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Abstract. Transformer, which can benefit from global (long-range)
information modeling using self-attention mechanisms, has been success-
ful in natural language processing and 2D image classification recently.
However, both local and global features are crucial for dense predic-
tion tasks, especially for 3D medical image segmentation. In this paper,
we for the first time exploit Transformer in 3D CNN for MRI Brain
Tumor Segmentation and propose a novel network named TransBTS
based on the encoder-decoder structure. To capture the local 3D con-
text information, the encoder first utilizes 3D CNN to extract the volu-
metric spatial feature maps. Meanwhile, the feature maps are reformed
elaborately for tokens that are fed into Transformer for global feature
modeling. The decoder leverages the features embedded by Transformer
and performs progressive upsampling to predict the detailed segmen-
tation map. Extensive experimental results on both BraTS 2019 and
2020 datasets show that TransBTS achieves comparable or higher results
than previous state-of-the-art 3D methods for brain tumor segmentation
on 3D MRI scans. The source code is available at https://github.com/
Wenxuan-1119/TransBTS.

Keywords: Segmentation · Brain tumor · MRI · Transformer · 3D
CNN

1 Introduction

Gliomas are the most common malignant brain tumors with different levels of
aggressiveness. Automated and accurate segmentation of these malignancies on
magnetic resonance imaging (MRI) is of vital importance for clinical diagnosis.
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Convolutional Neural Networks (CNN) have achieved great success in vari-
ous vision tasks such as classification, segmentation and object detection. Fully
Convolutional Networks (FCN) [10] realize end-to-end semantic segmentation
for the first time with impressive results. U-Net [15] uses a symmetric encoder-
decoder structure with skip-connections to improve detail retention, becoming
the mainstream architecture for medical image segmentation. Many U-Net vari-
ants such as U-Net++ [24] and Res-UNet [23] further improve the performance
for image segmentation. Although CNN-based methods have excellent represen-
tation ability, it is difficult to build an explicit long-distance dependence due
to limited receptive fields of convolution kernels. This limitation of convolution
operation raises challenges to learn global semantic information which is critical
for dense prediction tasks like segmentation.

Inspired by the attention mechanism [1] in natural language processing, exist-
ing research overcomes this limitation by fusing the attention mechanism with
CNN models. Non-local neural networks [21] design a plug-and-play non-local
operator based on the self-attention mechanism, which can capture the long-
distance dependence in the feature map but suffers from the high memory and
computation cost. Schlemper et al. [16] propose an attention gate model, which
can be integrated into standard CNN models with minimal computational over-
head while increasing the model sensitivity and prediction accuracy. On the
other hand, Transformer [19] is designed to model long-range dependencies in
sequence-to-sequence tasks and capture the relations between arbitrary positions
in the sequence. This architecture is proposed based solely on self-attention, dis-
pensing with convolutions entirely. Unlike previous CNN-based methods, Trans-
former is not only powerful in modeling global context, but also can achieve
excellent results on downstream tasks in the case of large-scale pre-training.

Recently, Transformer-based frameworks have also reached state-of-the-art
performance on various computer vision tasks. Vision Transformer (ViT) [7]
splits the image into patches and models the correlation between these patches
as sequences with Transformer, achieving satisfactory results on image classifi-
cation. DeiT [17] further introduces a knowledge distillation method for training
Transformer. DETR [4] treats object detection as a set prediction task with the
help of Transformer. TransUNet [5] is a concurrent work which employs ViT
for medical image segmentation. We will elaborate the differences between our
approach and TransUNet in Sec. 2.3.

Research Motivation. The success of Transformer has been witnessed mostly
on image classification. For dense prediction tasks such as segmentation, both
local and global (or long-range) information is important. However, as pointed
out by [22], local structures are ignored when directly splitting images into
patches as tokens for Transformer. Moreover, for medical volumetric data (e.g.
3D MRI scans) which is beyond 2D, local feature modeling among continuous
slices (i.e. depth dimension) is also critical for volumetric segmentation. We are
therefore inspired to ask: How to design a neural network that can effectively
model local and global features in spatial and depth dimensions of volumetric
data by leveraging the highly expressive Transformer?
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In this paper, we present the first attempt to exploit Transformer in 3D CNN
for 3D MRI Brain Tumor Segmentation (TransBTS). The proposed TransBTS
builds upon the encoder-decoder structure. The network encoder first utilizes 3D
CNN to extract the volumetric spatial features and downsample the input 3D
images at the same time, resulting in compact volumetric feature maps that effec-
tively captures the local 3D context information. Then each volume is reshaped
into a vector (i.e. token) and fed into Transformer for global feature modeling.
The 3D CNN decoder takes the feature embedding from Transformer and per-
forms progressive upsampling to predict the full resolution segmentation map.
Experiments on BraTS 2019 and 2020 datasets show that TransBTS achieves
comparable or higher results than previous state-of-the-art 3D methods for brain
tumor segmentation on 3D MRI scans. We also conduct comprehensive ablation
study to shed light on architecture engineering of incorporating Transformer in
3D CNN to unleash the power of both architectures.

2 Method

2.1 Overall Architecture of TransBTS

An overview of the proposed TransBTS is presented in Fig. 1. Given an input
MRI scan X ∈ R

C×H×W×D with a spatial resolution of H×W , depth dimension
of D (# of slices) and C channels (# of modalities), we first utilize 3D CNN
to generate compact feature maps capturing spatial and depth information, and
then leverage the Transformer encoder to model the long-distance dependency in
a global space. After that, we repeatedly stack the upsampling and convolutional
layers to gradually produce a high-resolution segmentation result.

Fig. 1. Overall architecture of the proposed TransBTS.
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2.2 Network Encoder

As the computational complexity of Transformer is quadratic with respect to the
number of tokens (i.e. sequence length), directly flattening the input image to
a sequence as the Transformer input is impractical. Therefore, ViT [7] splits an
image into fixed-size (16×16) patches and then reshapes each patch into a token,
reducing the sequence length to 162. For 3D volumetric data, the straightfor-
ward tokenization, following ViT, would be splitting the data into 3D patches.
However, this simple strategy makes Transformer unable to model the image
local context information across spatial and depth dimensions for volumetric
segmentation. To address this challenge, our solution is to stack the 3 × 3 × 3
convolution blocks with downsamping (strided convolution with stride=2) to
gradually encode input images into low-resolution/high-level feature representa-
tion F ∈ R

K× H
8 ×W

8 ×D
8 (K = 128), which is 1/8 of input dimensions of H,W and

D (overall stride (OS)=8). In this way, rich local 3D context features are effec-
tively embedded in F . Then, F is fed into the Transformer encoder to further
learn long-range correlations with a global receptive field.

Feature Embedding of Transformer Encoder. Given the feature map F ,
to ensure a comprehensive representation of each volume, a linear projection (a
3×3×3 convolutional layer) is used to increase the channel dimension from K =
128 to d = 512. The Transformer layer expects a sequence as input. Therefore, we
collapse the spatial and depth dimensions into one dimension, resulting in a d×N
(N = H

8 × W
8 × D

8 ) feature map f , which can be also regarded as N d-dimensional
tokens. To encode the location information which is vital in segmentation task,
we introduce the learnable position embeddings and fuse them with the feature
map f by direct addition, creating the feature embeddings as follows:

z0 = f + PE = W × F + PE (1)

where W is the linear projection operation, PE ∈ R
d×N denotes the position

embeddings, and z0 ∈ R
d×N refers to the feature embeddings.

Transformer Layers. The Transformer encoder is composed of L Transformer
layers, each of them has a standard architecture, which consists of a Multi-Head
Attention (MHA) block and a Feed Forward Network (FFN). The output of the
�-th (� ∈ [1, 2, ..., L]) Transformer layer can be calculated by:

z
′
� = MHA(LN(z�−1)) + z�−1 (2)

z� = FFN(LN(z
′
�)) + z

′
� (3)

LN(∗) is the layer normalization and z� is the output of �-th Transformer layer.

2.3 Network Decoder

In order to generate the segmentation results in the original 3D image space
(H × W × D), we introduce a 3D CNN decoder to perform feature upsampling
and pixel-level segmentation (see the right part of Fig. 1).
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Feature Mapping. To fit the input dimension of 3D CNN decoder, we first
design a feature mapping module to project the sequence data back to a standard
4D feature map. Specifically, the output sequence of Transformer zL ∈ R

d×N is
first reshaped to d× H

8 × W
8 × D

8 . In order to reduce the computational complexity
of decoder, a convolution block is employed to reduce the channel dimension from
d to K. Through these operations, the feature map Z ∈ R

K×H
8 ×W

8 ×D
8 , which

has the same dimension as F in the feature encoding part, is obtained.

Progressive Feature Upsampling. After the feature mapping, cascaded
upsampling operations and convolution blocks are applied to Z to gradually
recover a full resolution segmentation result R ∈ R

H×W×D. Moreover, skip-
connections are employed to fuse the encoder features with the decoder counter-
parts by concatenation for finer segmentation masks with richer spatial details.

Discussion. A recent work TransUNet [5] also employs Transformer for medical
image segmentation. We highlight a few key distinctions between our TransBTS
and TransUNet. (1) TransUNet is a 2D network that processes each 3D medical
image in a slice-by-slice manner. However, our TransBTS is based on 3D CNN
and processes all the image slices at once, allowing the exploitation of better
representations of continuous information between slices. In other words, Tran-
sUNet only focuses on the spatial correlation between tokenized image patches,
but TransBTS can model the long-range dependencies in both slice/depth dimen-
sion and spatial dimension simultaneously for volumetric segmentation. (2) As
TransUNet adopts the ViT structure, it relies on pre-trained ViT models on
large-scale image datasets. In contrast, TransBTS has a flexible network design
and is trained from scratch on task-specific dataset without the dependence on
pre-trained weights.

3 Experiments

Data and Evaluation Metric. The first 3D MRI dataset used in the exper-
iments is provided by the Brain Tumor Segmentation (BraTS) 2019 challenge
[2,3,11]. It contains 335 cases of patients for training and 125 cases for validation.
Each sample is composed of four modalities of brain MRI scans. Each modality
has a volume of 240 × 240 × 155 which has been aligned into the same space.
The labels contain 4 classes: background (label 0), necrotic and non-enhancing
tumor (label 1), peritumoral edema (label 2) and GD-enhancing tumor (label
4). The segmentation accuracy is measured by the Dice score and the Hausdorff
distance (95%) metrics for enhancing tumor region (ET, label 1), regions of the
tumor core (TC, labels 1 and 4), and the whole tumor region (WT, labels 1,2 and
4). The second 3D MRI dataset is provided by the Brain Tumor Segmentation
Challenge (BraTS) 2020 [2,3,11]. It consists of 369 cases for training, 125 cases
for validation and 166 cases for testing. Except for the number of samples in the
dataset, the other information about these two datasets are the same.

Implementation Details. The proposed TransBTS is implemented in Pytorch
and trained with 8 NVIDIA Titan RTX GPUs (each has 24 GB memory) for
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8000 epochs from scratch using a batch size of 16. We adopt the Adam optimizer
to train the model. The initial learning rate is set to 0.0004 with a poly learning
rate strategy, in which the initial rate decays by each iteration with power 0.9.
The following data augmentation techniques are applied: (1) random cropping
the data from 240 × 240 × 155 to 128 × 128 × 128 voxels; (2) random mirror
flipping across the axial, coronal and sagittal planes by a probability of 0.5;
(3) random intensity shift between [–0.1, 0.1] and scale between [0.9, 1.1]. The
softmax Dice loss is employed to train the network and L2 Norm is also applied
for model regularization with a weight decay rate of 10−5. In the testing phase,
we utilize Test Time Augmentation (TTA) to further improve the performance
of our proposed TransBTS.

Table 1. Comparison on BraTS 2019 validation set.

Method Dice Score (%) ↑ Hausdorff Dist. (mm) ↓
ET WT TC ET WT TC

3D U-Net [6] 70.86 87.38 72.48 5.062 9.432 8.719

V-Net [12] 73.89 88.73 76.56 6.131 6.256 8.705

KiU-Net [18] 73.21 87.60 73.92 6.323 8.942 9.893

Attention U-Net [14] 75.96 88.81 77.20 5.202 7.756 8.258

Wang et al. [20] 73.70 89.40 80.70 5.994 5.677 7.357

Li et al. [9] 77.10 88.60 81.30 6.033 6.232 7.409

Frey et al. [8] 78.7 89.6 80.0 6.005 8.171 8.241

Myronenko et al. [13] 80.0 89.4 83.4 3.921 5.89 6.562

TransBTS w/o TTA 78.36 88.89 81.41 5.908 7.599 7.584

TransBTS w/ TTA 78.93 90.00 81.94 3.736 5.644 6.049

3.1 Main Results

BraTS 2019. We first conduct five-fold cross-validation evaluation on the train-
ing set – a conventional setting followed by many existing works. Our TransBTS
achieves average Dice scores of 78.69%, 90.98%, 82.85% respectively for ET, WT
and TC. We also conduct experiments on the BraTS 2019 validation set and
compare TransBTS with state-of-the-art (SOTA) 3D approaches. The quanti-
tative results are presented in Table 1. TransBTS achieves the Dice scores of
78.93%, 90.00%, 81.94% on ET, WT, TC, respectively, which are comparable or
higher results than previous SOTA 3D methods presented in Table 1. In terms of
Hausdorff distance metric, a considerable improvement has also been achieved for
segmentation. Compared with 3D U-Net [6], TransBTS shows great superiority
in both metrics with significant improvements. This clearly reveals the benefit of
leveraging Transformer for modeling the global relationships. For qualitative
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Table 2. Comparison on BraTS 2020 validation set.

Method Dice Score (%) ↑ Hausdorff Dist. (mm) ↓
ET WT TC ET WT TC

3D U-Net [6] 68.76 84.11 79.06 50.983 13.366 13.607

Basic V-Net [12] 61.79 84.63 75.26 47.702 20.407 12.175

Deeper V-Net [12] 68.97 86.11 77.90 43.518 14.499 16.153

Residual 3D U-Net 71.63 82.46 76.47 37.422 12.337 13.105

TransBTS w/o TTA 78.50 89.00 81.36 16.716 6.469 10.468

TransBTS w/ TTA 78.73 90.09 81.73 17.947 4.964 9.769

analysis, we also show a visual comparison of the brain tumor segmentation
results of various methods including 3D U-Net [6], V-Net [12], Attention U-Net
[14] and our TransBTS in Fig. 2. Since the ground truth for the validation set
is not available, we conduct five-fold cross-validation evaluation on the train-
ing set for all methods. It is evident from Fig. 2 that TransBTS can describe
brain tumors more accurately and generate much better segmentation masks by
modeling long-range dependencies between each volume.

BraTS 2020. We also evaluate TransBTS on BraTS 2020 validation set and
the results are reported in Table 2. We adopt the hyperparameters on BraTS19
for model training, TransBTS achieves Dice scores of 78.73%, 90.09%, 81.73%
and HD of 17.947mm, 4.964mm, 9.769mm on ET, WT, TC. Compared with 3D
U-Net [6], V-Net [12] and Residual 3D U-Net, TransBTS shows great superiority
in both metrics with significant improvements. This clearly reveals the benefit
of leveraging Transformer for modeling the global relationships.

3.2 Model Complexity

TransBTS has 32.99 M parameters and 333G FLOPs which is a moderate size
model. Besides, by reducing the number of stacked Transformer layers from 4 to
1 and halving the hidden dimension of the FFN, we reach a lightweight Trans-
BTS which only has 15.14 M parameters and 208G FLOPs while achieving Dice
scores of 78.94%, 90.36%, 81.76% and HD of 4.552 mm, 6.004 mm, 6.173 mm
on ET, WT, TC on BraTS2019 validation set. In other words, by reducing the
layers in Transformer as a simple and straightforward way to reduce complex-
ity (54.11% reduction in parameters and 37.54% reduction in FLOPs of our
lightweight TransBTS), the performance only drops marginally. Compared with
3D U-Net [6] which has 16.21 M parameters and 1670G FLOPs, our lightweight
TransBTS shows great superiority in terms of model complexity. Note that effi-
cient Transformer variants can be used in our framework to replace the vanilla
Transformer to further reduce the memory and computation complexity while
maintaining the accuracy. But this is beyond the scope of this work.
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3D U-Net VNet Att. U-Net TransBTS Ground Truth

Fig. 2. The visual comparison of MRI brain tumor segmentation results.

3.3 Ablation Study

We conduct extensive ablation experiments to verify the effectiveness of Trans-
BTS and justify the rationale of its design choices based on five-fold cross-
validation evaluations on the BraTS 2019 training set. (1) We investigate the
impact of the sequence length (N) of tokens for Transformer, which is controlled
by the overall stride (OS) of 3D CNN in the network encoder. (2) We explore
Transformer at various model scales (i.e. depth (L) and embedding dimension
(d)). (3) We also analyze the impact of different positions of skip-connections.

Sequence Length N . Table 3 presents the ablation study of various sequence
lengths for Transformer. The first row (OS = 16) and the second row (OS =
8) both reshape each volume of the feature map to a feature vector after down-
sampling. It is noticeable that increasing the length of tokens, by adjusting the
OS from 16 to 8, leads to a significant improvement on performance. Specifi-
cally, 1.66% and 2.41% have been attained for the Dice score of ET and WT
respectively. Due to the memory constraint, after setting the OS to 4, we can not
directly reshape each volume to a feature vector. So we make a slight modifica-
tion to keep the sequence length to 4096, which is unfolding each 2×2×2 patch
into a feature vector before passing to the Transformer. We find that although
the OS drops from 8 to 4, without the essential increase of sequence length, the
performance does not improve or even gets worse.

Transformer Scale. Two hyper-parameters, the feature embedding dimension
(d) and the number of Transformer layers (depth L), mainly determines the scale
of Transformer. We conduct ablation study to verify the impact of Transformer
scale on the segmentation performance. For efficiency, we only train each model
configuration for 1000 epochs. As shown in Table 4, the network with d = 512
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Table 3. Ablation study on sequence
length (N).

OS Sequence

Length(N)

Dice Score(%)

ET WT TC

16 512 73.30 87.59 81.36

8 4096 74.96 90.00 79.96

4 4096 74.86 87.10 77.46

Table 4. Ablation study on transformer.

Depth (L) Embedding

dim (d)

Dice score(%)

ET WT TC

4 384 68.95 83.31 66.89

4 512 73.72 88.02 73.14

4 768 69.38 83.54 74.16

1 512 70.11 85.84 70.95

8 512 66.48 79.16 67.22

Table 5. Ablation study on the positions of skip-connections (SC).

Number of SC Position of SC Dice score(%)

ET WT TC

3 Transformer layer 74.96 90.00 79.96

3 3D Conv (Fig. 1) 78.92 90.23 81.19

and L = 4 achieves the best scores of ET and WT. Increasing the embedding
dimension (d) may not necessarily lead to improved performance (L = 4, d: 512
vs. 768) yet brings extra computational cost. We also observe that L = 4 is a
“sweet spot” for the Transformer in terms of performance and complexity.

Positions of Skip-connections (SC). To improve the representation ability
of the model, we further investigate the positions for skip-connections (orange
dash lines “ ” in Fig. 1). The ablation results are listed in Table 5. If skip-
connections are attached to the first three Transformer layers, it is more alike
to feature aggregation from adjacent layers without the compensation for loss of
spatial details. Following the traditional design of skip-connections from U-Net
(i.e. attach to the 3D Conv layers as shown in Fig. 1), considerable gains (3.96%
and 1.23%) have been achieved for the important ET and TC, thanks to the
recovery of low-level spatial detail information.

4 Conclusion

We present a novel segmentation framework that effectively incorporates Trans-
former in 3D CNN for multimodal brain tumor segmentation in MRI. The result-
ing architecture, TransBTS, not only inherits the advantage of 3D CNN for
modeling local context information, but also leverages Transformer on learning
global semantic correlations. Experimental results on two datasets (BraTS 2019
and 2020) validate the effectiveness of the proposed TransBTS. In future work,
we will explore computational and memory efficient attention mechanisms in
Transformer to develop efficiency-focused models for volumetric segmentation.
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