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Abstract. This paper presents a novel one-stage detection model, TUN-
Det, for thyroid nodule detection from ultrasound scans. The main con-
tributions are (i) introducing Residual U-blocks (RSU) to build the back-
bone of our TUN-Det, and (ii) a newly designed multi-head architecture
comprised of three parallel RSU variants to replace the plain convolu-
tion layers of both the classification and regression heads. Residual blocks
enable each stage of the backbone to extract both local and global fea-
tures, which plays an important role in detection of nodules with different
sizes and appearances. The multi-head design embeds the ensemble strat-
egy into one end-to-end module to improve the accuracy and robustness
by fusing multiple outputs generated by diversified sub-modules. Exper-
imental results conducted on 1268 thyroid nodules from 700 patients,
show that our newly proposed RSU backbone and the multi-head archi-
tecture for classification and regression heads greatly improve the detec-
tion accuracy against the baseline model. Our TUN-Det also achieves
very competitive results against the state-of-the-art models on overall
Average Precision (AP ) metric and outperforms them in terms of AP35

and AP50, which indicates its promising performance in clinical applica-
tions. The code is available at: https://github.com/Medo-ai/TUN-Det.

Keywords: Thyroid nodule detection · Deep convolutional networks ·
Ultrasound image · Multi-scale features · Multi-head architecture

1 Introduction

Ultrasound (US) is the primary diagnostic tool for both the detection and char-
acterization of thyroid nodules. As part of clinical workflow in thyroid sonogra-
phy, thyroid nodules are measured and their sizes are monitored over time as
significant growth could be a sign of thyroid cancer. Hence, finding Region of
Interest (ROI) of nodules for further processing becomes the preliminary step
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of the Computer-Aided Diagnosis (CAD) systems. In traditional CAD systems,
the ROIs are manually defined by experts, which is time-consuming and highly
relies on the experience of the radiologists and sonographers. Therefore, auto-
matic thyroid nodule detection, which predicts the bounding boxes of thyroid
nodules, from ultrasound images could play a very important role in computer
aided thyroid cancer diagnosis [11,33].

Thyroid nodule detection in ultrasound images is an important yet challeng-
ing task in both medical image analysis and computer vision fields [4,18,26,29].
In the past decades, many traditional object detection approaches have been
proposed [7,34,35,40], such as BING [5], EdgeBox [39] and Selective Search
[32]. However, due to the large variations of the targets, there is still significant
room for the improvements of traditional object detection approaches in terms
of accuracy and robustness. In recent years, object detection has achieved great
improvements by introducing machine learning and deep learning techniques.
These methods can be mainly categorized into three groups: (i) two-stage mod-
els: such as RCNN [10], Fast-RCNN [9], Faster-RCNN [24], SPP-Net [12], R-FCN
[6], Cascaded-RCNN [3] and so on; (ii) one-stage models: such as OverFeat [25],
YOLO (v1, v2, v3, v4, v5) [1,2,21–23], SSD [19], RetinaNet [16] and so on; (iii)
anchor-free models, such as CornerNet [15], CenterNet [8], ExtremeNet [38], Rep-
Points [37], FoveaBox [14] and FCOS [31]. As we know, the two-stage models are
originally more accurate but less efficient than one-stage models. However, with
the development of new losses, e.g. focal loss [16] and training strategies, one-
stage models are now able to achieve comparable performance against two-stage
models while requires less time costs. The anchor-free models relies on the object
center or key points, which are relatively less accessible in ultrasound images.

Almost all of the above detection models are originally designed for object
detection from natural images, which have different characteristics than ultra-
sound images. Particularly, ultrasound images have variable spatial resolution,
heavy speckle noise, and multiple acoustic artifacts, which make the detection
task challenging. In addition, thyroid nodules have diverse sizes, shapes and
appearances. Sometimes, thyroid nodules are very similar to the thyroid tissue
and are not defined by clear boundaries (e.g. ill-defined nodule). Some nodules
are heterogeneous due to diffuse thyroid disease, which makes these nodules dif-
ficult to differentiate from each other and their backgrounds. In addition, the
occasional occurrence of multiple thyroid nodules within the same image, and
large thyroid nodules with complex interior textures, which could be considered
internal nodules, further increase the difficulty of the nodule detection task.
These characteristics lead to high inter-observer variability among human read-
ers, and analogous challenges for machine learning tools, which often lead to
inaccurate or unreliable nodule detection.

To address the above issues, multi-scale features are very important. There-
fore, we propose a novel one-stage thyroid nodule detection model, called TUN-
Det, whose backbone is built upon the ReSidual U-blocks (RSU) [20], which is
able to extract richer multi-scale features from feature maps with different res-
olutions. In addition, we design a multi-head architecture for both the nodule
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Fig. 1. Architecture of the proposed TUN-Det.

bounding boxes classification and regression in our TUN-Det to predict more
reliable results. Each multi-head module is comprised of three different heads,
which are variants of the RSU block and arranged in parallel. Each multi-head
module outputs three separate outputs, which are supervised by losses com-
puted independently in the training process. In the inference step, multi-head
outputs are combined to achieve better detection performance. The Weighted
Boxes Fusion (WBF) algorithm [28] is introduced to fuse the outputs of each
multi-head module. In summary, our contributions are threefold: (i) a novel
one-stage thyroid nodule detection network, TUN-Det, built upon the Residual
U-blocks [20]; (ii) a novel multi-head architecture for both bounding boxes clas-
sification and regression heads, in which the ensemble strategy is embedded; (iii)
Very competitive performance against the state-of-the-art models on our newly
built thyroid nodule detection dataset.

2 Proposed Method

2.1 TUN-Det Architecture

Feature Pyramid Network (FPN) is one of the most popular architecture in
object detection. Because the FPN architecture is able to efficiently extract
high-level and low-level features from deeper and shallow layers, respectively.
As we know, multi-scale features play very important roles in object detection.
High-level features are responsible for predicting the classification scores while
low-level features are used to guarantee the bounding boxes’ regression accu-
racy. The FPN architectures usually take existing image classification networks,
such VGG [27], ResNet [13] and so on, as their backbones. However, each stage
of these backbones is only able to capture single-scale features because image
classification backbones are designed to perceive only high-level semantic mean-
ing while paying less attention to the low-level or multi-scale features[20]. To
capture more multi-scale features from different stages, we build our TUN-Det
upon the Residual U-blocks (RSU), which was first proposed in salient object
detection U2-Net [20]. Our proposed TUN-Det is also a one-stage FPN similar
to RetinaNet [16].
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Figure 1 illustrates the overall architecture of our newly proposed TUN-Det
for thyroid nodule detection. As we can see, the backbone of our TUN-Det con-
sists of five stages. The first stage is a plain convolution layer with stride of two,
which is used to reduce the feature maps resolution. The second to the fifth stages
are RSU-7, RSU-6, RSU-5 and RSU-4, respectively. There is a maxpooling opera-
tion between the neighboring stages. Compared with other plain convolution, the
RSUs are able to capture both local and global information from feature maps
with arbitrary resolutions[20]. Therefore, richer multi-scale features {C3, C4, C5}
can be extracted by the backbone built upon these blocks for supporting the nod-
ule detection. Then, an FPN [16] is applied on top of the backbone’s features
{C3, C4, C5} to create multi-scale pyramid features {P3, P4, P5, P6, P7}, which
will be used for bounding boxes regression and classification.

Fig. 2. Multi-head classification and regression module.

2.2 Multi-head Classification and Regression Module

After obtaining the multi-scale pyramid features {P3, P4, P5, P6, P7}, the most
important step is regressing the bounding boxes’ coordinates and predicting their
probabilities of being nodules. These two processes are usually implemented by a
regression module BBOXi = R(Pi) and a classification module CLASi = C(Pi),
respectively. The regression outputs {BBOX3, BBOX4, . . . , BBOX7} and the
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classification outputs {CLAS3, CLAS4, . . . , CLAS7} from different features are
then fused to achieve the final detection results by conducting non-maximum
suppression (NMS).

To further reduce the False Positives (FP) and False Negatives (FN) in the
detection results, multi-model ensemble strategy is usually considered. However,
this approach is not preferable in real-world applications due to high computa-
tional and time costs. Hence, we design a multi-head (three-head) architecture for
both classification and regression modules to address this issue. Particularly, each
classification and regression module consists of three parallel-configured heads,
{C(1), C(2), C(3)}, and {R(1), R(2), R(3)}, respectively. Given a feature map Pi,
three classification outputs, {C(1)(Pi), C(2)(Pi), C(3)(Pi)}, and three regression
outputs, {R(1)(Pi), R(2)(Pi), R(3)(Pi)}, will be produced. In the training pro-
cess, their losses will be computed separately and summed to supervise the model
training. In the inference step, the Weighted Boxes Fusion (WBF) algorithm [28]
is used to fuse the regression and classification outputs of different heads. This
design embeds the ensemble strategy into both the classification and regression
module to improve the detection accuracy while avoiding training multiple mod-
els, which is a standard procedure in common ensemble methods.

In this paper, the architectures of R(i) and C(i) are the same except for
the last convolution layer (see Fig. 2). To increase the diversity of the predic-
tion results and hence reducing the variance, three variants of RSU-7 (CBAM
RSU-7, CoordConv RSU-7 and BiFPN RSU-7) are developed to construct
the multi-head modules. The first head is CBAM RSU-7, in which a Convolu-
tional Block Attention Module (CBAM) [36] block is added after the standard
RSU-7 block to refine features by channel (Mc) and spatial (Ms) attention. The
formulation can be described as Fc = Mc(Fin)⊗Fin and Fs = Ms(Fc)⊗Fc. The
second head is CoordConv RSU-7, which replaces the plain convolution lay-
ers in the original RSU-7 by Coordinate Convolution [17] layers to encode geo-
metric information. CoordConv can be described as conv(concat(Fin, Fi, Fj)),
where Fin ∈ R

(h×w×c) is an input feature map, Fi and Fj are extra row and
column coordinate channels respectively. The third head is BiFPN RSU-7,
which expands RSU-7 by adding bi-directional FPN (BiFPN) [30] layer between
the encoding and decoding stages to improve multi-scale feature representation.
BiFPN layer has a ∩-shape architecture consisted of bottom-up and top-down
pathways, which helps to learn high-level features by fusing them in two direc-
tions. Here, we use four-stage BiFPN layer to avoid complexity and reduce the
number of trainable parameters.

2.3 Supervision

As shown in Fig. 1, our newly proposed TUN-Det has five groups of classification
and regression outputs. Therefore, the total loss is the summation of these five
groups of outputs: L =

∑5
i=1 αiLi, where αi is the weight of each group (all

α are set to 1.0 here). For every anchor, each group produces three classifica-
tion outputs {C(1), C(2), C(3)} and three regression outputs {R(1), R(2), R(3)}.
Therefore, the loss of each group can be defined as
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Li =
∑3

j=1λ
C(j)

i LC(j)

i +
∑3

j=1λ
R(j)

i LR(j)

i , (1)

where LC(j)

i and LR(j)

i are the corresponding losses for classification and regres-
sion outputs respectively. λC(j)

i and λR(j)

i are their corresponding weights to
determine the importance of each output. We set all the λ weights to 1.0 in our
experiments. LC(j)

i is the focal loss [16] for classification. It can be defined as
follows:

LC(i)

i = Focal(pt) = αt(1 − pt)γ × BCE(pc, yc),

pt =
{

pc if yc = 1

1 − pc otherwise
, αt =

{
α if yc = 1

1 − α otherwise,
(2)

where pc and yc are predicted and target classes respectively. α and γ are focal
weighting factor and focusing parameters that are set to 0.25 and 2.0, respec-
tively. LR(j)

i is the Smooth-L1 loss [9] for regression, which is defined as:

LR(j)

i = Smooth-L1(pr, yr) =
{

0.5(σx)2 if |x| < 1
σ2

|x| − 0.5
σ2 otherwise,

, x = pr − yr (3)

where pr and yr are predicted and ground truth bounding boxes respectively. σ
defines where the regression loss changes from L2 to L1 loss. It is set to 3.0 in
our experiments.

3 Experimental Results

3.1 Datasets and Evaluation Metrics

To validate the performance of our newly proposed TUN-Det on ultrasound thy-
roid nodule detection task, we build a new thyroid nodule detection dataset. The
dataset was retrospectively collected from 700 patients aged between 18–82 years
who presented at 12 different imaging centers for a thyroid ultrasound examina-
tion. Our retrospective study was approved by the health research ethics boards
of the participating centers. There are a total of 3941 ultrasound images, which
are extracted from 1924 transverse (TRX) and 2017 sagittal (SAG) scans. These
images are split into three subsets for training (2534), validation (565) and test-
ing (842) with 3554, 981, and 1268 labeled nodule bounding boxes, respectively.
There is no common patient in the training, validation and testing sets. All nod-
ule bounding boxes are manually labeled by 5 experienced sonographers (with
≥8 years of experience in thyroid sonography) and validated by 3 radiologists.
To evaluate the performance of our TUN-Det against other models, Average
Precision (AP) [16] is used as the evaluation metric. The validation set is only
used to select the model weights in the training process. All the performance
evaluation conducted in this paper is based on the testing set.
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3.2 Implementation Details

Our proposed TUN-Det is implemented in Tensorflow 1.14 and Keras. The input
images are resized to 512× 512 and the batch size is set to 1. The model param-
eters are initialized by Xavier and Adam optimizer with default parameters is
used to train the model. Both our training and testing process are conducted
on a 12-core, 24-thread PC with an AMD Ryzen Threadripper 2920x 4.3 GHz
CPU (128 GB RAM) with an NVIDIA GTX 1080Ti GPU (11GB memory). The
model converges after 200 epochs and takes 20 h in total. The average inference
time per image (512 × 512) is 94 ms.

Table 1. Ablation on different backbones and heads configurations. AP35, AP50, AP75

are average precision at the fixed 35%, 50%, 75% IoU thresholds, respectively. AP is
the average of AP computed over ten different IoU thresholds from 50% to 95% [AP50,
AP55, · · · , AP95].

Model AP AP35 AP50 AP75

RetinaNet w/ ResNet-50 backbone
(baseline) [16]

39.50 74.03 69.07 41.39

w/ RSU backbone 40.73 79.56 74.81 41.62

w/ RSU + CBAM-RSU heads 42.63 80.92 75.49 45.58

w/ RSU + CoordConv-RSU heads 41.85 79.62 75.24 43.55

w/ RSU + BiFPN-RSU heads 41.70 80.11 74.20 43.54

w/ RSU + CoordConv-CBAM-BiFPN
MH (Our TUN-Det)

42.75 81.22 75.66 45.53

3.3 Ablation Study

To validate the effectiveness of our proposed architecture, ablation studies are
conducted on different configurations and the results are summarized in Table 1.
The first two rows show the comparison between the original RetinaNet and the
RetinaNet-like detection model with our newly developed backbones built upon
the RSU-blocks. As we can see, our new adaptation greatly improves the perfor-
mance against the original RetinaNet. The bottom part of the table illustrates
the ablation studies on different configurations of classification and regression
modules. It can be observed that our multi-head classification and regression
modules, CoordConv-CBAM-BiFPN, shows better performance against other
configurations in terms of the AP , AP35 and AP50.

3.4 Comparisons Against State-of-the-Arts

Quantitative Comparisons. To evaluate the performance of our newly pro-
posed TUN-Det, we compare our model against six typical state-of-the-art detec-
tion models including (i) Faster-RCNN [24] as a two-stage model; (ii) RetinaNet
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[16], SSD [19], YOLO-v4 [2] and YOLO-v5 [1] as one stage models; and (iii)
FCOS [31] as an anchor-free model. As shown in Table 2, our TUN-Det greatly
improves the AP , AP35, AP50, and AP75 against Faster-RCNN, RetinaNet, SSD,
YOLOV4 and FCOS. Compared with YOLO-v5, our TUN-Det achieves better
performance in terms of AP35 and Although our model is inferior in terms of
AP75, it is doing a better job in terms of FN (i.e. our Average Recall at 75%,
AR75, is 45.5 vs. 40.3 in YOLO-v5), which is a priority in the context of thy-
roid nodule detection to not missing any nodules. Having low Recall with high
Precision is unacceptable as it would miss many cancers. Regarding AP , it is
usually reported to show the average performance. However, in practice we seek
a threshold for achieving final detection results in real-world clinical applica-
tions. According to the experiments, our model achieves the best performance
under different IoU thresholds (e.g. 35%, 50%), which means our model is more
applicable to clinical workflow.

Table 2. Comparisons against the state-of-the-arts.

Model Backbone AP AP35 AP50 AP75

Faster-RCNN [24] VGG16 0.91 42.13 29.65 2.58

SSD [19] VGG16 19.05 40.10 36.55 18.10

FCOS [31] ResNet-50 33.15 62.74 58.67 32.44

RetinaNet [16] ResNet-50 39.50 74.03 69.07 41.39

YOLO-v4 [2] CSPDarknet-53 40.43 78.21 72.48 42.04

YOLO-v5 [1] CSPNet 45.19 78.71 74.74 50.90

TUN-Det (ours) RSU 42.75 81.22 75.66 45.53

Qualitative Comparisons. Figure 3 shows the qualitative comparison of our
TUN-Det with other SOTA models on sampled sagittal scans (first two rows) and
transverse scans (last two rows). Each column shows the result of one method.
The ground truth is shown with green and detection result is shown in red.
Figure 3 (1st row) shows that TUN-Det can correctly detect the challenging
case of a non-homogeneous large hypo-echoic nodule, while all other methods fail.
The 2nd row illustrate that TUN-Det performs well in detecting nodules with ill-
defined boundaries, while others miss them. The 3rd and 4th rows highlight that
our TUN-Det successfully excludes the false positive and false negative nodules.
The last column of Fig. 3 signifies that our TUN-Det produces the most accurate
nodule detection results.
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(a) Faster-RCNN (b) FCOS (c) RetinaNet (d) YOLOv5 (e) Our TUN-Det

Fig. 3. Qualitative comparison of ground truth (green) and detection results (red) for
different methods. Each column shows the result of one method. (Color figure online)

4 Conclusion and Discussion

This paper proposes a novel detection network, TUN-Det. The novel backbone,
built upon the RSU blocks, of our TUN-Det greatly improves the detection
accuracy by extracting richer multi-scale features from feature maps with dif-
ferent resolutions. The newly proposed multi-head architecture for both classifi-
cation and regression heads further improves the nodule detection performance
by fusing outputs from diversified sub-modules. Experimental results show that
our TUN-Det achieves very competitive performance against existing detection
models on overall AP and outperforms other models in terms of AP35 and AP50,
which indicates its promising performance in practical applications. We believe
that this architecture is also promising for other detection tasks on ultrasound
images. In the near future, we will focus on improving the detection consistency
between neighboring slices of 2D sweeps and exploring new representations for
describing nodules merging and splitting in 3D space.
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