
Chapter 10
Analytical Approach to the Derivation of the
Stress Field of a Cylindrical Shell with a
Circular Hole under Axial Tension

Stanislava V. Kashtanova and Alexey V. Rzhonsnitskiy

Abstract A new analytical approach to the stress field problem of the cylindrical
shell with a circular cutout under axial tension is proposed. Classical models be-
cause of an expansion into small parameter have narrow range of applicability and
almost do not differ from Kirsch case for plate. The new approach opens up opportu-
nities for the analytical study of the stress field. The idea is to decompose each basis
function into a Fourier series by separating the variables, which allows us to obtain
an infinite system of algebraic equations for finding coefficients. One of the impor-
tant steps of the study is that the authors were able to prove which of the equations
of the system is a linear combination of several others. Excluding it made it possible
to create a reduced system for finding unknown coefficients. The proposed approach
does not impose mathematical restrictions on the values of the main parameter that
characterizes the cylindrical shell.
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10.1 Introduction

In this paper1, we propose a new analytical approach to the derivation of the stresses
of a cylindrical shell with a circular hole under tension along forming axis. The state-
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ment of the problem and the solution by the method of decomposition in the small
parameter belongs to Lurie (1946). This parameter β characterizes the ratio of the
radius of the hole, the thickness of the shell and the radius of curvature. Later, in
the mid-1960s-70s, a surge of interest in this problem occurred not only among So-
viet researchers, but also among foreign scientists who found an error in setting the
boundary conditions at the boundary of a circular hole. Some of them reconsidered
it by the same method (Houghton, 1961; Naghdi and Eringen, 1965; Pirogov and
Iumatov, 1968; Murthy, 1969), others by numerical method of collocation (Eringen
et al, 1965; Lekkerkerker, 1965; van Dyke, 1965). However, the proposed analytical
approach was extremely cumbersome and worked for a very small range of values
of the parameter β, which differed a little from the plane Kirsch problem, and the
results obtained by the collocation method differed (Kashtanova et al, 2021). There
were also attempts to solve this problem using the energy method (Pirogov and
Iumatov, 1968; Adams, 1971) and the method of complex variables for arbitrary
holes (Chekhov and Zakora, 1972; Hu et al, 1998). The resources of the consid-
ered methods have exhausted themselves without providing a convenient solution
but no alternative methods have yet been proposed. Follow-up works rely on com-
puter modelling, in particular, based on the finite element method (Yu et al, 2015;
Chowdhury et al, 2016; Celebi et al, 2017; Storozhuk et al, 2018; Russo et al, 2019).

However, until now, the relevance and applicability of this problem remain high
(Wu and Mu, 2003; Oterkus et al, 2007; Zhuang et al, 2015; Ray-Chaudhuri and
Chawla, 2018), especially in the field of the aviation industry. And the analytical
solution for the stress field in the hole area can give an impetus to the fundamental
study of the issues of fracture and stability. This paper presents a new idea that
makes it easy to find numerical values of stresses and opens up prospects for their
analytical study. In this way, there are no mathematical restrictions on the values
of the parameter β as it was before. In this paper, special attention is paid to the
technique of solving the problem and a strict mathematical formulation.

10.2 Problem Formulation

We consider a cylindrical shell with a circular hole under tension p applied at infinity
along forming axis x. The following symbols are used: parameter

β2 = r2
0

√
3(1− ν2)
4Rh

,

where r0 – the radius of the hole (without belittling the generality, we can take r0 as
a unit of measurement, i.e. r0 = 1), R,h – the radius of curvature and the thickness
of the shell, respectively, ν – Poisson’s ratio. Parameter β is the main parameter
responsible for the ratio of geometric parameters, including the curvature of the
shell.
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Note that the limiting case for β→ 0 leads us to the Kirsch problem. As it offered
in Lurie (1946) we also introduce the function

Φ =
Eh

8β2R
w− iU,

which depends on the deflection w and the stress function U. The relationship be-
tween the effort T and the function U is given as follows

(
Tx Txy
Txy Ty

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂2U
∂y2 − ∂

2U
∂x∂y

− ∂
2U
∂x∂y

∂2U
∂y2 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The stress of the median surface of the thin shell is σ = T/h.

It is shown in Lurie (1946), Guz (1974), that the system of shell equilibrium
equations reduces to the following equation

ΔΔΦ+8iβ2 ∂
2Φ

∂x2 = 0. (10.1)

The full problem statement is to find a function that satisfies equation (10.1) and
next boundary conditions

• at infinity
Tx = p, Txy = 0, Ty = 0, w = 0; (10.2)

• at the boundary of a circular hole in the polar coordinate system (r,ϑ)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Trr |r=r0 = 0,
Trϑ|r=r0 = 0,
Mr |r=r0 = 0,
Qr |r=r0 = 0.

(10.3)

Here Mr is the moment, Qr is the generalized boundary condition on a free edge
(Lurie, 1946).

10.3 Solution

Despite the fact that the method for solving equation (10.1) is well known (Lurie,
1946; Naghdi and Eringen, 1965; Pirogov and Iumatov, 1968; Murthy, 1969; Guz,
1974; Kashtanova et al, 2021), some technical details were not given due attention.
Consider two commuting linear operators

L1 =

(
Δ−2iα

∂

∂x

)
and L2 =

(
Δ+2iα

∂

∂x

)
,



118 Stanislava V. Kashtanova and Alexey V. Rzhonsnitskiy

where α = (1+ i)β. Then Eq. (10.1) can be written as

L1L2Φ = 0⇔Φ ∈ KerL1L2.

That is, the problem is reduced to finding the kernel of the product L1L2. From the
fact that the operators commute, it follows that

KerL1+KerL2 ⊂ KerL1L2.

Finding the solutions of the equations L1Φ = 0 and L2Φ = 0 separately with the
subsequent possibility of finding their sum greatly simplifies the solution of the
original equation, since lowers its order. However, it is important to note that the
sum of kernels KerL1 +KerL2 does not coincide with the set of all solutions of
equation (10.1), which can lead to the loss of solutions. Therefore, this method can
be used to prove the existence of a solution and find it constructively, but the study
of uniqueness should be carried out separately.

By replacing and separating variables, it is easy to establish (Lurie, 1946; Guz,
1974) that the solutions of L1,2Φ = 0 are functions e±iαxH(1)

n (αr)e±inϑ, where n ∈ Z+.
The choice of Hankel functions in the construction of the solution is due to the fact
that these are the only Bessel functions that tend to zero at an infinitely distant
complex point (Watson, 1945):

lim
ρ→+∞H(1)

n (ρeiϕ) = lim
ρ→+∞H(2)

n (ρe−iϕ) = 0, ϕ ∈ [ε;π−ε].

Since α = (1+ i)β has the argument π/4 ∈ [ε;π−ε], functions e±iαxH(2)
n (αr)e±inϑ ob-

viously do not satisfy the boundary conditions, since the deflection w � 0 at infinity.
At the same time, guided by Watson (1945), we can deduce that

|e±iαxH(1)
n (αr)e±inϑ| ≤ C̃√

r
e−βr(1−|cosϑ|).

Note that the first three boundary conditions of system (10.2) are set not with respect
to the function U, but with respect to its second derivatives. Therefore, it is necessary
to make sure that not only the potential, but also the stresses tend to zero at large r.
This is true, since it follows from the recurrence relations for the Bessel functions
(Watson, 1945) that

∂

∂r

(
e±iαxH(1)

n (αr)e±inϑ
)

is a linear combination of functions of the same type e±iαxH(1)
m (αr)e±inϑ. Moreover,

calculations show that
1
r
∂

∂ϑ

(
e±iαxH(1)

n (αr)e±inϑ
)

is a linear combination of functions

e±iαxH(1)
n (αr)e±inϑ and

e±iαxH(1)
n (αr)e±inϑ

r
.
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Thus, the solution e±iαxH(1)
n (αr)e±inϑ satisfies all boundary conditions at infinity.

Using trigonometric form for e±iαxH(1)
n (αr)e±inϑ and taking into account the cir-

cular hole symmetry we get that the solution of the problem (10.1)-(10.3) is possible
to find in following form for even and odd n (Lurie, 1946; Chowdhury et al, 2016):

Φ = −i
py2

2
+

∞∑
n=0

(An+ iBn)
[

cos(αx) ·H(1)
n (αr) · cos(nϑ)

sin(αx) ·H(1)
n (αr) · cos(nϑ)

]
. (10.4)

The functionΦ is the solution of the equation of mathematical physics (10.1), while
Φ satisfies the boundary conditions (10.2). It remains only to find the coefficients
An and Bn from the boundary conditions (10.3). Namely at this step the authors of
previous works faced the greatest difficulties (for more information, see Kashtanova
et al, 2021). Therefore, the main content part of the present paper is the method of
searching for unknown coefficients.

10.4 New Approach

The main idea is to separate the variables r and ϑ in each basic function. Only in
contrast to Lurie (1946), to achieve this goal, an expansion in the trigonometric
Fourier series is proposed. The known Laurent series expansion e

(
z
2 (t− 1

t )
)

(Watson,
1945) of

e
z
2 (t− 1

t ) =

∞∑
m=−∞

tmJm(z)

for eiαxeinϑ leads us to

eiαxeinϑ = e
β(1+i)r

2

(
2i eiϑ+e−iϑ

2

)
einϑ = e

β(1+i)r
2

(
ieiϑ− 1

ieiϑ

)
einϑ

=

⎛⎜⎜⎜⎜⎜⎝ ∞∑
m=−∞

(
ieiϑ
)m

Jm((1+ i)βr)

⎞⎟⎟⎟⎟⎟⎠einϑ

=

∞∑
m=−∞

imei(n+m)ϑJm((1+ i)βr)

=

∞∑
m=−∞

ik−nJk−n((1+ i)βr)eikϑ =

∞∑
m=−∞

(−i)k−nJn−k((1+ i)βr)eikϑ

Replacing n with ˘n results in

eiαxe−inϑ =

∞∑
m=−∞

ik+nJk+n((1+ i)βr)eikϑ

If we add both equalities obtained, we get
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eiαx
(
einϑ+ e−inϑ

)
=

∞∑
m=−∞

[
(−i)k−nJn−k((1+ i)βr)+ ik+nJk+n((1+ i)βr)

]
eikϑ

Now we can replace α by ˘α in the last formula and add both equalities for even n,
and for odd n subtract the other from one:

cosαx · cosnϑ =
1
4

(
eiαx + e−iαx

) (
einϑ+ e−inϑ

)
= (−1)n/2Jn((1+ i)βr)

+

∞∑
l=1

(−1)l+(n/2)(Jn−2l((1+ i)βr)+ Jn+2l((1+ i)βr))cos2lϑ

sinαx · cosnϑ =
1
4i

(
eiαx − e−iαx

) (
einϑ+ e−inϑ

)
= (−1)(n−1)/2Jn((1+ i)βr)

+

∞∑
l=1

(−1)l+((n−1)/2)(Jn−2l((1+ i)βr)+ Jn+2l((1+ i)βr))cos2lϑ

As a result, even and odd basis functions can be written in one general formula[
cos(αx) ·H(1)

n (αr) · cosnϑ
sin(αx) ·H(1)

n (αr) · cosnϑ

]
= fn(r,ϑ) = (−1)

[
n
2

]H(1)
n ((1+ i)βr)

H(1)
n ((1+ i)β)

[Jn((1+ i)βr)

+

∞∑
l=1

(−1)l(J(n+2l)((1+ i)βr)+ J(n−2l)((1+ i)βr))cos2lϑ],

(10.5)
where

[
n
2

]
is an integer part of the number. In the denominator a normalizing factor

H(1)
n ((1+ i)β) is introduced. The latter is done so that the numerical values of the

unknown coefficients have moderate values, with which it is convenient to work.
Further, for convenience, we introduce the notation for the Fourier coefficients in

the trigonometric expansion of the basis function g(r,n, l):

g(r,n, l) = (−1)
[

n
2

]
+l H(1)

n ((1+ i)βr)

H(1)
n ((1+ i)β)

(Jn+2l((1+ i)βr)+ Jn−2l((1+ i)βr))

with n = 0,1, . . . ,∞, l = 0,1, . . . ,∞. Then (10.5) takes the form

fn(r,ϑ) =
g(r,n,0)

2
+

∞∑
l=1

g(r,n, l)cos2lϑ. (10.6)

Now solution (10.4) can be written as

Φ(r,ϑ) = −i
py2

2
+

∞∑
n=0

(an+ ibn) fn(r,ϑ) (10.7)
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That is convenient for substitution into the boundary conditions (10.3).

10.5 Boundary Conditions

First boundary condition σrr = 0 in polar coordinates

L1(U) =L1(−ImΦ) = 0, L1 =
1
r2
∂2

∂ϑ2 +
1
r
∂

∂r

leads us to the equation

p
2
+

p
2

cos2ϑ− Im
∞∑

n=0

(an+ ibn)

⎛⎜⎜⎜⎜⎜⎜⎝g′(r,n,0)
2

+

∞∑
l=1

(−4l2g(r,n, l)+g′(r,n, l))cos2lϑ

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

(10.8)
The cosine coefficients give us the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos0 :
p
2
− Im

∞∑
n=0

(an+ ibn) · g
′(r,n,0)

2
= 0

cos2ϑ :
p
2
+ Im

∞∑
n=0

(an+ ibn) · (4g(r,n,1)−g′(r,n,1)
)
= 0

cos4ϑ : Im
∞∑

n=0

(an+ ibn) · (16g(r,n,2)−g′(r,n,2)
)
= 0

. . .

cos2lϑ : Im
∞∑

n=0

(an+ ibn) ·
(
4l2g(r,n, l)−g′(r,n, l)

)
= 0

(10.9)

Second boundary condition σrϑ = 0

L2(U) =L2(−ImΦ) = 0, L2 =
1
r2
∂

∂ϑ
− 1

r
∂2

∂r∂ϑ

give us

− p
2

sin2ϑ− Im
∞∑

n=0

(an+ ibn)2
∞∑

l=1

l · (g′(r,n, l)−g(r,n, l)) sin2lϑ = 0. (10.10)

The sine coefficients are:
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sin2ϑ : − p
2
− Im

∞∑
n=0

2(an+ ibn) · (g′(r,n,1)−g(r,n,1)) = 0

sin4ϑ : −Im
∞∑

n=0

4(an+ ibn) · (g′(r,n,2)−g(r,n,2)
)
= 0

. . .

sin2lϑ : −Im
∞∑

n=0

2l(an+ ibn) · (g′(r,n, l)−g(r,n, l)
)
= 0

(10.11)

From the third boundary condition Mrr = 0

L3(ReΦ) = 0, L3 = −D
(
∂2

∂r2 +
ν

r
∂

∂r
+
ν

r2
∂2

∂ϑ2

)
, D =

Eh3

12(1− ν2)
,

where E – Young modulus and ν - Poisson ratio, we get

Re
∞∑

n=0
(an+ ibn)⎛⎜⎜⎜⎜⎜⎜⎝g′′(r,n,0)

2
+ ν

g′(r,n,0)
2

+

∞∑
l=1

[g′′(r,n, l)+ ν(g′(r,n, l)−4l2g(r,n, l))]cos2lϑ

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

(10.12)
The cosine coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos0 : Re
∞∑

n=0

(an+ ibn) · νg
′(r,n,0)+g′′(r,n,0)

2
= 0

cos2ϑ : Re
∞∑

n=0

(an+ ibn) · (−4νg(r,n,1)+ νg′(r,n,1)+g′′(r,n,1)
)
= 0

cos4ϑ : Re
∞∑

n=0

(an+ ibn) · (−16νg(r,n,2)+ νg′(r,n,2)+g′′(r,n,2)
)
= 0

. . .

cos2lϑ : Re
∞∑

n=0

(an+ ibn) ·
(
−4l2νg(r,n, l)+ νg′(r,n, l)+g′′(r,n, l)

)
= 0

(10.13)

From the fourth boundary condition Q∗r = 0

L4(ReΦ) = 0, L4 = −D
(
∂

∂r
Δ+ (1− ν)1

r
∂

∂r
1
r
∂

∂ϑ2

)
, Δ =

∂2

∂r2 +
1
r
∂

∂r
+

1
r2
∂2

∂ϑ2

we find
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Re
∞∑

n=0

(an+ ibn)
[−g′(r,n,0)+g′′(r,n,0)+g′′′(r,n,0)

2

+

∞∑
l=1

[
4l2(3− ν)g(r,n, l)− (1+4l2(2− ν))g′(r,n, l)

+g′′(r,n, l)+g′′′(r,n, l)
]
cos2lϑ)

]
= 0.

(10.14)

The cosine coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos0 : Re
∞∑

n=0

(an+ ibn) ·
(−g′(r,n,0)+g′′(r,n,0)+g′′′(r,n,0)

2

)
= 0

cos2ϑ : Re
∞∑

n=0

(an+ ibn) · (4(3− ν)g(r,n,1)

−(9−4ν)g′(r,n,1)+g′′(r,n,1)+g′′′(r,n,1)) = 0

cos4ϑ : Re
∞∑

n=0

(an+ ibn) · (16(3− ν)g(r,n,2)

−(33−16ν)g(r,n,2)+g′′(r,n,2)+g′′′(r,n,2)) = 0

. . .

cos2lϑ : Re
∞∑

n=0

(an+ ibn) · (4l2(3− ν)g(r,n, l)

−(1+4l2(2− ν))g′(r,n, l)+g′′(r,n, l)+g′′′(r,n, l)) = 0
(10.15)

10.6 System Investigation

In the second pair of systems (10.13)–(10.15), the expressions under the sum sign
can be multiplied by i. Then all the equations of the four systems will include only
the imaginary part of the sum. From all the systems obtained, we compose a general
linear system with an infinite number of unknowns and equations. Firstly, let us do
some elementary transformations:

1. for l > 1, the equations of systems (10.9) and (10.11) can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
4l2Im

∞∑
n=0

(an+ ibn)g(n, l)+ (−1)Im
∞∑

n=0

(an+ ibn)g′(n, l) = 0

2l · Im
∞∑

n=0

(an+ ibn)g(n, l)−2l · Im
∞∑

n=0

(an+ ibn)g′(n, l) = 0
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The result is a homogeneous system with respect to unknowns
∞∑

n=0
(an+ ibn)g(n, l)

and
∞∑

n=0
(an+ ibn)g′(n, l) with a determinant different from zero

∣∣∣∣∣∣4l2 −1
2l −2l

∣∣∣∣∣∣ � 0,

and consequently, it has only a trivial solution⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Im

∞∑
n=0

(an+ ibn)g(n, l) = 0

Im
∞∑

n=0

(an+ ibn)g′(n, l) = 0
(10.16)

2. for l = 1 the same equations give an inhomogeneous system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
4Im

∞∑
n=0

(an+ ibn)g(n,1)+ (−1)Im
∞∑

n=0

(an+ ibn)g′(n,1) = − p
2

2Im
∞∑

n=0

(an+ ibn)g(n,1)−2Im
∞∑

n=0

(an+ ibn)g′(n,1) =
p
2

Solving it with respect to unknowns, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Im

∞∑
n=0

(an+ ibn)g(n,1) = − p
4

Im
∞∑

n=0

(an+ ibn)g′(n,1) = − p
2

(10.17)

3. Let introduce the notation

t3(n, l) = i(−4l2νg(n, l)+ νg′(n, l)+g′′(n, l)),
t4(n, l) = i(12l2g(n, l)− (1+ ν+4l2(2− ν))g′(n, l)+g′′′(n, l)).

In order to get rid of g′′(n, l) in the expression t4(n, l), we can subtract from the
last equation of system (10.15) the last equation (10.13):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Im
∞∑

n=0

(an+ ibn)t3(n, l) = 0

Im
∞∑

n=0

(an+ ibn)t4(n, l) = 0
(10.18)

It is important to note that the first equation of system (10.9), as proved by the
authors, is a consequence of four equations: two equations of system (10.17) and
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two equations of system (10.18) at l = 0. The proof is based on the properties of the
Bessel functions (Watson, 1945) and the idea is presented in the Appendix. The fact
of linear dependence of the equations, but the lack of understanding of which ones
perplexed the author of a previous work (Murthy, 1969; Pirogov and Iumatov, 1968;
Naghdi and Eringen, 1965).

All equations of systems (10.16) - (10.18) can be written in matrix form (see Ta-
ble 10.6). Thus, a linear system with an infinite number of equations and unknowns
is obtained. In this case, the elements of the infinite matrix of the system, which
differ significantly from zero, are located near the main diagonal. This is due to
the values Jk((1+ i)β), on which all elements of the matrix of the system depend,
become very small with increasing k, namely, next to the main diagonal there are
elements whose index k = n− 2l is close to zero. The submatrix composed of the
first 4N rows and columns will have a nonzero determinant. The solving the sys-
tem allows to find uniquely the coefficients for the first 2N basis functions. At the
same time, as calculations show, with an increase in N, the first found coefficients
practically do not change, and the coefficients at basis functions with large indexes
tend to zero. This method has no mathematical restrictions on the values of the main
parameter β. From the point of view of mechanics, this model is applicable for the
range 0 ≤ β ≤ 3,5−4,5 (Guz, 1974).

10.7 Results

The found coefficients an and bn can be substituted into (10.4). Herewith, any finite
partial sum

Table 10.1 System (10.16) - (10.18) in matrix form.

n 0 1 2 3 unknown free terms

Im Re Im Re Im Re Im Re

l

0 t3(0,0) t3(0,0) t3(1,0) t3(1,0) t3(2,0) t3(2,0) t3(3,0) t3(3,0) a0 0

0 t4(0,0) t4(0,0) t4(1,0) t4(1,0) t4(2,0) t4(2,0) t4(3,0) t4(3,0) b0 0

1 g(0,1) g(0,1) g(1,1) g(1,1) g(2,1) g(2,1) g(3,1) g(3,1) a1 − p
4

1 g′(0,1) g′(0,1) g′(1,1) g′(1,1) g′(2,1) g′(2,1) g′(3,1) g′(3,1)
... b1 − p

2
1 t3(0,1) t3(0,1) t3(1,1) t3(1,1) t3(2,1) t3(2,1) t3(3,1) t3(3,1) a2 0

1 t4(0,1) t4(0,1) t4(1,1) t4(1,1) t4(2,1) t4(2,1) t4(3,1) t4(3,1) b2 0

2 g(0,2) g(0,2) g(1,2) g(1,2) g(2,2) g(2,2) g(3,2) g(3,2) a3 0

2 g′(0,2) g′(0,2) g′(1,2) g′(1,2) g′(2,2) g′(2,2) g′(3,2) g′(3,2) b3 0

· · ·
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Φ = −i
py2

2
+

∞∑
n=0

an+ ibn

H(1)
n [(1+ i)β]

[
cos(αx) ·H(1)

n (αr) · cos(nϑ)
sin(αx) ·H(1)

n (αr) · cos(nϑ)

]
.

is an exact solution of the mathematical physics equation in the domain (in contrast,
for example, from the solution of this problem by the Ritz method) and satisfies
the boundary conditions at infinity. As calculations show, the boundary conditions
on the hole boundary are satisfied quite accurately for any β ∈ (0;4] for 18 basis
functions, the coefficients of which are found from the reduced system. E.g., the
maximum deviation of the boundary conditions from zero for β = 0.212 is no more
than 10−14, and for β = 4 no more than 6 · 10−3. With increasing β, the maximum
deviation increases: for greater accuracy, you can take 24 basis functions for large
values of β, and then the deviation will be no more than 5 ·10−6. As β increases, the
number of basis functions that significantly affect the response increases, i.e., the
basis coefficients increase for large n. The results shown in the graph (Fig. 10.1a)
completely coincide with the results obtained in van Dyke (1965) by the collocation
method. In the works of different authors were different the results, and it remained
unclear what results to rely on. Now it has been possible to find an analytical method
that is easy to implement and gives reliable results and the possibility of further
investigation of stresses.
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Appendix

Statement: the first equation in (10.9) is a consequence of four equations: two equa-
tions of system (10.17) and two equations of the system (10.18) for l = 0.

Proof. The following notation is introduced:

I: (10.9) Im
∞∑

n=0

(an+ ibn)g′(n,0) = p,

II: (10.18)1, l = 0 Im
∞∑

n=0

(an+ ibn)t3(n,0) = 0,

III: (10.18)2, l = 0 Im
∞∑

n=0

(an+ ibn)t4(n,0) = 0,

IV: (10.17)1 Im
∞∑

n=0

(an+ ibn)g(n,1) = −p/4,

V: (10.17)2 Im
∞∑

n=0

(an+ ibn)g′(n,1) = −p/2.
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The following fact is asserted:

4β2[I+V +2IV] = II+ III.

Equality for the right-hand sides is obvious. For the left-hand sides, we need to
prove that ∀n ∈ Z+:

4β2[g′(n,0)+g′(n,1)+2g(n,1)] = i(g′′(n,0)+g′′′(n,0)−g′(n,0)). (10.19)

Consider the linear differential operator

Ly = y′′+
y′

z
+

(
1− n2

z2

)
y.

Lemma 10.1. Let be, v ∈KerL, i.e. u,v – Bessel function of index n, G(z) = u(z)v(z).
So

G′′′(z)+
3
z

G′′(z)+
(
4− 4n2−1

z2

)
G′(z)+

4
z

G(z) = 0.

The proof of the lemma is derived from the relations for the Bessel functions. If we
apply the assertion of the lemma to

u(z) = (−1)
[

n
2

] 2

H(1)
n ((1+ i)β)

H(1)
n (z), v(z) = Jn(z), G(z) = u(z)v(z),

then we prove the Eq. (10.19).
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