
Chapter 15
Asymptotic Analysis of Buckling of Layered
Rectangular Plates Accounting for Boundary
Conditions and Edge Effects Induced by Shears

Gennadi Mikhasev and Rovshen Ataev

Abstract Based on the equivalent single layer theory for laminated shells, buck-
ling of layered rectangular plate under uniaxial compression with different variant
of boundary conditions is studied. Equations in terms of the displacement, shear
and stress functions, which take into account transverse shears inside the plate and
near the edges with and without diaphragms, are used as the governing ones. Us-
ing the asymptotic approach, the buckling modes are constructed in the form of a
superposition of the outer solution and the edge effect integrals induced by shears
in the vicinity of the edges with or without diaphragms. Closed form relations for
the critical buckling force accounting for shears are obtained for different variants
of boundary conditions. It is detected that within one group of boundary conditions,
the critical buckling forces can differ significantly depending on whether the edge is
supplied with the diaphragm or not.

Key words: layered rectangular plate, shears, uniaxial compression, buckling,
asymptotic approach, edge diaphragm, edge effects

15.1 Introduction

Buckling of thin plates is one of the extensive problems in the theory of thin-walled
structures subjected to loading, which includes problems on buckling of single layer
isotropic plates with various boundary conditions and under different schemes of
loading, of composite and laminated plates based on different kinematic hypotheses,
and others. Apparently, the first study on the stability of thin single layer isotropic
rectangular plates in the framework of the classical Kirchhoff theory, was carried
out by Bryan (1890). Applying the energy method, he obtained a simple formula for
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the critical force resulting in buckling of an uniaxially loaded rectangular plate with
simply supported edges. Soon, following the Euler approach, Timoshenko (1907,
1910) and Reissner (1909) independently considered similar problems for a plate in
which two edges loaded by a compressive force are simply supported, and the other
ones have arbitrary boundary conditions. Later, Bubnov (1912) solved the problem
on buckling of a rectangular plate, in which a pair of opposite sides is loaded by
forces linearly varying along these sides. There was also considered a rectangular
simply supported plate under the action of shear stresses uniformly distributed along
the contour of the plate.

The above closed form classical solutions together with many others (e.g., see
Timoshenko, 1936; Donell, 1976; Alfutov, 2000), obtained for isotropic plates obey-
ing Kirchhoff’s hypotheses, became a benchmark for subsequent investigations on
buckling of layered plates. Solutions of problems on buckling of laminated plates
with different boundary conditions and under various scheme of loading, using the
equivalent single layer (ESL) theories based on the Kirchhoff assumptions, can be
found in Ashton and Witney (1970); Reddy (2004). Obviously, similar solutions,
ignoring shears and the transverse normal stresses, are not sufficiently accurate for
laminated plates (Khdeir, 1989a,b). Therefore, the next contribution to the theory
of buckling of layered plates was the use of the first-order shear deformation theory
(FSDT) first proposed by Reissner (1945, 1952); Mindlin (1951) and then improved
by other researches, see, e.g., the review papers Altenbach (1998); Qatu et al (2010).
The series of studies based on this approach (see, among many others, Khdeir et al,
1987; Reddy and Khdeir, 1989; Nosier and Reddy, 1992) showed that taking trans-
verse shears into account may give a large correction to the critical buckling force
estimated within the classical shells theory for layered plates. The main drawback of
the FSDT is that it does not allow satisfying the traction-free boundary conditions at
the top and bottom surfaces of a laminated plate and so, it requires to introduce the
shear correction factors (Mindlin, 1951). The next step in the development of more
accurate approaches for modeling mechanical behavior of laminated plates is asso-
ciated with the higher-order shear deformation theories (HSDT)s. They are based on
quadratic, cubic and higher-order expansions at least of the in-plane displacements
as functions of the transverse coordinate and comply with the traction-free bound-
ary conditions on the face planes of a laminated plate, see relatively early papers
Whitney and Sun (1973, 1974); Reddy (1984); Librescu et al (1987); Grigoliuk and
Kulikov (1988), and also some more recent (Swaminathan and Ragounadin, 2004;
Tovstik and Tovstik, 2007; Aydogdu, 2009; Amabili, 2015; Shi et al, 2018, to name
a few). Using the developed HSDTs, many buckling problems of rectangular lami-
nated plates were analyzed for various boundary conditions and schemes of loading,
taking into account anisotropy of layers composing the plate. A lot of examples on
buckling of laminated plates with symmetric and antisymmetric, cross- and angle-
ply orientation of fibres can be found in Reddy (2004). An extensive literature on
early studies of buckling of laminated plates can be also found there.

Due to the widespread use of composite plates and shells in engineering prac-
tice, the number of papers devoted to the buckling of laminated and functionally
graded material plates, based on using HSDTs and high accurate layer-wise theo-
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ries accounting the zig-zage effects, has increased dramatically, e.g., see the review
article by Swaminathana et al (2015). These studies carried out, as a rule, using nu-
merical methods, are characterized by high accuracy, but at the same time they are
numerically highly-cost and do not allow obtaining closed form solutions and sim-
ple assessments for the critical buckling loads. In particular, a review of the available
literature indicates the absence of any research of the transverse shear effects near
the plate edges, induced by the edge diaphragms, on a value of the critical buckling
load. At the same time, it should be noted that the asymptotic analysis of free vibra-
tion of a laminated cylindrical shell performed in Mikhasev and Botogova (2017);
Mikhasev and Altenbach (2019c) displayed the strong dependence of the lowest
eigenfrequencies on whether the shell edge is supplied with a diaphragm or not.

Motivated by the outcomes of Mikhasev and Botogova (2017); Mikhasev and
Altenbach (2019c), we aim to investigate the influence of the transverse shears near
edges on the value of the critical buckling force for rectangular plates which are pli-
able to shears. As the model we will use the ESL theory developed by Grigoliuk and
Kulikov (1988) which is based on the generalized kinematical hypotheses of Tim-
oshenko for the in-plane displacements and the parabolic distribution of transverse
shear stresses through the plate thickness. This model complies with the traction-
free boundary conditions on the top and bottom surfaces of a laminated plate and
was verified by finite element simulation (Mikhasev and Altenbach, 2019a). In the
framework of this theory, the full system of differential equations w.r.t. five un-
knowns is readily simplified and reduced to three equations for the displacement,
stress and shear functions. These equations have more higher order than similar
equations like Timoshenko-Reissner and, in a particular case, completely coincide
with equations derived by Tovstik and Tovstik (2017a,b) from the 3D theory of elas-
ticity. The higher order of this equations allows differing boundary conditions be-
longing to the same group (e.g., the clamped support group) depending on whether
an edge has a diaphragm or not.

The asymptotic solutions of equations governing buckling of a rectangular lam-
inated plate with various boundary conditions are constructed in the form of a su-
perposition of the outer solution and the edge effect integrals induced by shears in
the vicinity of an edge with or without a diaphragm. The corrections to classical
relations for the critical buckling forces are derived.

15.2 Governing Equations

Consider a rectangular laminated plate with the sides a,b consisting of N transver-
sally isotropic elastic layers. Each layer is characterized by the thickens hk, Young’s
modulus Ek, the shear modulus Gk and Poisson’s ratio νk, where k = 1,2, . . . ,N.
The plate is referred to an orthogonal Cartesian coordinate system Ox1x2x3 with the
original plane Ox1x2 coinciding with the middle surface of any layer.

Let the plate be loaded with edges forces which generally generate the stress
resultants T ◦11,T

◦
22,T

◦
12 in the original plane Ox1x2, where T ◦11, T ◦22 are the membrane
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forces acting in the x1- and x2- directions, respectively, and T ◦22 is the membrane
shear force. Then the governing equations describing buckling of the plate based on
the ESL theory by Grigoliuk-Kulikov can be written as follows:

D
(
1− θh

2

β
Δ

)
Δ2χ−

⎛⎜⎜⎜⎜⎜⎝T ◦11
∂2

∂x2
1

+2T ◦12
∂2

∂x1∂x2
+T ◦22

∂2

∂x2
2

⎞⎟⎟⎟⎟⎟⎠w = 0, (15.1)

w =
(
1− h2

β
Δ

)
χ,

1− ν
2

h2

β
Δφ = φ. (15.2)

Here Δ is the Laplace operator, h =
N∑

k=1
hk is the total plate thickness, w is the normal

displacement, χ and φ are the displacement and shear functions, respectively, E,
D and ν are the reduced Young’s modulus, bending stiffness and Poisson’s ratio,
respectively, and θ,β are the reduced shear parameters determined by equations:
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(15.3)

Parameters ηi,rk,rkn, where i = 1,2,3;n = 0,k, appearing in (15.3) are introduced by
the following relations:

rk =

zk∫
zk−1

f 2
0 (z)dz, rkn =

zk∫
zk−1

fk(z) fn(z)dz, η1 =
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12,

η2 =

N∑
k=1

ξ−1
k π2kγk −3c12c13, η3 = 4
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(
ξ2k +3ζk−1ζk

)
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13,

(15.4)

where

γk =
Ekhk

1− ν2k

⎛⎜⎜⎜⎜⎜⎜⎝ N∑
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Ekhk
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−1

(15.5)

is the in-plane reduced stiffness of the k-th lamina, and
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hξk = hk, hζn = zn (n = 0, k).

(15.6)

Functions f0, fk,g are taken in the polynomial form:

f0(x3) =
1
h2 (x3− z0)(zN − x3) for x3 ∈ [z0,zN],

fk(x3) =
1
h2

k

(x3− zk−1)(zk − x3) for x3 ∈ [zk−1,zk],

fk(x3) = 0 for x3 � [zk−1,zk], g(x3) =

x3∫
0

f0(z)dz.

(15.7)

In Eqs. (15.4), (15.6), (15.7), x3 = zk is the coordinate of the upper bound of the kth

layer, and x3 = z0 is the coordinate of the bottom face.
The dimensionless parameter θ depends on a number of layers and thickness of

each lamina. For instance, for a single layer isotropic plate, θ = 1/85. The estimates
of this parameter for layered plates and panels depending on a number of layers
and their mechanical properties can be found in Mikhasev et al (2019); Mikhasev
and Altenbach (2019d). If θ = 0, then Eq. (15.1) together with the first equation
from (15.2) degenerates into the fourth-order differential one which coincides with
the equation like Timoshenko-Reissner obtained by Tovstik and Tovstik (2017a,b);
Morozov et al (2016a,b) for plates inhomogeneous in the thickness direction. How-
ever, the shear parameter β is calculated in other way. We note that the parameter
G = Eη1β/[12(1− ν2)] can be here treated as the effective (or reduced) shear mod-
ulus for laminated plate (Mikhasev and Altenbach, 2019b; Mikhasev and Tovstik,
2020).

We consider two groups of boundary conditions, the simple support group, and
the clamped support group, which will be denoted by the letters S and C, respec-
tively. Each of these groups consists of two variants boundary conditions which
differ in the presence or absence of a diaphragm that prevents shears in the edge
plane. To distinguish these condition in the framework of one fixed group, we will
use the signs + and − for the edges with and without a diaphragm, respectively:
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• S + – conditions,
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= 0; (15.8)
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• C− – conditions, (
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for xi = 0, x∗i , where i, j = 1,2; i � j, and x∗1 = a, x∗2 = b.
There are 9 essentially different combinations of boundary conditions. In what

follows, we consider only the following variants:

S ±S ±S +S +, S ±C±S +S +, C±C±S +S +,

where the first pair of letters denotes the boundary conditions at the edges x1 =

0, x1 = a, while the second one corresponds to conditions for x2 = 0, x2 = b. For
instance, S +S +S +S + stands for the plate with simply supported edges supplied with
the diaphragms, while the combination C−C−S +S + denotes a clamped support of
the edges x1 = 0, x1 = a without diaphragms.

As a rule, the plate loading is assumed to be one-parametric, so that

T ◦i j = −λ
D
a2 t◦i j, (15.12)

where t◦i j is the dimensionless counterpart of T ◦i j, and λ is the dimensionless load
parameter. It is important that at least one of the parameters t◦i j be positive, that cor-
responds to the plate compression. The problem is to find the minimum positive
value of a parameter λ for which the governing Eqs. (15.1), (15.2) with some speci-
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fied variant of boundary conditions (15.8)-(15.11) have a non-trivial solution. Here,
the case t◦12 � 0 is not considered.

15.3 Simply Supported Plate with the Edge Diaphragms

Consider the simplest case denoted as S +S +S +S + when all edges are simply sup-
ported and supplied with the diaphragms. The corresponding boundary conditions
are given by Eqs. (15.8). This case is probably the only one that allows us to con-
struct a solution in the explicit simple form and analyse the effect of shears on the
critical load. Without loss of generality, we assume that t◦22 = 1, and t◦11 = t1 is any
constant.

In this case the unique solution of the last equation from (15.2) satisfying the
boundary conditions (15.8) is the trivial function, φ = 0, while the displacement
function can be represented as

χ = c0 sin
πmx1

a
sin
πnx2

b
, (15.13)

where n,m are natural numbers, and c0 is a nonzero constant. The substitution of
(15.13) into Eqs. (15.1), (15.2) results in the simple formula for the eigenvalue

λ =
π2

l2
(n2+ l2m2)2[1+ θK(n2+ l2m2)]
(n2+ t1l2m2)[1+K(n2+ l2m2)]

, (15.14)

where l = b/a, and

K =
π2h2

βb2 (15.15)

is the dimensionless shear parameter. The required critical value

λ∗ =min
n,m
λ(n,m) = λ(n∗,m∗) (15.16)

is the function of θ and K, where the dimensionless shear parameter K depends on
the reduced shear modulus G, see Eq. (15.3). Because θ is a small value, the shear
parameter K is the main one affecting the critical buckling force.

If all edges are uniformly loaded (t1 = 1), then

n∗ = m∗ = 1, λ∗ = λ∗cl
1+ θK(1+ l2)
1+K(1+ l2)

, (15.17)

where the eigenvalue

λ∗cl =
π2(1+ l2)

l2
(15.18)

corresponds to the classical value of the buckling force for a single layer isotropic
plate (Alfutov, 2000).
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Equation (15.17) shows that an increase in the shear parameter K (i.e., a decrease
in the effective shear modulus G) leads to a decrease in the critical buckling force
for a multilayer plate pliable to transverse shears. Because φ = 0, then the edge
effect in the case under consideration is absent. In other words, the presence of the
diaphragms at simply supported edges does not generates shears localized near these
edges.

15.4 Buckling Modes Accounting for the Edge Effects

In this section we consider the plates with boundary conditions belonging to the
group Y±Z±S +S +, where Y and Z denote either S or C conditions. In what follows,
we assume that t◦22 = 1 and t◦11 = 0, i.e., the plate is compressed only in the x2 –
direction. For these combinations of boundary conditions the general solution of
Eqs. (15.1), (15.2) can be represented in the form:

χ = X(x) sinδny, φ =Φ(x)cosδny, (15.19)

where
x =

x1

a
, y =

x2

a
, δ =

πn
l
. (15.20)

Then Eqs. (15.1), (15.2) can be rewritten as follows:

(1− θκΔ1)Δ2
1X−λδ2 (1− κΔ1) X = 0, (15.21)

1− ν
2
κΔ1Φ−Φ = 0, (15.22)

where Δ1 =
d2

dx2 − δ2 is the differential operator, and κ = h2

βa2 is the dimensionless
shear parameter.

Accounting for (15.19), the boundary conditions for an unloaded edge (x = 0 or
x = 1) read:

• S + – conditions,

X = 0,
(

d2

dx2 −δ2
)

X = 0,
(

d2

dx2 −δ2
)2

X = 0,
dΦ
dx
= 0. (15.23)

• S − – conditions,

(1− κΔ1) X = 0,
d2

dx2 (1− κΔ1) X = 0,(
d2

dx2 − νδ2
)

X+ (1− ν)δdΦ
dx
= 0,

2δ
dX
dx
+

d2Φ

dx2 +δ
2Φ = 0;

(15.24)
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• C− – conditions,

(1− κΔ1) X = 0,
dX
dx
= 0,

Δ1
dX
dx
= 0, Φ = 0;

(15.25)

• C+ – conditions,

(1− κΔ1) X = 0,
d
dx

(1− κΔ1) X = 0,

dX
dx
+δΦ = 0, δX+

dΦ
dx
= 0.

(15.26)

Depending on the orders of the shear parameters κ and θ, there are the following
two distinctive cases:

• Case (A) κ = ε2 is a small parameter, and θ = O(1) as ε→ 0;
• Case (B) θ is a small parameter, and κ = O(1) as θ→ 0.

Case (A) corresponds to very thin plates with the reduced Young’s and shear
moduli of the same order (E ∼ G), and case (B) is related to thin plates for which
G� E.

15.4.1 Layered Plates with the Reduced Young’s and Shear Moduli
of the same Order

Consider case (A). Regardless of the type of boundary conditions, the general solu-
tion of Eq. (15.22) is the function

Φ = ει1c1e−
1
ε

√
2+ε2δ2(1−ν)

1−ν x +ει2c2e
1
ε

√
2+ε2δ2(1−ν)

1−ν (x−1), (15.27)

where ιi are the indices of intensity of the function Φ, and c1,c2 are constants of the
order O(1) to be determined from appropriate boundary conditions.

Consider Eq. (15.21). Its solution can be constructed in the form of the superpo-
sition of a solution, X(m), valid in the plate interior (the so-called "outer solution"),
with a pair of boundary layers, X(e)

1 and X(e)
2 , fading off away from the left and from

the right plate ends, respectively:

X = X(m)(x, ε)+εα1 X(e)
1 (x, ε)+εα2 X(e)

2 (x, ε), (15.28)

where α1,α2 are indices of intensity of the edge effect integrals. We assume also
that the following order relations hold:

∂X(m)

∂x
∼ X(m),

∂X(e)
i

∂x
∼ ε−ςi X(m)

i as ε→ 0. (15.29)
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The positive parameters ςi are named the indices of variation of the edge effect
integrals. The indices α1,α2 depends on the boundary conditions and should be
specified for each edge.

To derive an edge effect equation describing behaviour of the solution in the
neighbourhood of the left and right ends, we scale in the vicinity of both edges.
For instance, for the left edge we assume x = ες1ζ and compare the main term in
Eq. (15.21) containing the six-order derivative with others. As a result, we obtain
ςi = 1 for both ends, and the edge effect equation reads

θ
d6X(e)

i

dζ6 −
(
1+3ε2θδ2

) d4X(e)
i

dζ4 +ε
2δ2
(
2+3ε2θδ2−ε2λ

) d2X(e)
i

dζ2

−ε4δ2
[
δ2+ε2θδ4−λ

(
1+ε2δ2

)]
X(e)

i = 0.

(15.30)

Its solution is sought in the form of asymptotic series

X(e)
i =

∞∑
j=1

ε jχ(e)
i j (ζ).

Here we give only the leading terms of these expansions, returning to the original
argument x:

X(e)
1 = a1e

− x
ε
√
θ +O

(
εe
− x
ε
√
θ

)
, X(e)

2 = a2e
x−1
ε
√
θ +O

(
εe

x−1
ε
√
θ

)
, (15.31)

where ai are constants to be determined from the boundary conditions.
The outer solution X(m) as well as the eigenvalue λ are also sought in the form of

series
X(m) = χ0(x)+εχ1(x)+ . . . , λ = λ0+ελ1+ . . . (15.32)

Substituting (15.32) into Eq. (15.21) and grouping coefficients of the same pow-
ers of ε leads to the sequence of differential equations:

k∑
j=0

L jχk− j = 0, (15.33)

where

L0 =
d4

dx4 −2δ2
d2

dx2 +δ
2
(
δ2−λ0

)
, L1 = −λ1δ

2, . . . (15.34)

To specify the boundary conditions for the functions χk(x), we substitute ex-
pansions (15.28), (15.31), (15.32) into appropriate conditions from (15.23)-(15.26),
equate coefficients at the same powers of ε and impose the following requirements:

• in the leading approximation (k = 0), the boundary conditions for χ0(x) should
be homogeneous;

• the leading approximation generates equations coupling constants ci with the
function χ′0(x) evaluated at the boundaries;
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• the kth-order (k ≥ 1) approximation results in the inhomogeneous boundary con-
ditions for χk(x) and relations for ai as well.

We note that indices αi, ιi depend on the type of boundary conditions and can be
different on the left and right edges.

15.4.1.1 Plate with S−S−S+S+ - Boundary Conditions

Let the unloaded edges be simply supported and not supplied with diaphragms. The
corresponding boundary conditions are given by relations (15.24). Here, we obtain
αi = 3, ιi = 2 for i = 1,2.

In the leading approximation, one obtains the homogeneous boundary condi-
tions,

χ0(0) = χ0(1) = 0, χ′′0 (0) = χ′′0 (1) = 0, (15.35)

and the pair of relations:

2δχ′0(0)+
2

1− νc1 = 0, 2δχ′0(1)+
2

1− νc2 = 0. (15.36)

The first-order approximation leads to the inhomogeneous boundary conditions,

χ1(0) = χ1(1) = 0, (15.37)

χ′′1 (0)− θ−1
θ2

a1 = 0, χ′′1 (1)− θ−1
θ2

a2 = 0, (15.38)

and generates two the equations coupling constants ai,ci with the function χ′′1 (x)
evaluated at x = 0 and x = 1:

χ′′1 (0)+
a1

θ
−δ(1− ν)

√
2√

1− νc1 = 0,

χ′′1 (1)+
a2

θ
+δ(1− ν)

√
2√

1− νc2 = 0.

(15.39)

Interrupting the process of finding the boundary conditions for functions χk(x),
we consider the boundary-value problems arising in the first two approximations.

In the leading approximation (k = 0), one has the homogeneous differential equa-
tion L0χ0 = 0 with the homogeneous boundary conditions (15.35). The solution of
this classical boundary-value problem is the eigenfunction χ0 = c0 sinπmx with the
associated eigenvalue

λ0 = λ0(n,m) =

[
(πm)2+δ2

]2
δ2

. (15.40)

The critical buckling force is evaluated as
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λ∗0 =min
n,m
= λ(n∗,m∗) = λ(n∗,1) =

π2
(
l2+n∗2

)2
l2n∗2

, (15.41)

where n∗ = 1, if l = b/a ≤ 1, and n∗ = In(l) for l > 1. Here In(z) stands for the integer
part of a number z. Then χ∗0 = c0 sinπx is the associated eigenfunction. Below, the
asterisk ∗ is omitted for all parameters and the eigenfunction.

Now we can calculate

c1 = −πδ(1− ν)c0, c2 = πδ(1− ν)c0, (15.42)

where c0 is an arbitrary constant that remains undefined in the framework of the
linear problem. Here and below, the parameter δ = δn is calculated at n = n∗.

Subtracting Eqs. (15.39) from Eqs. (15.38) and accounting for (15.42), we obtain
the relations for constants

a1 = a2 =
√

2πδ2(1− ν)3/2θ2c0. (15.43)

Then the pair of boundary conditions (15.39) can be rewritten as

χ′′1 (0) = χ′′1 (1) = κc0, (15.44)

where
κ =
√

2πδ2(1− ν)3/2(1− θ)c0. (15.45)

Consider the inhomogeneous differential equation (15.33) in the first-order ap-
proximation:

d4χ1

dx4 −2δ2
d2χ1

dx2 +δ
2
(
δ2−λ0

)
χ1 = λ1δ

2χ0. (15.46)

We note that the operator L0 is self-conjugated. Therefore, regardless of the type of
boundary conditions imposed on the function χ1(x), the condition for the existence
of a solution to Eq. (15.46) will be as follows:

χ′′′1 (1)χ0(1)−χ′′′1 (0)χ0(0)−χ′′1 (1)χ′0(1)+χ′′1 (0)χ′0(0)

+χ′1(1)χ′′0 (1)−χ′1(0)χ′′0 (0)−χ1(1)χ′′′0 (1)+χ1(0)χ′′′0 (0)

−2δ2
[
χ′1(1)χ0(1)−χ′1(0)χ0(0)−χ1(1)χ′0(1)+χ1(0)χ′0(0)

]
−λ1δ

2

1∫
0

χ2
0(x)dx = 0.

(15.47)

Returning to the case of S −S −S +S + – boundary conditions specified by rela-
tions (15.35), (15.37) and (15.44), we arrive at the parameter correcting the eigen-
value:

λ1 =
4κπ
δ2
. (15.48)
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Then an approximate relations for the required eigenvalue and eigenmode can be
written as follows:

λ =

(
π2+δ2

)2
δ2

[
1+εΛ1+O

(
ε2
)]
,

χ ≈ c0 sinδny
[
sinπx+εχ1(x)+ε3

√
2πδ2θ2(1− ν)3/2

(
e
− x
ε
√
θ + e

x−1
ε
√
θ

)]
,

(15.49)

where

Λ1 =
4
√

2π2(1− ν)3/2δ2(1− θ)
(π2+δ2)2 > 0, (15.50)

and χ1(x) is the partial solution of Eq. (15.46) with the boundary conditions (15.37),
(15.44).

We note that although the correction of the edge effect integrals to the eigenmode

is of the order ε3
(
e
− x
ε
√
θ , e

x−1
ε
√
θ

)
, the error of relation (15.49) for χ has the order

O
(
ε2
)
.

We compare eigenvalue (15.49) with the analogous value given by relations (15.14),
(15.16), corresponding to the simply supported plate with diaphragms at all edges.
Note that m∗ = 1 for t1 = 0 in (15.14), (15.16). Since Eqs. (15.49), (15.49) are asymp-
totic, we expand formula (15.14) also into the series in a small parameter ε keeping
in mind that K = ε2π2l−2:

λ =

(
π2+δ2

)2
δ2

[
1+ε2Λ2+O(ε4)

]
, Λ2 = (1− θ)

(
π2+δ2

)
> 0. (15.51)

It can be seen that in the leading approximation the classical eigenvalues λ∗0 eval-
uated by Eqs. (15.49) and (15.51), which ignore the shear effects in a plate, are
the same. The effect of shears on the buckling force turns to be different in plates
with and without diaphragms. In the plate with simply supported edges with the
diaphragms, the edge effects induced by shears are absent, and shears, taking place
in the interior region of the plate, leads to a minor reduction of the buckling force
with respect to the classical value λ∗0, the normalized correction being a value of the
order O(ε2).

Conversely, if there are no diaphragms at the simply supported edges, then near
these edges shears occur, which lead to edge effects in the buckling form and in-
crease the critical force with a normalized correction of the order O(ε). It is in-
teresting to note that similar reinforcing effect of the edge shears takes place in a
cylindrical shell without diaphragms at the simply supported edges when the shell
is under external pressure (Mikhasev and Botogova, 2017).
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15.4.1.2 Plate with C±C±S+S+ - Boundary Conditions

Consider a plate with the clamped unloaded edges without diaphragms (C−C−S +S +

– conditions). The corresponding boundary conditions are given by relations (15.25).
In this case α1 = α2 = 3, and c1 = c2 = 0 so that Φ = 0.

In the leading approximation, the boundary conditions read

χ0(0) = χ0(1) = 0, χ′0(0) = χ′0(1) = 0. (15.52)

In addition, one obtains constants

a1 = −a2 = θ
3/2χ′′′0 (0). (15.53)

Consider the homogeneous differential equation L0χ0 = 0 with the boundary con-
ditions (15.52). This boundary-value problem has a straightforward exact solution

χ0(x, δ) = c1e−αx + c2eα(x−1)+ c3 sinγx+ c4 cosγx, (15.54)

where c j are constants determined from conditions (15.52), and

α =

√
δλ1/2

0 +δ
2, γ =

√
δλ1/2

0 −δ2, δ2 < λ0. (15.55)

Let λ(δ) be the minimum positive eigenvalue for a fixed δ. The required eigen-
value λ∗0 corresponding to the plate buckling is determined as follows:

λ∗0 =min
n
λ0(δ(n)) = λ0(δ(n∗)) = λ0(δ∗).

The procedure to determine n∗, δ∗,λ∗0 will be described below (for different variants
of boundary conditions).

In the fist-order approximation, one has the inhomogeneous differential equation
(15.46) with the homogeneous boundary conditions (15.52) for χ1. This inhomo-
geneous boundary-value problem implies λ1 = 0, and the eigenfunction χ1 is given
with accuracy up to a constant by Eq. (15.54).

The second-order approximation, taking into account (15.53), generates the in-
homogeneous boundary-value problem:

L0χ2 = Nχ0+λ2δ
2χ0, (15.56)

χ2(0) = χ′′0 (0), χ2(1) = χ′′0 (1),

χ′2(0) =
a1√
θ
= θχ′′′0 (0), χ′2(1) = − a2√

θ
= θχ′′′0 (1),

(15.57)

where N is the differential operator introduced as follows:

N = θ
d6

dx6 −3θδ2
d4

dx4 +δ
2
(
3θδ2−λ0

) d2

dx2 +δ
4
(
λ0− θδ2

)
.
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The condition for existence of a solution of this problem results in the correction for
the eigenvalue λ∗0:

λ2 =
{
(θ−1)[χ′′0 (1)χ′′′0 (1)−χ′′0 (0)χ′′′0 (0)]−ZN

}
Z−1

1 , (15.58)

where

ZN =

1∫
0

χ0(x)Nχ0(x)dx, Z1 = δ
2

1∫
0

χ2
0(x)dx. (15.59)

We note that the correction λ2 is evaluated for λ0 = λ
∗
0, δ = δ

∗.
Breaking the process of constructing the buckling mode, we write the approx-

imate formulas for the critical load parameter λ∗ and the corresponding bucking
mode:

λ∗ = λ∗0
[
1+ε2Λ2+O

(
ε3
)]
,

χ ≈ sinδny
{
χ0(x)+ε2χ2(x)−ε3θ3/2

[
χ′′′0 (0)e

− x
ε
√
θ +χ′′′0 (1)e

x−1
ε
√
θ

]}
,

(15.60)

where Λ2 = λ2/λ
∗
0.

Now, let the unloaded edges be clamped and supplied with diaphragms (C+C+S +S +

– conditions). This case is not much different from the previous one (for C−C−S +S +–
conditions, see Eqs. (15.26)). Here, α1 = α2 = 3, and the boundary-value prob-
lems arising in the first three approximations are the same, so that all equations
from (15.52) to (15.60) are valid. The only difference is that the function Φ de-
fined by Eq. (15.27) is nonzero here. The asymptotic analysis of the boundary-value
problems (15.33), (15.26) implies ι1 = ι2 = 3 and constants

c1 =

√
1− ν

2
δχ′′0 (0), c2 = −

√
1− ν

2
δχ′′0 (1). (15.61)

Thus, the presence of diaphragms on the clamped edges does not influence on the
critical parameter λ∗, see Eq. (15.60), found from the first three approximations. An
additional correction for the eigenvalue λ∗ can be determined from considering the
highest approximations.

15.4.1.3 Plate with S±C−S+S+ - Boundary Conditions

Let the left edge be simply supported and the right one be clamped, with both edges
free of diaphragms (S −C−S +S + – conditions, see Eqs. (15.24), (15.25)). In this case
α1 = α2 = 3, ι1 = 2, c2 = 0. In the leading approximation, one has the homogeneous
boundary conditions

χ0(0) = χ′′0 (0) = 0, χ0(1) = χ′0(1) = 0. (15.62)
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The first approximation implies

c1 = −δ(1− ν)χ′0(0), a1 = −
√

2(1− ν)3/2θ2δ2χ′0(0), a2 = −θ3/2χ′′′0 (1), (15.63)

and the boundary conditions for χ1(x) become as follows:

χ1(0) = 0, χ′′1 (0) = −√2(1− ν)3/2(1− θ)δ2χ′0(0), χ1(1) = χ′1(1) = 0. (15.64)

Condition (15.47) for the existence of a solution of the inhomogeneous boundary-
value problem (15.33), (15.64) at k = 1 results in the following correction

λ1 = −
√

2(1− ν)3/2(1− θ)[χ′0(0)]2

1∫
0
χ2

0(x)dx

. (15.65)

Hence, we arrive at the following relations for the critical value of the load parameter
and associated buckling mode:

λ∗ = λ∗0
[
1+εΛ1+O

(
ε2
)]
,

χ ≈ sinδny {χ0(x)+εχ1(x)

−ε3
[√

2(1− ν)3/2θ2δ2χ′0(0)e− x
ε

√
θ + θ3/2χ′′′0 (1)e

x−1
ε
√
θ

]}
,

(15.66)

where Λ1 = λ1/λ
∗
0.

Now we consider the variant of S +C−S +S + – conditions, see Eqs. (15.23) and
(15.25). In contrast to the previous case, here the left simply supported edge is sup-
plied with the diaphragm. The asymptotic analysis of the sequence of Eqs. (15.33)
with corresponding boundary conditions implies α1 = 4,α2 = 3, Φ = 0.

The homogeneous boundary conditions for the leading approximation are as in
the previous case and specified by Eqs. (15.62). Considering the first-order approxi-
mation gives λ1 = 0,χ1 = 0, and the second-order approximation implies parameters

a1 = −θ2χIV
0 (0), a2 = −θ3/2χ′′′0 (1), (15.67)

and the boundary conditions for χ2:

χ2(0) = 0, χ′′2 (0) = θχIV
0 (0),

χ2(1) = χ′′0 (1), χ′2(1) = θχ′′′0 (1).
(15.68)

A solution of the inhomogeneous boundary-value problem (15.56), (15.68) exists if
and only if
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λ2 =

θ
[
χIV

0 (0)χ′0(0)+χ′′′0 (1)χ′′(1)
0

]
−χ′′0 (1)χ′′′0 (1)−

1∫
0
χ0Nχ0dx

δ2
1∫

0
χ2

0(x)dx

. (15.69)

Thus, for the S −C−S +S + – boundary conditions the critical value of the load pa-
rameter is calculated by the first relation from (15.60), the associated buckling mode
being the function

χ ≈ sinδny
[
χ0(x)+ε2χ2(x)−ε3θ3/2χ′′′0 (1)e

x−1
ε
√
θ −ε4θ2χIV

0 (0)e
− x
ε
√
θ

]
. (15.70)

15.4.2 Layered Plates with Small Reduced Shear Modulus

Consider case (B), where θ is a small parameter, and κ = O(1) as θ→ 0. The pro-
cedure of constructing the asymptotic solution remains the same with the following
modifications. A solution of Eq. (15.21) is sought in the form:

X = X(m)(x, θ)+ θα1 X(e)
1 (x, θ)+ θα2 X(e)

2 (x, θ), (15.71)

where

X(m) = χ0(x)+ θ1/2χ1(x)+ θχ2(x)+ . . . , λ = λ0+ θ
1/2λ1+ θλ2+ . . . (15.72)

and

X(e)
1 = a1e

− x√
θ +O

(
θ1/2e

− x√
θ

)
, X(e)

2 = a2e
x−1√
θ +O

(
θ1/2e

x−1√
θ

)
, (15.73)

The differential equation of the leading approximation reads

L0χ0 ≡ d4χ0

dx4 − (2δ2−λ0δ
2κ)

d2χ0

dx2 + [δ4−λ0δ
2(1+ κδ2)]χ0 = 0. (15.74)

Its general solution is defined by Eq. (15.54), where

α =

√
2

2

√
δ2(2−λ0κ)+

√
δ2λ0(4+λ0κ2δ2),

γ =

√
2

2

√
−δ2(2−λ0κ)+

√
δ2λ0(4+λ0κ2δ2),

(15.75)

and λ0 >
δ2

1+κδ2 .
Here we restrict ourselves to the consideration of the C−C−S +S + – boundary

conditions. In this case, Φ = 0, α1 = α2 = 3/2, and the boundary conditions in the
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leading approximation read

κχ′′0 (0)− (1+ κδ2)χ0(0) = 0, χ′0(0) = 0,

κχ′′0 (1)− (1+ κδ2)χ0(0) = 0, χ′0(1) = 0
(15.76)

In what follows, λ0 is the minimum positive eigenvalue of the boundary-value prob-
lem (15.74), (15.76).

The next approximation yields the inhomogeneous boundary-value problem

L0χ1(x) = λ1δ
2
[
(1+ κδ2)χ0(x)− κχ′′0 (x)

]
,

κχ′′1 (0)− (1+ κδ2)χ1(0) = −κχ′′′0 (0), χ′1(0) = 0,

κχ′′1 (1)− (1+ κδ2)χ1(0) = κχ′′′0 (1), χ′1(1) = 0

(15.77)

and the pair of constants, a1 = χ
′′′
0 (0), a2 = −χ′′′0 (1) for the edge effect inte-

grals (15.73).
We note that the boundary-value problem (15.74), (15.76) is not self-conjugated.

Let the function χ∗(x) be a solution of the homogeneous Eq. (15.74) with the fol-
lowing conjugated boundary conditions:

κχ′′′∗ (0)− (κδ2−λ0κ
2δ2−1)χ′∗(0) = 0, χ∗(0) = 0,

κχ′′′∗ (1)− (κδ2−λ0κ
2δ2−1)χ′∗(1) = 0, χ∗(1) = 0.

(15.78)

Then the comparability conditions for the inhomogeneous boundary-value prob-
lem (15.77) results in the following correction for the eigenvalue λ0:

λ1 = −
χ′′′0 (0)χ′∗(0)+χ′′′0 (1)χ′∗(1)

δ2(1+ κδ2)
1∫

0
χ0(x)χ∗(x)dx−δ2κ

1∫
0
χ′′0 (x)χ∗(x)dx

. (15.79)

15.5 Analysis of Influence of Boundary Conditions and Edge
Effects on Critical Force

At first, we consider case (A). In the leading approximation (k = 0), the homoge-
neous boundary-value problems represented by Eq. (15.33) and by corresponding
boundary conditions coincide with similar classical problems for single layer plates
when shear effect is ignored. The careful analysis of the influence of boundary con-
ditions on buckling of single layer isotropic rectangular plates can be found in Al-
futov (2000). In particular, diagrams of the critical compressive force versus the
side ratio l = b/a are presented for all possible variants of boundary conditions.
Here, we give similar plots of the load parameter λ0 as of the function of a param-
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eter δ = πn/l. The minimum positive eigenvalue λ0(δ) versus a fixed parameter δ
is depicted in Fig. 15.1 for the three distinctive variants of boundary conditions,
S ±S ±S +S +, S ±C±S +S + and C±C±S +S + – conditions (as a reminder, the value of
λ0 does not depend on whether the edges are equipped with diaphragms or not).

Let δm be a value at which the function λ0(δ) takes a minimum value λm. Here,
δm = π, λm ≈ 39.478 for S ±S ± – boundary conditions at the unloaded edges, δm ≈
3.95,λm ≈ 53.392 for S ±C± – conditions and δm ≈ 4.75,λm ≈ 68.800 for C±C± –
conditions. The required eigenvalue λ∗0 corresponding to the plate buckling strongly
depends on the sides ratio l = b/a and is determined as follows. If l < π/δm, then
n∗ = 1, δ∗ = πn∗/l = π/l, and for l ≥ π/δm, one obtains n∗ = In(δml/π), where the sign
In(z) as above denotes the integer part of a number z. In both cases, λ∗0 = λ0(δ∗).

The correction εkλk, taking into account shears, strongly depends on the type of
boundary conditions. For the plates with S −S −, S −C− – conditions at the unloaded
edges x = 0,1, we obtain the correction ελ1 of order O(ε), while for the plates with
S +S +,C±C±,S +C− – conditions this correction becomes smaller and is a value of
order O(ε2). Other words, if even one simply supported edge is free of a diaphragm,
then the effect of shears on the critical buckling force increases.

A sign of the correction as well as its value depend on the ratio δ = b/a and
the shear parameter θ. We remind that a parameter θ is the function of many mag-
nitudes such as a number of layer, thickness and Young’s modulus of each layer.
A parameter θ is generally small (Mikhasev et al, 2019). In Figs. 15.2 - 15.4, the
relative corrections Λ1 = λ1/λ0 and Λ2 = λ2/λ0 are depicted as functions of δ for
θ = 0.01, 0.1, 0.5, 0.8.

It is seen that for S −S − – conditions at the unloaded edges, the correction Λ1
is always positive. When θ is infinitely small, then the correction is maximum for
any δ. Note that θ = 0 corresponds to the Timoshenko-Reissner model (Tovstik and
Tovstik, 2017a) when the edge effects are ignored and only the transverse shears
inside the plate are taken into account. Hence, accounting for shears near the simply
supported edges without diaphragms reduces the positive correction and, as conse-
quence, the critical buckling force. For any fixed θ, the correction Λ1 reaches the

Fig. 15.1 The first positive
eigenvalue λ0(δ) vs. a param-
eter δ for S ±S ±, S ±C±, C±C±
– boundary conditions at the
unloaded edges. Case (A).
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Fig. 15.2 The relative cor-
rection Λ1 = λ1/λ0, tak-
ing into account shears,
vs. parameter δ at various
θ = 0.01, 0.1, 0.5, 0.8 (curves
1, 2, 3, 4, respectively) for
plates with S −S − – boundary
conditions at the unloaded
edges.

Fig. 15.3 The relative cor-
rection Λ1 = λ1/λ0, tak-
ing into account shears,
v.s parameter δ at various
θ = 0.01, 0.1, 0.5, 0.8 (curves
1, 2, 3, 4, respectively) for
plates with S −C− – boundary
conditions at the unloaded
edges.

Fig. 15.4 The relative cor-
rection Λ2 = λ2/λ0, tak-
ing into account shears,
vs. parameter δ at various
θ = 0.01, 0.1, 0.5, 0.8 (curves
1, 2, 3, 4, respectively) for
plates with C±C± – boundary
conditions at the unloaded
edges.

maximum value at δ = π. When δ→ 0 or δ→∞ (that corresponds to the degenera-
tion of a plate into an infinitely narrow stripe or beam, respectively), the correction
Λ1 vanishes.

For S −C−– boundary conditions at the unloaded edges, the relative correction Λ1
becomes negative. The maximum absolute value of Λ1 is achieved at δ ≈ 3.95 for
any θ; the smaller the parameter δ, the greater the value of |Λ1|.

Finally, for C±C± – conditions, the correction is always negative for any δ and its
absolute value increases together with δ. We note that relations (15.58), (15.60) for
C±C± – conditions as well as Eq. (15.69) for S +C− – conditions are asymptotically
correct if ε2Λ2� 1.
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Now we analyze case (B) for C−C− – conditions at the unloaded edges. Here,
θ is assumed to be a small parameter, while κ is a finite value of the order O(1) as
θ→ 0. In this case, in contrast to case (A), the eigenvalue λ0 evaluated in the leading
approximation takes into account the transverse shear inside the plate. In Fig. 15.5,
the first positive eigenvalue λ0 of the boundary-value problem (15.74), (15.76) is
shown as the function of a parameter δ for different values of the shear parameter
κ. The minimum value λm of the function λ0(δ) and the associated argument δm are
shown in Table 15.1 for various κ. We note the following limit relation lim

κ→0
λm =

68.80, where λm = 68.80 corresponds to the C±C± – boundary conditions for case
(A), see Fig. 15.1. The required critical buckling force λ∗0 is evaluated in accordance
with the rule described above for case (A).

In Fig. 15.6, the relative corrections Λ1 are depicted as functions of δ for dif-
ferent κ. In contrast to case (A) considered for C±C± – boundary conditions (see
Eq. (15.58) and Fig. 15.4), the positive correction εΛ1 takes into account only the
edge effect integrals induced by the transverse shears in the neighborhood of the
clamped edges x = 0, x = 1 without diaphragms. Thus, accounting for shears in the
vicinity of the clamped edges results in the increase of the critical buckling force
evaluated in the framework of the Timoshenko-Reissner model. It can be seen that
the correction Λ1 falls down when the shear parameter κ decreases. For each fixed
κ, there exists such value of δ for which this correction takes the maximum value. It
is also interesting to note that the correction Λ1 becomes weakly dependent on the
shear parameter for large δ (when a plate is degenerated into a beam) and vanishes
as δ→∞ for any κ.

Fig. 15.5 The first positive
eigenvalue λ0(δ) vs. a param-
eter δ for C−C− – boundary
conditions at the unloaded
edges for different values
of the shear parameter κ =
0.005, 0.07, 0.01, 0.02, 0.05, 0.1
(curves 1, 2, 3, 4, 5, 6, respec-
tively). Case (B).

Table 15.1 Parameters λm, δm for different values of the shear parameter κ.

κ 0.005 0.007 0.01 0.02 0.05 0.1

δm 4.92 4.96 5.02 5.21 6.25 15.00

λm 52.21 47.81 42.56 31.54 18.00 10.01
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Fig. 15.6 The relative
correction Λ1 = λ1/λ0, taking
into account shears in the
vicinity of the unloaded
edges with C−C− – boundary
conditions, vs. a parameter
δ for different values of
the shear parameter κ =
0.005, 0.07, 0.01, 0.02, 0.05, 0.1
(curves 1, 2, 3, 4, 5, 6, respec-
tively). Case (B).

15.6 Conclusions

Based on the ESL theory for laminated shells, buckling of layered rectangular plates
uniaxially compressed by in-plane forces was studied. The loaded edges were as-
sumed to be simply supported and supplied with diaphragms while for other edges
two groups of boundary conditions, the clamped and simple support groups, with or
without diaphragm(s) were considered. The solutions of governing equations were
constructed in the form of a superposition of the outer solution and the edge ef-
fect integrals accounting shears in the neighbourhood of the unloaded edges. It was
found out that the effect of boundary conditions on the critical buckling load de-
pends on whether one of the unloaded edges is equipped with the diaphragm or not.
In particular, if there are no diaphragms at all unloaded simply supported edges,
then a correction to the classical buckling force turns out to be an order of mag-
nitude higher than for a plate equipped with a diaphragm at least on one of the
unloaded simply supported edges.
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