
Chapter 3
Bending Stiffness of Multilayer Plates
with Alternating Soft and Hard Layers

Alexander K. Belyaev, Nikita F. Morozov, Petr E. Tovstik, and Tatiana P. Tovstik

Abstract The bending stiffness of a multilayer plate with alternating soft and hard
layers is considered under the assumption that the deformation wavelength is sub-
stantially greater than the plate thickness. We discuss the approximate methods for
determining the shear compliance required for replacing a multilayer plate with an
equivalent single-layer Timoshenko – Reissner plate. A comparison is made with
the exact solution of the three-dimensional problem of the theory of elasticity. The
dependence of shear compliance on the ratio of Young’s moduli of layers and on
their location is investigated.

Key words: Plate vibrations and buckling, Multilayer plate, Long-wave deforma-
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3.1 Introduction

The approach to plate theory based on the hypothesis of a straight non-deformable
normal, which was proposed and developed by Kirchhoff (1876) and then applied
and improved for shells by Love (1927), is the main two-dimensional model of the
theory of thin plates and shells. The range of applicability of this model is lim-
ited to single-layer plates made of a homogeneous isotropic material. However for
anisotropic plates with low shear stiffness, for plates with oblique anisotropy, for
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multilayer plates with alternating soft and hard layers, the Kirchhoff – Love (KL)
model leads to significant inaccuracies, that means, it becomes necessary to use
refined models.

A more complex model was proposed in the first half of the 20th century by
Timoshenko (1921); Reissner (2021). The Timoshenko – Reissner (TR) theory takes
into account rotations of the mid surface normals, that is, includes the effect of
transverse shear deformation. In this case, the plate can be considered as a material
plane, the elements of which have translational and rotational degrees of freedom.
In the limiting case, when the shear stiffness is equal to infinity, the TR model turns
to the KL model.

The TR accounting for the transverse shear leads to a significant refinement of the
results compared to the KL model for anisotropic plates with low transverse shear
stiffness and for multilayer plates with alternating soft and hard layers. For multi-
layer plates, an equivalent single-layer TR plate made of a homogeneous material is
introduced in Tovstik and Tovstik (2017a,b), which models a multilayer plate form
a perspective of deflections, vibrations and buckling. The equivalent bending stiff-
ness can be found using the same formulas as in the KL model, but determining
the shear stiffness presents certain difficulties and is discussed in detail in what fol-
lows. In this paper, to determine this rigidity, we use an asymptotic expansion of
the solution of a three-dimensional problem in a series in powers of a small dimen-
sionless thickness (Tovstik and Tovstik, 2014; Morozov et al, 2016). Other methods
for determining the shear stiffness are also discussed in Hill (1965); Grigolyuk and
Kulikov (1988). These methods are discussed using the example of the problem of
free vibrations of a multilayer plate with transversely isotropic layers. A comparison
is made with the exact solution of the three-dimensional problem. The dependence
of the shear compliance, bending stiffness, vibration frequency and buckling of a
multilayer plate on the ratio of Young’s moduli of layers and on the arrangement of
layers is investigated.

3.2 Free Vibration and Bending of Multilayer Plate

Let us first consider free bending vibrations of a transversely isotropic homogeneous
plate with the deflection w(x,y, t) = w0 sin pxsinqysinωt. This deflection is typical
for vibrating infinite plate, as well as vibration of a rectangular simply supported
plate. In the latter case p = pm = mπ/Lx, q = qn = nπ/Ly, m, n = 1, 2, . . . , where
Lx, Ly stand for length of the corresponding size. For the TR model, the vibration
frequency ω is related to the dimensionless frequency parameter

λ =
ρh2ω2

E0

and given by the equations (Tovstik and Tovstik, 2017a,b)



3 Bending Stiffness of Multilayer Plates with Alternating Soft and Hard Layers 29

λ = λTR =
λKL

1+g
, λKL = Dμ4, (3.1)

where E0 = E/(1− ν2), μ = rh = 2πh/L, r2 = p2 +q2. Here ρ is the material mass
density, h is the plate thickness, L = (L−2

x + L−2
y )−

1
2 is a typical wave length, E is

the Young modulus, ν is the Poisson ratio, μ is a small parameter proportional to
the ratio of the plate thickness to a typical wave length, D = 1/12 is a dimen-
sionless parameter of the bending stiffness, g = (E0μ

2)/(10G13) is a parameter of
influence of transverse shear, G13 is the transverse shear modulus. For isotropic
layers G13 = E/(2(1+ν)), while for transversally isotropic layers G13 is an indepen-
dent parameter. For thin plates (μ� 1) when E/G13 ∼ 1 the term g in (1) can be
neglected whereas for G13 � E the shear correction factor becomes considerable.
When g = 0, i.e. when the shear is not taken into account, Eq. (3.1) yields the KL
formula λKL = Dμ4.

For KL model, the static deflection w(x,y) = w0 sin pxsinqy of the plate under
the normal load f (x,y, t) = f0 sin pxsinqy is given by the equation

Dr4w0

1+g
= f0, (3.2)

cf. Tovstik and Tovstik (2017a,b), where the bending stiffness D and the shear com-
pliance g are given by Eq. (3.1). The objective of the present work is to develop Eqs.
(3.1) and (3.2) for multilayer plates.

3.3 Asymptotic Integration of Three-dimensional Equations

For a multilayer plate, the elastic moduli and the mass density become piecewise
constant functions of the transverse coordinate z, 0 ≤ z ≤ h. This parametrization is
more convenient than the usual −h/2≤ z≤ h/2, since for coordinates used here z� 0
at the neutral layer. We introduce dimensionless variables (withˆ)

{u1,u2,w,z} = h{û1, û2, ŵ, ẑ}, {x,y} = L{x̂, ŷ, }
{E,E0,G13,σi j} = E∗{Ê, Ê0,Ĝ13, σ̂i j}, i, j = 1, 2, 3,

where u1,u2 are tangential displacements along the x,y axes, σi j are stress ten-
sor components, E∗ - thickness-average Young’s modulus. Here and after we omit
mark .̂

For a multilayer plate, the exact expression for the frequency parameter λ can
be found from a three-dimensional boundary value problem, which for transverse
vibrations in dimensionless variables is reduced to the form (Tovstik and Tovstik,
2014; Morozov et al, 2016; Tovstik and Tovstik, 2017a,b):
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dw
dz
= −μ2cν(z)u+μ4c3(z)σ33,

du
dz
= w+μ2cg(z)σ,

dσ
dz
= E0(z)u+μ2cν(z)σ33−μ2λρ(z)u,

dσ33

dz
= −σ−λρ(z)w,

σ = σ33 = 0, z = 0, 1.

(3.3)

Here the displacements and the z coordinate are related to the plate thickness,
whereas the stresses and the elastic moduli are related to Young’s modulus of the
rigid layer, and the densities are related to the density of the rigid layer. Instead of
tangential movements u1, u2 and stressesσ13, σ23 we introduce auxiliary unknowns
quantities u = μ(pu1+qu2), σ = μ3(pσ13+qσ23) and

cν =
ν

1− ν , c3 =
(1+ ν)(1−2ν)

E(1− ν) , cg =
1

G13
.

By asymptotic expansion of the solution to the boundary value problem (3.3) in
powers of the small parameter μ in Timoshenko (1921); Reissner (2021); Tovstik
and Tovstik (2017b), an expression for the frequency parameter λ was obtained in a
form similar to (3.1):

λ =
ρ∗h2ω2

E∗
=
λKL

1+g
, λKL = D∗μ4, D∗ =

1
E∗

∫ 1

0
E0(z)(z−a)2dz, (3.4)

where
g = ga+O(μ4), ga = μ2(Ag+Aν+ J+ Jν),

{E∗, ρ∗} =
∫ 1

0
{E0(z), ρ(z)}dz, a =

1
E∗

∫ 1

0
E0(z)zdz,

Ag =
1

E∗D∗

∫ 1

0

(∫ z

0
E0(z1)(z1−a)dz1

)2
G13(z)

dz.

(3.5)

Here E∗, ρ∗ is the thickness average tensile stiffness and density, D∗ is the bending
stiffness parameter and a is the coordinate of the neutral layer. The second order
terms ga take into account the lateral shear compliance (Ag), the Poisson tension
of a normal fiber (Aν), the inertia of rotational motion (J) and the inertia of the
Poisson extension (Jν). The quantities Aν, J and Jν are not shown here, cf. Tovstik
and Tovstik (2017a,b).

For the problem of statics (3.2), the formula for deflection, accurate to terms of
the second order of smallness, has the form:

wTR = wKL(1+g), wKL =
f0

Dr4 , g = ga = μ2
(
Ag+Aν

)
. (3.6)
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3.4 The Transverse Shear Stiffness

Calculations for multilayer plates by Eqs. (3.4)-(3.6) are associated with the cal-
culation of iterated integrals of piecewise constant functions, and hence are rather
cumbersome. That is why we will consider the possibility of simplifying them in
what follows. Consider a plate with alternating isotropic hard and soft layers and
denote by η the ratio of Young’s moduli of hard and soft layers. If the parameter η
increases, then the moduli G13 of the soft layers of the plate decrease and, by virtue
of formula (3.4), the coefficient Ag also increases, while the remaining second-order
coefficients Aν, J, Jν remain significantly smaller than Ag.

Consider, for example, a three-layer plate with the layer thicknesses h1 = 0.3,
h2 = 0.6, h3 = 0.1. Respectively, Young’s moduli of hard and soft layers are equal to
E1 = E3 = 1, E2 = 1/η, Poisson’s ratios ν1 = ν3 = 0.3, ν2 = 0.35. For a number of
values of η, the coefficients of the second order of smallness are given in Table 3.1.
We put approximately ga = μ2Ag, thus returning to the TR model, which takes into

account only the shear and ignores the other terms of the second order of smallness.
Calculations in Tovstik and Tovstik (2017a,b) showed that at η ≤ 1000, μ = 0.1

the error of Eq. (3.4) for g = ga = μ2Ag does not exceed 4%. In what follows, the
error of this replacement is discussed in more detail, cf. Hill (1965).

3.5 The Exact Value of the Shear Stiffness

By virtue of Eq. (3.5), we have the estimate

ga = μ2Ag = O(μ2η). (3.7)

For very large η, i.e., for a large ratio of the stiffness of the layers we have ga > 1,
Eq. (3.4) for g = ga becomes inaccurate and it is necessary to find the exact value
g = ge for which Eq. (3.4) gives the exact value λ = λe. In order to find it we put
cν = c3 = 0 in system (3.3) and omit the term μ2λρ(z)u in the third equation. We
obtain w = 1 and the auxiliary boundary-value problem

du
dz
= w+μ2cg(z)σ,

dσ
dz
= E0(z)u, σ(0) = σ(1) = 0. (3.8)

Table 3.1 Terms of the second order of smallness.

η Ag Aν J Jν a D∗
1 0.299 0.0928 0.1150 0.0308 0.502 0.0824

10 1.461 0.0875 0.1114 0.0081 0.384 0.1202

100 12.921 0.0844 0.1149 0.0026 0.354 0.1253

1000 127.515 0.0840 0.1154 0.0019 0.350 0.1259
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After solving it, from the compatibility condition of the fourth equation (3.3), we
find λ = −∫ 1

0 σ(z)dz from Eq. (3.3) we have

ge =
1
μ2

(D∗
λ
−1
)
. (3.9)

Some examples of calculation are provided in Sect. 3.8.
Equation (3.9) is obtained from consideration of free vibrations. Calculation of

the same value ge from the statics problem is more difficult, because with an exact
statement, the deflection depends on the distribution of the load over the thickness
and the types of the layer, cf. Tovstik and Tovstik (2017a).

3.6 About the TR Model for a Homogeneous Transversally
Isotropic Plate

According to the TR model, the frequency parameter λ for a homogeneous trans-

versely isotropic plate is determined by Eq. (3.4), in which g = g0 =
q
10
, q =

μ2E0

G13
.

Let us estimate the accuracy of this formula for g0 > 1. For a homogeneous plate,
problem (3.6) has a closed form solution

σ =
G
μ2

⎛⎜⎜⎜⎜⎜⎜⎜⎝cosh
(√

q(z−0.5)
)

√
q

2

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and Eq. (3.9) yields

ge =
q

12
(
2cosh

(√
q/2
)
/
√

q−1
) −1. (3.10)

Calculations using Eq. (3.10) gave the following results:

q/10 = 0.1 1 10 100 1000

ge = 0.0999 0.989 9.42 88.0 849

from which it follows that with an increase in q, the exact value of ge deviates
downward from the value q/10, recommended by the TR model.

3.7 Other Ways to Calculate the Shear Parameter g

In the classical paper by Hill (1965) two models, Voigt and Reuss, for estimating
the transverse shear modulus of a composite material are given GV = γ1G1+γ2G2
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and GR =
(
γ1
G1
+
γ2
G2

)−1
. The second formula for the plate with N layers takes the

form of the sum of shear compliance of the layers

g =
N∑

n=1

γn

Gn
, (3.11)

where γn do not depend in transverse shear moduli of the layers Gn. Gn are the
independent coefficients, the formulas for which are not given here. Note that Eq.
(3.11) for Ag is reduced to (11) after calculating the integrals.

The monograph by Grigolyuk and Kulikov (1988) (GK) proposed an algorithm
for taking into account the transverse shear effect for multilayer plates and shells.
It is expedient to return to this algorithm, because the recent works (Mikhasev and
Altenbach, 2019; Morozov et al, 2020), as well as a number of other works, reported
application of this algorithm for solving some particular problems. This algorithm
is based on the hypothesis of distribution of the transverse shear deformations over
the plate thickness. According to Grigolyuk and Kulikov (1988), the formula for g
can be written as: ⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝ N∑
n=1

αn

Gn

⎞⎟⎟⎟⎟⎟⎟⎠
−1

+

N∑
n=1

βnGn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1

, (3.12)

where αn and βn are Gn - independent coefficients. The explicit form of the formula
for g is given in Grigolyuk and Kulikov (1988); Mikhasev and Altenbach (2019);
Morozov et al (2020). Calculations have shown that the GK algorithm can be used
only for plates with a small ratio η of Young’s moduli of layers which is also dis-
cussed in Grigolyuk and Kulikov (1988). With an increase in η, the error of Eq.
(3.10) for Δ(η) grows rapidly. For example, for the plate considered in Table 3.1, the
error Δ(1) = 1.2%, Δ(10) = 42% where at η = 100, the value of g given by Eq. (3.10)
is 10 times greater than the exact value. Apparently, the hypotheses underlying the
GK model and violating the continuity of shear stresses at the layer boundary need
to be corrected.

3.8 Numerical Results. Three-layer Plate Symmetrical in
Thickness

The shear parameter g and the associated vibration frequency ω depend on many
parameters. A number of special cases are considered below.

Consider a plate with the parameters h1 = h3 = 0.3, h2 = 0.4, E1 = E3 = 1,
E2 = 1/η, ν1 = ν2 = ν3 = 0.3, ρ1 = ρ3 = 1, ρ2 = 1/η. There are two free parameters
left: the thickness parameter μ and the Young’s modulus ratio η. As follows from
estimate 3.7, the allowance for the transverse shear is associated with the value μ2η;
therefore, we introduce the combined parameter p = μ2η and carry out the calcula-
tions at a fixed value of the parameter μ = 0.1. Table 3.2 shows for a number of p
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values: approximate values of the shear parameter ga = μ2Ag found by asymptotic
formula (3.4), and the exact values of ge found by Eq. (3.7); the exact values of
λe of the frequency parameter λ obtained by solving the three-dimensional prob-
lem (3.2). The remaining values of the parameter λ are approximate. They are
obtained by formula (3), and the values of λap, λTR, λKL are calculated for g = ge,
for g = ga = μ2Ag and for g = 0, respectively. The λTR value corresponds to the
TR model with allowance for the shear according to the approximate model (3.4).
The λKL value corresponds to the KL model, which does not take into account the
transverse shear.

Comparison of columns 3–4 and 5–8 allows us to judge the areas of applicability
of the approximate models. The KL model is applicable only at η≤ 10 (or at p≤ 0.1).
The asymptotic approach of the second order of accuracy which leads to the values
of ga and λTR is certainly applicable for η ≤ 100 and gives a noticeable error for
100 < η ≤ 1000. In this case, parameter ga exceeds the exact value ge. Using the
ge value gives fairly accurate results over the entire considered range of η ≤ 10000,
as evidenced by the comparison of columns 5 and 6 (when calculating λap only
the shear is accurately taken into account while the other second-order effects are
ignored).

Calculations were also carried out at μ = 0.316 and at μ = 0.0316 however, the
numerical results are not presented, because they differ from those given in Table
3.2 by less than 1% (except for the parameter η which is 10 times less or more,
respectively).

3.9 Three-layer Plate Asymmetric in Thickness

Consider a three-layer plate with a constant thickness of the soft layer h2 = 0.4 and
with variable thicknesses of the hard layers 0 < h1 ≤ 0.3, h3 = 0.6−h1. The rest of
the parameters are the same as in Sect. 3.4. When h1 = 0.3 the plate is symmetrical
in thickness, and the difference 0.3−h1 serves as a measure of asymmetry. Let us
discuss function λe(η, h1). From the results of Table 3.3, it follows that at 1 < η ≤
100 the frequency decreases with an increase in the asymmetry of the plate (with a

Table 3.2 Shear and frequency parameters depending on p at μ = 0.1.

1 2 3 4 5 6 7 8

p η ga ge λe λap λTR λKL

0.01 1 0.00286 0.00286 0.0913 0.0913 0.0913 0.0916

0.1 10 0.0174 0.0174 0.1321 0.1325 0.1325 0.1348

1 100 0.163 0.161 0.1222 0.1223 0.1224 0.1420

10 1000 1.62 1.47 0.0578 0.0578 0.0545 0.1432

100 10000 16.2 8.1 0.0157 0.0157 0.0083 0.1432
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Table 3.3 The frequency parameter λe versus parameters η and h1 at μ = 0.1.

h1 η = 1 10 100 1000 10000

0.3 0.0913 0.1321 0.1222 0.0578 0.0157

0.2 0.0913 0.1231 0.1141 0.0583 0.0183

0.1 0.0913 0.0953 0.0876 0.0575 0.0263

0.05 0.0913 0.0740 0.0652 0.0524 0.0320

decrease in the thickness h1). At higher η, with increasing asymmetry, the frequency
increases and reaches a maximum at a certain value of h1 and then decreases. For
a fixed value of h1 and with increasing η, the frequency first increases and, upon
reaching the maximum, decreases. At h1 = 0.05, the maximum is reached at η= 1.15
and is not shown in Table 3.3.

3.10 Multilayer Plate

Consider a multilayer plate with an odd number 2n+1 of alternating hard and soft
layers of the same thickness h1 and h2 with parameters μ= 0.1, η= 100. Let ξ denote
the fraction of the volume occupied by soft layers. Table 3.4 shows the values of the
frequency parameter λe depending on the parameters n and ξ. It follows from the
results presented in the table that the frequency decreases with an increase in the
number of layers, approaching the limit corresponding to a transversely isotropic
homogeneous plate. The last row of Table 3.4 was constructed according to Eq. (3.8)
with q = (1− ξ+ηξ)(η(1− ξ)+ ξ), whence it follows that function ge(ξ) is even with
respect to the point ξ = 0.5. The latter circumstance is associated with the peculiarity
of specifying the density of the soft layers ρ2 = 1/η.

With a small number of layers, the frequency increases with the fraction ξ of the
soft material, whereas this regularity is violated with a large number of layers.

Table 3.4 Parameter λe depending on n and ξ at μ = 0.1, η = 100.

n ξ = 0.1 0.3 0.5 0.7 0.9

3 0.0962 0.1115 0.1354 0.1712 0.2190

5 0.0946 0.1024 0.1153 0.1338 0.1567

11 0.0915 0.0941 0.0991 0.1070 0.1169

21 0.0904 0.0904 0.0926 0.0970 0.1032

101 0.0893 0.0871 0.0868 0.0884 0.0919

∞ 0.0891 0.0863 0.0854 0.0863 0.0891
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3.11 Buckling of a Multilayer Plate Under Uniform Compression

Consider a multilayer simply supported rectangular plate with sides Lx, Ly which
is uniformly compressed by tangential strain e. The following initial conditions ac-
cepted in the plane of the plate

T = T1 = T2 = eE1∗, E1∗ =
∫ 1

0
E1(z)dz, E1 =

E
1− ν , (3.13)

which upon the buckling w(x,y) = w0 sin pxsinqy generate a load f (x,y) = TΔw
where Δ denotes the Laplace operator. Equation (3.2) in which D and g are calcu-
lated by Eqs. (3.4) and (3.5) after separation of variables f0 = eE∗r2w yields the
critical deformation

e =
D∗μ2

(1+g)E1∗
, μ = rh, r2 =

π2

L2
x
+
π2

L2
y
. (3.14)

To estimate the error in Eq. (3.14), let us turn to the exact system (3.3). The last two
equations of take the form

dσ
dz
= E0(z)u+μ2cν(z)σ33,

dσ33

dz
= −σ− eμ2E1(z)w. (3.15)

Let us consider the compression buckling of a plate asymmetric in thickness with
the parameters E1 = E3 = 1, E2 = 1/η, h1 = 0.1, h2 = 0.6, h3 = 0.3, ν1 = ν2 = ν3 =
0.3. As in Table 3.2, parameter η will vary within wide limits 0 ≤ η ≤ 10000. The
calculations were carried out for the relative thickness μ = 0.1. As in the vibration
problem, the result depends on the combined parameter p = μ2η, so it can be used
for other values of μ.

Table 3.5 shows the exact values of ee
0 found when integrating system (3.3) taking

into account replacement (3.15); the values of eTR
0 found by Eq. (3.14) at g = ga,

along with the values of eKL
0 corresponding to the KL model and found by the same

Eq. (3.14) at g= 0 (without taking into account the effect of transverse shear). As in
the case of vibration, the KL model gives acceptable results only at p ≤ 0.1 whereas
the TR model using the second-order accuracy parameter g = ga gives good results

Table 3.5 Critical deformation e = 10−3e0 versus p for μ = 0.1.

p η ga ee
0 eTR

0 eKL
0

0.01 1 0.00286 0.639 0.639 0.641

0.1 10 0.0141 0.914 0.914 0.926

1 100 0.124 0.858 0.857 0.960

10 1000 1.23 0.448 0.434 0.967

100 10000 12.3 0.111 0.073 0.967
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at p ≤ 1 and acceptable results at p ≤ 10. For p > 10, the exact value g = ge should
be used, the calculation of which is reduced to solving a simpler boundary value
problem (3.8), otherwise it is necessary to solve the complete problem (3.3).

Note that the parameters ga and ge depend on the parameters of multilayer plate,
but they are the same for the problems of vibration, statics, and buckling since
boundary value problem (3.8) does not change when calculating ge.

3.12 Discussion

The frequency of bending vibrations of a multilayer plate was found to be calcu-
lated by Eq. (3.4) corresponding to the TR model, in which the denominator 1+ g
takes into account the effect of transverse shear. A combined parameter p = μ2η is
introduced, which determines the range of applicability of various approaches in
calculating g (μ is a small parameter of thickness and η is the ratio of Young’s mod-
uli of layers). When p ≤ 1 for a homogeneous plate g = E0μ

2

10G13
, and for a multilayer

plate g = ga = μ2Ag, see (3.5). If p > 1 these formulas become inaccurate. For a
homogeneous plate, g is calculated using the explicit formula (3.10). This gives an
estimate of the error of the TR model for g = E0μ

2

10G13
. For a multilayer plate, the value

g = ge is calculated by Eq. (3.9). The use of this value of g gives fairly accurate
results in the entire considered range of parameters 0.001 ≤ μ ≤ 0.3, 1 ≤ η ≤ 10000
which is confirmed by comparison with the exact solution of the three-dimensional
problem (3.3). A number of particular problems have been solved. For a three-layer
plate, the influence of the location of the soft layer on the vibration frequencies is
investigated. A multilayer plate with a constant fraction ξ of the volume occupied by
soft layers is considered, and the influence of parameter ξ and the number of layers
on the vibration frequency is investigated.

The results obtained for the factor 1+ g which takes into account the effect of
transverse shear are also applicable without changes for the static problem of de-
flection of a multilayer plate under the action of a static harmonic load of the form
f = f0 sin pxsinqy. These results are also used to solve the buckling problem for a
multilayer plate under uniform compression in its plane. Equation (3.14) for critical
deformation is a generalization of Eq. (3.4). In this case, the range of applicability
of the approximate KL and TR models turns out to be the same as in the vibrational
case.

For multilayer transversely isotropic plates, the presented results can be consid-
ered final. In Tovstik (2019), an asymptotic approximation of the second order of
accuracy was constructed for a plate inhomogeneous in thickness with anisotropy of
general form (with 21 elastic moduli), which leads to a rather cumbersome model
that requires simplifications and a corresponding analysis of the error. In particular, a
multilayer plate with orthotropic layers generally does not have a neutral layer. That
is, the longitudinal and bending deformations are not separated and the calculation
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becomes more complicated. Only partial results have been obtained in Belyaev et al
(2019)1 and the problem remains to be tackled.
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