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Abstract. Over the past decade, deep convolutional neural networks
have been widely adopted for medical image segmentation and shown
to achieve adequate performance. However, due to inherent inductive
biases present in convolutional architectures, they lack understanding of
long-range dependencies in the image. Recently proposed transformer-
based architectures that leverage self-attention mechanism encode long-
range dependencies and learn representations that are highly expressive.
This motivates us to explore transformer-based solutions and study the
feasibility of using transformer-based network architectures for medi-
cal image segmentation tasks. Majority of existing transformer-based
network architectures proposed for vision applications require large-
scale datasets to train properly. However, compared to the datasets for
vision applications, in medical imaging the number of data samples is
relatively low, making it difficult to efficiently train transformers for
medical imaging applications. To this end, we propose a gated axial-
attention model which extends the existing architectures by introducing
an additional control mechanism in the self-attention module. Further-
more, to train the model effectively on medical images, we propose a
Local-Global training strategy (LoGo) which further improves the per-
formance. Specifically, we operate on the whole image and patches to
learn global and local features, respectively. The proposed Medical Trans-
former (MedT) is evaluated on three different medical image segmenta-
tion datasets and it is shown that it achieves better performance than the
convolutional and other related transformer-based architectures. Code:
https://github.com/jeya-maria-jose/Medical-Transformer
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1 Introduction

Developing automatic, accurate, and robust medical image segmentation meth-
ods have been one of the principal problems in medical imaging as it is essential
for computer-aided diagnosis and image-guided surgery systems. Segmentation
of organs or lesion from a medical scan helps clinicians make an accurate diag-
nosis, plan the surgical procedure, and propose treatment strategies. Following
the popularity of deep convolutional neural networks (ConvNets) in computer
vision, ConvNets were quickly adopted for medical image segmentation. Net-
works like U-Net [15], V-Net [13], 3D U-Net [3], Res-UNet [25], Dense-UNet
[11], Y-Net [12], U-Net++ [28], KiU-Net [19,20] and U-Net3+ [7] have been
proposed specifically for performing image and volumetric segmentation for var-
ious medical imaging modalities. These methods achieve impressive performance
on many difficult datasets, proving the effectiveness of ConvNets in learning dis-
criminative features to segment the organ or lesion from a medical scan.

ConvNets are currently the basic building blocks of most methods proposed
for image segmentation. However, they lack the ability to model long-range
dependencies present in an image. More precisely, in ConvNets each convolu-
tional kernel attends to only a local-subset of pixels in the whole image and
forces the network to focus on local patterns rather than the global context.
There have been works that have focused on modeling long-range dependencies
for ConvNets using image pyramids [26], atrous convolutions [2] and attention
mechanisms [8]. However, it can be noted that there is still a scope of improve-
ment for modeling long-range dependencies as the majority of previous methods
do not focus on this aspect for medical image segmentation tasks.

(a) (b) (c) (d) (e)

Fig. 1. (a) Input Ultrasound of in vivo preterm neonatal brain ventricle. Predictions
by (b) U-Net, (c) Res-UNet, (d) MedT, and (e) Ground Truth. The red box highlights
the region which are miss-classified by ConvNet based methods due to lack of learned
long-range dependencies. The ground truth here was segmented by an expert clinician.
Although it shows some bleeding inside the ventricle area, it does not correspond to the
segmented area. This information is correctly captured by transformer-based models.
(Color figure online)

To first understand why long-range dependencies matter for medical images,
we visualize an example ultrasound scan of a preterm neonate and segmentation
predictions of brain ventricles from the scan in Fig. 1. For a network to provide an
efficient segmentation, it should be able to understand which pixels correspond
to the mask and which to the background. As the background of the image is
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scattered, learning long-range dependencies between the pixels corresponding to
the background can help in the network to prevent miss-classifying a pixel as the
mask leading to reduction of false positives (considering 0 as background and
1 as segmentation mask). Similarly, whenever the segmentation mask is large,
learning long-range dependencies between the pixels corresponding to the mask
is also helpful in making efficient predictions. In Fig. 1(b) and (c), we can see
that the convolutional networks miss-classify the background as a brain ventricle
while the proposed transformer-based method does not make that mistake. This
happens as our proposed method learns long-range dependencies of the pixel
regions with that of the background.

In many natural language processing (NLP) applications, transformers [4]
have shown to be able to encode long-range dependencies. This is due to the
self-attention mechanism which finds the dependency between given sequential
input. Following their popularity in NLP applications, transformers have been
adopted to computer vision applications very recently [5,18]. With regard to
transformers for segmentation tasks, Axial-Deeplab [22] utilized the axial atten-
tion module [6], which factorizes 2D self-attention into two 1D self-attentions and
introduced position-sensitive axial attention design for segmentation. In Segmen-
tation Transformer (SETR) [27], a transformer was used as encoder which inputs
a sequence of image patches and a ConvNet was used as decoder resulting in
a powerful segmentation model. In medical image segmentation, transformer-
based models have not been explored much. The closest works are the ones
that use attention mechanisms to boost the performance [14,24]. However, the
encoder and decoder of these networks still have convolutional layers as the main
building blocks.

It was observed that the transformer-based models work well only when they
are trained on large-scale datasets [5]. This becomes problematic while adopting
transformers for medical imaging tasks as the number of images, with corre-
sponding labels, available for training in any medical dataset is relatively scarce.
Labeling process is also expensive and requires expert knowledge. Specifically,
training with fewer images causes difficulty in learning positional encoding for
the images. To this end, we propose a gated position-sensitive axial attention
mechanism where we introduce four gates that control the amount of informa-
tion the positional embedding supply to key, query, and value. These gates are
learnable parameters which make the proposed mechanism to be applied to any
dataset of any size. Depending on the size of the dataset, these gates would
learn whether the number of images would be sufficient enough to learn proper
position embedding. Based on whether the information learned by the positional
embedding is useful or not, the gate parameters either converge to 0 or to some
higher value. Furthermore, we propose a Local-Global (LoGo) training strategy,
where we use a shallow global branch and a deep local branch that operates
on the patches of the medical image. This strategy improves the segmentation
performance as we do not only operate on the entire image but focus on finer
details present in the local patches. Finally, we propose Medical Transformer
(MedT), which uses our gated position-sensitive axial attention as the building
blocks and adopts our LoGo training strategy.
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In summary, this paper (1) proposes a gated position-sensitive axial attention
mechanism that works well even on smaller datasets, (2) introduces Local-Global
(LoGo) training methodology for transformers which is effective, (3) proposes
Medical-Transformer (MedT) which is built upon the above two concepts pro-
posed specifically for medical image segmentation, and (4) successfully improves
the performance for medical image segmentation tasks over convolutional net-
works and fully attention architectures on three different datasets.

2 Medical Transformer (MedT)

2.1 Self-attention Overview

Let us consider an input feature map x ∈ R
Cin×H×W with height H, weight

W and channels Cin. The output y ∈ R
Cout×H×W of a self-attention layer is

computed with the help of projected input using the following equation:

yij =
H∑

h=1

W∑

w=1

softmax
(
qTijkhw

)
vhw, (1)

where queries q = WQx, keys k = WKx and values v = WV x are all projections
computed from the input x. Here, qij , kij , vij denote query, key and value at
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Fig. 2. (a) The main architecture diagram of MedT which uses LoGo strategy for
training. (b) The gated axial transformer layer which is used in MedT. (c) Gated
Axial Attention layer which is the basic building block of both height and width gated
multi-head attention blocks found in the gated axial transformer layer.
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any arbitrary location i ∈ {1, . . . , H} and j ∈ {1, . . . ,W}, respectively. The
projection matrices WQ,WK ,WV ∈ R

Cin×Cout are learnable. As shown in Eq. 1,
the values v are pooled based on global affinities calculated using softmax(qT k).
Hence, unlike convolutions the self-attention mechanism is able to capture non-
local information from the entire feature map. However, computing such affinities
are computationally very expensive and with increased feature map size it often
becomes infeasible to use self-attention for vision model architectures. Moreover,
unlike convolutional layer, self-attention layer does not utilize any positional
information while computing the non-local context. Positional information is
often useful in vision models to capture structure of an object.

Axial-Attention. To overcome the computational complexity of calculating
the affinities, self-attention is decomposed into two self-attention modules. The
first module performs self-attention on the feature map height axis and the sec-
ond one operates on the width axis. This is referred to as axial attention [6].
The axial attention consequently applied on height and width axis effectively
model original self-attention mechanism with much better computational effi-
cacy. To add positional bias while computing affinities through self-attention
mechanism, a position bias term is added to make the affinities sensitive to
the positional information [16]. This bias term is often referred to as relative
positional encodings. These positional encodings are typically learnable through
training and have been shown to have the capacity to encode spatial structure
of the image. Wang et al. [22] combined both the axial-attention mechanism
and positional encodings to propose an attention-based model for image seg-
mentation. Additionally, unlike previous attention model which utilizes relative
positional encodings only for queries, Wang et al. [22] proposed to use it for all
queries, keys and values. This additional position bias in query, key and value
is shown to capture long-range interaction with precise positional information
[22]. For any given input feature map x, the updated self-attention mechanism
with positional encodings along with width axis can be written as:

yij =
W∑

w=1

softmax
(
qTijkiw + qTijr

q
iw + kTiwr

k
iw

)
(viw + rviw), (2)

where the formulation in Eq. 2 follows the attention model proposed in [22]
and rq, rk, rv ∈ R

W×W for the width-wise axial attention model. Note that
Eq. 2 describes the axial attention applied along the width axis of the tensor. A
similar formulation is also used to apply axial attention along the height axis and
together they form a single self-attention model that is computationally efficient.

2.2 Gated Axial-Attention

We discussed the benefits of using the axial-attention mechanism proposed in
[22] for visual recognition. Specifically, the axial-attention proposed in [22] is able
to compute non-local context with good computational efficiency, able to encode
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positional bias into the mechanism and enables the ability to encode long-range
interaction within an input feature map. However, their model is evaluated on
large-scale segmentation datasets and hence it is easier for the axial-attention
to learn positional bias at key, query and value. We argue that for experiments
with small-scale datasets, which is often the case in medical image segmentation,
the positional bias is difficult to learn and hence will not always be accurate in
encoding long-range interactions. In the case where the learned relative positional
encodings are not accurate enough, adding them to the respective key, query and
value tensor would result in reduced performance. Hence, we propose a modified
axial-attention block that can control the influence positional bias can exert
in the encoding of non-local context. With the proposed modification the self-
attention mechanism applied on the width axis can be formally written as:

yij =
W∑

w=1

softmax
(
qTijkiw + GQq

T
ijr

q
iw + GKkTiwr

k
iw

)
(GV 1viw + GV 2r

v
iw), (3)

where the self-attention formula closely follows Eq. 2 with added gating mecha-
nism. Also, GQ, GK , GV 1, GV 2 ∈ R are learnable parameters and together they
create gating mechanism which control influence of the learned relative positional
encodings have on encoding non-local context. Typically, if a relative positional
encoding is learned accurately, the gating mechanism will assign it high weight
compared to the ones which are not learned accurately. Figure 2(c) illustrates
the feed-forward in a typical gated axial attention layer.

2.3 Local-Global Training

It is evident that a transformer on patches is faster but patch-wise training
alone is not sufficient for the tasks like medical image segmentation. Patch-wise
training restricts the network in learning any information or dependencies for
inter-patch pixels. To improve the overall understanding of the image, we propose
to use two branches in the network, i.e., a global branch which works on the
original resolution of the image, and a local branch which operates on patches of
the image. In the global branch, we reduce the number of gated axial transformer
layers as we observe that the first few blocks of the proposed transformer model
is sufficient to model long range dependencies. In the local branch, we create
16 patches of size I/4 × I/4 of the image where I is the dimensions of the
original image. In the local branches, each patch is feed forwarded through the
network and the output feature maps are re-sampled based on their location to
get the output feature maps. The output feature maps of both of the branches are
then added and passed through a 1 × 1 convolution layer to produce the output
segmentation mask. This strategy improves the performance as the global branch
focuses on high-level information and the local branch can focus on finer details.
The proposed Medical Transformer (MedT) uses gated axial attention layer as
the basic building block and uses LoGo strategy for training. It is illustrated in
Fig. 2(a). More details on the architecture and an ablation study with regard to
the architecture can be found in the supplementary file.
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3 Experiments and Results

3.1 Dataset Details

We use Brain anatomy segmentation (ultrasound) [21,23], Gland segmentation
(microscopic) [17] and MoNuSeg (microscopic) [9,10] datasets for evaluating our
method. More details about the datasets can be found in the supplementary.

3.2 Implementation Details

We use binary cross-entropy (CE) loss between the prediction and the ground
truth to train our network and can be written as:

LCE(p,p̂) = −
(

1
wh

w−1∑

x=0

h−1∑

y=0

(p(x, y) log(p̂(x, y))) + (1 − p(x, y)) log(1 − p̂(x, y))

)

where w and h are the dimensions of the image, p(x, y) corresponds to the pixel
in the image and p̂(x, y) denotes the output prediction at a specific location
(x, y). The training details are provided in the supplementary document.

For baseline comparisons, we first run experiments on both convolutional and
transformer-based methods. For convolutional baselines, we compare with fully
convolutional network (FCN) [1], U-Net [15], U-Net++ [28] and Res-Unet [25].
For transformer-based baselines, we use Axial-Attention U-Net with residual
connections inspired from [22]. For our proposed method, we experiment with
all the individual contributions. In gated axial attention network, we use axial
attention U-Net with all its axial attention layers replaced with the proposed
gated axial attention layers. In LoGo, we perform local global training for axial
attention U-Net without using the gated axial attention layers. In MedT, we
use gated axial attention as the basic building block for global branch and axial
attention without positional encoding for local branch.

3.3 Results

Table 1. Quantitative comparison of the proposed methods with convolutional and
transformer based baselines in terms of F1 and IoU scores.

Type Network Brain US GlaS MoNuSeg

F1 IoU F1 IoU F1 IoU

Convolutional

Baselines

FCN [1] 82.79 75.02 66.61 50.84 28.84 28.71

U-Net [15] 85.37 79.31 77.78 65.34 79.43 65.99

U-Net++ [28] 86.59 79.95 78.03 65.55 79.49 66.04

Res-UNet [25] 87.50 79.61 78.83 65.95 79.49 66.07

Fully Attention

Baseline

Axial Attention U-Net [22] 87.92 80.14 76.26 63.03 76.83 62.49

Proposed Gated Axial Attn 88.39 80.7 79.91 67.85 76.44 62.01

LoGo 88.54 80.84 79.68 67.69 79.56 66.17

MedT 88.84 81.34 81.02 69.61 79.55 66.17
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For quantitative analysis, we use F1 and IoU scores for comparison. The quan-
titative results are tabulated in Table 1. It can be noted that for datasets with
relatively more images like Brain US, fully attention (transformer) based baseline
performs better than convolutional baselines. For GlaS and MoNuSeg datasets,
convolutional baselines perform better than fully attention baselines as it is dif-
ficult to train fully attention models with less data [5]. The proposed method
is able to overcome such issue with the help of gated axial attention and LoGo
both individually perform better than the other methods. Our final architecture
MedT performs better than Gated axial attention, LoGo and all the previous
methods. The improvements over fully attention baselines are 0.92 %, 4.76 %
and 2.72 % for Brain US, GlaS and MoNuSeg datasets, respectively. Improve-
ments over the best convolutional baseline are 1.32 %, 2.19 % and 0.06 %. All of
these values are in terms of F1 scores. For the ablation study, we use the Brain
US data for all our experiments. The results for the same has been tabulated in
Table 2.

Furthermore, we visualize the predictions from U-Net [15], Res-UNet [25],
Axial Attention U-Net [22] and our proposed method MedT in Fig. 3. It can be
seen that the predictions of MedT captures the long range dependencies really
well. For example, in the second row of Fig. 3, we can observe that the small

Table 2. Ablation study

Network U-Net [15] Res-UNet [25] Axial UNet [22] Gated Axial UNet Global only Local only LoGo MedT

F1 Score 85.37 87.5 87.92 88.39 87.67 77.55 88.54 88.84

Input U-Net Res U-Net Axial Attn. U-Net MedT GT

Fig. 3. Qualitative results on sample test images from Brain US, Glas and MoNuSeg
datasets. The red box highlights regions where exactly MedT performs better than the
other methods in comparison making better use of long range dependencies. (Color
figure online)
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segmentation mask highlighted on red box goes undetected in all the convolu-
tional baselines. However, as fully attention model encodes long range depen-
dencies, it learns to segment well thanks to the encoded global context. In the
first and fourth row, other methods make false predictions at the highlighted
regions as those pixels are in close proximity to the segmentation mask. As our
method takes into account pixel-wise dependencies that are encoded with gating
mechanism, it is able to learn those dependencies better than the axial atten-
tion U-Net. This makes our predictions more precise as they do not miss-classify
pixels near the segmentation mask.

4 Conclusion

In this work, we explored the use of transformer-based architectures for medical
image segmentation. Specifically, we propose a gated axial attention layer which
is used as the building block for multi-head attention models. We also proposed
a LoGo training strategy to train the image in both full resolution as well in
patches. The global branch helps learn global context features by modeling long-
range dependencies, where as the local branch focus on finer features by oper-
ating on patches. Using these, we propose MedT (Medical Transformer) which
has gated axial attention as its main building block for the encoder and uses
LoGo strategy for training. Unlike other transformer-based model the proposed
method does not require pre-training on large-scale datasets. Finally, we conduct
extensive experiments on three datasets where we achieve a good performance
for MedT over ConvNets and other related transformer-based architectures.
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