
Chapter 8

Hierarchical Models of Conduction of Heat in

Continua Contained in Prismatic Shell-like

Domains

George Jaiani

Abstract We construct hierarchical models for the heat conduction in standard and
prismatic shell-like and rod-like 3D domains with non-Lipschitz boundary, in gen-
eral.
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8.1 Introduction

If the quantities, causing deformation and temperature, vary sufficiently slowly from
zero to their finite values and remain in such a state, then we have a steady process,
i.e., static process as t→∞. Therefore, displacements and temperature become in-
dependent of time and are functions only of the state. Thus, in the equation of con-
duction of Heat disappear derivatives with respect to time, in particular deformation
tensor velocity ε̇i j(x, t) ≡ 0. So, the governing system of thermoelasticity will be
split and after solving the independent BVPs for temperature change θ and substi-
tuting the found temperature change into governing system of thermoelasticity we
arrive at independent BVP of elasticity with the additional (caused by temperature)
member. In the theory of temperature stresses, which studies influence of heating
the body surfaces and heat sources on the stress state of body it is assumed that the
influence of ε̇kk involved in the equation of heat conduction on body deformation is
negligible (see Nowacki, 1975, pp. 90, 92, 93, 764).

Thus, for the above-mentioned and for analogous cases it is important to have
hierarchical models separately for the heat conduction in standard and prismatic
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shell-like and rod-like 3D domains with non-Lipschitz boundaries, in general, oc-
cupied by a continuum. In the present paper our purpose is to construct hierarchical
models for heat conduction in prismatic shell-like 3D domainsΩwith non-Lipschitz
boundaries, in general. To this and we use I. Vekua’s dimension redaction method
(Vekua, 1955, 1965, 1973, 1985). We have a definite experience of application of
this method, we have constructed hierarchical models: for micropolar elastic cusped
prismatic shells (Jaiani, 2016b), elastic prismatic shells with microtemperatures (Ja-
iani, 2015), piezoelectric viscoelastic Kelvin-Voigt prismatic shells with voids (Ja-
iani, 2018b) for prismatic shells with mixed conditions on face surfaces (Jaiani,
2016c), layered prismatic shells (Jaiani, 2016a). The above-mentioned hierarchi-
cal models we easily reformulate from elastic to thermoelastic if in the constitutive
relations, namely, in expression of stress tensor, to the right-hand side we add

−γTδi j, γ =
αE

1−2ν

with the linear thermal definition coefficient α.
Now, within the framework of the last hierarchical models we may consider the

states described at the beginning of the present section and handle them with the
way indicated there.

8.2 Governing System of Conduction of Heat

The conservation of energy equation has the form (see, e.g., Dautray and Lions
(1990, Chapter 1, Section 2, Subsection 6, Point 6.3 General Equations of Classi-
cal Thermoelasticity) and also Nowacki (1975, Chapter 3, Section 3.3; Section 3.4,
Point 4))

ρθ
ds
dt
+divq = f , θ := T (x, t)−T0, in Ω, (8.1)

provided the intrinsic energy is zero, where T0 is the absolute temperature in a nat-
ural state t = t0, T is the absolute temperature at the moment t, s is the specific
entropy, q(x, t) is the heat flux vector (with components qi in the considered refer-
ence frame, heat is crossing a unit element of fictitious surface ∂Ω passing through
x and perpendicular to a unit outward normal n. The passage being made in the
sense and direction of the vector q); here, it is the question of heat transmitted by
conduction of the interior of Ω, f (x, t) is density per unit volume defining a rate of
heat supplied by external elements in the medium under consideration, e.i., so called
"source" function is supposed to be given and is in fact zero in a certain number of
applications. Fourier’s law in the isotropic case looks like (see, e.g., Dautray and
Lions (1990, Chapter 1, Section 2, Subsection 6, Point 6.3 General Equations of
Classical Thermoelasticity)

q = −kgradθ, (8.2)

where k is the thermal conduction coefficient. In the steady case, from (8.1) we get



8 Hierarchical Models of Conduction of Heat in Continua . . . 91

divq = f . (8.3)

Now, about boundary conditions (BC):

(i) if the temperature T̄ is prescribed on a part at the boundary ∂ω, then we have

θ = T̄ −T0; (8.4)

(ii) if the flux of heat across a part of the boundary is imposed, then we have BC of
the type

−qini = q̄n given, (8.5)

which because of (8.2) becomes

∂θ

∂n
= ḡ given. (8.6)

Let the body occupy a prismatic 3D domain Ω with a non-Lipschitz boundary, in
general, and the upper and lower face surfaces of the prismatic 3D domain be given

by x3 =
(+)
h (x1, x2) and x3 =

(−)
h (x1, x2), respectively. Let further

2h (x1, x2) :=
(+)
h (x1, x2)− (−)

h (x1, x2) , (x1, x2) ∈ ω,
denote the thickness of the domain occupied by the body, ω is a projection of the
3D domain on the plane x3 = 0, a part of the boundary ∂ω is called a cusped edge if
2h = 0 there (see also the beginning of Sect. 3 of Jaiani, 2018b).

2̃h (x1, x2) :=
(+)
h (x1, x2)+

(−)
h (x1, x2) , (x1, x2) ∈ ω.

Substituting (8.2) into (8.3) we obtain the heat equation

−(k(x1, x2)θ, j ), j= f (8.7)

in the steady case.

8.3 Mathematical Moments

For the convenience of the reader we repeat the revelent material from Sect. 10 of
Jaiani (2018b). Let f (x1, x2, x3) be a given function in Ω having integrable partial
derivatives, let fr be its r-th order moment defined as follows

fr(x1, x2) :=

(+)
h (x1, x2)∫

(−)
h (x1, x2)

f (x1, x2, x3)Pr(ax3−b)dx3,
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where (see the end of Sect. 2 and the beginning of Sect. 3 of Jaiani, 2018b)

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

h̃(x1, x2)
h(x1, x2)

,

2h(x1, x2) =
(+)
h (x1, x2)− (−)

h (x1, x2) > 0,

2̃h(x1, x2) =
(+)
h (x1, x2)+

(−)
h (x1, x2) > 0,

and

Pr(τ) =
1

2rr!
dr(τ2−1)r

dτr
, r = 0,1, · · · ,

are the r-th order Legendre polynomials with the orhogonality property

+1∫
−1

Pm(τ)Pn(τ)dτ =
2

2m+1
δmn.

From here, substituting

τ = ax3−b =
2

(+)
h (x1, x2)− (−)

h (x1, x2)
x3−

(+)
h (x1, x2)+

(−)
h (x1, x2)

(+)
h (x1, x2)− (−)

h (x1, x2)
,

we have

(
m+

1
2

)
a

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pm(ax3−b)Pn(ax3−b)dx3 = δmn.

Using the well-known formulas of integration by parts (with respect to x3) and dif-
ferentiation with respect to a parameter of integrals depending on parameters (xα),
taking into account Pr(1) = 1, Pr(−1) = (−1)r, we deduce

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,3 dx3 = −a

(+)
h (x1, x2)∫

(−)
h (x1, x2)

P′r(ax3−b) f dx3+
(+)
f − (−1)r

(−)
f , (8.8)

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,α dx3 = fr,α−
(+)
f

(+)
h ,α+ (−1)r

(−)
f

(−)
h ,α
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−
(+)
h (x1, x2)∫

(−)
h (x1, x2)

P′r(ax3−b)(a,α x3−b,α ) f dx3, α = 1,2, (8.9)

where superscript prime means differentiation with respect to the argument ax3−b,
subscripts preceded by a comma mean partial derivatives with respect to the corre-

sponding variables,
(±)
f := f [x1, x2,

(±)
h (x1, x2)].Applying the following relations from

the theory of the Legendre polynomials (see e.g. Jaiani, 2018a, pp. 338-339)

P′r(τ) =
r∑

s=0

(2s+1)
1− (−1)r+s

2
Ps(τ) 1,

τP′r(τ) = rPr(τ)+P′r−1(τ) = rPr(τ)+
r−1∑
s=0

(2s+1)
1+ (−1)r+s

2
Ps(τ) 2, (8.10)

and, in view of a,α
a = (lna),α= − h,α

h ,
a,α
a b = h̃a,α , b,α= (̃ha),α , it is easily seen that

P′r(ax3−b)(a,α x3−b,α ) =
a,α
a

(ax3−b)P′r(ax3−b)+ (
a,α
a

b−b,α )P′r(ax3−b)

= −h,α h−1(ax3−b)P′r(ax3−b)− h̃,α h−1P′r(ax3−b)

= − r
aαrPr(ax3−b)−

r−1∑
s=0

r
aαsPs(ax3−b) 3, (8.11)

where

1 On the top of the symbol
∑

both r−1 and r are true since the last term equals zero.
2 On the top of the symbol

∑
both r−2 and r−1 are true since the last term equals zero.

3 The following relations are valid

r−1∑
s=0

(2s+1)
[

h,α+(−1)r+sh,α
2h

+
h̃,α−(−1)r+sh̃,α

2h

]
Ps(ax3 −b)

=

r−1∑
s=0

(2s+1)
2h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(+)
h ,α−

(−)
h ,α+

(+)
h ,α (−1)r+s − (−)

h ,α (−1)r+s

2

+

(+)
h ,α+

(−)
h ,α−

(+)
h ,α (−1)r+s − (−)

h ,α (−1)r+s

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠Ps(ax3 −b)

=

r−1∑
s=0

(2s+1)

(+)
h ,α−(−1)r+s

(−)
h ,α

2h
Ps(ax3 −b)

because of h =
(+)
h −

(−)
h

2 , h̃ =
(+)
h +

(−)
h

2 .
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r
aαr := r

h,α
h
,

r
aαs := (2s+1)

(+)
h ,α−(−1)r+s

(−)
h ,α

2h
, s � r. (8.12)

Now, bearing in mind (8.11) and (8.10), from (8.9) and (8.8) we have

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,α dx3

= fr,α+
r∑

s=0

r
aαs fs−

(+)
f

(+)
h ,α+ (−1)r

(−)
f

(−)
h ,α, α = 1,2, (8.13)

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,3 dx3 =

r∑
s=0

r
a3s fs+

(+)
f − (−1)r

(−)
f , (8.14)

respectively. Here
r
a3s := −(2s+1)

1− (−1)s+r

2h
, (8.15)

clearly,
r
a3r = 0. (8.16)

Let

f (x1, x2, x3) =
∞∑

r=0

a
(
r+

1
2

)
fr(x1, x2)Pr(ax3−b), (8.17)

then

(±)
f := f (x1, x2,

(±)
h (x1, x2)) =

∞∑
s=0

a
(
s+

1
2

)
fs(±1)s

=

∞∑
s=0

(±1)s(2s+1)
2h

fs, i = 1,3, (8.18)

whence

(+)
f − (−1)r

(−)
f = −

∞∑
s=0

r
a3s fs, i = 1,3, (8.19)

(+)
f

(+)
h ,α−(−1)r

(−)
f

(−)
h ,α=

∞∑
s=0

r
a∗αs fs, i = 1,3, α = 1,2, (8.20)

where
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r
a∗αs =

r
aαs, s � r,

r
a∗αr = (2r+1)

h,α
h
. (8.21)

Substituting (8.20) and (8.19) into (8.13) and (8.14), respectively, we get

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,α dx3 = fr,α+
r∑

s=0

r
aαs fs−

∞∑
s=0

r
a∗αs fs

= fr,α+
∞∑

s=r

r
bαs fs, (8.22)

where
r
b js := − r

a js, s > r;
r
b js = 0, s < r; (8.23)

r
bαr :=

r
aαr −

r
a∗αr = −(r+1)

(+)
h ,α−

(−)
h ,α

2h
,

r
b3r = − r

a3r = 0, (8.24)

and

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,3 dx3 =

r∑
s=0

r
a3s fs−

∞∑
s=0

r
a3s fs

= −
∞∑

s=r+1

r
a3s fs =

∞∑
s=r+1

r
b3s fs, (8.25)

respectively.

If
(+)
f and

(−)
f are known (prescribed), then from (8.13) and (8.14), correspond-

ingly, we obtain

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,α dx3 = fr,α+
r∑

s=0

r
aαs fs

+
(+)
f

(+)
n α

√
1+ (

(+)
h ,1)2+ (

(+)
h ,2)2+ (−1)r

(−)
f

(−)
n α

√
1+ (

(−)
h ,1)2+ (

(−)
h ,2)2 (8.26)

and
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(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,3 dx3 =

r∑
s=0

r
a3s fs

+
(+)
f

(+)
n 3

√
1+ (

(+)
h ,1)2+ (

(+)
h ,2)2+ (−1)r

(−)
f

(−)
n 3

√
1+ (

(−)
h ,1)2+ (

(−)
h ,2)2, (8.27)

since

(±)
n α =

∓(±)
h ,α√

1+ (
(±)
h ,1)2+ (

(±)
h ,2)2

,
(±)
n 3 =

±1√
1+ (

(±)
h ,1)2+ (

(±)
h ,2)2

.

8.4 Construction of Hierarchical Models

To this end, applying Vekua’s dimension reduction method (Vekua, 1955, 1965,
1973, 1985), we multiply (8.1), (8.2), (8.4), and (8.6) by Pr(ax3 −b) and then inte-

grate within the limits
(−)
h (x1, x2) and

(+)
h (x1, x2). Using formulas (8.6), (8.7), (8.15),

and (8.18), we assume the heat flux vector normal component q(x, t,n) to be pre-
scribed on the face surfaces, while on the lateral boundary of the body we assume
to be hold either BC (8.4) or BC (8.6). Besides, we consider ρ = ρ(x1, x2) and by
calculations for temperature change θ on the face surfaces we employ (8.19), (8.20).

Thus, in the steady case: from (8.3), by virtue of (8.26), (8.27), we have

(+)
h∫

(−)
h

qk,kPr(ax3−b)dx3 =

(+)
h∫

(−)
h

qγ,γPr(ax3−b)dx3+

(+)
h∫

(−)
h

v3,3Pr(ax3−b)dx3

= qγr,γ +
r∑

s=0

r
aγsqγs− (+)

qγ
(+)
h,γ + (−1)r(−)

qγ
(−)
h,γ +

r∑
s=0

r
a3sq3s+

(+)
q3 − (−1)r(−)

q3

= qγr,γ +
r∑

s=0

r
aγsqγs+q(+)

n

√
1+

(+)
h,γ

(+)
h,γ + (−1)rq(−)

n

√
1+

(−)
h,γ

(−)
h,γ = fr, (8.28)

r = 0,1,2, ...,

because of

(±)
nγ =

∓
(±)
h,γ√

(±)
h,α

(±)
h,α+1

,
(±)
n3 =

±1√
(±)
h,α

(±)
h,α+1

from (8.2), provided k = k(x1, x2), by virtue of (8.22)-(8.24), we get
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qγr = k(x1, x2)

(+)
h (x1,x2)∫

(−)
h (x1,x2)

θ,γ (x1, x2, x3)Pr(ax3−b)dx3

= k(x1, x2)
[
θr,γ +

r∑
s=0

r
aγsθs−

(+)
θ

(+)
h,γ + (−1)r (−)

θ
(−)
h,γ
]

= k(x1, x2)
[
θr,γ +

r∑
s=0

r
aγsθs−

r∑
s=0

r
a∗γsθs

]

= k(x1, x2)
[
θr,γ +

∞∑
s=r

r
bγsθs

]

= k(x1, x2)hr+1(θ̄r),γ+
∞∑

s=r+1

r
bγshs+1θ̃s, (8.29)

γ = 1,2, r = 0,1,2, ...,

because of θr,γ +
r

bγrθr = hr+1(θ̃r),γ , θ̃r := θr
hr+1

q3r(x1, x2) = k(x1, x2)
[ r∑

s=0

r
a3sq3s+

(+)
θ + (−1)r (−)

θ
]

= k(x1, x2)
∞∑

s=r

r
b3sθs, r = 0,1,2, .... (8.30)

If we multiply by hr the last equality in (8.28), the obtained equation

hrqγr,γ +hr
r∑

s=0

r
aγsqγs+hr

r
Q = hr fr, r = 0,1, ..., (8.31)

where

r
Q := q(+)

n

√
1+

(+)
h,γ

(+)
h,γ + (−1)rq(−)

n

√
1+

(−)
h,γ

(−)
h,γ (8.32)

we can rewrite as

(hrqγr,γ+hr
r−1∑
s=0

r
aγsqγs+hr

r
Q = hr fr, r = 0,1, ..., (8.33)

because of

hrqγr,γ+hr r
aγrqγr = hrqγr,γ +hrr

h,γ
h
= (hrqγr),γ . (8.34)

Now, considering weighted moments
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q̃ jr :=
q jr

hr+1 , j = 1,3, θ̃r :=
θr

hr+1 (8.35)

from (8.33) we get the following equations

(h2r+1q̃γr),γ+hr
r−1∑
s=0

r
aγshs+1q̃γs+hr

r
Q = hr fr, (8.36)

γ = 1,2, r = 0,1, ...,

with respect to weighted moments q̃γr, inserting (8.29) into (8.33) we derive hit
equation in terms of weighted moments of θ:

[
k(x1, x2)h2r+1(x1, x2)θ̃r,γ

]
,γ+
[
k(x1, x2)

∞∑
s=r+1

r
bγshs+1θ̃s

]
,γ= fr, (8.37)

r = 0,1,2, ....

In other words we have rewritten heat equation (8.7) in terms of moments θ̃s, s = r,
r+1, .... If we neglect moments of order r > N, we get Nth order approximation, i.e.,
Nth hierarchical model of heat transfer with the following BCs in moments

θr = θ̄r, r = 0,1,2, ...,N, qnr = q̄nr, r = 0,1,2, ...,N, (8.38)

where θ̄r, q̄nr we calculate from prescribed θ̄ and q̄n after multiplying them by

Pr(ax3 − b) and then integrating within the limits
(−)
h (x1, x2) and

(+)
h (x1, x2). In the

case of cusped edges they should be calculated as limits from the inside of domain.
The last, according to (8.29) may be rewritten as weighted Neumann BC

khr+1 ∂θ̄r
∂n
= ḡr, r = 0,1, ...,N, (8.39)

Concentrated at point and at cusped edge (line) heat flux we define similar to defi-
nition of concentrated at point and at cusped edge (line) force (see Jaiani, 2008)

8.5 The N = 0 Approximation

In this case from (8.37)-(8.39) we get the following two BVPs:
Find θ0 ∈C2, satisfying equation[

k(x1, x2)h(x1, x2)θ̃0,γ
]
,γ= f0(x1, x2) (8.40)

under either BC
θ0 = θ̄0 (8.41)

or BC
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qn0 = q̄n0, i.e., kh
∂θ̃0
∂n
= ḡ0 (8.42)

with prescribed θ̄0 and ḡ0.

8.6 Case of Cusped Bodies

Let now, in the N = 0 approximation (model) consider the body Ω with the half-
thickness

h = h0xκ2, h0, κ = const > 0, (8.43)

whose projection ω on plane x3 = 0 is a strip

{(x,y) : −∞ < x < +∞, 0 < y < L, L = const > 0},
Eq. (8.40) will get the form:

xκ2(kθ̃0,1),1+ (kxκ2θ̃0,2),2 =
f0(x1, x2)

h0
.

First we assume k = k0 = const, then Eq. (8.40) looks like the following singular
differential equation

u,11+u,22+
κ

x2
u,2=

x−κ2

kh0
f0(x1, x2), (8.44)

i.e.,

x2Δu+ κu,2=
x1−κ

2

k0h0
f0(x1, x2). (8.45)

Let us consider the rectangular part of the cusped strip bounded by lines x= a, x= b,
a < b. From the main theorem (Jaiani, 1995) it immediately follows:

Theorem 8.1. If f0(x1, x2) ≡ 0, then for κ < 1 the Dirichlet Problem is well-posed,
i.e. the weighted temperature θ̃0 should be prescribed on the whole boundary ∂ω,
while for κ ≥ 1 the Keldysh Problem is well-posed, i.e., on the three non-cusped
edges of the rectangular boundary weighted temperature θ̃0 should be prescribed
but cusped edge y = 0, a < x < b should be left without BC, provided solution θ̃0 is
bounded.

Now, we consider particular case when θ̃0 = θ̃0(x2), f0 = f0(x2), k = k(x2) and
k(x2)h(x2) > 0 as x2 ∈]0,L], k(0)h(0) = 0, then the general solution of equation
(8.40), which takes the form of the following degenerate partial differential equa-
tion [

k(x2)h(x2)θ̃0,2(x2)
]
,2= f0(x2), (8.46)

has the form
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θ̃0(x2) = c1

x2∫
L

dτ
k(τ)h(τ)

+

x2∫
L

dτ
k(τ)h(τ)

τ∫
L

f0(t)dt+ c2. (8.47)

Whence, the Dirichlet problem is well-posed, i.e., the weighted temperature should
be prescribed on both the edges y = 0 and y = L if and only if

x0
2∫

0

dτ
k(τ)h(τ)

<∞, (8.48)

for Keldysh type problem we have the condition

x0
2∫

0

dτ
k(τ)h(τ)

= +∞, (8.49)

therefore, only at the edge y = L should be prescribed the weighted temperature
and the edge y = 0 should be freed from BC, provided we are looking for bounded
solutions, i.e. we have the Keldysh type BVP. Moreover, both the BVP we solve in
the explicit form under BCs

θ̃0(0) = ¯̃θ0, (8.50)

θ̃0(L) = ¯̃θL, (8.51)

in the case of the Dirichlet type BVP and under BC (8.51) in the case of the Keldysh
type BVP. The unique solutions have the form (8.47), where

c2 =
¯̃θ0, (8.52)

c1 =
[ 0∫

L

dτ
k(τ)h(τ)

]−1[ ¯̃θ0− ¯̃θL −
0∫

L

dτ
k(τ)h(τ)

τ∫
L

dt
k(t)h(t)

]

for the Dirichlet type BVP and with c1 = 0 and (8.52) for the Keldysh type BVP
(clearly in the particular case (8.43), when k(τ) = k0 � 0 we again obtain the condi-
tion κ < 1 for the Dirichlet Problem and the condition κ≥ 1 for the Keldysh problem).

The mixed BVP under BC (8.51) and the weighted Neumann condition (8.42)
has a unique explicit solution (8.47), where

c1 = ḡ0−
0∫

L

f0(t)dt− ¯̃θL,

c2 =
¯̃θL.

Indeed, from (8.42), bearing in mind (8.49) we obtain
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ḡ0 = c1+

0∫
L

f0(t)dt+ θ̃L.

8.7 Conclusions

Differential hierarchical models for the heat condition equation in prismatic shell-
like domains non-Lipschits, in general, are constructed and the peculiarities of set-
ting of boundary conditions in the case of cusped domains are discussed. These
results allow to investigate well-posedness of boundary value problems for ther-
moelastic bodies with non-Lipschits boundaries, in general when deformation and
temperature vary sufficiently slowly and the governing system of thermoelasticity
will be split into two independent BVPs for temperature and the deformed state of
the body.

The peculiarities of nonclassical setting of BCs when either the thickness, or ther-
mal conduction coefficient, or both ones vanish at the edge of prismatic shells are
discussed, criteria of setting the Dirichlet and Keldysh type BVPs are established.
Some concrete BVPs are solved in the explicit form.

In the N = 0 approximation a mixed BVP, when at non-cusped edge the weighted
temperature and at cusped edge the concentrated at edge heat flux are prescribed, is
solved.
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