the probability of the m-th auxiliary network for v-th pixel. Inspired by the
uncertainty estimation in Bayesian networks [15], we choose the entropy as the
metric to estimate the uncertainty. When a pixel-wise label tends to be clean,
it is likely to have a peaky prediction probability distribution, which means a
small entropy and a small uncertainty. Conversely, if a pixel-wise label tends to
be noisy, it is likely to have a flat probability distribution, which means a large
entropy and a high uncertainty. As a result, we regard the uncertainty of every
pixel as pixel-wise noise estimation:

uv = E [−p̂vlogp̂v] (1)

where uv is the uncertainty of v-th pixel and E is the expectation operator. The
relationship between label noise and uncertainty is verified in Experiments 3.2.

Pixel-Wise Loss. We propose pixel-wise noise tolerant learning. Considering
that the pseudo labels obtained by predictions also contain noisy pixels and the
original labels also have useful information, we train our segmentation network
leveraging both the original pixel-wise labels and pesudo pixel-wise labels. For
the v-th pixel, the loss is formulated by:

Lv = αvL
seg
v + (1 − αv)Lpse

v (2)

where Lseg
v is the pixel-wise loss between the prediction of main network fv

and original noisy label yv; Lseg
v adopts the cross-entropy loss and is formulated

by: Lseg
v = Lce(fv, yv) = E [−yvlogfv]. Lpse

v is the pixel-wise loss between the
prediction fv and pseudo label ŷv. ŷv is equal to p̂v for soft label and is the
one-hot version of p̂v for hard label. Lpse

v is designed as pixel-level mean squared
error (MSE) and is formulated by: Lpse

v = Lmse(fv, ŷv) = E [||fv − ŷv||2]. αv

is the weight factor which controls the importance of Lseg
v and Lpse

v . Instead
of manually setting a fixed value, we provide automatic factor αv based on
pixel-wise uncertainty uv. We introduce αv as exp(−uv). If the uncertainty has
received one large value, this pixel-wise label is prone to be noisy. This factor αv

tends to zero, which drives the model to neglect original label and focus on the
pseudo label. In contrast, when the value of uncertainty is small, this pixel-wise
label is likely to be reliable. The factor αv tends to one and the model will focus
on the original label. The rectified pixel-wise total loss could be written as:

Ltotal
v = E [exp(−uv)Lseg

v + (1 − exp(−uv))Lpse
v ] (3)
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2.2 Image-Level Robust Learning

Image-Level Noise Estimation. For our 3D volume, we regard every slice-
level data as image-level data. Based on the estimated pixel uncertainty, the
image-level uncertainty can be summarized as: Ui = 1

Ni

∑

v uv, where Ui is
the uncertainty of i-th image (i-th slice); v denotes the pixel and Ni denotes
the number of pixels in the given image. In this case, the image with small
uncertainty tends to provide more information even if some pixels involved have
noisy labels. The pipeline is similar to pixel-wise framework and the differences lie
in the noise estimation method and corresponding robust total loss construction.

Image-Level Loss. For image-level robust learning, we train our segmentation
network leveraging both the original image-level labels and pseudo image-level
labels. For the i-th image, the loss is formulated by:

Li = αiL
seg
i + (1 − αi)L

pse
i (4)

where Lseg
i is the image-level cross-entropy loss between the prediction fi and

original noisy label yi; Lpse
i is the image-level MSE loss between the prediction

fi and pseudo label ŷi; Image-level pseudo label ŷi is composed of pixel-level ŷv.
αi is the automatic weight factor to control the importance of Lseg

i and Lpse
i .

Similarity, we provide automatic factor αi as exp(−Ui) based on image-level
uncertainty Ui. The rectified image-level total loss is expressed as:

Ltotal
i = E [exp(−Ui)L

seg
i + (1 − exp(−Ui))L

pse
i ] (5)

Our PINT framework has two phases for training with noisy labels. In the
first phase, we apply the pixel-wise noise tolerant learning. Based on the guidance
of the estimated pixel-wise uncertainty, we can filter out the unreliable pixels and
preserve only the reliable pixels. In this way, we distill effective information for
learning. However, for segmentation tasks, there are also some clean pixels have
high uncertainty when they lie in the marginal areas. Thus, we adopt the image-
level noise tolerant learning for the second phase. Based on the estimated image-
level uncertainty, we can learn from the images with relative more information.
That is, image-level learning enables us to investigate the easily neglected hard
pixels based on the whole images. Image-level robust learning can be regarded
as the complement to pixel-level robust learning.

3 Experiments and Results

3.1 Datasets and Implementation Details

Datasets. For synthetic noisy labels, we use the publicly available Left Atrial
(LA) Segmentation dataset. We refer the readers to the Challenge [20] for more
details. LA dataset provides 100 3D MR image scans and segmentation masks
for training and testing. We split the 100 scans into 80 scans for training and 20
scans for testing. We randomly crop 112×112×80 sub-volumes as the inputs. All
data are pre-processed by zero-mean and unit-variance intensity normalization.
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Table 1. Segmentation performance comparison on simulated LA noisy dataset with
varying noise rates (25%, 50% and 75%). The average values (±std) over 3 repetitions
are reported. The arrows indicate which direction is better.

Method 25% 50% 75%

Dice (%)↑ ASD ↓ Dice (%)↑ ASD ↓ Dice (%)↑ ASD ↓
V-net[16] 86.34± 0.59 2.72± 0.36 82.55± 0.26 3.35± 0.01 72.76± 1.00 5.48± 0.06

Reweighting [11] 87.31± 0.28 2.46± 0.35 83.24± 0.70 3.20± 0.17 73.02± 0.32 5.30± 0.12

Tri-network [10] 87.92± 0.44 2.37± 0.27 84.79± 0.44 2.83± 0.16 73.88± 0.46 5.22± 0.11

Pick-and-learn [13] 88.47± 0.30 1.92± 0.24 85.09± 0.56 2.73± 0.20 73.30± 0.27 5.11± 0.08

PNT 88.29± 0.43 1.82± 0.11 86.16± 0.69 2.43± 0.05 74.92± 0.19 5.16± 0.01

INT 89.24± 0.21 1.75± 0.21 85.78± 0.55 2.56± 0.12 74.42± 0.23 5.20± 0.08

PINT 90.49 ± 0.39 1.60 ± 0.06 89.04 ± 0.71 1.92 ± 0.17 76.25 ± 0.44 4.56 ± 0.18

For real-world dataset, we have collected CT scans with 30 patients (average
72 slices/patient). The dataset is used to delineate the Clinical Target Volume
(CTV) of cervical cancer for radiotherapy. Ground truths are defined as the
reference segmentations generated by two radiation oncologists via consensus.
Noisy labels are provided by the less experienced operators. 20 patients are
randomly selected as training images and the remaining 10 patients are selected
as testing images. We resize the images to 256 × 256 × 64 for inputs.

Implementation Details. The framework is implemented with PyTorch, using
a GTX 1080Ti GPU. We employ V-net [16] as the backbone network and add
two dropout layers after the L-5 and R-1 stage layers with dropout rate 0.5
[17]. We set the EMA decay γ as 0.99 referring to the work [14] and set batch
size as 4. We use the SGD optimizer to update the network parameters (weight
decay = 0.0001, momentum = 0.9). Gaussian noises are generated from a normal
distribution. For the uncertainty estimation, we set M = 4 for all experiments
to balance the uncertainty estimation quality and training efficiency. The effect
of hyper-parameters M is shown in supplementary materials. Code will be made
publicly available upon acceptance.

For the first phase, we apply the pixel-wise noise tolerant learning for 6000
iterations. At this time, the performance difference between different iterations is
small enough in our experiments. The learning rate is initially set to 0.01 and is
divided by 10 every 2500 iterations. For the second phase, we apply the image-
level noise tolerant learning. When trained on noisy labels, deep models have
been verified to first fit the training data with clean labels and then memorize
the examples with false labels. Following the promising works [18,19], we adopt
“high learning rate” and “early-stopping” strategies to prevent the network from
memorizing the noisy labels. In our experiments, we set a high learning rate as
lr = 0.01 and the small number of iterations as 2000. All hyper-parameters are
empirically determined based on the validation performance of LA dataset.

3.2 Results

Experiments on LA Dataset. We conduct experiments on LA dataset with
simulated noisy labels. We randomly select 25%, 50% and 75% training samples
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Fig. 2. Illustration of noise variance and pixel-wise uncertainty. The white color means
higher uncertainty. The pixels with high uncertainty usually lie in the noise areas or
marginal areas. (Color figure online)

and further randomly erode/dilate the contours with 5–18 pixels to simulate the
non-expert noisy labels. We train our framework with non-expert noisy anno-
tations and evaluate the model by the Dice coefficient score and the average
surface distance (ASD [voxel]) between the predictions and the accurate ground
truth annotations [17]. We compare our PINT framework with multiple baseline
frameworks. 1) V-net [16]: which uses a cross-entropy loss to directly train the
network on the noisy training data; 2) Reweighting framework [11]: a pixel-wise
noise tolerant strategy based on the meta-reweight framework; 3) Tri-network
[10]: a pixel-wise noise tolerant method based on tri- network extended by co-
teaching method. 4) Pick-and-learn framework [13]: an image-level noise tolerant
strategy based on image-level quality estimation. We use PNT to represent our
PINT framework with only pixel-wise robust learning and INT to represent our
PINT framework with only image-level robust learning. Our PINT framework
contains two-phase pixel-wise and image-level noise tolerant learning.

Table 1 illustrates the experimental results on the testing data. For clean-
annotated dataset, the V-net has the upper bound of average Dice 91.14% and
average ASD 1.52 voxels. (1) We can observe that as the noise percentage increase
(from clean labels to 25%, 50% and 75% noise rate), the segmentation perfor-
mance of baseline V-net decreases sharply. In this case, the trained model tends
to overfit to the label noise. When adopting noise-robust strategy, the segmen-
tation network begins to recover its performance. (2) For pixel-wise noise robust
learning, we compare Reweighting method [11] and our PNT with only pixel-wise
distillation. Our method gains 2.92% improvement of Dice for 50% noise rate
(83.24% vs 86.16%). For image-level noise robust learning, we compare Pick-and-
learn [13] and our INT with only image-level distillation. Our method achieves
1.12% average gains of Dice for 75% noise rate (73.30% vs 74.42%). These results
verify that our pixel-wise and image-level noise robust learning are effective. (3)
We can observe that our PINT outperforms other baselines by a large margin.
Moreover, comparing to PNT and INT methods, our PINT with both pixel-wise
and image-level learning shows better performance, which verifies that our PINT
can distill more effective supervision information.

Label Noise and Uncertainty. To investigate the relationship between pixel-
wise uncertainty estimation and noisy labels, we illustrates the results of ran-
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Fig. 3. Qualitative results of segmentation with noisy labels on simulated LA dataset
and real-world CTV dataset. The ground truths, the predictions by V-net, the predic-
tions by PNT, the predictions by INT and the predictions by PINT are colored with
red, purple, green, blue and yellow, respectively. (Color figure online)

domly selected samples on synthetic noisy LA dataset with 50% noise rate in
Fig. 2. The discrepancy between ground-truth and noisy label is approximated as
the noise variance. We can observe that the noise usually exists in the areas with
high uncertainty (shown in white color on the left). Inspired by this, we provide
our pixel-wise noise estimation based on pixel-wise uncertainty awareness. Apart
from noisy labels, pseudo labels also suffer from the noise effect. The best way
for training robust model is to use both original noisy labels and pseudo labels.
Furthermore, multiple examples are shown on the right. We observe that there
are some clean pixels show high uncertainty when they lie in the boundaries.
If only pixel-wise robust learning is considered, the network will neglect these
useful pixels. Therefore, we propose image-level robust learning to learn from
the whole images for distilling more effective information.

Visualization. As shown in Fig. 3, we provide the qualitative results of the
simulated noisy LA segmentation dataset and real-world noisy CTV dataset. For
noisy LA segmentation, we show some random selected examples with 50% noise
rate. Compared to the baselines, our PINT with both pixel-wise and image-level
robust learning yields more reasonable segmentation predictions.

Experiments on Real-World Dataset. We explore the effectiveness of our
approach on a real CTV dataset with noisy labels. Due to the lack of professional
medical knowledge, the non-expert annotators often generate noisy annotations.
The results are shown in Table 2. ‘No noise’ means we train the segmentation
network with clean labels. The other methods including V-net, Re-weighting,

Table 2. Segmentation performance comparison on real-world CTV dataset. The
arrows indicate which direction is better and the average values (±std) over 3 rep-
etitions are reported.

Method No noise [16] V-net [16] Re-weighting [11] Pick-and-learn [13] PNT INT PINT

Dice(%)↑ 77.26± 0.53 68.26± 0.21 69.31± 0.43 70.79± 0.31 73.57± 0.37 72.08± 0.56 75.31 ± 0.15

ASD [voxel]↓ 1.38± 0.03 2.25± 0.02 2.05± 0.06 2.11± 0.07 1.85± 0.04 1.92± 0.08 1.76 ± 0.13
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Pick-and-learn, PNT, INT and PINT are the same with LA segmentation. All
the results show that our PINT with both pixel-wise and image-level robust
learning can successfully recognize the clinical target volumes in the presence of
noisy labels and achieves competitive performance compared to the state-of-the-
art methods.

4 Conclusion

In this paper, we propose a novel framework PINT, which distills effective super-
vision information from both pixel and image levels for medical image segmen-
tation with noisy labels. We explicitly estimate the uncertainty of every pixel
as pixel-wise noise estimation, and propose pixel-wise robust learning by using
both the original labels and pseudo labels. Furthermore, we present the image-
level robust learning method to accommodate more informative locations as the
complements to pixel-level learning. As a result, we achieve the competitive per-
formance on the synthetic noisy dataset and real-world noisy dataset. In the
future, we will continue to investigate the joint estimation and learning of pixel
and image levels for medical segmentation tasks with noisy labels.
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