
Chapter 12
Dimension Reduction in the Plate with Tunnel
Cuts

Alexander G. Kolpakov and Sergei I. Rakin

Abstract We carry out dimension reduction in the homogenization theory 3D peri-
odicity cell problem for the plate with a unidirectional system of channel cuts. We
demonstrate that the original 3D problem may be reduced to several 2D problems.
The main attention is paid to the solution near the top and the bottom surfaces of the
plate Our numerical analysis indicates the existence of a new type of boundary layer
at the upper and lower surfaces of the plate. We estimate the thickness of the found
boundary layer. We also find a wrinkling effect on the top and bottom surfaces of
the plate.

Key words: Plate with channel cuts, Dimension reduction, Top/bottom face bound-
ary layers, Wrinkling effect

12.1 Introduction

The homogenization problem for the elastic bodies with holes/pores attracted the
attention of numerous researchers. One can mention the pioneering paper of Cio-
ranescu and Paulin (1979). Relevant references may be found in Cioranescu and Do-
nato (1999); Cioranescu et al (2018) (mathematics) and Kalamkarov and Kolpakov
(1997); Kolpakov and Kolpakov (2009) (applications to composite materials). The
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papers on the homogenization problem for plates with holes/pores/channels are not
so numerous as the papers devoted to the homogenization problem for solids with
holes/pores/channels.

The boundary layers in plates and shells were intensively discussed in literature
after Rayleigh, Love, Lamb, and Basset (Sendeckyj, 1974). In the 1970s-1980s,
boundary layers were intensively discussed for laminated composite materials (van
Dyke, 1994; Pipes and Pagano, 1970), later - for fiber-reinforced composite materi-
als see, e.g., Kalamkarov and Kolpakov (1997); Andrianov et al (2011). Numerous
experimental, theoretical, and numerical results were reported. Note that the bound-
ary layers in the plates and shells were associated exclusively with the transverse
cut surface.

When considering the plates with channel cuts, we meet the new type of bound-
ary layers associated with the top and the bottom surfaces of the plate. The boundary
layers of this type never occur in the homogeneous or in the laminated plates.

12.2 Statement of the Problem

We consider a plate with a periodic system of cylindrical geometry channels. Sup-
pose the cylinders are parallel to the 0x–axis and form a periodic structure in the
0xz-plane. The periodicity cell (PC) of such a structure is shown in Fig. 12.1a , and
the cross-section is displayed in Figs. 12.1b. The choice of the length of the PC in
Fig. 12.1a is voluntary.

Since the plate under consideration is invariant with respect to translation in the
direction 0y-axis, there is a reason to look for two-dimensional models to the plate.
The dimension reduction procedures are known for the solids with periodic systems
of fibers or holes (Grigolyuk et al, 1991; Grigolyuk and Fil’shtinskij, 1992; Lu,
1995; Mityushev and Rogozin, 2000; Drygaś et al, 2020). To the best knowledge of
the authors, the first paper devoted to the dimension reduction in the bending prob-
lem for an elastic layer with tunnel cuts was Grigolyuk et al (1991). The mentioned
paper was based on the double periodic function technique, thus treated the layer

Fig. 12.1 Periodicity cell (a) and the cross-section (b) of the plate with the channel cuts and the
deformation modes of PC: (c) - tension, (d) - bending.
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of "infinite" thickness. It means that Grigolyuk et al (1991) can be used to predict
the stress-strain state (SSS) inside the plate, but not near-surface phenomena. But
the plate has a finite thickness. The aim of this paper is the dimension reductions
for plates of finite thickness. Our research indicates the existence of a new range of
boundary layers - boundary layers at the upper and lower surfaces of the plate. We
also find a wrinkling effect on the top and bottom surfaces of the plate. The results
of Grigolyuk et al (1991) can be used to describe the stress-strain state (SSS) inside
the plate, but not near-surface phenomena.

The starting point of our research is the periodicity cell problem (PCP) of the
homogenization theory as applied to plates (Caillerie, 1984; Kohn and Vogelius,
1984), which has the following form:

(ai jklN
ABμ
k,l + (−1)μai jABzμ), j = 0 in P,

(ai jklN
ABμ
k,l + (−1)μai jABzμ)n j = 0 on Γ∪H,

NABμ(y) periodic in x,y.

(12.1)

with the superscript μ taking the values 0 or 1. In the plate PCP, the top Γ+ and
bottom Γ− surfaces are free. The PC may be subjected to in-plane (μ = 0) or bend-
ing/torsion (μ = 1) macroscopic deformation. These features distinguish the plates
from the solids PCP. In the plate with channel cuts, the surfaces Hi of the channels
are also free. Denoted: Γ =Γ+∪Γ− and H =∪n

i=1, where n is the number of channels
per one PC. The variables notation correspondence: x↔ 1,y↔ 2,z↔ 3; the index
μ = 0,1.

In the general case (Caillerie, 1984; Kohn and Vogelius, 1984), the local stresses
in the PC are computed with the following formula:

σi j = ais jklN
ABμ
k, j + (−1)μai jABzμ,

and the macroscopic stiffnesses of the plate are computed as

S ν+μ
αβAB =

1
|PrP|

∫
P

(aαβklNABν
k, j + (−1)νzνaαβAB)(−1)μzμdxdz,

where PrP is projection of the PCP to the 0xy-plane. The superscript ν can take the
values 0 or 1.

The PCP is a cylinder parallel to the 0y-axis, see Fig. 12.1, and the elastic con-
stants ai jkl are constants (we assume the plate is made of a homogeneous isotropic
material). In this case, the solution to the problem (12.1) does not depend on the
variable y and has the form NABμ = NABμ(x,z). Substituting NABμ = NABμ(x,z) into
(12.1), we arrive at the following 2D PCP:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(aiαkβNABμ
k,β + (−1)μaiαABzμ),α = 0 in P,

(aiαkβNABμ
k,β + (−1)μaiαABzμ)nα = 0 on Γ,

NABμ(x,z) periodic in x.

(12.2)



144 Alexander G. Kolpakov and Sergei I. Rakin

Hereafter α,β = 1,3 : i,k = 1,2,3;A,B = 1,1;2,2;1,2;2,1. We use the same notation
for the PC and its cross-sections, as well as for the boundaries of the plate and the
boundaries of the channels. In (12.2)

aiαkβNABμ
k,β (y)+ (−1)μaiαABz = aiαθβNABμ

θ,β (x,z)+aiα2βNABμ
2,β (x,z)+ (−1)μaiαABzμ.

(12.3)
Equation (12.3) makes it possible to decompose the boundary-value problem (12.1)
into several 2D problems. The form of the 2D problems is determined by the index i
in (12.2). For this reason, we consider problem (12.2) for i = 2 and i = ξ = 1,3 = x,z,
separately.

12.3 Problem 12.1 with Index i = 2

We assume the plate is made of homogeneous isotropic material. We will use the
tensor notations ai jkl (it is convenient in our computations) for the elastic constants
keeping into mind the relation of the elastic constants with Young’s modulus E and
Poisson’s ratio ν (Love, 2013)

a1111 = a3333 =
E(1− ν)

(1+ ν)(1−2ν)
, a1133 = a3311 = a1122 = a3322 =

Eν
(1+ ν)(1−2ν)

.

(12.4)
In the case under consideration, a2αθβ = 0,a2αAB = 0 (Love, 2013) and expression in
(12.3) takes the form (α = 1,3)

a2αθβNABμ
θ,β +a2α2βNABμ

2,β + (−1)μa2αABzμ = a2α2αNABμ
2,α +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)μa2121zμ

if AB = 21,12

0 else

(12.5)

By virtue of (12.5), the solution to (12.2) NABν
2 (x,z) = 0 if AB � 21. Only the com-

ponent N21ν
2 (x,z) is non-zero. It is the case of in-plane shift (μ= 0) or torsion (μ= 1).

The in-plane shift is also called anti-plane deformation (Love, 2013).
The problem for N21ν

2 (x,z) takes the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(a2α2αN21μ

2,α + (−1)μa2121zμδα1),α = 0 in P,

(a2α2αN21μ
2,α + (−1)μa2121zμδα1)nα = 0 on Γ∪H,

N21μ
2 (x,z) periodic in x.

(12.6)

The term (−1)μa2121zμδα1 in (12.6) may be eliminated. There exists a function
w(x,z), such that (ν = 0,1)

a2δ2δw,δ = (−1)νa2121zν. (12.7)



12 Dimension Reduction in the Plate with Tunnel Cuts 145

For δ = 2 and δ = 3, we obtain from (12.7) a2121w,1 = (−1)νa2121zν and a2323w,3 = 0.
From these equalities, we obtain the following system of differential equations

w,1 = (−1)νzν, w,3 = 0. (12.8)

12.3.1 In-plane Shift

For ν = 0, the system (12.8) takes the form w,1 = 1,w,3 = 0. The solution to this sys-
tem is w(x,z) = x. We introduce function M(x,z) = N120

2 (x,z)+ x and rewrite (12.6)
in the form of the following boundary-value problem for the Laplace equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ΔM = 0 in P,

∂M
∂n
= 0 on Γ∪H,

M(x,z)− x periodic in x ∈ [−L,L].

(12.9)

After some algebra we obtain the following formula for the computation of the local
stresses:

σi j = ai j2αN120
2,α +ai j21 = ai j2αM,α,

and the following formula for the computation of homogenized shift stiffness:

S 0
2121 =< a212αN210

2,α +a2121 >=< a212αM,α > .

Hereafter
< . . . >=

1
L

∫
P

. . .dxdz

means the “average value”, where L is the width of the 2D periodicity cell, Fig.
12.1b.

12.3.2 Torsion

For μ = 1, (12.6) takes the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(a2α2αN211

2,α −a2121zδα1),α = 0 in P,

(a2α2αN211
2,α −a2121zδα1)nα = 0 on Γ∪H,

N211
2 (x,z) periodic in x.

(12.10)

For ν = 1, the system (12.8) takes form w,1 = −z,w,3 = 0. It is a not integrable sys-
tem of differential equations. For this system, the necessary integrability condition
(Sedov, 1971) is not satisfied because w,13 = −z,3 = −1 �,w,31 = 0. As a result, it is
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impossible to eliminate the term a2121zδα1 in (12.10) in a simple way as above. The
problem (12.10) may be written in a compact form in the following way. Introduce
function ϕ(x,z) as

ϕ,3 = a2121(N211
2,1 − z), ϕ,1 = −a2323N211

2,3 (12.11)

The definition (12.11) uses the idea of the conjugate functions (Sedov, 1971). The
existence of the function ϕ(x,z) follows from the equality

ϕ,31 = (a2121(x,z)(N211
2,1 − z)),1+ (a2323(x,z)N211

2,3 ),3 = 0,

which is the consequence of (12.10).
Express N211

2 (x,z) from (12.11)

N211
2,1 =

1
a2121

ϕ,3+ z, N211
2,3 = −

1
a2121

ϕ,1. (12.12)

Differentiation of (12.12) yields

0 = N211
2,13−N211

2,31 =

(
1

a2121
ϕ,3+ z

)
,3
+

(
1

a2121
ϕ,1

)
,1
.

Grouping the terms in the last equation, we arrive at the following Poisson equation:

Δϕ = a2121. (12.13)

Consider the boundary conditions on the top and the bottom boundaries Γ+,Γ− and
the holes Hi (12.6). With the use of the function ϕ(x,z), these conditions can be
written as follows:

(a2121N21ν
2,1 −a2121)n1+a2323N21ν

2,3 n3 = ϕ,3n1−ϕ,1n3 =
∂ϕ

∂s
= 0 on Γ+,Γ− or Hi,

(12.14)
where ∂/∂s is the derivative along the boundary Γ+,Γ− or Hi. In view of (12.14),
the function ϕ(x,z) is constant on the top and bottom boundaries Γ+,Γ− and Hi:

ϕ = const on Γ+,Γ−,Hi. (12.15)

Without loss of generality, we can fix one constant. Let us assume that at the bottom
boundary Γ−,ϕ(x,z) = 0.

Integrating the first equation in (12.11) over S i, see Fig. 12.1b, we can have

ϕ(h,−L) = ϕ(−h,−L)+

h∫
−h

a2121(N211
2,1 − z)dz. (12.16)

The asymmetric (out-of-plane) stiffness
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S 1
2121 =

1
L

∫
P

a2121(N211
2,1 − z)dxdz.

Multiplying the differential equation in (12.10) by x and integrating by parts, we
have ∫

P

a2121(N211
2,1 − z)dxdz = 2

L
2

h∫
−h

a2121(N211
2,1 dz− z)dx.

Then Eq. (12.16) becomes ϕ(h,−L) = ϕ(−h,−L) + S 2121. We have assumed that
ϕ(x,z) = 0 on the bottom boundary Γ−, thus, ϕ(−h,−L) = 0. Then ϕ(h,−L) = S 2121
and ϕ(x,z) = S 2121 on the top boundary Γ+. As a result, we arrive at the following
boundary value problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δϕ = a2121 in P0,

ϕ = 0 on Γ−, ϕ = S 1
2121 on Γ+,ϕ =C1on Hi,

ϕ(x,z) periodic in x ∈ [−L,L].

(12.17)

The local stresses are expressed in the form

σi j = ai j2αN211
2,α +ai j21z =

ai j21

a2121
(ϕ,3−ϕ,1) (12.18)

and the homogenized torsion stiffness is expressed in the form

S 2
2121 = − < ϕ,3−ϕ,1 > .

12.4 Problem 12.2 with Indices i = ξ = 1,3 = x,z. Deformation in
the Direction Perpendicular to the Fibers

In this case, aξαα2β(y) = 0 and (12.3) takes the following form:

aiαkβNABμ
k,β (y)+aξα2βzμNABμ

2,β (y)+ (−1)μaξαABzμ = aξαθβNABμ
θ,β (y)+ (−1)μaξαABzμ.

Here AB = 11;22;12;21;α,β,θ,ξ = 1,3. Then the PCP (12.2) takes the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(aξαθβNABμ

θ,β + (−1)μaξαABzμ),α = 0 in P,

(aξαθβNABμ
θ,β + (−1)μaξαABzμ)nα = 0 on Γ∪H,

(NABμ
1 ,NABμ

3 )(x,z) periodic in x.

(12.19)

In the case under consideration elastic constants aξα12 = 0 and aξα21 = 0 for i = ξ =
1,3, then (N21μ

1 ,N21μ
3 = N12μ

1 ,N12μ
3 = 0. The problem is non-trivial only for AB =

11;22. Let us demonstrate the term (−1)μaξαABzμ in (12.19) may be represented in
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the form (−1)μaξαABeABμ
θβ (δ = 2,3) with the strains eABμ

θβ = vABμ
θβ (μ = 0,1):

aξαAB(x,z)zμ = aξαθβ(x,z)eABμ
θβ (12.20)

12.4.1 Index AB = 22. Tension-compression and Bending Along
the Fibers (in the 0xz-plane)

The typical overall deformations of the PC are shown in Figs. 12.1c, d. In the case
under consideration, Eq. (12.20) takes the form aξαθβeθβ = aξα22zμ. Be written in the
coordinate-wise form, it becomes

a1111e11+a1133e33 = −a1122zμ,
a3311e11+a3333e33 = −a3322zμ,
a1313e13 = −a1322zμ = 0,a3131e31 = −a3122zμ = 0.

(12.21)

Substituting into (12.21) the elastic constants (12.4), we obtain from the first two
equations in the following system:{

(1− ν)e11+ νe33 = −ν(x,z)zμ,
νe11+ (1− ν)e33 = −ν(x,z)zμ. (12.22)

Solution to (12.22) is
e11 = e33 = −νzν. (12.23)

In addition, e13 = e31 = 0. Then

∂v1

∂x
= −νzμ, ∂v3

∂z
= −νzμ, ∂v1

∂z
+
∂v3

∂x
= 0. (12.24)

The solution to (12.24) may be obtained in the explicit form. For μ = 0 from the
first two equations in (12.24), we have ν1 = −νx+ f (z) and ν3 = −νz+g(x). Substi-
tuting into the third equation in (12.24), we have f ′(z)+g′(x) = 0, then f (z) = 0 and
g(x) = 0.

For μ = 1, we have from (12.24) ν1 = −νzx+ f (z) and ν3 = − ν2 z2+g(x). Substitut-
ing into the third equation in (12.24), we arrive at −νx+ f ′(z)+g′(x) = 0, and obtain
f ′(z) = 0,g′(x) = νx. Then f (z) = 0 and g(x) =

ν

2
x2. Finally, we have

ν
22μ
1 =

{−νx if μ = 0,
−νzx if μ = 1, ν

22μ
3 =

⎧⎪⎪⎨⎪⎪⎩−νz if μ = 0,
− ν

2
z2+

ν

2
x2 if μ = 1. (12.25)

Introduce (MABμ
1 ,MABμ

3 ), (NABμ
1 ,NABμ

3 )+ (νABμ
1 , ν

ABμ
3 ). For (M22μ

1 ,M22μ
3 ), the third

condition in (12.19) takes the form: (M22μ
1 − ν22μ

1 ,M22μ
3 − ν22μ

3 ) is periodic in x, or
[M22μ

1 ]x = −νzμ[x]x, [M22μ
3 ]x = 0 (the square brackets [. . .]x mean the difference of
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the function on the opposite sides of the periodicity cell in the direction Ox). Here
we use that

[ν22μ
1 ]x =

{−ν[x]x if μ = 0,
−νz[x]x if μ = 1, ν

22μ
3 =

⎧⎪⎪⎨⎪⎪⎩0 if μ = 0,
− ν

2
[x2]x = 0 if μ = 1

and

N220
1 = M220

1 + νx,N220
3 = M220

3 + νx,N221
1 = M221

1 + νzx,N2201
3 = M221

3 + ν
z2

2
− ν x2

2
.

The problem (12.19) takes the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(aξαθβM22ν

θ,β ),α = 0 in P,

(aξαθβM22ν
θ,β nα = 0 on Γ∪H,

[M22ν
1 ]x = −νzν[x]x, [M22ν

3 ]x = 0.

(12.26)

The local stresses are computed with the formula

σi j = ai j21M220
1,1 +ai j21ν+ai j23M220

1,3 +ai j22 (12.27)

for ν = 0 - the tension along 0x-axis; and with the formula

σi j = ai j21M221
1,1 +ai j21νz+ai j23M221

1,3 +ai j23νz+ai j22z (12.28)

for ν = 1 - the bending in 0xz-plane. The homogenized in-plane stiffnesses are com-
puted with the formula

S 0
i j22 =< ai j21M220

1,1 +ai j21ν+ai j23M220
1,3 +ai j22 > (12.29)

and the homogenized bending/torsion stiffnesses are computed with the formula

S 2
i j22 =< (ai j21M221

1,1 +ai j21νz+ai j23M221
1,3 +ai j22)z > .

12.4.2 Index AB = 11. Tension-compression and Bending
Perpendicular to the Fibers (in the 0yz-plane)

In this case, Eq. (12.20) takes the form aξαθβeθβ = aξξα11zν or, in the coordinate-wise
form

a1111e11+a1133e33 = −a1111zμ,
a3311e11+a3333e33 = −a3311zμ,
a1313e13 = −a1311zμ = 0,a3131e31 = −a3111zμ = 0.

(12.30)

Writing in (12.30) the elastic tensor components in the terms of Young’s modulus
and Poisson ratio, see (12.4), we obtain from the first two equations in (12.30) the
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following system of equations:

(1− ν)e11+ νe33 = −(1− ν)zμ,
νe11+ (1− ν)e33 = −νzμ.

The solution to this system is e11 = −zν,e33 = 0. Taking into account that e13 = e31 =

0, we arrive at
∂v1

∂x
= −zμ,

∂v3

∂z
= 0,

∂v1

∂z
+
∂v3

∂x
= 0. (12.31)

The problem (12.31) may be solved in the explicit form. For μ = 0, from the first
two equations in (12.22), we have ν1 = −x+ f (z) and ν3 = g(x). Substituting into the
third equation in (12.22), we arrive at f ′(z)+ g′(x) = 0, then f (z) = 0 and g(x) = 0.
For μ = 1, we have ν1 = −zx+ f (z) and ν3 = g(x). Substituting into the third equation
in (12.22), we arrive at −x+ f ′(z)+g′(x) = 0, and obtain f ′(z) = 0,g′(x) = νx. Then

f (z) = 0 and g(x) =
x2

2
. Finally,

ν11
1 = zμx, ν11

3 = μzμ−1 x2

2
=

x2

2

{
0 if μ = 0,
1 if μ = 1. (12.32)

The third condition for (M11ν
1 ,M11ν

3 ) in (12.19) takes the form: (M11ν
1 − ν11

1 ,M
11ν
3 −

ν11
2 , ) periodic in x. With regard to (12.32), it can be written as [M11ν

1 ]x = −νzμ[x]x,

[M11ν
1 ]x = 0. Then (12.19) takes the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(aξαθβM11ν
θ,β ),α = 0 in P,

(aξαθβM11ν
θ,β nα = 0 on Γ∪H,

[M11ν
1 ]x = −νzν[x]x, [M11ν

3 ]x = 0.

(12.33)

The boundary displacements in (12.33) are similar to one displayed in Fig. 12.1d.

12.4.3 Index AB = 12,21. Shift/Torsion Perpendicular to the Fibers
(in the 0yz-plane)

For AB= 12, Eq. (12.20) takes the form aξαθβeθβ = aξα12zν = 0, ξ,α= 1,3. Its solution
is eθβ = 0. Then ν12

1 = ν
12
3 = 0 and solution to (12.19) is (M12ν

1 ,M12ν
3 ) = 0. The non-

trivial M21ν
2 � 0 was discussed in Sect. 12.2.

12.5 Numerical Solutions

We present numerical solutions to several PCPs. In our computations Young’s mod-
ulus Eb = 2 GPa and Poisson’s ratio νb = 0.36. The periodicity cell dimensions are
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h1 = 1.1,h2 = 2,h3 = 1.1, h = 0.1 and 2H = 0.1. The radius of the fiber is 0.45.
These values are indicated in the non-dimensional "fast" variables y. The corre-
sponding actual dimensional values are computed by multiplying by the character-
istic size ε. The programs we developed by using the APDL programming language
of the ANSYS FEM software (Thompson and Thompson, 2017). The finite elements
PLANE183 are used for the fibers and the matrix, the characteristic size of the finite
elements is 0.03. The total number of finite elements is about 11000.

12.5.1 The Boundary Layers

The deformed PC and the local von Mises stress are displayed in Fig. 12.2. Figure
12.2a corresponds to the tension in 0x-direction and Fig. 12.2b corresponds to the
bending. The boundary layers at the top and the bottom surfaces of the PC are seen.
The boundary layer thickness is less the thickness of one structural layer 2R+h (di-
ameter of hole + surrounding material). In the core of plate the solution is periodic
in the in-plane tension/shift modes. It the bending/torsion mode, the solution in the
core of plate coincides with solution in the plate of “infinite” thickness Grigolyuk
et al (1991).

If the plate is thick, these boundary layers do not influence the effective stiffness
of the plate. But the boundary layers do influence the local SSS in the plate of any
thickness. In particular, the boundary layers influence the strength of the plate. In
the tension mode, the maximum von Mises stress σvM = 0.196109 in the core of the
plate occurs between the holes, see Fig. 12.2a. The maximum von Mises stress in
the boundary layer is σvM = 0.252109. The ratio of the maximuma is 1.29.

Fig. 12.2 5-hole PC and the top and the bottom surfaces of the PC (zoomed): a - tension and b -
bending modes.
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12.5.2 Wrinkling of the Top and Bottom Surfaces of the Plate

Figure 12.2 displays the top and bottom surfaces of the plate with channel cuts
subjected to the overall tension - Fig. 12.2a, the overall bending - Fig. 12.2b. It is
seen that the top and bottom surfaces are not flat in the case of the tension and not
cylindrical in the case of bending. They are wavy. This is the wrinkling effect. The
amplitude and period of the wrinkling are small (have the order of the PC dimen-
sion) but the corresponding change of the total length of the surfaces is not small.
The wrinkling never occurs in the homogeneous or in the laminated plates. For the
homogeneous or laminated plates, top and bottom surfaces are flat in the case of the
tension and cylindrical in the case of bending.

12.6 The Macroscopic SSS of General Form

Solutions to a partial PCP corresponds to the basis macroscopic SSS: eνAB = δAB,
where δAB is Kronecker delta. For plate, we distinguish six basic macroscopic SSSs:
two in-plane tensions and shift e0

AB, and two bending and torsion ρAB. In accordance
with the homogenization theory (Caillerie, 1984; Kohn and Vogelius, 1984), the
local strains are computed as

ekl = [δA
k δ

B
l +NAB0

k,l (x,z)]e0
AB+ [−δA

k δ
B
l z+NAB1

k,l (x,z)]ρAB,

and the local stresses are computed as

σi j = [ai jAB(x,z)+ai jAB(x,z)NAB0
k,l ]e0

AB+ [−ai jAB(x,z)z+ai jAB(x,z)NAB1
k,l ]ρAB.

These formulas may be used for prospective analysis of the behavior of plates of uni-
directional structures subjected to the macroscopic SSS {e0

AB,e
1
AB} of general form,

for example, the investigation of the strength of such kind plates.

12.7 Conlusions

The original 3D PCP (12.1) is reduced to several 2D boundary-value problems. The
boundary-value problems for Laplace (12.9) and Poisson (12.17) equations corre-
spond to the anti-plane elasticity problems. The boundary-value problems (12.26)
and (12.33) are the planar elasticity problems.

The obtained 2D problems may be analyzed numerically with high accuracy. Our
numerical solutions demonstrate the existence of boundary layers near the top and
the bottom surfaces of PC. The boundary layer thickness is less the thickness of one
structural. The wrinkling effect takes place for the plates with a system of tunnel
cuts.
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