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Abstract. Accurate segmentation of organs at risk (OARs) from medical images
plays a crucial role in nasopharyngeal carcinoma (NPC) radiotherapy. For auto-
matic OARs segmentation, several approaches based on deep learning have been
proposed, however, most of them face the problem of unbalanced foreground and
background in NPC medical images, leading to unsatisfactory segmentation per-
formance, especially for the OARs with small size. In this paper, we propose a
novel end-to-end two-stage segmentation network, including the first stage for
coarse segmentation by an encoder-decoder architecture embedded with a target
detection module (TDM) and the second stage for refinement by two elaborate
strategies for large- and small-size OARs, respectively. Specifically, guided by
TDM, the coarse segmentation network can generate preliminary results which
are further divided into large- and small-size OARs groups according to a preset
threshold with respect to the size of targets. For the large-size OARs, consid-
ering the boundary ambiguity problem of the targets, we design an edge-aware
module (EAM) to preserve the boundary details and thus improve the segmen-
tation performance. On the other hand, a point cloud module (PCM) is devised
to refine the segmentation results for small-size OARs, since the point cloud data
is sensitive to sparse structures and fits the characteristic of small-size OARs.
We evaluate our method on the public Head&Neck dataset, and the experimental
results demonstrate the superiority of our method compared with the state-of-the-
art methods. Code is available at https://github.com/DeepMedLab/Coarse-to-fine-
segmentation.
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1 Introduction

Nasopharyngeal carcinoma (NPC) is a common but fatal malignant tumor arising from
nasopharynx or upper throat [1]. For NPC patients, radiation therapy is one of the main
treatments. During radiotherapy planning, delineating organs at risk (OARs) is a cru-
cial step to avoid potential radiation risks to normal tissues. Currently, the OARs are
always delineated by radiation oncologists manually based on computed tomography
(CT) scans, which is extremely time-consuming and subjective [2, 3]. Thus, it is highly
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desirable to develop an automatic OARs segmentation approach for NPC patients to
deliver efficient and accurate radiotherapy planning.

With the rise of deep learning, a number of approaches have been proposed to
delineate OARs fromNPC CT images [4–12]. The current OARs segmentation methods
can be divided into two categories: 1) organ-specific segmentation based on target region
and 2) multi-organ segmentation based on entire CT image. Specifically, the organ-
specific segmentation aims to design an exclusive segmentationmodel to achieve the best
segmentation performance for each OAR [4, 5]. Nevertheless, such methods inevitably
bring tremendous computational overhead due to the multiple specific models, thus
limiting their applicability. In contrast, the multi-organ segmentation based on entire CT
image targets at training a deepmodelwhich can segmentmultipleOARs simultaneously.
For instance, Tong et al. [12] proposed a fully convolutional neural network (FCNN)with
a shape representation model to learn the shape of segmentation targets and delineate
the OARs of NPC. Zhu et al. [8] developed a 3D Squeeze-and-Excitation U-Net for
OARs segmentation. Gao et al. [9] presented a model named FocusNet, which locates
the center points of multiple OARs respectively to extract the corresponding 3D image
patches and further segments them. Tang et al. [10] explored the 3D UNet to get the
region of interests (ROIs) of each organ by embedding an OAR detection module. Liang
et al. [11] proposed amulti-view spatial aggregation framework using 2DROIs detection
module to assist segmentation.

Although current OARs segmentation methods have achieved promising progress,
the performance is still somewhat unsatisfactory due to the following challenges. First,
compared with other types of cancer which only have a small number of OARs, the
number of OARs for NPC patients is up to more than ten, as shown in Fig. 1. Second, it
is obvious in Fig. 1 that the size of OARs is highly variable, making the segmentation
models prone to segment the large-size OARs (e.g., brain stem, mandible) but neglect
the small-size ones (e.g., optical nerves, optical chiasm). Third, most of the OARs only
occupy small volumes in CT images, causing the problem of target sparsity and regional
imbalance between foreground and background. The ratio between the background and
the smallest organ can even reach nearly 105:1 in some extreme cases [9]. Fourth, the
boundary ambiguity of OARs in NPC CT images is also a sore point.

In this paper, to overcome the above-mentioned challenges, we propose a novel end-
to-end coarse-to-fine segmentation model to automatically segment multiple OARs in
CT images. Specifically, the entire framework consists of a coarse stage and a fine stage.
The coarse stage tries to generate rough segmentation results using an encoder-decoder
architecture embedded with a target detection module (TDM). According to the size of
targets, the preliminary results from the coarse stage are further categorized into large-
and small-size OARs groups using a preset threshold. In the fine stage, we design two
exclusive refinement networks for the large- and small-size OARs, respectively. Particu-
larly, to tackle the boundary ambiguity problem of the large-size targets, an edge-aware
module (EMA) is devised for capturing the boundary details for performance refine-
ment. Moreover, considering that the point cloud data is sensitive to sparse structures
and fits the characteristic of small-size OARs, we explore a point cloud module (PCM)
to refine the segmentation results of small-size OARs. We evaluate our method on the
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public Head&Neck dataset [14]. The experimental results demonstrate that our pro-
posed method achieves better performance than other state-of-the-art methods in both
qualitative and quantitative measures.

Fig. 1. Illustration of CT images and typical nine OARs to be delineated in NPC.

2 Methodology

The architecture of the proposed method is illustrated in Fig. 2, which consists of two
stages. The first stage is the TDM guided coarse segmentation network which employs
the encoder-decoder architecture as backbone while the second stage is responsible for
the refinement by two elaboratemodules for large-size and small-sizeOARs respectively.
The details of our model and the objective function will be introduced in the following
sub-sections.

2.1 Architecture

TDM Guided Coarse Segmentation Network: As shown in Fig. 2(a), the coarse seg-
mentation network in the first stage is a U-Net-like network embedded with TDM. With
the guidance of TDM, the network can locate the target areas of OARs and neglect
irrelevant background regions. Specifically, taking a CT volume as input, the encoder is
equipped with four down-sampling blocks to extract latent representative features, each
with two residual sub-blocks based on 3D convolution and a max-pooling layer applied
to halve the resolution. After four down-sampling operations, the final extracted feature
maps are fed into the TDM for ROI extraction and cropping. Particularly, the TDM
contains two separate heads, one for bounding box regression to indicate the location
and size of ROI for each OAR, and the other for binary classification to judge whether
the corresponding OAR class is detected correctly by the TDM. Then, we adopt the
ROI Align layer [15] in order to get feature maps with fixed dimensions. At the end
of TDM, two fully connected layers are subsequently applied to predict the class of
each OAR proposal and further regress coordinates and size offsets of its bounding box,
respectively. Then, these generated ROI proposals are down-sampled to the same size as
the features from each encoder layer to crop them, aiming to reduce the interference of
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irrelevant background regions. In decoder, each up-sampling block initially adopts the
trilinear up-sampling to double the size of inputs, and then applies a 3 × 3 × 3 convo-
lution followed by local contrast normalization. After each up-sampling operation, the
cropped feature maps from the encoder are concatenated with the feature maps of the
decoder. At the last decoder layer, we apply a 1 × 1 × 1 convolution to the final feature
maps to generate the coarse segmentation results. Finally, we calculate the size of the
segmented multiple OARs and according to a threshold which is preset to 1000 [9] in
this paper, the coarse segmentation results are divided into large- and small-size OAR
groups and respectively sent to EAM and PCM of the second stage for refinement.
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Fig. 2. Overview of our network architecture, including (a) TDM guided coarse segmentation
(b) EAM refinement for large-size OARs and (c) PCM refinement for small-size OARs. ‘Conv’
denotes the convolutional layer, ‘C’ and ‘U’ denote concatenation and up-sampling.

Edge-Aware Module (EAM): Aiming to solve the boundary ambiguity problem of
segmentation, we design an EAM to refine the coarse segmentation results of large-size
OARs. Considering that the rich edge information is mainly contained in the low-level
feature maps, we only employ the cropped features of the first two encoder blocks in
the first stage as the input of the EAM, as shown in Fig. 2(b). Then, these two low-level
feature maps undergo the processing of convolution, concatenation and up-sampling, to
obtain the corresponding edge maps which represent the boundaries of OARs. Finally,
the edge maps and the coarse segmentation results are fused by a 1 × 1 × 1 convolution
to obtain refined segmentation results.

Point Cloud Module (PCM): In view of the advantages of point cloud networks in
handling the sparse data, we create a PCM for small-size OARs refinement, as shown
in Fig. 2(c). Our PCM is mainly based on the encoder-decoder architecture proposed
by Balsiger et al. [13]. Specifically, for each small-size OAR, the volumetric coarse
segmentation result is converted into a point cloud P = [p1, p2, . . . , pK ] with K (set
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to 2048) points pi ∈ R3. Moreover, we additionally extract the image information by
following [13] and concatenate the extracted image informationwith the point cloudP as
the input of our PCM. Finally, the outputs of PCM are utilized to replace the values of the
corresponding points in the coarse segmentation result to obtain the refined segmentation
result.

2.2 Objective Function

The objective function consists of four parts: segmentation loss, TDM loss, EAM loss
and PCM loss. Specifically, the segmentation loss function can be expressed as:

Lossseg =
∑C

c=1
I(c)

(
1 − ϕ

(
mc, gc

))

ϕ(m, g) =
∑N

i=1 migi∑N
i=1migi + α

∑N
i=1mi(1 − gi) + β

∑N
i=1(1 − mi)gi + ε

, (1)

where gc and mc respectively represent the ground truth and the final predicted mask
of OAR c. C is the total number of OARs. I(c) is set to 1 if the OAR class is detected
correctly by the TDM, otherwise set to 0. ϕ(m, g) computes a soft Dice score between
the ground truth g and the predicted mask m, where i is a voxel index and N denotes
the total number of voxels. α and β are hyper-parameters for controlling the weights of
penalizing false negatives and false positives and ε is to ensure the numerical stability
of the loss function.

We employ a multi-task loss function to train our TDM, including a classification
loss Lc for OARs classification task and a regression loss Lr for bounding box regression
task, as formulated in Eq. 2:

LossTDM = 1

M

∑

i

Lc
(
Pi,P

∗
i

) + λ
1

M

∑

i

Lr
(
ti, t

∗
i

)
, (2)

where Lc adopts the cross entropy (CE) loss and Lr uses the smooth L1 loss. λ is a hyper-
parameter to balance these two terms.M is the total number of anchors participating in the
calculation, whileP∗

i , t
∗
i denote the predicted class label and box parameter, respectively,

and Pi, ti are their ground truths.
Aiming to capture sufficient edge information, the EAM loss is introduced to

constrain the edge map and can be expressed as:

LossEAM = 1

C

∑

c∈C
�Jc(m(c)),

mi(c) =
{
1 − pi(c) if c = yi(c)
pi(c) otherwise

, (3)

where C denotes the total number of OARs. For the pixel i of OAR c, yi(c) denotes the
ground truth binary mask while pi(c) denotes the predicted probability between 0 and
1. �Jc represents the Lovasz extension of the Jaccard index [16].
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For PCM, we employ the binary cross entropy (BCE) loss to constrain the output of
the point cloud network. The loss of PCM is defined as:

LossPCM = LBCE
(
S, S∗), (4)

where the S and S∗ are the output and ground truth of PCM.
The total loss is defined as:

Losstotal = Lossseg + μ1LossTDM + μ2LossEAM+μ3LossPCM , (5)

where μ1, μ2 and μ3 are balance terms.

2.3 Training Details

Our network is trained on PyTorch framework and an NVIDIA GeForce GTX 1080Ti
with 11 GB memory. Specifically, we take Adaptive moment estimation (Adam) opti-
mizer with a momentum of 0.9 to optimize the network. The proposed network is trained
for 200 epochs and the batch size is set to 1. The initial learning rate is set to 0.001, and
decays to 0.0001 and 0.00001 when the epoch respectively reaches 100 and 150. Based
on our trial studies, α and β in Eq. 1 both equal to 0.5, λ in Eq. (2) is set to 1. μ1, μ2
and μ3 in Eq. (5) are set to 1, 2 and 2, respectively.

3 Experiment and Analysis

3.1 Dataset and Evaluation

Our proposedmethod is evaluated on theMICCAI 2015Head&NeckAuto Segmentation
Challenge dataset, which contains a set of CT volumes for 48 NPC patients with the
image size varying from 512× 512× 39 to 512× 512× 181. Each patient involves nine
OARs, including brain stem, mandible, optic chiasm, optic nerve (both left and right),
parotid (both left and right), submandibular gland (both left and right). The dataset was
split by the Challenge, where 33 subjects are used as training set and the remaining 15
subjects are used as the test set. All samples are preprocessed to fit the maximum input
size of our model, i.e., 240 × 240 × 112. To evaluate and analyze the experimental
results, we adopt three common metrics, including dice similarity coefficient (DSC),
95th percentile Hausdorff distance (95% HD), and average surface distance (ASD).

Table 1. Quantitative comparisons terms of DSC with state-of-the-art methods. † denotes p <

0.05 through paired t-test.

OAR AnatomyNet[8] FocusNet[9] UaNet[10] Multi-view[11] Proposed

Brain Stem 86.7 ± 2† 87.5 ± 2.6 87.5 ± 2.5† 92.3 ± 1.0 87.9 ± 2.4

Mandible 92.5 ± 2† 93.5 ± 1.9 95.0 ± 0.8 94.1 ± 0.7 94.5 ± 0.7

Optical Chiasm 53.2 ± 15† 59.6 ± 18.1 61.5 ± 10.2† 71.3 ± 8.3 65.9 ± 9.6

(continued)
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Table 1. (continued)

OAR AnatomyNet[8] FocusNet[9] UaNet[10] Multi-view[11] Proposed

Optical Nerve L 72.1 ± 6† 73.5 ± 9.6 74.8 ± 7.1† 73.8 ± 4.6 75.3 ± 6.8

Optical Nerve R 70.6 ± 10† 74.4 ± 7.2 72.3 ± 5.9† 73.4 ± 5.1 74.7 ± 5.3

Parotid L 88.1 ± 2† 86.3 ± 3.6 88.7 ± 1.9† 88.2 ± 1.3 89.2 ± 1.5

Parotid R 87.4 ± 4† 87.9 ± 3.1 87.5 ± 5.0† 87.0 ± 1.5 88.4 ± 4.9

SMG L 81.4 ± 4† 79.8 ± 8.1 82.3 ± 5.2† 81.5 ± 2.9 82.9 ± 4.8

SMG R 81.3 ± 4† 80.1 ± 6.1 81.5 ± 4.5 80.0 ± 3.4 81.5 ± 3.7

3.2 Comparison with State-Of-The-Art Methods

To validate the advancement of our method, we compare it with four state-of-the-art
(SOTA) OARs segmentation methods, including AnatomyNet [8], FocusNet [9], UaNet
[10], Multi-view [11]. Table 1 gives the DSC results of the nine OARs segmented by
different methods. As observed, our method achieves the best performance in six OARs.
To study the statistical significance of our proposed method, we also perform paired
t-tests (only for the methods with public available code) to compare the SOTAs against
our method, through which we can find that almost all p-values are less than 0.05,
demonstrating the statistical significance of the achieved improvement. Moreover, the
quantitative results regarding 95% HD and ASD are shown in Fig. 3, from where we
can see that our method obtains the competitive performance with the SOTAs.

Fig. 3. Quantitative comparisons with the state-of-the-art methods in terms of 95%HD and ASD.

For qualitative comparison, we display the visual comparison results in Fig. 4. Note
that, the visual results of the FocusNet andMulti-view are not given here since their code
has not yet been released. Here, we also display the result of 3D Unet for comparison,
due to its widely application in medical image segmentation tasks. As observed, the 3D
Unet presents the worst segmentation results as the gap between the prediction and the
ground truth is the largest. Compared with AnatomyNet and UaNet, our method gives
more precise segmentation results with less false positive predictions.
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Fig. 4. Qualitative comparisons with the state-of-the-art methods. The areas with obvious
improvement achieved by our method are circled by the red ellipsoids. (Color figure online)

3.3 Ablation Study

To evaluate the contributions of the components in the proposed method, we perform
the ablation study in a progressive way using the 3D U-net (i.e., the first-stage without
TDM) as the baseline. To be specific, our experimental settings include: (1) 3D U-net,
(2) 3D U-net + TDM, (3) 3D U-net + TDM + EAM, (4) 3D U-net + TDM + PCM,
(5) 3D U-net + TDM + EAM + PCM (proposed).

Table 2. Quantitative ablation study results. ✓ stands for the addition of corresponding module.

3D Unet TDM EAM PCM DSC [%] 95% HD ASD

✓ 75.42 ± 9.6 6.25 ± 3.7 1.64 ± 0.8

✓ ✓ 80.51 ± 5.3 2.76 ± 1.7 0.80 ± 0.4

✓ ✓ ✓ 81.21 ± 4.9 2.47 ± 1.2 0.65 ± 0.3

✓ ✓ ✓ 81.42 ± 4.8 2.54 ± 1.3 0.71 ± 0.3

✓ ✓ ✓ ✓ 82.25 ± 4.4 2.38 ± 1.2 0.57 ± 0.2

The quantitative ablation results are shown in Table 2. By comparing the first and sec-
ond row, we find that DSC significantly improves from 75.42% to 80.51%, the 95% HD
drops from 6.25 to 2.76 and the ASD drops from 2.46 to 0.89, respectively, demonstrat-
ing the necessity of TDMof the proposedmethod. Similarly, by further incorporating the
EAM or PCM, the performance becomes better in terms of all three metrics. Undoubt-
edly, the completed model with TDM, EAM and PCM achieves the best performance,
with the highest DSC and lowest 95%HD and ASD. Table 3 shows the DSC results of
nine OARs based on different experimental settings. Specifically, by incorporating the
TDM, the segmentation results were improved for all organs. With the introduction of
the EAM and PCM, the 3D Unet + TDM + EAM achieves the best dice results on three
large organs, (i.e., brainstem, parotid, and SMG R) and the 3D Unet + TDM + PCM
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Table 3. Quantitative ablation results of each organ on DSC

OAR 3D Unet 3D Unet + TDM 3D Unet +
TDM + EAM

3D Unet +
TDM + PCM

Proposed

Brain
Stem

84.5 ± 5.6 87 ± 2.6 88.6 ± 2.0 86.7 ± 2.9 87.9 ± 2.4

Mandible 89.3 ± 3.8 93.9 ± 1.1 94.4 ± 0.7 93.6 ± 1.8 94.5 ± 0.7

Optical
Chiasm

48.4 ± 21.4 60.9 ± 11.2 59.8 ± 12.6 67.3 ± 8.0 65.9 ± 9.6

Optical
Nerve L

68.1 ± 9.7 73.8 ± 7.3 73.5 ± 7.9 75.8 ± 5.4 75.3 ± 6.8

Optical
Nerve R

64.9 ± 10.8 72.6 ± 6.8 72.8 ± 5.4 74.5 ± 5.2 74.7 ± 5.3

Parotid L 84.4 ± 8.5 87.9 ± 2.9 89.5 ± 1.4 87.2 ± 3.1 89.2 ± 1.5

Parotid R 82.8 ± 9.1 86.6 ± 5.6 88.2 ± 4.8 85.8 ± 6.7 88.4 ± 4.9

SMG L 77.5 ± 8.9 81.5 ± 5.5 82.6 ± 5.3 81.8 ± 5.2 82.9 ± 4.8

SMG R 78.9 ± 8.6 80.4 ± 4.8 81.5 ± 3.6 80.1 ± 4.8 81.5 ± 3.7

Average 75.42 ± 9.6 80.51 ± 5.3 81.21 ± 4.9 81.42 ± 4.8 82.25 ± 4.4

achieves the best dice results on two small organs, (i.e., Optical Chiasm and Optical
Nerve L). These experimental results show that the introduction of EAM and PCM is
helpful for the improvement of large- and small-size OARs.

The qualitative ablation results shown in Fig. 5 also demonstrate the effectiveness of
each component we proposed. Particularly, from the results of (2) and (3), we can see that
the EAM indeed could produce the segmentation results with more accurate boundaries,
as indicated by the red arrows. By comparing (2) with (4), we can conclude that the
PCM could refine the segmentation performance for the small-size OARs, as shown in
the red squares. The visual effect in (5) yielded by our complete model has the smallest
difference from the ground truth for both large- and small-size targets, supporting the
findings in the statistical data in Table 2.

Fig. 5. Qualitative ablation study results. ‘Optical Nerve L’ and ‘Optical Nerve R’ are small-size
OAR, the other four OARs appearing in the images are all large-size OAR.
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4 Conclusion

In this paper, we propose a novel end-to-end two-stage segmentation network to automat-
ically segment multiple OARs in NPC, including the first stage for coarse segmentation
and the second stage for refinement by two elaborate modules. Concretely, in the first
stage, we construct a well-performed target detection module (TDM) to locate and crop
the general area for each OAR, thus eliminating the interference of large background
area and making the network pay more attention to the OARs. In the second stage, an
edge-aware module (EAM) is established to focus on the segmentation boundary of
large-size targets and alleviate the boundary ambiguity problem. For small-size targets,
since the point cloud data is sensitive to sparse structures, a point cloud module (PCM)
is employed to further refine the segmentation performance. Experiments on the public
Head&Neck dataset show that our method achieves competitive results compared with
the state-of-the-art methods.
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