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To Petr Evgenievich Tovstik,
a prominent Russian scientist
in the field of thin-walled structures
— our teacher, colleague, collaborator,
and friend.



Preface

On December 30, 2020 in only two days after his 85th anniversary professor P.E.
Tovstik, outstanding researcher and teacher, died as a result of COVID-19.

All his life was inseparably linked with the Faculty of Mathematics and Me-
chanics of Leningrad, and then St. Petersburg State University. In 1958 P.E. Tovstik
graduated with distinction from the faculty and started the postgraduate study. Af-
ter defense in 1963 his Candidate (PhD) thesis he worked in laboratory of vibra-
tions of the Scientific Research Institute of Mathematics and Mechanics (NIIMM)
at Leningrad State University. Having defended in 1968 his doctoral dissertation
(Graduation), he became the Associate Professor, and then Professor of the Depart-
ment of Theoretical and Applied Mechanics. Since 1978 he headed this department.

The first research projects made by P.E. Tovstik in the Laboratory of Vibra-
tions at NIIMM under supervision of the head of the laboratory Associate Professor
G.N. Bukharinov were devoted to asymptotic analysis of equations of vibrations of

Fig. 1 Petr Evgenievich
Tovstik (1935-2020).
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viii Preface

screw springs. The high scientific level of the young scientist research was recog-
nized by the mathematical community in Fomin and Shilov (1970). Further he be-
came interested in very difficult problems of thin shell theory, including problems on
free vibrations of thin shells of revolution, which are described by ordinary differen-
tial equations with variable coefficients containing a small parameter at the highest
derivative. For solutions of the whole class of such singularly perturbed differential
equations containing turning point(s) he developed a new asymptotic method of in-
tegration. The obtained asymptotic expansions were used to find natural frequencies
and modes of vibrations of shells of revolution. In 1968, these results were included
into his doctoral thesis. Many of results of this research were later included in Gold-
enveizer et al (1979). In 1970, for a cycle of works on the theory of shells he got the
first prize of Leningrad State University for scientific works.

In the mid-eighties P.E. Tovstik developed a new asymptotic method of approx-
imate evaluation of the lower frequencies of vibrations and critical buckling loads
for noncircular cylindrical and conic shells. By means of this method, simple ap-
proximate solutions for a large number of problems of the theory of vibrations and
buckling of shells, for which vibrational and buckling modes are localized near so-
called weakest generatrices, were obtained. Earlier for these problems only numeri-
cal results for special cases were known. In the doctoral dissertations (Dr.Sc.) of his
pupils, G.I. Mikhasev and S.B. Filippov, this method was applied and developed.

Also other types of localization of vibrations were studied, including cases, when
small pits are concentrated near the weakest point on a median surface or in the
neighborhood of weakly supported edge. Main results of the research on the shell
buckling theory, localized buckling and vibrational modes of thin elastic shells were
included in Tovstik (1995); Tovstik and Smirnov (2001); Mikhasev and Tovstik
(2009). In 1998, for a cycle of works "Fundamental problems of the theory of thin-
walled structures" P.E. Tovstik, together with his co-authors, was awarded the State
Prize of the Russian Federation in Science and Technology. In the same year he was
awarded the title “Honored Scientist of the Russian Federation”.

The error of the shell theory increases in nonlinear problems as deformations go
up, and the main inaccuracy is associated with constitutive relations between stress-
resultants/stress couples and deformations. In P.E. Tovstik works, refined elasticity
relations were derived from 3D equations of the theory of elasticity. When these
relations are used, the error of the non-linear shell theory has an order of the dimen-
sionless thickness of a shell. The formulation of refined elasticity relations is a new
fundamental result of the non-linear shell theory, which was included in Kabrits et al
(2002). For this book the authors got the First Prize for Scientific Research from St.
Petersburg State University in 2002.

In recent years, P.E. Tovstik paid attention to nonclassical problems of statics and
dynamics of thin shells and plates:

1. problems of buckling and vibrations of multilayered shells and plates,
2. shells and plates lying on elastic foundations, and
3. beams, plates and shells, made of material with anisotropy of the general type,

and others.
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A large series of papers by P.E. Tovstik was devoted to beams, plates and shells
made of linearly elastic homogeneous anisotropic materials of a general type, which
elasticity relations contain 21 elastic modules. It is well known that theories of
plates and shells are either based on some assumptions (hypotheses) or obtained
by means of asymptotic methods permitted to derive equations for 2D structures
from equations of 3D elasticity theory. P.E. Tovstik was one of the leading spe-
cialists among those, who used the last approach to derive asymptotically consistent
equations for plates and shells. For anisotropic, inhomogeneous in thickness (in par-
ticular, multilayer) beams, plates and shells, the problem of constructing 2D models
becomes much more complicated. Hypothesis-based methods become inapplicable
or the area of their applicability narrowed significantly. At the same time, meth-
ods of asymptotic integration give reliable results confirming by test examples, for
which 3D problems admit exact solutions.

Based on the generalized Tymoshenko–Reissner hypotheses, free vibrations and
buckling under uniform external pressure of thin elastic cylindrical shells made
of material with general type anisotropy were studied and then using asymptotic
method P.E. Tovstik derived approximate formulas for vibrational frequencies and
modes, critical external pressure and buckling modes. The accuracy of asymptotic
results was confirmed by numerical analysis with the help of finite element method.
P.E. Tovstik together with N.F. Morozov solved the problems of free vibrations and
buckling of the compressed transversely isotropic space, half-space and plate. Spe-
cial attention was paid to analysis of buckling modes both a plate and its support-
ing foundation. The non-linear analysis of the energy of post-critical deformation
reulted in conclusion that the buckling mode had the chess-board like form, which
agreed with the experimental results.

Research interests of P.E. Tovstik was never limited to the field of thin-walled
structures. For many years he headed numerous and varied industrial projects.
Amazing intuition helped him to catch immediately the main features of the studied
mechanical system and develop an adequate mathematical model for it. Here we
mention only some of these projects.

The large cycle of applied research on analysis of lightweight metal mirrors of
telescopes has been carried out in long-term cooperation with the State Optical In-
stitute. The telescope mirror was simulated as an annular laminated plate of variable
thickness. Main results of these studies were included in Bauer et al (1997).

Since 1994, P.E. Tovstik took an active part in the application of theory of shells
and plates to problems of ophthalmology. Models proposed by him help in describ-
ing pathological changes in the sclera of an eye, as well as changes in the stress-
strain state of eye shells after surgery. Some of the results he obtained were pub-
lished in Bauer et al (2000).

In 2013–2015, P.E. Tovstik analyzed the classical Ishlinsky–Lavrentiev problem
of dynamic behavior of a rod axially compressed by an applied force. Application of
the two-scale asymptotic decomposition method allowed studying main and com-
bination resonances for transverse rod vibrations caused by its axial vibrations, es-
timate the maximum deflection value, examine beat modes associated with transfer
of energy from axial to transverse vibrations and back.
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P.E. Tovstik also considered the influence of the form of initial imperfections
on emergence and development of transverse vibrations. With the use of integral
transforms he revealed the connection between the most dangerous imperfections
and the fastest growing deflection modes found in the work by M.A. Lavrentiev and
A.Yu. Ishlinsky. In 2015 for the series of papers entitled “Rod Dynamics under Axial
Compression: the development of ideas by M.A. Lavrentiev and A.Yu. Ishlinsky”
he (together with co-authors N.F. Morozov and A.K. Belyaev) was awarded the
Lavrentiev prize of Russia Academy of Sciences for outstanding achievements in
mathematics and mechanics.

Until his last days, P.E. Tovstik retained very high scientific potential, which
many younger colleagues may just envy. In 2016–2020, he published more than 40
scientific paper including 27 publications in the most prestigious Russian and Eu-
ropean journals. In addition, together with G.I. Mikhasev he published a book on
localized dynamics of thin-walled structures (Mikhasev and Tovstik, 2020). In total
he is the author of more than 270 scientific publications, including 11 monographs.
These publications contain studies of actual and difficult problems in the most gen-
eral formulations and their graceful solutions with the help of asymptotic methods,
to which P.E. Tovstik made a great contribution. In all his researches, the general
fundamental theoretical analyses are followed by considerations of actual exam-
ples, which he solved numerically writing and debugging computer codes. Since
1994, P.E. Tovstik was permanently a principal investigator in the team of his pupils
working on a grant on thin-walled structures presented by Russian Foundation for
Basic Research. Main results included in grant reports usually belonged to him.

P.E. Tovstik spared no time and efforts for the numerous pupils, among which
there were 9 Doctors (Dr. Sc.) and more than 30 Candidates of Science (PhD) with
whom he generously shared ideas. P.E. Tovstik founded a scientific school on appli-
cation of asymptotic methods in theories of thin-walled structures. For many years
P.E. Tovstik delivered a course on asymptotic methods in mechanics. Based on these
lectures he and his pupils published textbooks on application of asymptotic methods
in mechanics of solids (Vaillancourt and Smirnov, 1993; Bauer et al, 2007, 2015),
which are widely used in Russian universities and abroad.

He headed the Department of Theoretical and Applied Mechanics of St. Peters-
burg State University for more than 42 years, longer, than any of his prominent
predecessors. When taken the office he was the only Full Professor of the Depart-
ment, but with time five more Full Professors joint the Department. The breadth of
scientific interests allowed P.E. Tovstik to supervise research in all scientific areas
those were studied under his predecessor Professor N.N. Polyakhov, who headed
the department from 1952 till 1978. For decades P.E. Tovstik delivered a course on
theoretical mechanics. He was one of the authors and the editor of the two-volume
textbook on theoretical mechanics, that is planned to be published in 2021 by the St.
Petersburg University Press in Russian and, simultaneously, by Springer in English.

P.E. Tovstik always successfully combined research and scientific and profes-
sional social work. He was the member of the Russian National Committee on
Theoretical and Applied Mechanics, expert of the Russian Foundation for Basic
Research, Editor-in-chief of the journals “Vestnik St. Petersburg University. Math-
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ematics. Mechanics. Astronomy” (St. Petersburg University Press) and “Vestnik
St. Petersburg University. Mathematics.” (Springer), the chairman the Dissertation
Councils for Awarding Academic Degrees, the chairman of section of theoretical
mechanics at St. Petersburg House of Scientists of Russian Academy of Science,
the member of the Academic Council of St. Petersburg State University. He had
encyclopedic knowledge in many sections of mechanics that permitted him to cope
brilliantly with numerous duties.

The door to his office was always open to undergraduate and graduate students,
employees of the department and colleagues from the faculty. He never refused to
consult people who turned to him for help giving comprehensive, deep and clear
answers and advice.

P.E. Tovstik was awarded the Order of Honor of the Russian Federation and
Diploma of St. Petersburg State University “For pedagogical skill and teaching”. It
should be noted that P.E. Tovstik never considered awards and prizes he got as his
personal merit but as a positive assessment of the entire department.

P.E. Tovstik was a caring husband and father of two wonderful daughters. His
wife Tatyana, Associate Professor at the Department of Statistical Modeling of St.
Petersburg State University, was co-author of his papers on random effects. The
family atmosphere of love and warmth created by her and the constant support of
her husband helped his outstanding achievements in science.

The eldest daughter Tanya, PhD, Senior Researcher at the Institute of Problems
in Mechanical Engineering of the Russian Academy of Science, always helped her
father and was a co-author of many of his latest works. Junior, Sasha, chose a dif-
ferent path and became an artist.

P.E. Tovstik was a tireless traveler, and Tatyana was his indispensable compan-
ion. His other hobby was kayaking in northern rivers and lakes. Till his last days
he spent hours walking through forests at the neighborhood of St. Petersburg. He
was a devoted fan of Zenit, rejoicing at its victories and grieving at its losses. An
avid chess player, Candidate for Master of Sport, P.E. Tovstik for forty years regu-
larly three times a week played 12 chess blitz games with his former student S.B.
Filippov and the score was always not in favor of the student.

Fig. 2 Petr Tovstik with his
wife Tatyana.
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Outstanding scientific achievements, high professionalism, exceptional human
qualities of the excellent Russian intellectual won the honor, respect and love of his
students and colleagues. We will miss P.E. Tovstik very much — a great scientist, a
beloved teacher, a man of great talent. Bright and eternal memory to him.

July 2021

Magdeburg, Holm Altenbach
St. Petersburg, Svetlana M. Bauer
Minsk, Sergei B. Fillipov

Gennadi I. Mikhasev
Andrei L. Smirnov
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Chapter 1
On one Class of Spatial Problems of Layered
Plates and Applications in Seismology

Mher L. Aghalovyan and Lenser A. Aghalovyan

Abstract The class of spatial nonclassical quasistatic and dynamic problems of the
theory of elasticity for orthotropic layered plates was solved. We determined the
stress-strain states (SSS) of Earth’s Lithospheric plates and blocks of Earth’s crust
on the basis of data from inclinometers, strainmeters and other measuring instru-
ments. Monitoring of changes in the stress-strain state of layered package with re-
spect to the time makes it possible to trace the entire process of accumulation of
critical deformation energy and the possibility of earthquakes occurrence.

Key words: 3D problems elasticity, Laminated plate, Asymptotic method, Seis-
mology, Earthquake prediction

1.1 Introduction

The occurrence of strong earthquakes modern science associated with the tectonics
of Lithospheric plates of planet Earth. It was established, that earthquake sources are
located in narrow zones of Earth’s crust (seismic zones), which are zones of tectonic
interaction of adjacent Lithospheric plates (95% of earthquakes) (Pichon et al, 1973;
Rikitake, 1976; Kasahara, 1981; Basar et al, 2015). Planet Earth (REarth = 6378 km)
is nonhomogeneous and layered. It consists of Earth’s Crust, Upper and Lower
Mantle, Outer and Inner Cores. The distinctive feature of these layers, in particu-
lar, are significantly different velocities of propagation vP,vS of longitudinal (pri-
mary) P and transverse (secondary, shear) S waves in them. Earth’s Crust is also
layered with basic layers: sedimentary (vP = 2.0÷5.0 km/s; h1 = 10÷25 km), granite
(vP = 5.5÷6.0 km/s; h2 = 30÷40 km), basaltic (vP = 6.5÷7.4 km/s; h3 = 15÷20 km).
Part of Upper Mantle to the border with the Asthenosphere, where vS ≈ 0 km/s, to-
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gether with Earth’s Crust, makes up Lithosphere. By the network of deep faults
Lithosphere is divided into several large blocks which are called plates. The great
Lithospheric plates of the Earths are: Euroasian, Antarctic, Pacific Ocean, Indo-
Australian, South-American, North-American, African, Anatolian, Arabian, etc.

The process of earthquakes preparation includes two main stages of tectonic
movements: slow (age-old) and fast (jump-like). Age-old movements may last
decades, therefore they are quasistatic. Over the years, in Lithospheric plates and
individual blocks of Earth’s Crust deformations accumulate, which when having
reached the critical value of the order 10−4, and according to the data of Rikitake
(1976) - the order 4.7×10−5, leading to the global destruction (an earthquake). The
main part of the accumulated huge potential energy of deformation is released in the
form of volumetric elastic longitudinal P and shear S waves, as well as Rayleigh and
Love surface waves. Always vP speed is greater than vS speed. By fixing the time
of arrival of these waves at the given point (seismic station) by their difference, it is
possible to establish the distance L of the earthquake source from the given station,
and according to data of three stations, its location as the area (point) of intersection
of three spheres with radii L1,L2,L3 and centers at these stations. This is what most
of seismic stations are doing, recording an event that has already occurred.

Fast movements are dynamic and arise as a result of the foreshock, the earthquake
itself, and the aftershock. Thus, earthquakes are the result of global destruction.
Consequently, for earthquakes prediction, it is necessary to determine the stress-
strain states (SSS) of Lithospheric plates and blocks of the Earth’s Crust and follow
to their change during the time in order to identify critical states and places of their
manifestation. Having values of stresses and displacements, according to known
formulas, it is possible to determine the accumulated potential energy of deforma-
tion and the magnitude of the expected earthquake (Gutenberg and Richter, 1956;
Kasahara, 1981).

In the twentieth century, seismologists recorded noticeable deformations (dis-
placements of points) of Earth’s surface before an earthquake (Rikitake, 1976). At
the same time, the natural problem arose (Rikitake’s problem) - is it possible to de-
termine the SSS of the Lithospheric plate or the corresponding block of the Earth’s
Crust based on data of measured displacements of surface points and monitor its
change over time, according to data of new measurements. The arose problem, how-
ever, turned out to be the non-classical problem of the theory of elasticity, since on
the face surface of area the six conditions must be satisfied: the surface is free, i.e.
three components of the stress tensor are equal to zero, but the values of displace-
ments of points are known on this surface (three conditions) as a result of measure-
ments. But in the classical theory of elasticity on the surface, three conditions are
prescribed only. The asymptotic method of solving singularly perturbed differential
equations made it possible to solve this problem.

First works on the asymptotic theory of plates and shells were carried out by
Friedrichs (1955); Friedrichs and Dressler (1961); Gol’denveizer (1962); Green
(1962); Gol’denveizer (1976). The further development of the asymptotic theory
of plates and shells is associated with Bauer et al (1993); Kaplunov et al (1993);
Tovstik (1995); Bauer et al (1997); Kaplunov et al (2000); Tovstik and Smirnov
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(2001); Mikhasev and Tovstik (2009); Vilde et al (2010); Morozov and Tovstik
(2011); Morozov et al (2016); Tovstik and Tovstik (2017). Long-term close scien-
tific contacts of the author with Prof. A.L. Gol’denveizer contributed to the creation
of the asymptotic theory of anisotropic plates and shells, the solution of fundamen-
tally new classes of 3D problems of plates and shells (Aghalovyan, 2015a).

Returning to Rikitake’s problem, we note that we have proved, that it has the
unique solution, moreover, always exist the classical boundary value problem of the
theory of elasticity (3 conditions on the top surface and 3 conditions on the lowest
surfaces) for which it will be the solution (Aghalovyan, 2011). Rikitake’s problem
for the layered package of orthotropic plates, when the top surface of the package
is free, but are known the values of the displacements of the points of this surface,
was solved by the asymptotic method in Aghalovyan (2015a).

In order to reduce the influence of changes of external anomalous, in particular
atmospheric factors, on the data caused by the truly proceeding processes inside the
layered package (Lithospheric plate, block of Earth’s Crust), seismologists began to
place measuring instruments - inclinometers and strainmeters - inside the package
at some distance from the face surface.

In this paper, asymptotic solutions of the corresponding 3D quasistatic and dy-
namic problems of elasticity theory are found. It is considered, that measuring in-
struments are located on the contact surface between second and third layers. Cases
are established, when the solution becomes mathematically exact. Monitoring the
solution in time, allows to identify situations when between individual layers of the
package the separation (local destruction) is possible. Calculation of the potential
energy of deformation makes it possible to predict global destruction - the earth-
quake and estimate the magnitude of the expected earthquake.

1.2 Asymptotic Solutions of 3D Quasistatic Problem

Lithospheric plates and blocks of Earth’s Crust are layered, let them consist of N
orthotropic layers (the case of isotropy is the special case of the considered one) and
occupied the area

Z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(x,y,z) : 0 ≤ x ≤ a,0 ≤ y ≤ b,0 ≤ z ≤ h,h =
N∑

j=1

h j,min(a,b) = l,h� l

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
where h j is the thickness of plates (Fig. 1.1).

The process of the first stage of earthquake preparation, as it stated above, is
quasi-static (age-old). For determination the stress-strain state of the package of
plates, it is necessary to determine in the domain Z the solution of the equilibrium
equations of the problem of the theory of elasticity:

∂σ(k)
xx

∂x
+
∂σ(k)

xy

∂y
+
∂σ(k)

xz

∂z
+F(k)

x = 0, (x,y,z), k = 1,2, . . . ,N (1.1)
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0

σ+xz = 0,σ+yz = 0,σ+zz = 0

a

b

x

y

z

(1) z = h1

(2) z = h1 +h2,u+x ,u
+
y ,u
+
z

(k) z = h1 +h2 + . . .+hk

(N) z = h1 +h2 + . . .+hN = h

Fig. 1.1 Geometrical model of the lithospheric plates.

relations of the elasticity (generalized Hooke’s law) taking into account the influence
of the temperature field according to Duhamel-Neumann’s model:

∂u(k)
x

∂x
= a(k)

11σ
(k)
xx +a(k)

12σ
(k)
yy +a(k)

13σ
(k)
zz +α

(k)
11 θ

(k), (1,2,3; x,y,z),

∂u(k)
y

∂x
+
∂u(k)

x

∂y
= a(k)

66σ
(k)
xy ,

∂u(k)
y

∂z
+
∂u(k)

z

∂y
= a(k)

44σ
(k)
yz ,

∂u(k)
x

∂z
+
∂u(k)

z

∂x
= a(k)

55σ
(k)
xz ,

(1.2)

where σi j – components of stress tensor, ui - components of displacement vector,
ai j - constants of elasticity, αi j - coefficients of thermal expansion, θ = T (x,y,z, t)−
T0(x,y,z, t) - temperature of field change, Fi - volumetric forces (weight).

The found solution has to satisfy free boundary conditions on the face surface
z = 0 of the package

σ(1)
jz (x,y,0, t) = 0, j = x,y,z (1.3)

conditions for displacements on the plane of contact between second and third layers

u(2)
j (x,y, ζ2, t∗) = u(3)

j (x,y, ζ2, t∗) = u+j (x,y), j = x,y,z, ζ2 = (h1+h2)/h, (1.4)

where u+j (x,y) – are known functions as a result of measurements carried out when
t = t∗.

If for displacements numeric values are set, then the displacement surface have
to be approximated by a polynomial, for example, Lagrange’s polynomials. The
solution has to satisfy the conditions for full contact between all adjacent layers:
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σ(n)
jz (x,y, ζn, t) = σ

(n+1)
jz (x,y, ζn, t), ζn =

⎛⎜⎜⎜⎜⎜⎜⎝ n∑
i=1

hi

⎞⎟⎟⎟⎟⎟⎟⎠/h,
u(n)

j (x,y, ζn, t∗) = u(n+1)
j (x,y, ζn, t∗), j = x,y,z, n = 1,2, . . . ,N −1.

(1.5)

For solving of this problem, in Eqs. (1.1) and relations (1.2) let we pass to di-
mensionless coordinates and displacements

ξ = x/l, η = y/l, ζ = z/h = ε−1z/l, u = ux/l, v = uy/l, w = uz/l. (1.6)

As a result we will obtain a system singularly perturbed equations by a small pa-
rameter ε = h/l

∂σ(k)
xx

∂ξ
+
∂σ(k)

xy

∂η
+ε−1) ∂σ

(k)
xz

∂ζ
+ lF(k)

x = 0, (x,y, ξ,η),

∂σ(k)
xz

∂ξ
+
∂σ(k)

yz

∂η
+ε−1) ∂σ

(k)
zz

∂ζ
+ lF(k)

z = 0,

∂u(k)

∂ξ
= e(k)

1 +α
(k)
11 θ

(k),
∂v(k)

∂η
= e(k)

2 +α
(k)
22 θ

(k), ε−1 ∂w(k)

∂ζ
= e(k)

3 +α
(k)
33 θ

(k),

ε−1 ∂v(k)

∂ζ
+
∂w(k)

∂η
= a(k)

44σ
(k)
yz , ε−1 ∂u(k)

∂ζ
+
∂w(k)

∂ξ
= a(k)

55σ
(k)
xz ,

∂v(k)

∂ξ
+
∂u(k)

∂η
= a(k)

66σ
(k)
xy , e(k)

m = a(k)
1mσ

(k)
xx +a(k)

2mσ
(k)
yy +a(k)

3mσ
(k)
zz , m = 1,2,3.

(1.7)

The solution to the system (1.7)) consists of solutions of the external problem Iout

and the boundary layer (Ib) (Aghalovyan, 2015a,b). The solution to the external
problem is sought in the form:

σ(k)out
i j = ε−1+sσ(k,s)

i j , (i, j = x,y,z), s = 0,S ,

u(k)out = εsu(k,s), (u,v,w), k = 1,2, . . . ,N,
(1.8)

where the notation s = 0,S means, that by umbral (repeating) index s is taken place
summed over all integer values from zero to S (Einstein’s notation). By substi-
tuting (1.8) into system (1.7) and equating the corresponding coefficients in each
equation at ε, we will obtain the new system, from which are uniquely determining
σ(k,s)

i j ,u(k,s),v(k,s),w(k,s):

σ(k,s)
jz = σ(k,s)

jz0 (ξ,η)+σ(k,s)
jz∗ (ξ,η,ζ), j = x,y,z,

σ(k,s)
xx = −

A(k,s)
23

A(k)
11

σ(k,s)
zz0 −

γ(k,s)
11

A(k)
11

θ(k,s)+σ(k,s)
xx∗ (ξ,η,ζ),

σ(k,s)
yy = −A(k,s)

13

A(k)
11

σ(k,s)
zz0 −

γ(k,s)
22

A(k)
11

θ(k,s)+σ(k,s)
yy∗ (ξ,η,ζ),
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σ(k,s)
xy =

1

a(k)
66

[
∂v(k,s−1)

∂ξ
+
∂u(k,s−1)

∂η

]
, (1.9)

u(k,s) = a(k)
55 ζσ

(k,s)
xz0 +u(k,s)

0 (ξ,η)+u(k,s)
∗ (ξ,η,ζ),

v(k,s) = a(k)
44 ζσ

(k,s)
yz0 + v(k,s)

0 (ξ,η)+ v(k,s)
∗ (ξ,η,ζ),

w(k,s) =
A(k)

33

A(k)
11

ζσ(k,s)
zz0 +w(k,s)

0 (ξ,η)+
B(k)

11

A(k)
11

ζ∫
ζk−1

θ(k,s)dζ +w(k,s)
∗ (ξ,η,ζ),

where

θ(k,0) = εθ(k), θ(k,0) = 0 if s � 0,

A(k)
11 = a(k)

11 a(k)
22 −
(
a(k)

12

)2
, A(k)

13 = a(k)
11 a(k)

23 −a(k)
12 a(k)

13 , A(k)
23 = a(k)

22 a(k)
13 −a(k)

12 a(k)
23 ,

A(k)
33 = a(k)

33 A(k)
11 −a(k)

13 A(k)
23 −a(k)

23 A(k)
13 , γ

(k)
11 = α

(k)
11 a(k)

22 −α(k)
22 a(k)

12 ,

γ(k)
22 = α

(k)
22 a(k)

11 −α(k)
11 a(k)

12 , B(k)
11 = α

(k)
33 A(k)

11 −a(k)
13γ

(k)
11 −a(k)

23γ
(k)
22 ,

σ(k,s)
jz∗ = −

ζ∫
ζk−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣F(k,s)
j +

∂σ(k,s−1)
jx

∂ξ
+
∂σ(k,s−1)

jy

∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎦dζ, j = x,y,z,

σ(k,s)
xx∗ =

1
A11(k)

[
a(k)

22
∂u(k,s−1)

∂ξ
−a(k)

12
∂v(k,s−1)

∂η
−A(k)

23σ
(k,s)
zz∗
]
,

σ(k,s)
yy∗ =

1
A11(k)

[
a(k)

11
∂v(k,s−1)

∂η
−a(k)

12
∂u(k,s−1)

∂ξ
−A(k)

13σ
(k,s)
zz∗
]
,

u(k,s)
∗ =

ζ∫
ζk−1

[
a(k)

55σ
(k,s−1)
xz∗ − ∂w(k,s−1)

∂ξ

]
dζ,

v(k,s)
∗ =

ζ∫
ζk−1

[
a(k)

44σ
(k,s−1)
yz∗ − ∂w(k,s−1)

∂η

]
dζ,

w(k,s)
∗ =

ζ∫
ζk−1

[
a(k)

13σ
(k,s−1)
xx∗ +a(k)

23σ
(k,s−1)
yy∗ +a(k)

33σ
(k,s−1)
zz∗

]
dζ,

Q(k,m) = 0 if m < 0.

(1.10)

The solution (1.8)-(1.10) contains unknown functions that are uniquely deter-
mined from conditions (1.3)-(1.5). Using (1.9) and satisfying conditions (1.3), we
obtain:
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σ(1,s)
jz0 = 0, σ(1,s)

jz = σ(1,s)
jz∗ (ξ,η,ζ), j = x,y,z,

u(1,s) = u(1,s)
0 (ξ,η)+u(1,s)

∗ (ξ,η,ζ), v(1,s) = v(1,s)
0 (ξ,η)+ v(1,s)

∗ (ξ,η,ζ),

w(1,s) = w(1,s)
0 (ξ,η)+w(1,s)

∗ (ξ,η,ζ)+
B(1)

11

A(1)
11

ζ∫
0

θ(1,s)dζ.

(1.11)

In (1.11) the functions u(1,s)
0 ,v(1,s)

0 ,w(1,s)
0 are for the present unknown. To determine

them, we first have to satisfy conditions (1.4). According to (1.9), we will have

u(2,s)
0 (ξ,η) = u+(s)−a(2)

55 ζ2σ
(2,s)
xz0 −u(2,s)

∗ (ξ,η,ζ2), (u,v;a55,a44; x,y)

u(2,s)(ξ,η,ζ) = u+(s)+a(2)
55 (ζ − ζ2)σ(2,s)

xz0 +u(2,s)
∗ (ξ,η,ζ)−u(2,s)

∗ (ξ,η,ζ2),

u(3,s)
0 (ξ,η) = u+(s)−a(3)

55 ζ2σ
(3,s)
xz0 −u(3,s)

∗ (ξ,η,ζ2),

u(3,s)(ξ,η,ζ) = u+(s)+a(3)
55 (ζ − ζ2)σ(3,s)

xz0 +u(3,s)
∗ (ξ,η,ζ)−u(3,s)

∗ (ξ,η,ζ2),

(u,v;a55,a44; x,y),

w(2,s)(ξ,η,ζ) = w+(s)+
A(2)

33

A(2)
11

(ζ − ζ2)σ(2,s)
zz0 +

B(2)
11

A(2)
11

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ζ∫

ζ1

θ(2,s)dζ −
ζ2∫
ζ1

θ(2,s)dζ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ w(2,s)

∗ (ξ,η,ζ)−w(2,s)
∗ (ξ,η,ζ2),

w(3,s)(ξ,η,ζ) = w+(s)+
A(3)

33

A(3)
11

(ζ − ζ2)σ(3,s)
zz0 +

B(3)
11

A(3)
11

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ζ∫

ζ2

θ(3,s)dζ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ w(3,s)

∗ (ξ,η,ζ)−w(3,s)
∗ (ξ,η,ζ2),

u+(0) = u+x /l, u+(s) = 0, s � 0 (u,v,w, ; x,y,z)

(1.12)

Hence, become known all being sought values of second and third layers. Using
the data (1.11), (1.12) and satisfying the contact conditions (1.5) between first and
second layers let determine u(1,s)

0 ,v(1,s)
0 ,w(1,s)

0 and displacements of points of the first
layer:

u(1,s)
0 = u+(s)+a(2)

55 (ζ1− ζ2)σ(2,s)
xz0 +u(2,s)

∗ (ξ,η,ζ1)−u(1,s)
∗ (ξ,η,ζ1)−u(2,s)

∗ (ξ,η,ζ2),

u(1,s) = u(1,s)
0 +u(1,s)

∗ (ξ,η,ζ), (u,v;a55,a44; x,y),

w(1,s)
0 = w+(s)+

A(2)
33

A(2)
11

(ζ1− ζ2)σ(2,s)
zz0 +w(2,s)

∗ (ξ,η,ζ1)−w(2,s)
∗ (ξ,η,ζ2) (1.13)

− w(1,s)
∗ (ξ,η,ζ1)− B(2)

11

A(2)
11

ζ2∫
ζ1

θ(2,s)dζ,

w(1,s) = w(1,s)
0 +w(1,s)

∗ (ξ,η,ζ).
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By satisfying the conditions (1.5) of full contact between adjacent layers, we will
obtain following recurrent formulas for the consecutive determination of sought
components of the stress tensor and the displacement vector of others layers:

σ(n+1,s)
jz (ξ,η,ζ) = σ(n,s)

jz0 (ξ,η)+σ(n,s)
jz∗ (ξ,η,ζn)+σ(n+1,s)

jz∗ (ξ,η,ζ)

− σ(n+1,s)
jz∗ (ξ,η,ζn)

u(n+1,s)(ξ,η,ζ) = a(n+1)
55 (ζ − ζn)σ(n+1,s)

xz0 +u(n,s)(ξ,η,ζn)+u(n+1,s)
∗ (ξ,η,ζ)

− u(n+1,s)
∗ (ξ,η,ζn)

v(n+1,s)(ξ,η,ζ) = a(n+1)
44 (ζ − ζn)σ(n+1,s)

yz0 + v(n,s)(ξ,η,ζn)+ v(n+1,s)
∗ (ξ,η,ζ) (1.14)

− v(n+1,s)
∗ (ξ,η,ζn)

w(n+1,s)(ξ,η,ζ) =
A(n+1)

33

A(n+1)
11

(ζ − ζn)σ(n+1,s)
zz0 +w(n,s)(ξ,η,ζn)+w(n+1,s)

∗ (ξ,η,ζ)

− w(n+1,s)
∗ (ξ,η,ζn)+

B(n+1)
11

A(n+1)
11

ζ∫
ζn

θ(n+1,s)dζ,n = 3,4, . . . ,N −1

We note, that when functions u+x ,u
+
y ,u
+
z are polynomials from tangential coordinates

ξ,η iteration process breaks at a certain approximation. As a result, we have a math-
ematically exact solution to the external problem.

By satisfying other conditions (1.5) of full contact between adjacent layers, we
will obtain following recurent formulas for the consecutive determination of sou
The solution to the external problem, as a rule, would not satisfy boundary condi-
tions on the lateral surface of the package. Arousing discrepancy is eliminated by
solving the boundary layer. The boundary layer magnitudes exponentially decrease
with removing from the lateral surface to the inside of the package. The solution to
the boundary layer can be constructing and joining with the solution of the external
problem by the method described in Aghalovyan (2015a). In seismology, since tan-
gential dimensions of the package are much larger than its thickness, the boundary
layer is usually neglected.

1.3 Mathematically Precise Solutions

As an illustration of the above-mentioned we present the solution of the external
problem for the four-layered package, when
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u+x = l(b1u+ ξb2u+ηb3u), (x,y,z;u,v,w), bi j = const,
F(k)

x = F(k)
y = F(k)

z = 0, θ(k) = 0.
(1.15)

Iteration breaks after approximations s = 0,1. As a result, on base of Eqs. (1.3)-
(1.14), we have the mathematically precise solution:

• values for the first layer (0 ≤ ζ ≤ ζ1, ζ1 = h1/h)

u(1)
x = l(u(1,0)+εu(1,1) = u+x +hb2w(ζ2− ζ),

u(1)
y = l(v(1,0)+εv(1,1) = u+y +hb3w(ζ2− ζ),

u(1)
z = l(w(1,0)+εw(1,1) = u+z +hγ1(ζ − ζ1)+hγ2(ζ1− ζ2),

γ j =
1

A( j)
11

[
(a( j)

13 a( j)
22 −a( j)

12 a( j)
23 )b2u+ (a( j)

23 a( j)
11 −a( j)

13 a( j)
12 )b3v

]
,

σ(1)
xx =

1

A(1)
11

(a(1)
22 b2u−a(1)

12 b3v), σ(1)
yy =

1

A(1)
11

(a(1)
11 b3v−a(1)

12 b2u),

σ(1)
xy =

1

a(1)
66

(b3u+b2v), σ(1)
xz = σ

(1)
yz = σ

(1)
zz = 0

(1.16)

with j = 1,2,3,4,
• values for the second layer (ζ1 ≤ ζ ≤ ζ2, ζ2 = (h1+h2)/h)

u(2)
x = u+x +hb2w(ζ2− ζ),

u(2)
y = u+y +hb3w(ζ2− ζ),

u(2)
z = u+z +hγ2(ζ − ζ2),

σ(2)
xx =

1

A(2)
11

(a(2)
22 b2u−a(2)

12 b3v), σ(2)
yy =

1

A(2)
11

(a(2)
11 b3v−a(2)

12 b2u),

σ(2)
xy =

1

a(2)
66

(b3u+b2v), σ(2)
xz = σ

(2)
yz = σ

(2)
zz = 0,

(1.17)

• values for the third layer (ζ2 ≤ ζ ≤ ζ3, ζ3 = (h1+h2+h3)/h)

u(3)
x = u+x +hb2w(ζ2− ζ),

u(3)
y = u+y +hb3w(ζ2− ζ),

u(3)
z = u+z +hγ3(ζ − ζ2),

σ(3)
xx =

1

A(3)
11

(a(3)
22 b2u−a(3)

12 b3v), σ(3)
yy =

1

A(3)
11

(a(3)
11 b3v−a(3)

12 b2u),

σ(3)
xy =

1

a(3)
66

(b3u+b2v), σ(3)
xz = σ

(3)
yz = σ

(3)
zz = 0,

(1.18)
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• values for the fourth layer (ζ3 ≤ ζ ≤ 1)

u(4)
x = u+x +hb2w(ζ2− ζ),

u(4)
y = u+y +hb3w(ζ2− ζ),

u(4)
z = u+z +hγ3(ζ3− ζ2)+hγ4(ζ − ζ3),

σ(4)
xx =

1

A(4)
11

(a(4)
22 b2u−a(4)

12 b3v), σ(4)
yy =

1

A(4)
11

(a(4)
11 b3v−a(4)

12 b2u),

σ(4)
xy =

1

a(4)
66

(b3u+b2v), σ(4)
xz = σ

(4)
yz = σ

(4)
zz = 0.

(1.19)

Having the solution to the external problem, it is possible to monitor the change
of the stress-strain states over the time, in accordance with regularly carried out
measurements. It is possible to detect separation between some layers - when tan-
gential stress becomes greater than the admissible value. It is possible to calculate
the accumulated potential energy of deformation

E =
1
2

∫
V

(σxxεxx +σyyεyy+σzzεzz+σxyεxy+σxzεxz+σyzεyz)dv (1.20)

and trace when the huge potential deformation energy, accumulated during the
years, reaches the critical value. At that time will arise the global destruction (earth-
quake). It is possible to predict the magnitude M of the expected earthquake by the
formula (Kasahara, 1981; Gutenberg and Richter, 1956)

lg E = 11,8+1,5M (1.21)

1.4 Investigation of Dynamic Processes

To investigate related with earthquake, fast, having dynamic character processes
(Foreshocks, Earthquakes, Aftershocks), it is necessary to solve in the area Z dy-
namic equations of the motion of the theory of elasticity:

∂σ(k)
xx

∂x
+
∂σ(k)

xy

∂y
+
∂σ(k)

xz

∂z
= ρk

∂2u(k)
x

∂t2 , (x,y,z),k = 1,2, . . .N (1.22)

under the elasticity relations (1.2) (usually without taking into account temperature)
and conditions of full contact between adjacent layers. Let we will again assume,
that the measurement data were taken from the contact surface between second and
third layers. The case when data were taken from the contact surface between arbi-
trarily selected layers is considered in a similar way and does not cause any difficul-
ties. The boundary conditions of the problem will be:
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• the face surface of the package z = 0 is free

σ(1)
jz (x,y,0, t) = 0, j = x,y,z, (1.23)

• the values of displacement are known at z = h1+h2, ζ = ζ2

u(2)
x (x,y, ζ2, t) = u(3)

x (x,y, ζ2, t) = u+x (x,y)exp(iΩt), (x,y,z) (1.24)

and must be satisfied conditions of full contact (1.5) between all adjacent layers.
In (1.24) Ω - the frequency of oscillations of the surface of contact between
second and third layers, which is registered by inclinometers, seismic stations,
GPS.

The solution of the formulated problem we will find in the form:

σ(k)
αβ(x,y,z, t) = σ(k)

i j (x,y,z)exp(iΩt), α,β = x,y,z; i, j = 1,2,3,
u(k)

x (x,y,z, t) = u(k)
x (x,y,z)exp(iΩt), (x,y,z).

(1.25)

In corresponding Eqs. (1.22) and elasticity relations (1.2) dimensionless coordinates
and displacements

ξ =
x
l
,η =

y
l
, ζ = ε−1 z

l
,U(k) =

u(k)
x

l
,V (k) =

u(k)
y

l
,W(k) =

u(k)
z

l
(1.26)

will be introduced and a system of differential equations singularly perturbed by the
small parameter ε = h/l can be obtained. The solution to this system is the sum of
the solutions to the external problem (I(k)out) and the boundary layer (I(k)

b ), where k
- is the layer number.

The solution to the external problem is sought in the form

U(k)out = εsU(k,s), (U,V,W), σ(k)out
i j = ε−1+sσ(k,s)

i j , s = 0,S . (1.27)

After substituting (1.27) into the above mentioned transformed system and equaling
of corresponding coefficients at ε, we will get the system:

∂σ(k,s−1)
11

∂ξ
+
∂σ(k,s−1)

12

∂η
+
∂σ(k,s)

13

∂ζ
+Ω2∗ρkU(k,s) = 0,

∂σ(k,s−1)
12

∂ξ
+
∂σ(k,s−1)

22

∂η
+
∂σ(k,s)

23

∂ζ
+Ω2∗ρkV (k,s) = 0,

∂σ(k,s−1)
13

∂ξ
+
∂σ(k,s−1)

23

∂η
+
∂σ(k,s)

33

∂ζ
+Ω2∗ρkW(k,s) = 0,

∂U(k,s−1)

∂ξ
= a(k)

11σ
(k,s)
11 +a(k)

12σ
(k,s)
22 +a(k)

13σ
(k,s)
33 ,
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∂V (k,s−1)

∂ξ
= a(k)

12σ
(k,s)
11 +a(k)

22σ
(k,s)
22 +a(k)

23σ
(k,s)
33 , (1.28)

∂W(k,s)

∂ζ
= a(k)

13σ
(k,s)
11 +a(k)

23σ
(k,s)
22 +a(k)

33σ
(k,s)
33 ,

∂W(k,s−1)

∂ξ
+
∂U(k,s)

∂ζ
= a(k)

55σ
(k,s)
13 ,

∂W(k,s−1)

∂η
+
∂V (k,s)

∂ζ
= a(k)

44σ
(k,s)
23 ,

∂V (k,s−1)

∂ξ
+
∂U(k,s−1)

∂η
= a(k)

66σ
(k,s)
12 ,

where Ω∗ = hΩ, values of the type of Q(k,m) = 0 at m < 0. From the system (1.28),
stresses can be expressed through displacements according to formulas

σ(k,s)
11 = −B(k)

23
∂W(k,s)

∂ζ
+B(k)

22
∂U(k,s−1)

∂ξ
−B(k)

12
∂V (k,s−1)

∂η
,

(1,2, ;ξ,η;22,33;U,V),

σ(k,s)
33 = B(k)

11
∂W(k,s)

∂ζ
−B(k)

23
∂U(k,s−1)

∂ξ
−B(k)

13
∂V (k,s−1)

∂η
,

σ(k,s)
12 =

1

a(k)
66

(
∂U(k,s−1)

∂η
+
∂V (k,s−1)

∂ξ

)
,

σ(k,s)
13 =

1

a(k)
55

(
∂W(k,s−1)

∂ξ
+
∂U(k,s)

∂ζ

)
, (ξ,η;1,2;U,V;a55,a44),

(1.29)

and B(k)
i j , expressed through a(k)

i j by formulas:

B(k)
11 =

a(k)
11 a(k)

22 − (a(k)
12 )2

Δ
, B(k)

22 =
a(k)

22 a(k)
33 − (a(k)

23 )2

Δ
,

B(k)
33 =

a(k)
11 a(k)

33 − (a(k)
13 )2

Δ
, B(k)

13 =
a(k)

11 a(k)
23 −a(k)

12 a(k)
13

Δ
,

B(k)
23 =

a(k)
22 a(k)

13 −a(k)
12 a(k)

23

Δ
, B(k)

12 =
a(k)

12 a(k)
33 −a(k)

13 a(k)
23

Δ
,

Δ = a(k)
11 a(k)

22 a(k)
33 +2a(k)

12 a(k)
23 a(k)

13 −a(k)
11 (a(k)

23 )2−a(k)
33 (a(k)

12 )2.

(1.30)

For determining displacements U(k,s),V (k,s),W(k,s), it is necessary to substitute
values σ(k,s)

13 ,σ(k,s)
23 ,σ(k,s)

33 , from (1.29) into the first three equations of the system
(1.28). As the result we will have
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∂2U(k,s)

∂ζ2 +a(k)
55ρkΩ∗U(k,s) = R(k,s)

u ,

⎛⎜⎜⎜⎜⎜⎜⎝U,V,W;a(k)
55 ,a

(k)
44 ,

1

B(k)
11

⎞⎟⎟⎟⎟⎟⎟⎠ , (1.31)

where

R(k,s)
u = −∂

2W(k,s)

∂ξ∂ζ
−a(k)

55

⎛⎜⎜⎜⎜⎜⎜⎝∂σ(k,s−1)
11

∂ξ
+
∂σ(k,s−1)

12

∂η

⎞⎟⎟⎟⎟⎟⎟⎠ , (U,V,1,2;ξ,η;a(k)
55 ,a

(k)
44 ),

R(k,s)
w =

1

B(k)
11

⎛⎜⎜⎜⎜⎜⎜⎝B(k)
23
∂2U(k,s−1)

∂ξ∂ζ
+B(k)

13
∂2V (k,s−1)

∂η∂ζ
− ∂σ

(k,s−1)
13

∂ξ
− ∂σ

(k,s−1)
23

∂η

⎞⎟⎟⎟⎟⎟⎟⎠ .
(1.32)

Solutions to Eqs. (1.31) are

U(k,s) =C(k,s)
u1 (ξ,η) sinΩ∗

√
a(k)

55ρkζ +C(k,s)
u2 (ζ,η)cosΩ∗

√
a(k)

55ρkζ + ū(k,s)(ξ,η,ζ)
(1.33)

(U,V,W;a(k)
55 ,a

(k)
44 ,

1

B(k)
11

), ū, v̄, w̄ - are particular solutions to equations (1.31).

For determining included in (1.33) unknown functions C(k,s)
u1 ,C(k,s)

u2 (u,v,w) it is
necessary to satisfy conditions (1.23), (1.24), (1.5). According to (1.29), (1.33)

σ13(k, s) =

√
ρk

a(k)
55

(
C(k,s)

u1 cosΩ∗
√

a(k)
55ρkζ −C(k,s)

u2 sinΩ∗
√

a(k)
55ρkζ

)
+σ(k,s)

13∗ ,

σ(k,s)
13∗ (ξ,η,ζ) =

1

a(k)
55

⎛⎜⎜⎜⎜⎜⎜⎝∂W(k,s)

∂ξ
+
∂U

(k,s)

∂ζ

⎞⎟⎟⎟⎟⎟⎟⎠ .
(1.34)

Satisfying condition (1.23) for σ(1)
xz , we will obtain

C(1,s)
u1 = −

√
a(1)

55

ρ1
σ(1,s)

13∗ (ξ,η,0). (1.35)

Satisfying conditions of full contact (1.5) between first and second layers for deter-
mination C(1,s)

u2 ,C(2,s)
u1 ,C(2,s)

u2 taking into account (1.24), we will obtain the algebraic
system

d(s)
1u = b(1,1)

1u C(1,s)
u2 +b(2,1)

2u C(2,s)
u1 −b(2,1)

1u C(2,s)
u2 ,

d(s)
2u = a(1,1)

2u C(1,s)
u2 −a(2,1)

1u C(2,s)
u1 −a(2,1)

2u C(2,s)
u2 ,

d(s)
3u = a(2,2)

1u C(2,s)
u1 +a(2,2)

2u C(2,s)
u2 ,

(1.36)

where
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a(k, j)
1u = sinΩ∗

√
a(k)

55ρkζ j, k = 1,2,3; j = 1,2,

a(k, j)
2u = cosΩ∗

√
a(k)

55ρkζ j,

b(k, j)
1u =

√
ρk

a(k)
55

sinΩ∗
√

a(k)
55ρkζ j,

b(k, j)
2u =

√
ρk

a(k)
55

cosΩ∗
√

a(k)
55ρkζ j,

d(s)
1u = b(1,1)

2u C(1,s)
u1 +σ

(1,s)
13∗ (ξ,η,ζ1)−σ(2,s)

13∗ (ξ,η,ζ1),

d(s)
2u = ū(2,s)(ξ,η,ζ1)− ū(1,s)(ξ,η,ζ1)−a(1,1)

1u C(1,s)
u1 ,

d(s)
3u = u+(s)

x − ū(2,s)(ξ,η,ζ2), u+(0)
x =

u+x
l
, u+(s)

x = 0, s � 0.

(1.37)

From the system (1.36) by Cramer’s formula

C(1,s)
u2 =

Δ(s)
1

Δ
, C(2,s)

u1 =
Δ(s)

2

Δ
, C(2,s)

u2 =
Δ(s)

3

Δ
, (1.38)

where

Δ =

∣∣∣∣∣∣∣∣∣∣∣∣
b(1,1)

1u b(2,1)
2u −b(2,1)

1u

a(1,1)
2u −a(2,1)

1u −a(2,1)
2u

0 a(2,2)
1u a(2,2)

2u

∣∣∣∣∣∣∣∣∣∣∣∣ , δ(s) =

∣∣∣∣∣∣∣∣∣∣∣∣
d(s)

1u

d(s)
2u

d(s)
3u

∣∣∣∣∣∣∣∣∣∣∣∣ (1.39)

Δ(s)
j is obtained from Δ by replacing the j-th column with δ(s). Data for the values of

the third layer could be obtained from conditions

σ(2,s)
13 (ξ,η,ζ2) = σ(3,s)

13 (ξ,η,ζ2), U(3,s)(ξ,η,ζ2) = u+(s)
x (1.40)

according to condition (1.24).
After satisfying conditions (1.40), for determining C(3,s)

u1 ,C(3,s)
u2 we will obtain the

system

d(s)
4u = b(3,2)

2u C(3,s)
u1 −b(3,2)

1u C(3,s)
u2 ,

d(s)
5u = a(3,2)

1u C(3,s)
u1 +a(3,2)

2u C(3,s)
u2 ,

d(s)
4u = b(2,2)

2u C(2,1)
u1 −b(2,2)

1u C(2,s)
u2 +σ

(2,s)
13∗ (ξ,η,ζ2)−σ(3,s)

13∗ (ξ,η,ζ2),

d(s)
5u = u+(s)

x − ū(3,s)(ξ,η,ζ2)

(1.41)

consequently
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C(3,s)
u1 =

Δ(s)
1

Δ
, C(3,s)

u2 =
Δ(s)

2

Δ
,

Δ =

∣∣∣∣∣∣∣∣
b(3,2)

2u −b(3,2)
1u

a(3,2)
1u a(3,2)

2u

∣∣∣∣∣∣∣∣ , δ(s) =

∣∣∣∣∣∣∣∣
d(s)

4u

d(s)
5u

∣∣∣∣∣∣∣∣
(1.42)

Data for subsequent layers with numbers n > 3 are sequentially determined from
conditions of full contact between adjacent layers. Since data for the previous layer
are already known, formulas similar to (1.41), (1.42) are obtained.

Data corresponding to other groups of conditions (1.23), (1.24):

σ(1)
23 (x,y,0, t) = 0,

u(2)
y (x,y,h1+h2, t) = u(3)

y (x,y,h1+h2, t) = u+y (x,y)exp(iΩt),

σ(1)
33 (x,y,0, t) = 0,

u(2)
z (x,y,h1+h2, t) = u(3)

z (x,y,h1+h2, t) = u+y (x,y)exp(iΩt)

(1.43)

could be obtained from the above-mentioned by cyclic permutation(
ux,uy,uz;u,v,w;a55,a44,

1
B11

;13,23,33
)

(1.44)

1.5 Conclusions

The asymptotic solution is found for a new class of quasistatic and dynamic prob-
lems of the theory of elasticity for the layered package from orthotropic plates. It
describes the behavior of Lithospheric plates and blocks of Earth’s Crust during the
preparation and occurrence of earthquakes. Based on the measurement data of in-
clinometers and seismographs, located at a some depth from the face surface of the
layered package, the stress-strain state of the layered package is found. Slow (age-
old) and fast (jump-like) movements of Lithospheric plates and blocks of the Earth’s
Crust, inherent to the preparation of earthquakes are considered. Based on the ob-
tained solution, it is possible to determine the accumulated potential deformation
energy, trace the entire process of earthquake preparation and predict the magnitude
of the expected earthquake.
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Chapter 2
Asymmetric Buckling of Heterogeneous Annular
Plates

Svetlana M. Bauer and Eva B. Voronkova

Abstract Nonaxisymmetrical buckling of inhomogeneous annular plates subjected
to normal pressure is studied. The effect of material heterogeneity and ratio of in-
ner to outer radii on the buckling load is examined. The unsymmetric part of the
solution is sought in terms of multiples of the harmonics of the angular coordinate.
A numerical method is employed to obtain the lowest load value, which leads to
the appearance of waves in the circumferential direction. For an annular plate with
a small inner radius of a plate and Young’s modulus, decreasing towards the outer
edge, the critical pressure for unsymmetrical buckling is sufficiently lower than for
a plate with constant mechanical properties. For an annulus with large inner radius,
the buckling pressure and the buckling mode number increases as the Young modu-
lus decreases towards to outer edge of a plate.

2.1 Introduction

Wrinkling of circular and annular plates and spherical shells appears in various
engineering and biomechanical applications and has been studied by Adachi and
Benicek (1964); Bushnell (1981); Panov and Feodosiev (1948). Under some load-
ing types and boundary conditions a ring of large circumferential compressive stress
develops near the edge of the plate (or shell) and may cause asymmetrical buckling
(Cheo and Reiss, 1973; Bauer and Voronkova, 2018, 2020)).

Nonaxisymmetric buckling of circular plates subjected to surface load was first
formulated and studied in Panov and Feodosiev (1948), and, later, existence and
uniqueness of unsymmetric equilibrium states were proved by Morozov (1961);
Piechocki (1969)). The buckling load for a clamped circular plate subjected to nor-
mal pressure load in the case of nonaxisymmetrical buckling was found numeri-
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cally in Cheo and Reiss (1973). The authors suspected that Panov and Feodos’ev
had found unstable unsymmetric state in Panov and Feodosiev (1948), and under-
lined that a precise approximation of a plate under large deformations is crucial in
predicting of buckling load and buckling mode shape.

The unsymmetrical buckling of a uniformly stretched circular plate under trans-
verse pressure was investigated in Coman (2013). The author compared the asymp-
totic predictions for the buckling load and the corresponding wave number with
numerical calculations.

Mansfield (1960) examined the buckling of an annular plate subjected to com-
pressive or tensile radial load acting along the inner edge. Results are presented for
different boundary conditions along the plate edges. The postbuckling behaviour
of annular plates was studied in Radwańska and Waszczyszyn (1980). The authors
reported that the buckling load and buckling mode depended on the boundary condi-
tions, the ratio between the inner and outer radii and the loads applied. Lepik studied
the effect of a circular rigid support on increase of buckling strength of an annulus
(Lepik, 2002).

Coman (2010) investigated the role of polar orthotropy in relation to a wrin-
kling problem for annular thin plates in tension. The author identified three param-
eters responsible for the wrinkling mechanism. Asymmetric buckling of buckling
of circular and annular plates which are stiffened by a cylindrical shell examined in
Burmeister (2018).

Stability of axisymmetric equilibrium states for nonuniform circular plates and
spherical caps was studied in Bauer and Voronkova (2018, 2020). This paper deals
with buckling of an annular plates with nonuniform mechanical characteristics. The
effect of spatially varying elastic properties and geometry of an annulus (the ratio
between the inner and outer radii) is examined.

2.2 Problem Formulation

Consider an annular plate of inner radius Rin, outer radius R, and thickness h (h/R�
1), subjected to normal pressure P, as illustrated in Fig. 2.1. The plate material
is assumed to be linearly isotropic with spatially varying Young’s modulus. The
nonlinear governing system of equations for a plate with material inhomogeneity
can be written in terms of the normal displacement w and the stress function F,
namely

DΔΔw+
∂D
∂r

L+1 (w)+
∂2D
∂r2 L+2 (w) = P+L(w,F),

ΔΔF
E
+
∂

∂r

(
1
E

)
L−1 (F)+

∂2

∂r2

(
1
E

)
L−2 (F) = −h

2
L(w,w), (2.1)

( )′ = ∂( )/∂r, (̇ ) = ∂( )/∂θ,
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Fig. 2.1 Geometry of the annular plate.

where r and θ are polar coordinates, D(r) = E(r)h3/12(1− ν2) is the bending stiff-
ness, see Bauer and Voronkova (2018, 2020). The Laplacian is defined as

Δ =
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 .

The differential operators that appear in (2.1) are listed in Appendix.
We introduce the dimensionless quantities

r∗ =
r
R
, w∗ = β

w
h
, P∗ = β3 PR4

Eavh4 , F∗ = β2 F
Eavh3 , β

2 = 12(1− ν2), (2.2)

here Eav is an average value of Young’s modulus in the radial direction

Eav =
1

π(R2−R2
in)

2π∫
0

R∫
Rin

E(r)r drdθ, E(r) = E0 f (r),

where f (r) is a smooth position function. The dimensionless forms of Eqs. (2.1)

g1(r)ΔΔw+g′1(r)L+1 (w)+g′′1 (r)L+2 (w) = P+L(w,F),

g2(r)ΔΔF +g′2(r)L−1 (F)+g′′2 (r)L−2 (F) = −L(w,w)/2, (2.3)

g1(r) = E0 f (r)/Eav, g2(r) = 1/g1(r).

The plate is subjected to the following boundary conditions
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w = w′ = Nr = Nrθ = 0 at r = 1, (2.4)
u = w′ = Nrθ = Q∗r = 0 at r = δ. (2.5)

Here r = δ = Rin/R is a dimensionless radial coordinate of the inner edge, u denotes
the horizontal radial components of displacement, Nr, Nrθ are stress resultants, Q∗r is
the generalized shear force, that can be expressed via the shear force Qr, the bending
Mr, Mθ and twisting Mrθ moments as is stated below:

Q∗r = Qr + Ṁrθ/r = M′r + (Mr −Mθ)/r+2Ṁrθ/r.

The physical interpretation of the boundary conditions (2.4)-(2.5) is as follows. The
outer edge of the plate r = 1 is clamped but can move freely in the radial direction
without rotation, while the inner contour r = δ is supported by roller that can slide
along a vertical wall.

In the terms of the displacement component w and stress function F, the bound-
ary conditions (2.4)-(2.5) are equivalent to

w(1) = w′(1) =
(

F′

r
+

F̈
r2

) ∣∣∣∣∣∣
r=1
= 0,

−
(

Ḟ
r

)′ ∣∣∣∣∣∣
r=1
= 0,

w′(δ) = −
(

Ḟ
r

)′ ∣∣∣∣∣∣
r=δ
= 0, (2.6)

g1(δ)
(
(Δw)′+

1− ν
r

( ẅ
r

)′) ∣∣∣∣∣∣
r=δ
+g′1(δ)L+2 (w)

∣∣∣∣∣∣
r=δ
= 0,

g2(δ)
(
(ΔF)′ − ΔF

r
+

1+ ν
r2

(
F̈ +F

)′) ∣∣∣∣∣∣
r=δ
−g′2(δ)L−2 (F)

∣∣∣∣∣∣
r=δ
= 0.

For the axisymmetrical problem Eqs. (2.3) are reduced to

g1(r)
(
Θ′′0 +

Θ′0
r
− Θ0

r2

)
+g′1(r)

(
Θ′0+ ν

Θ0

r

)
=

Pr
2

(
1− δ

2

r2

)
+
Θ0Φ0

r
,

g2(r)
(
Φ′′0 +

Φ′0
r
− Φ0

r2

)
+g′2(r)

(
Φ′0− ν

Φ0

r

)
= −Θ

2
0

2r
,

(2.7)

where Θ0(r) = w′(r), Φ0(r) = F′(r). The system (2.7) needs to be solved together
with the boundary conditions

Θ0(1) =Φ0(1) = 0,

Φ′(δ)− νΦ(δ) = Θ(δ) = 0.
(2.8)
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2.3 Equations for Buckling

Asymmetrical solutions of problem (2.3) with approptiate boundary conditions
branch from a solution of axisymmetric states (Cheo and Reiss, 1973). To detect
the occurrence of wrinkling we seek for a solution of Eqs. (2.3) in the form

w(r, θ) = ws(r)+εwns cos(nθ),

F(r, θ) = Fs(r)+εFns cos(nθ),
(2.9)

where ws(r), Fs(r) describe prebuckling axisymmetric state, ε is infinitesimal pa-
rameter, n is a mode number and wn(r), Fn(r) are the non-symmetrical components.

After substitution of (2.9) in (2.3), using Eqs. (2.7) and linearization with respect
to ε we obtain

g1ΔnΔnwn+L1(g1,wn) =
w′′n
r
Φ0+

F′′n
r
Θ0+Θ

′
0

(
F′n
r
− n2

r2 Fn

)
−Φ′0

(
w′n
r
− n2

r2 wn

)
,

g2ΔnΔnFn+L2(g2,Fn) = −w′′n
r
Θ0−Θ′0

(
w′n
r
− n2

r2 wn

)
.

(2.10)
The definitions of the operators L1,L2 are listed in the Appendix.

Boundary conditions (2.4) are reduced to

wn(1) = w′n(1) = Fn(1) = F′n(1) = 0. (2.11)

For the inner edge of the plate we have

w′n(δ) = 0,
F′n(δ)−δFn(δ) = 0,

g1(δ)
(
(Δnwn)′ − n2

r
(1− ν)

(wn

r

)′) ∣∣∣∣∣∣
r=δ
+g1(δ)′L+2n(wn)

∣∣∣∣∣∣
r=δ
= 0, (2.12)

g2(δ)
(
(ΔnFn)′ − ΔnFn

r
− 1+ ν

r2 (n2−1)F′
) ∣∣∣∣∣∣

r=δ
−g′2(δ)L−2n(Fn)

∣∣∣∣∣∣
r=δ
= 0.

Buckling equations (2.10) with boundary conditions (2.11), (2.12) constitute an
eigenvalue problem, in which the parameter p is implicit and appears in the equa-
tions through the functions Θ0 and Φ0. The axisymmetric problem (2.7)-(2.8) was
solved by standart MATLAB functions. The value of P, for which (2.10) with (2.11),
(2.12), have nontrivial solution, was found by using the finite difference method
(Cheo and Reiss, 1973). We regard the smallest of these eigenvalues as the buckling
load.
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2.4 Numerical Results

Figure 2.2 illustrates the dimensionless axisymmetrical circumferential stress that
developed in a non-uniform circular or annular plate for different values of inner
radii δ. A ring of large circumferential compressive stress develops near the edge
of the plate and indicates possibility of wrinkling near the outer edge of a plate
as it describes in Cheo and Reiss (1973). We assume exponential law for material
inhomogeneity: E = E0eqr and perform calculations numerically over a large range
of parameters E0, q, but for constant average value of the elastic modulus (2.2).

Fig. 2.2 Dimensionless cir-
cumferential stress resultant
Tθθ for the different values
of inner radius δ. Black line
with square marks corre-
sponds to a circular plate
(δ = 0). Here load parameter
P = 30000, Young’s modulus
E(r) = E0e−r .
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In Fig. 2.3, we illustrate dependence of the normalized critical load Pcr/P0
cr and

the critical mode number n on inner radius δ for a homogeneous plate. The value Pcr
0

Fig. 2.3 Dependence of
the normalized critical load
Pcr/P0

cr and the critical mode
number n on inner radius
δ for a homogeneous plate.
Black line with square marks
corresponds to a circular plate
(δ = 0).
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corresponds to the buckling load of axisymmetric equilibrium states of an isotropic
homogeneous circular plate (Pcr

0 = 64453, n = 14). The normalized buckling pres-
sure Pcr/P0

cr increases as the radius of the opening δ increases, while the buckling
mode n has opposite behavior: it decreases when δ increases (see also, Table 2.1).
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The effect of the varying rate of inhomogeneity on the critical load and buckling
mode is showed in Figs. 2.4 and 2.5. When the inner radius is small, compared to the
outer radius of the plate (δ = Rin/R = 0.05), the behavior of the buckling curves for
a nonuniform annular plate is similar to a circular plate with varying Young’s mod-
ulus (Bauer and Voronkova, 2018, 2020): the normalized buckling pressure Pcr/P0

cr
decreases, if Young’s modulus of an annulus decreases towards the outer edge of the
plate, and increases, if the Young modulus of a plate increases near the outer edge
(see Table 2.1 for δ = 0 and 0.05).

Table 2.1 Normalized buckling load (Pcr/Pcr
pl) and corresponding wave numbers for a heteroge-

nous annular plate.

E(r) = E0eqr q = 2 q = 1 q = 0 q = −1 q = −2

δ = Rin/R = 0

pcr/p0
cr 1.7 1.3 1 0.76 0.57

Mode number, n 14 14 14 14 14

δ = Rin/R = 0.05

pcr/p0
cr 1.42 1.2 1.03 0.88 0.75

Mode number, n 13 14 13 14 15

δ = 0.1

pcr/p0
cr 1.02 1.05 1.09 1.12 1.21

Mode number, n 15 14 13 12 12

δ = 0.3

pcr/p0
cr 0.76 1.03 1.68 2.58 4.97

Mode number, n 9 9 11 13 18

For the larger value of δ = 0.1 and 0.3 we notice the opposite behavior: for the
buckling load for the plate with weak outer edge (q < 0) becomes larger than the
buckling load for the uniform plate. This phenomenon is relatively weak for a plate
with δ = 0.1: the difference between buckling pressures for a uniform plate (q = 0)
and for plate with q = −2 is about 10% (Fig. 2.4 (left)). The tendency becomes more
pronounced for a narrower plates: the buckling load for heterogeneous plate (q=−2)
differs by factor of 3 from the uniform plate. This the situation depicted in Fig. 2.5
(right) for a plate with δ = 0.3.
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Fig. 2.4 Dependence of the normalized critical load Pcr on the mode number n for a different
values of inhomogeneity parameter q. Left: δ = 0.1, Right: δ = 0.3.

Fig. 2.5 Change of the nor-
malized buckling pressure
Pcr/P0

cr when the degree of
heterogeneity of the plate q
changes for different values of
the inner radius δ. P0

cr denotes
the buckling pressure for a
uniform circular plate.
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2.5 Conclusion

In this article we have presented a wrinkling analysis of an annular plate with
nonuniform mechanical characteristics subjected to normal pressure. For an annular
plate with a small inner radius of a plate and Young’s modulus, decreasing towards
the outer edge, the critical pressure for unsymmetrical buckling is sufficiently lower
than for a plate with constant mechanical properties. For an annulus with large inner
radius, the buckling pressure and the buckling mode number increases as the Young
modulus decreases towards to outer edge of a plate.
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Appendix

The linear differential operators that appear in (2.1) are defined by

L(x,y) = x′′
(

y′

r
+

ÿ
r2

)
+ y′′

(
x′

r
+

ẍ
r2

)
−2
( ẋ

r

)′ ( ẏ
r

)′
,

L±1 (y) = 2y′′′+ (2± ν)y′′

r
+2

(ÿ)′

r2 −
y′

r2 −3
ÿ
r3 ,

L±2 (y) = y′′ ± ν
(

y′

r
+

ÿ
r2

)
.

The differential operators introduced in (2.10) are given by

L1(g1,wn) = g′1L+1n(wn)+g′′1 L+2n(wn),

L2(g2,Fn) = g′2L−1n(Fn)+g′′2 L−2n(Fn),

where
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L±1 (y) = 2y′′′+
2± ν

r
y′′ − 2n2+1

r2 ÿ+
3n2

r3 ÿ,

L±2 (y) = y′′ ± ν
(

y′

r
− n2

r2 ÿ
)
.



Chapter 3
Bending Stiffness of Multilayer Plates
with Alternating Soft and Hard Layers

Alexander K. Belyaev, Nikita F. Morozov, Petr E. Tovstik, and Tatiana P. Tovstik

Abstract The bending stiffness of a multilayer plate with alternating soft and hard
layers is considered under the assumption that the deformation wavelength is sub-
stantially greater than the plate thickness. We discuss the approximate methods for
determining the shear compliance required for replacing a multilayer plate with an
equivalent single-layer Timoshenko – Reissner plate. A comparison is made with
the exact solution of the three-dimensional problem of the theory of elasticity. The
dependence of shear compliance on the ratio of Young’s moduli of layers and on
their location is investigated.

Key words: Plate vibrations and buckling, Multilayer plate, Long-wave deforma-
tion, Generalized Timoshenko – Reissner model, Transverse shear stiffness

3.1 Introduction

The approach to plate theory based on the hypothesis of a straight non-deformable
normal, which was proposed and developed by Kirchhoff (1876) and then applied
and improved for shells by Love (1927), is the main two-dimensional model of the
theory of thin plates and shells. The range of applicability of this model is lim-
ited to single-layer plates made of a homogeneous isotropic material. However for
anisotropic plates with low shear stiffness, for plates with oblique anisotropy, for
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multilayer plates with alternating soft and hard layers, the Kirchhoff – Love (KL)
model leads to significant inaccuracies, that means, it becomes necessary to use
refined models.

A more complex model was proposed in the first half of the 20th century by
Timoshenko (1921); Reissner (2021). The Timoshenko – Reissner (TR) theory takes
into account rotations of the mid surface normals, that is, includes the effect of
transverse shear deformation. In this case, the plate can be considered as a material
plane, the elements of which have translational and rotational degrees of freedom.
In the limiting case, when the shear stiffness is equal to infinity, the TR model turns
to the KL model.

The TR accounting for the transverse shear leads to a significant refinement of the
results compared to the KL model for anisotropic plates with low transverse shear
stiffness and for multilayer plates with alternating soft and hard layers. For multi-
layer plates, an equivalent single-layer TR plate made of a homogeneous material is
introduced in Tovstik and Tovstik (2017a,b), which models a multilayer plate form
a perspective of deflections, vibrations and buckling. The equivalent bending stiff-
ness can be found using the same formulas as in the KL model, but determining
the shear stiffness presents certain difficulties and is discussed in detail in what fol-
lows. In this paper, to determine this rigidity, we use an asymptotic expansion of
the solution of a three-dimensional problem in a series in powers of a small dimen-
sionless thickness (Tovstik and Tovstik, 2014; Morozov et al, 2016). Other methods
for determining the shear stiffness are also discussed in Hill (1965); Grigolyuk and
Kulikov (1988). These methods are discussed using the example of the problem of
free vibrations of a multilayer plate with transversely isotropic layers. A comparison
is made with the exact solution of the three-dimensional problem. The dependence
of the shear compliance, bending stiffness, vibration frequency and buckling of a
multilayer plate on the ratio of Young’s moduli of layers and on the arrangement of
layers is investigated.

3.2 Free Vibration and Bending of Multilayer Plate

Let us first consider free bending vibrations of a transversely isotropic homogeneous
plate with the deflection w(x,y, t) = w0 sin pxsinqysinωt. This deflection is typical
for vibrating infinite plate, as well as vibration of a rectangular simply supported
plate. In the latter case p = pm = mπ/Lx, q = qn = nπ/Ly, m, n = 1, 2, . . . , where
Lx, Ly stand for length of the corresponding size. For the TR model, the vibration
frequency ω is related to the dimensionless frequency parameter

λ =
ρh2ω2

E0

and given by the equations (Tovstik and Tovstik, 2017a,b)
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λ = λTR =
λKL

1+g
, λKL = Dμ4, (3.1)

where E0 = E/(1− ν2), μ = rh = 2πh/L, r2 = p2 +q2. Here ρ is the material mass
density, h is the plate thickness, L = (L−2

x + L−2
y )−

1
2 is a typical wave length, E is

the Young modulus, ν is the Poisson ratio, μ is a small parameter proportional to
the ratio of the plate thickness to a typical wave length, D = 1/12 is a dimen-
sionless parameter of the bending stiffness, g = (E0μ

2)/(10G13) is a parameter of
influence of transverse shear, G13 is the transverse shear modulus. For isotropic
layers G13 = E/(2(1+ν)), while for transversally isotropic layers G13 is an indepen-
dent parameter. For thin plates (μ� 1) when E/G13 ∼ 1 the term g in (1) can be
neglected whereas for G13 � E the shear correction factor becomes considerable.
When g = 0, i.e. when the shear is not taken into account, Eq. (3.1) yields the KL
formula λKL = Dμ4.

For KL model, the static deflection w(x,y) = w0 sin pxsinqy of the plate under
the normal load f (x,y, t) = f0 sin pxsinqy is given by the equation

Dr4w0

1+g
= f0, (3.2)

cf. Tovstik and Tovstik (2017a,b), where the bending stiffness D and the shear com-
pliance g are given by Eq. (3.1). The objective of the present work is to develop Eqs.
(3.1) and (3.2) for multilayer plates.

3.3 Asymptotic Integration of Three-dimensional Equations

For a multilayer plate, the elastic moduli and the mass density become piecewise
constant functions of the transverse coordinate z, 0 ≤ z ≤ h. This parametrization is
more convenient than the usual −h/2≤ z≤ h/2, since for coordinates used here z� 0
at the neutral layer. We introduce dimensionless variables (withˆ)

{u1,u2,w,z} = h{û1, û2, ŵ, ẑ}, {x,y} = L{x̂, ŷ, }
{E,E0,G13,σi j} = E∗{Ê, Ê0,Ĝ13, σ̂i j}, i, j = 1, 2, 3,

where u1,u2 are tangential displacements along the x,y axes, σi j are stress ten-
sor components, E∗ - thickness-average Young’s modulus. Here and after we omit
mark .̂

For a multilayer plate, the exact expression for the frequency parameter λ can
be found from a three-dimensional boundary value problem, which for transverse
vibrations in dimensionless variables is reduced to the form (Tovstik and Tovstik,
2014; Morozov et al, 2016; Tovstik and Tovstik, 2017a,b):
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dw
dz
= −μ2cν(z)u+μ4c3(z)σ33,

du
dz
= w+μ2cg(z)σ,

dσ
dz
= E0(z)u+μ2cν(z)σ33−μ2λρ(z)u,

dσ33

dz
= −σ−λρ(z)w,

σ = σ33 = 0, z = 0, 1.

(3.3)

Here the displacements and the z coordinate are related to the plate thickness,
whereas the stresses and the elastic moduli are related to Young’s modulus of the
rigid layer, and the densities are related to the density of the rigid layer. Instead of
tangential movements u1, u2 and stressesσ13, σ23 we introduce auxiliary unknowns
quantities u = μ(pu1+qu2), σ = μ3(pσ13+qσ23) and

cν =
ν

1− ν , c3 =
(1+ ν)(1−2ν)

E(1− ν) , cg =
1

G13
.

By asymptotic expansion of the solution to the boundary value problem (3.3) in
powers of the small parameter μ in Timoshenko (1921); Reissner (2021); Tovstik
and Tovstik (2017b), an expression for the frequency parameter λ was obtained in a
form similar to (3.1):

λ =
ρ∗h2ω2

E∗
=
λKL

1+g
, λKL = D∗μ4, D∗ =

1
E∗

∫ 1

0
E0(z)(z−a)2dz, (3.4)

where
g = ga+O(μ4), ga = μ2(Ag+Aν+ J+ Jν),

{E∗, ρ∗} =
∫ 1

0
{E0(z), ρ(z)}dz, a =

1
E∗

∫ 1

0
E0(z)zdz,

Ag =
1

E∗D∗

∫ 1

0

(∫ z

0
E0(z1)(z1−a)dz1

)2
G13(z)

dz.

(3.5)

Here E∗, ρ∗ is the thickness average tensile stiffness and density, D∗ is the bending
stiffness parameter and a is the coordinate of the neutral layer. The second order
terms ga take into account the lateral shear compliance (Ag), the Poisson tension
of a normal fiber (Aν), the inertia of rotational motion (J) and the inertia of the
Poisson extension (Jν). The quantities Aν, J and Jν are not shown here, cf. Tovstik
and Tovstik (2017a,b).

For the problem of statics (3.2), the formula for deflection, accurate to terms of
the second order of smallness, has the form:

wTR = wKL(1+g), wKL =
f0

Dr4 , g = ga = μ2
(
Ag+Aν

)
. (3.6)
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3.4 The Transverse Shear Stiffness

Calculations for multilayer plates by Eqs. (3.4)-(3.6) are associated with the cal-
culation of iterated integrals of piecewise constant functions, and hence are rather
cumbersome. That is why we will consider the possibility of simplifying them in
what follows. Consider a plate with alternating isotropic hard and soft layers and
denote by η the ratio of Young’s moduli of hard and soft layers. If the parameter η
increases, then the moduli G13 of the soft layers of the plate decrease and, by virtue
of formula (3.4), the coefficient Ag also increases, while the remaining second-order
coefficients Aν, J, Jν remain significantly smaller than Ag.

Consider, for example, a three-layer plate with the layer thicknesses h1 = 0.3,
h2 = 0.6, h3 = 0.1. Respectively, Young’s moduli of hard and soft layers are equal to
E1 = E3 = 1, E2 = 1/η, Poisson’s ratios ν1 = ν3 = 0.3, ν2 = 0.35. For a number of
values of η, the coefficients of the second order of smallness are given in Table 3.1.
We put approximately ga = μ2Ag, thus returning to the TR model, which takes into

account only the shear and ignores the other terms of the second order of smallness.
Calculations in Tovstik and Tovstik (2017a,b) showed that at η ≤ 1000, μ = 0.1

the error of Eq. (3.4) for g = ga = μ2Ag does not exceed 4%. In what follows, the
error of this replacement is discussed in more detail, cf. Hill (1965).

3.5 The Exact Value of the Shear Stiffness

By virtue of Eq. (3.5), we have the estimate

ga = μ2Ag = O(μ2η). (3.7)

For very large η, i.e., for a large ratio of the stiffness of the layers we have ga > 1,
Eq. (3.4) for g = ga becomes inaccurate and it is necessary to find the exact value
g = ge for which Eq. (3.4) gives the exact value λ = λe. In order to find it we put
cν = c3 = 0 in system (3.3) and omit the term μ2λρ(z)u in the third equation. We
obtain w = 1 and the auxiliary boundary-value problem

du
dz
= w+μ2cg(z)σ,

dσ
dz
= E0(z)u, σ(0) = σ(1) = 0. (3.8)

Table 3.1 Terms of the second order of smallness.

η Ag Aν J Jν a D∗
1 0.299 0.0928 0.1150 0.0308 0.502 0.0824

10 1.461 0.0875 0.1114 0.0081 0.384 0.1202

100 12.921 0.0844 0.1149 0.0026 0.354 0.1253

1000 127.515 0.0840 0.1154 0.0019 0.350 0.1259
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After solving it, from the compatibility condition of the fourth equation (3.3), we
find λ = −∫ 1

0 σ(z)dz from Eq. (3.3) we have

ge =
1
μ2

(D∗
λ
−1
)
. (3.9)

Some examples of calculation are provided in Sect. 3.8.
Equation (3.9) is obtained from consideration of free vibrations. Calculation of

the same value ge from the statics problem is more difficult, because with an exact
statement, the deflection depends on the distribution of the load over the thickness
and the types of the layer, cf. Tovstik and Tovstik (2017a).

3.6 About the TR Model for a Homogeneous Transversally
Isotropic Plate

According to the TR model, the frequency parameter λ for a homogeneous trans-

versely isotropic plate is determined by Eq. (3.4), in which g = g0 =
q
10
, q =

μ2E0

G13
.

Let us estimate the accuracy of this formula for g0 > 1. For a homogeneous plate,
problem (3.6) has a closed form solution

σ =
G
μ2

⎛⎜⎜⎜⎜⎜⎜⎜⎝cosh
(√

q(z−0.5)
)

√
q

2

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and Eq. (3.9) yields

ge =
q

12
(
2cosh

(√
q/2
)
/
√

q−1
) −1. (3.10)

Calculations using Eq. (3.10) gave the following results:

q/10 = 0.1 1 10 100 1000

ge = 0.0999 0.989 9.42 88.0 849

from which it follows that with an increase in q, the exact value of ge deviates
downward from the value q/10, recommended by the TR model.

3.7 Other Ways to Calculate the Shear Parameter g

In the classical paper by Hill (1965) two models, Voigt and Reuss, for estimating
the transverse shear modulus of a composite material are given GV = γ1G1+γ2G2
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and GR =
(
γ1
G1
+

γ2
G2

)−1
. The second formula for the plate with N layers takes the

form of the sum of shear compliance of the layers

g =
N∑

n=1

γn

Gn
, (3.11)

where γn do not depend in transverse shear moduli of the layers Gn. Gn are the
independent coefficients, the formulas for which are not given here. Note that Eq.
(3.11) for Ag is reduced to (11) after calculating the integrals.

The monograph by Grigolyuk and Kulikov (1988) (GK) proposed an algorithm
for taking into account the transverse shear effect for multilayer plates and shells.
It is expedient to return to this algorithm, because the recent works (Mikhasev and
Altenbach, 2019; Morozov et al, 2020), as well as a number of other works, reported
application of this algorithm for solving some particular problems. This algorithm
is based on the hypothesis of distribution of the transverse shear deformations over
the plate thickness. According to Grigolyuk and Kulikov (1988), the formula for g
can be written as: ⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝ N∑
n=1

αn

Gn

⎞⎟⎟⎟⎟⎟⎟⎠
−1

+

N∑
n=1

βnGn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1

, (3.12)

where αn and βn are Gn - independent coefficients. The explicit form of the formula
for g is given in Grigolyuk and Kulikov (1988); Mikhasev and Altenbach (2019);
Morozov et al (2020). Calculations have shown that the GK algorithm can be used
only for plates with a small ratio η of Young’s moduli of layers which is also dis-
cussed in Grigolyuk and Kulikov (1988). With an increase in η, the error of Eq.
(3.10) for Δ(η) grows rapidly. For example, for the plate considered in Table 3.1, the
error Δ(1) = 1.2%, Δ(10) = 42% where at η = 100, the value of g given by Eq. (3.10)
is 10 times greater than the exact value. Apparently, the hypotheses underlying the
GK model and violating the continuity of shear stresses at the layer boundary need
to be corrected.

3.8 Numerical Results. Three-layer Plate Symmetrical in
Thickness

The shear parameter g and the associated vibration frequency ω depend on many
parameters. A number of special cases are considered below.

Consider a plate with the parameters h1 = h3 = 0.3, h2 = 0.4, E1 = E3 = 1,
E2 = 1/η, ν1 = ν2 = ν3 = 0.3, ρ1 = ρ3 = 1, ρ2 = 1/η. There are two free parameters
left: the thickness parameter μ and the Young’s modulus ratio η. As follows from
estimate 3.7, the allowance for the transverse shear is associated with the value μ2η;
therefore, we introduce the combined parameter p = μ2η and carry out the calcula-
tions at a fixed value of the parameter μ = 0.1. Table 3.2 shows for a number of p
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values: approximate values of the shear parameter ga = μ2Ag found by asymptotic
formula (3.4), and the exact values of ge found by Eq. (3.7); the exact values of
λe of the frequency parameter λ obtained by solving the three-dimensional prob-
lem (3.2). The remaining values of the parameter λ are approximate. They are
obtained by formula (3), and the values of λap, λTR, λKL are calculated for g = ge,
for g = ga = μ2Ag and for g = 0, respectively. The λTR value corresponds to the
TR model with allowance for the shear according to the approximate model (3.4).
The λKL value corresponds to the KL model, which does not take into account the
transverse shear.

Comparison of columns 3–4 and 5–8 allows us to judge the areas of applicability
of the approximate models. The KL model is applicable only at η≤ 10 (or at p≤ 0.1).
The asymptotic approach of the second order of accuracy which leads to the values
of ga and λTR is certainly applicable for η ≤ 100 and gives a noticeable error for
100 < η ≤ 1000. In this case, parameter ga exceeds the exact value ge. Using the
ge value gives fairly accurate results over the entire considered range of η ≤ 10000,
as evidenced by the comparison of columns 5 and 6 (when calculating λap only
the shear is accurately taken into account while the other second-order effects are
ignored).

Calculations were also carried out at μ = 0.316 and at μ = 0.0316 however, the
numerical results are not presented, because they differ from those given in Table
3.2 by less than 1% (except for the parameter η which is 10 times less or more,
respectively).

3.9 Three-layer Plate Asymmetric in Thickness

Consider a three-layer plate with a constant thickness of the soft layer h2 = 0.4 and
with variable thicknesses of the hard layers 0 < h1 ≤ 0.3, h3 = 0.6−h1. The rest of
the parameters are the same as in Sect. 3.4. When h1 = 0.3 the plate is symmetrical
in thickness, and the difference 0.3−h1 serves as a measure of asymmetry. Let us
discuss function λe(η, h1). From the results of Table 3.3, it follows that at 1 < η ≤
100 the frequency decreases with an increase in the asymmetry of the plate (with a

Table 3.2 Shear and frequency parameters depending on p at μ = 0.1.

1 2 3 4 5 6 7 8

p η ga ge λe λap λTR λKL

0.01 1 0.00286 0.00286 0.0913 0.0913 0.0913 0.0916

0.1 10 0.0174 0.0174 0.1321 0.1325 0.1325 0.1348

1 100 0.163 0.161 0.1222 0.1223 0.1224 0.1420

10 1000 1.62 1.47 0.0578 0.0578 0.0545 0.1432

100 10000 16.2 8.1 0.0157 0.0157 0.0083 0.1432
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Table 3.3 The frequency parameter λe versus parameters η and h1 at μ = 0.1.

h1 η = 1 10 100 1000 10000

0.3 0.0913 0.1321 0.1222 0.0578 0.0157

0.2 0.0913 0.1231 0.1141 0.0583 0.0183

0.1 0.0913 0.0953 0.0876 0.0575 0.0263

0.05 0.0913 0.0740 0.0652 0.0524 0.0320

decrease in the thickness h1). At higher η, with increasing asymmetry, the frequency
increases and reaches a maximum at a certain value of h1 and then decreases. For
a fixed value of h1 and with increasing η, the frequency first increases and, upon
reaching the maximum, decreases. At h1 = 0.05, the maximum is reached at η= 1.15
and is not shown in Table 3.3.

3.10 Multilayer Plate

Consider a multilayer plate with an odd number 2n+1 of alternating hard and soft
layers of the same thickness h1 and h2 with parameters μ= 0.1, η= 100. Let ξ denote
the fraction of the volume occupied by soft layers. Table 3.4 shows the values of the
frequency parameter λe depending on the parameters n and ξ. It follows from the
results presented in the table that the frequency decreases with an increase in the
number of layers, approaching the limit corresponding to a transversely isotropic
homogeneous plate. The last row of Table 3.4 was constructed according to Eq. (3.8)
with q = (1− ξ+ηξ)(η(1− ξ)+ ξ), whence it follows that function ge(ξ) is even with
respect to the point ξ = 0.5. The latter circumstance is associated with the peculiarity
of specifying the density of the soft layers ρ2 = 1/η.

With a small number of layers, the frequency increases with the fraction ξ of the
soft material, whereas this regularity is violated with a large number of layers.

Table 3.4 Parameter λe depending on n and ξ at μ = 0.1, η = 100.

n ξ = 0.1 0.3 0.5 0.7 0.9

3 0.0962 0.1115 0.1354 0.1712 0.2190

5 0.0946 0.1024 0.1153 0.1338 0.1567

11 0.0915 0.0941 0.0991 0.1070 0.1169

21 0.0904 0.0904 0.0926 0.0970 0.1032

101 0.0893 0.0871 0.0868 0.0884 0.0919

∞ 0.0891 0.0863 0.0854 0.0863 0.0891
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3.11 Buckling of a Multilayer Plate Under Uniform Compression

Consider a multilayer simply supported rectangular plate with sides Lx, Ly which
is uniformly compressed by tangential strain e. The following initial conditions ac-
cepted in the plane of the plate

T = T1 = T2 = eE1∗, E1∗ =
∫ 1

0
E1(z)dz, E1 =

E
1− ν , (3.13)

which upon the buckling w(x,y) = w0 sin pxsinqy generate a load f (x,y) = TΔw
where Δ denotes the Laplace operator. Equation (3.2) in which D and g are calcu-
lated by Eqs. (3.4) and (3.5) after separation of variables f0 = eE∗r2w yields the
critical deformation

e =
D∗μ2

(1+g)E1∗
, μ = rh, r2 =

π2

L2
x
+
π2

L2
y
. (3.14)

To estimate the error in Eq. (3.14), let us turn to the exact system (3.3). The last two
equations of take the form

dσ
dz
= E0(z)u+μ2cν(z)σ33,

dσ33

dz
= −σ− eμ2E1(z)w. (3.15)

Let us consider the compression buckling of a plate asymmetric in thickness with
the parameters E1 = E3 = 1, E2 = 1/η, h1 = 0.1, h2 = 0.6, h3 = 0.3, ν1 = ν2 = ν3 =

0.3. As in Table 3.2, parameter η will vary within wide limits 0 ≤ η ≤ 10000. The
calculations were carried out for the relative thickness μ = 0.1. As in the vibration
problem, the result depends on the combined parameter p = μ2η, so it can be used
for other values of μ.

Table 3.5 shows the exact values of ee
0 found when integrating system (3.3) taking

into account replacement (3.15); the values of eTR
0 found by Eq. (3.14) at g = ga,

along with the values of eKL
0 corresponding to the KL model and found by the same

Eq. (3.14) at g= 0 (without taking into account the effect of transverse shear). As in
the case of vibration, the KL model gives acceptable results only at p ≤ 0.1 whereas
the TR model using the second-order accuracy parameter g = ga gives good results

Table 3.5 Critical deformation e = 10−3e0 versus p for μ = 0.1.

p η ga ee
0 eTR

0 eKL
0

0.01 1 0.00286 0.639 0.639 0.641

0.1 10 0.0141 0.914 0.914 0.926

1 100 0.124 0.858 0.857 0.960

10 1000 1.23 0.448 0.434 0.967

100 10000 12.3 0.111 0.073 0.967
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at p ≤ 1 and acceptable results at p ≤ 10. For p > 10, the exact value g = ge should
be used, the calculation of which is reduced to solving a simpler boundary value
problem (3.8), otherwise it is necessary to solve the complete problem (3.3).

Note that the parameters ga and ge depend on the parameters of multilayer plate,
but they are the same for the problems of vibration, statics, and buckling since
boundary value problem (3.8) does not change when calculating ge.

3.12 Discussion

The frequency of bending vibrations of a multilayer plate was found to be calcu-
lated by Eq. (3.4) corresponding to the TR model, in which the denominator 1+ g
takes into account the effect of transverse shear. A combined parameter p = μ2η is
introduced, which determines the range of applicability of various approaches in
calculating g (μ is a small parameter of thickness and η is the ratio of Young’s mod-
uli of layers). When p ≤ 1 for a homogeneous plate g = E0μ

2

10G13
, and for a multilayer

plate g = ga = μ2Ag, see (3.5). If p > 1 these formulas become inaccurate. For a
homogeneous plate, g is calculated using the explicit formula (3.10). This gives an
estimate of the error of the TR model for g = E0μ

2

10G13
. For a multilayer plate, the value

g = ge is calculated by Eq. (3.9). The use of this value of g gives fairly accurate
results in the entire considered range of parameters 0.001 ≤ μ ≤ 0.3, 1 ≤ η ≤ 10000
which is confirmed by comparison with the exact solution of the three-dimensional
problem (3.3). A number of particular problems have been solved. For a three-layer
plate, the influence of the location of the soft layer on the vibration frequencies is
investigated. A multilayer plate with a constant fraction ξ of the volume occupied by
soft layers is considered, and the influence of parameter ξ and the number of layers
on the vibration frequency is investigated.

The results obtained for the factor 1+ g which takes into account the effect of
transverse shear are also applicable without changes for the static problem of de-
flection of a multilayer plate under the action of a static harmonic load of the form
f = f0 sin pxsinqy. These results are also used to solve the buckling problem for a
multilayer plate under uniform compression in its plane. Equation (3.14) for critical
deformation is a generalization of Eq. (3.4). In this case, the range of applicability
of the approximate KL and TR models turns out to be the same as in the vibrational
case.

For multilayer transversely isotropic plates, the presented results can be consid-
ered final. In Tovstik (2019), an asymptotic approximation of the second order of
accuracy was constructed for a plate inhomogeneous in thickness with anisotropy of
general form (with 21 elastic moduli), which leads to a rather cumbersome model
that requires simplifications and a corresponding analysis of the error. In particular, a
multilayer plate with orthotropic layers generally does not have a neutral layer. That
is, the longitudinal and bending deformations are not separated and the calculation
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becomes more complicated. Only partial results have been obtained in Belyaev et al
(2019)1 and the problem remains to be tackled.
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Chapter 4
On the Bending of Multilayered Plates
Considering Surface Viscoelasticity

Victor A. Eremeyev and Violetta Konopińska-Zmysłowska

Abstract We discuss the bending resistance of multilayered plates taking into ac-
count surface/interfacial viscoelasticity. Within the linear surface viscoelasticity we
introduce the surface/interfacial stresses linearly dependent on the history of surface
strains. In order to underline the surface viscoelasticity contribution to the bending
response we restrict ourselves to the elastic behaviour in the bulk. Using the corre-
spondence principle of the theory of viscoelasticity we present an effective bending
relaxation function.

Key words: Multilayered plate, Surface elasticity, Surface viscoelasticity, Bending,
Effective properties

4.1 Introduction

Recently, various models of surface elasticity are widely applied to modelling of
material behaviour at small scales, see Duan et al (2008); Wang et al (2011); Ere-
meyev (2016). Among the surface elasticity models it is worth to mention ones pro-
posed by Gurtin and Murdoch (1975, 1978) and by Steigmann and Ogden (1997,
1999), see also Eremeyev (2016, 2020); Eremeev et al (2021) and the reference
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therein. Within the surface elasticity one introduces additional constitutive equa-
tions which relates surface stresses, couples, and surface stresses of higher order as,
for example, surface double and triple stresses, with surface strains and their gradi-
ents. Nowadays, the surface elasticity approach is successfully applied to modelling
of composite materials with nanometer sized inclusions, pores, fibres, see e.g. Bara-
nova et al (2020); Nazarenko et al (2017, 2021); Han et al (2018); Zemlyanova
and Mogilevskaya (2018); Rahali et al (2020); Chen and Pindera (2020) and the
references therein. It was shown that surface stresses may essentially affect the sin-
gularity of solutions in the vicinity of geometrical singularities such as crack tips,
see Gorbushin et al (2020), or in the case of nanoindentation problems Li and Mi
(2021). In addition, surface elasticity essentially changes the propagation of surface
waves, see e.g. Eremeyev et al (2016, 2020); Eremeyev (2020); Chaki et al (2021);
Mikhasev et al (2021). Some similarities between the surface elasticity and the strain
gradient elasticity were firstly discussed by Mindlin (1965), see also Eremeyev et al
(2019); Krawietz (2021a,b). The correspondence to lattice dynamics, i.e. to discrete
models, was also studied by Eremeyev and Sharma (2019); Sharma and Eremeyev
(2019).

Let us note that in the literature an elastic behaviour is mostly considered. For
example, the surface elasticity was applied to modelling of plates an shells at the
nanoscale by Altenbach and Eremeyev (2011); Ansari and Sahmani (2011); Ansari
et al (2013, 2014); Shaat et al (2014); Sahmani et al (2015); Norouzzadeh and Ansari
(2018); Ghorbani et al (2019); Ru (2016); Rouhi et al (2017). Nevertheless, an in-
elastic behavior at the nanoscale could be also observed. A viscoelastic extension
of the surface elasticity was proposed by Ru (2009). Extending Ru’s model to the
case of plates and shells in Altenbach et al (2012) it was shown that the surface
viscoelasticity could significantly change a viscoelastic response.

The aim of this chapter is to consider the influence of the surface/interfacial vis-
coelasticity on the effective bending parameters of multilayered plates. Using the
correspondence principle of viscoelasticity here we extend the previous results on
elastic plates towards viscoelastic ones.

4.2 Surface Viscoelasticity

Let us consider an elastic body B which occupies a volume V ⊂ R3 with the smooth
boundary S = ∂V . An infinitesimal deformation of B is described through a dis-
placement field vector u given as a function of a position vector x and time t

u = u(x, t). (4.1)

In the following we restrict ourselves to isotropic materials, so the constitutive
relation in the bulk takes the form of Hooke’s law

σσσ = λtrεεε1+2μεεε (4.2)
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with
εεε =

1
2

(
∇u+∇uT

)
,

where σσσ and εεε are the stress and strain tensors, respectively, λ and μ are Lamé
elastic moduli, tr is the trace operator, 1 is the unit 3D tensor, and ∇ is the 3D
nabla-operator.

In the bulk we have the equilibrium equations

∇ ·σσσ+ρf = 0, (4.3)

where ρ is a mass density and f is a vector of mass forces.
In addition to the stresses in the bulk, we assume the existence of surface stresses

τττ acting on a surface A ⊂ V . This surface can be treated as a part of the boundary,
A ⊂ S , and/or as an interface inside B, and as an union of such surfaces, see Fig. 4.1
The latter case can describe an interface between parts of B with different properties
such as, for example, a thin polymeric layer between glass faces in the case of solar
panels described by Naumenko and Eremeyev (2014).

Following Ru (2009); Altenbach et al (2012) we use the following constitutive
relation for τττ

τττ = τττ(x, t) =
t∫

−∞

[
λs(t− s)tr ė(x, s)A+2μs(t− s)ė(x, s)

]
Δs, (4.4)

e =
1
2

(
∇su ·A+A · ∇suT

)
,

where e is the surface strain tensor, ∇s is the surface nabla-operator defined as

∇s = A · ∇, A = 1−n⊗n,

Fig. 4.1 A body B with
interfaces and a part of the
boundary with prescribed
surfaces stresses shown in
blue color.
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and λs and μs are surface relaxation functions, the overdot stands for the derivative
with respect to t, A is the surface (2D) unit tensor, n is the unit vector of outward
normal to A, and · and ⊗ denote the dot and dyadic products, respectively, see Sim-
monds (1994); Eremeyev et al (2018).

Using the Laplace transform of a function f (t) defined as follows

f̄ (s) =

∞∫
0

f (t)e−stΔt

we can transform (4.4) into

τ̄ττ = τ̄ττ(x, s) = sλs(s)tr ē(x, s)A+2sμs(s)ē(x, s), (4.5)

which coincides with the surface Hooke’s law according to the Gurtin–Murdoch
surface elasticity. So as in the case of linear viscoelasticity one can use the corre-
spondence principle, see Christensen (1971). In other words, in the space of Laplace
transforms one can use sλs and sμs as surface Lamé moduli. Performing the inverse
Laplace transform one comes to the relaxation functions. In particular, in the follow-
ing with this principle we generalize effective properties to the case of viscoelastic
behavior of nth-layered plates as was performed by Altenbach et al (2012).

Force balance on A results in the equations

n ·σσσ
∣∣∣∣∣
A
= ∇s ·τττ+ t, (4.6)

in the case of the boundary, A ⊂ S , here t is an external traction, and/or

n · [[σσσ]]
∣∣∣∣∣
A
= ∇s ·τττ, (4.7)

in the case of an interface. Here [[. . .]] denotes the jump across the interface as by
Eremeyev et al (2016); Eremeyev and Wiczenbach (2020). Here we assume the
perfect interfacial contact, i.e. when

[[u]]
∣∣∣∣∣
A
= 0. (4.8)

For conditions on imperfect interfaces we refer to Placidi et al (2014); Eremeyev
et al (2016).

4.3 Bending of a Plate-like Body

In order to discuss influence of surface/interfacial viscoelasticity on the bending
of multilayered plates let us consider a plate-like body P of thickness h as shown
in Fig. 4.2. We assume that P consists of n layers of thickness hi, i = 1, . . . ,n, so
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Fig. 4.2 A plate-like body P which consists of n layers, the faces of ith layer of thickness hi are
shown in blue color whereas its midplane z = zi is marked in grey.

h = h1 + . . .+ hn. We introduce the thickness coordinate z such that planes z = 0,
z = h correspond to faces of P, whereas z = hi, i = 1, . . . ,n−1, describes the position
of interfaces. Introducing two other Cartesian coordinates x and y we get the global
coordinate system with the base vectors i1, i2, and i3. Here in-plane coordinates be-
long to an area O, so P =O⊕[0,h]. In addition to (x,y,z) for ith layer we introduce
the local thickness coordinates (x,y, ζi) with ζi ∈ [−hi/2,hi/2] as follows

ζi = z− zi, z1 =
1
2

h1, z j =
1
2

h j+

j−1∑
k=1

hk, i = 1, . . .n, j = 2, . . .n.

Here z = zi describes the midplane of ith layer. Nevertheless, for each layer the
differentiation operators do not depend on i

∇i = i1
∂

∂x
+ i2

∂

∂y
+ i3

∂

∂ζi
= i1

∂

∂x
+ i2

∂

∂y
+ i3

∂

∂z
= ∇, ∇s = i1

∂

∂x
+ i2

∂

∂y
.

Considering bending deformations for ith layer we introduce the following ap-
proximation related to Kirchhoff hypothesis

ui(x,y, ζi) = −ζi
∂wi

∂x
i1− ζi

∂wi

∂y
i2+wi(x,y)i3. (4.9)

As in the case of thin laminates we can assume that wi = w, see Naumenko and
Eremeyev (2014, 2017).

In the following we restrict ourselves to the analysis of the bending resistance.
To this end we consider a deflection in the form of cylindrical bending, i.e.
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w = w(x, t) =
1
2
κ(t)x2.

Here κ(t) describes the infinitesimal change of curvature. In this case we have

e = εεε = −z
∂2w
∂x2 i1⊗ i1 = −κzi1⊗ i1,

and

κκκ =
∂2w
∂x2 i1⊗ i1 = κi1⊗ i1,

where κκκ is the tensor of change of curvature. For a viscoelastic behavior the bending
moment has the form

M =

t∫
−∞

Deff(t− s)κ̇(s)Δs, (4.10)

where Deff(t) is the effective bending stiffness relaxation function.
For pure elastic materials it is constant, for example for a homogeneous elastic

plate without surface stresses it takes the form

D =
Eh3

12(1− ν2)
,

so we came to the classic dependence M = Dκ. Here E and ν are Young’s modulus
and Poisson’s ratio, respectively.

For nth layered plate we introduce n+1 of pairs of relaxation functions λ(i)
s and

μ(i)
s . Assuming for simplicity that the material in the bulk is homogeneous and has

the same properties in the bulk, we get the formula for the Laplace transform

D̄eff(s) = D+ D̄GM(s)

with

D̄GM(s) = (2sμ̄(0)
s + sλ̄(0))

s
h2

4
+

n∑
i=1

(2sμ̄(i)
s + sλ̄(i)

s )
z2

4

∣∣∣∣∣
z=−h/2+

i∑
k=1

hk

.

Using the inverse transform we came to

Deff(t) = D+ (2μ(0)
s (t)+λ(0)

s (t))
h2

4
+

n∑
i=1

(2μ(i)
s (t)+λ(i)

s (t))
z2

4

∣∣∣∣∣
z=−h/2+

i∑
k=1

hk

(4.11)

Let us assume that all faces and interface have the same properties and layers
have the same thickness � = h/n. In this case the summation results in

DGM = (2μs(t)+λs(t))
�2

4

n∑
i=0

(i−n/2)2,
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so we get

Deff =
Eh3

12(1− ν2)
+

1
n

(
1
6

n2+
1
2

n+
1
3

)
[2μs(t)+λs(t)]

h2

8
, (4.12)

where we perform the summation as in Eremeyev and Wiczenbach (2020).
Equation (4.12) shows an essential dependence of the bending stiffness parameter

on the number of layers. So even being small in magnitude the surface viscoelastic-
ity could be more pronounced for

• multilayered plates with n� 1;
• for plates of nanometer size, as the DGM depends on h2 whereas the classic stiff-

ness depends on h3.

4.4 Conclusions

We discussed bending deformations of a nth-layered plate within the linear sur-
face viscoelasticity theory. Using the through-the-thickness integration of equilib-
rium equations with kinematical approximations (4.9) we obtain the effective two-
dimensional material properties. In other words, we derived the formula for effec-
tive relaxation function which corresponds to infinitesimal bending deformations.
Here the effective viscoelastic properties are completely determined by viscoelas-
tic properties of faces and interfaces as well as by through-the-thickness geome-
try. In a similar way, more general models of surface viscoelasticity based on the
Steigmann–Ogden model could be also considered in future works as by Eremeyev
and Wiczenbach (2020).

Let us note that the mechanics of layered plates was one of the corner stones of
researches provided by Prof. Peter Tovstik to whom this paper us devoted, see, e.g.
his recent papers (Belyaev et al, 2019; Morozov et al, 2020, 2021).
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Chapter 5
Buckling of a Ring-stiffened Cylindrical Shell
Under the External Pressure

Sergei B. Filippov and Grigory A. Nesterchuk

Abstract In this paper, the problem of buckling of a thin elastic cylindrical shell
supported by the rings of various stiffness is considered. The Rayleigh–Ritz method
is used to obtain the problem’s analytical solution for the case of the simply sup-
ported edges of the shell. The parameters of the optimal distribution of the structure
mass between the shell and the stiffening ribs, which is required to maximize the
critical pressure, have been found. The solution of the problem of minimizing the
mass of a structure at a given critical pressure is obtained. Here are considered the
rings with zero eccentricity. The approximate analytical solutions are compared with
the numerical solutions obtained by the finite element method.

Key words: Ring-stiffened shell, Buckling, Optimal parameters, Asymptotic and
Rayleigh–Ritz methods, Comsol software package

5.1 Introduction

Cylindrical shells are widely used in many industries. For example, in shipbuilding
and rocketry, in the development of hulls, in the design of pipelines, industrial tanks
(Lu et al, 2021), nuclear reactors and even in building of artificial islands (Verstov
et al, 2020). Along with the use of smooth shells in order to increase the safety fac-
tor, reinforcement of shells with stiffening ribs (frames) is widely used. Depending
on the formulation of the problem, this allows either to choose the optimal distribu-
tion of the structure weight between the shell and the ribs in order to maximize the
critical pressure (Filippov, 1999), or to lighten the structure while maintaining its
strength characteristics (Adamovich and Filippov, 2015).
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The paper reflects upon the problem of buckling of a thin elastic cylindrical shell
under the uniform external pressure. In order to increase the critical pressure, the
shell is stiffened with circular rings of different stiffness. Most of the works devoted
to the theory of buckling consider the case of identical frames (Teng and Rotter,
2004), but – varying the parameters of each frame separately, the rigidity of the
structure can be increased, making it possible to solve the problem of both increas-
ing the critical pressure while maintaining the mass of the structure, and minimizing
the weight of the structure while maintaining the critical pressure. Tian et al (1999)
present the Ritz method for the buckling analysis of ring-stiffened cylindrical shell.
In particular, ring with various size are considered, but the optimal parameters for
this case are not found.

The paper considers the case of simple support of the shell edges, stiffened by
ribs of the same width and different heights. The heights of the frames, character-
izing their stiffness, are distributed along the generatrix of the shell according to
a linear law. It is assumed that the reinforced and smooth shells buckle under the
same critical pressure. Solving the problem of buckling is reduced to solving an
eigenvalue problem of a system of equations describing the buckling of a cylindri-
cal shell, boundary conditions at the edges of the shell, and conditions for coupling
with stiffeners along parallels. The equations contain dimensionless thicknesses of
the shell and frames, which are small parameters; therefore, asymptotic methods
can be used to solve the buckling problem.

The obtained optimal parameters of the distribution function of the ring heights
are used to design the shell and calculate its critical pressure by the finite element
method. Comparison of the results shows that the method described in the paper can
be used at the design stage of thin-walled structures.

5.2 Formulation of the Problem

Let us consider the problem of buckling of a thin-walled elastic cylindrical shell
subjected to uniform external pressure p. The shell has nr transverse stiffening ribs
with zero eccentricity to increase the critical pressure. We consider the rings, whose
stiffness is varied along the shell generatrix to maximize the critical pressure.

In order to describe the buckling, we use the following dimensionless equations
of the technical shell theory (Tovstik, 1995):

ε8Δ2w(i)−ΔkΦ
(i)−λm2w(i) = 0, Δ2Φ(i)+Δkw(i) = 0, (5.1)

where

Δk =
d2

ds2 , Δ = Δk −m2, σ = 1− ν2, λ =
p

Eh
, ε8 =

h2

12σ
. (5.2)

Here, ε is a small parameter, w(i) is the displacement projection on the direction
normal to the median surface for s ∈ [si−1, si], i= 1,2, . . . ,n;n= nr+1; s0 = 0, sn = l; s



5 Buckling of a ring-stiffened cylindrical shell under the external pressure 51

is the coordinate directed along the cylinder generatrix;Φ(i)is the force function, m is
the number of waves along the parallel; ν is the Poisson ratio; h is the dimensionless
shell thickness; l is the dimensionless shell length; and E is Young modulus. Radius
R of the cylinder base is taken as the unit length.

We represent the solution of system of equations (5.1) as a sum of solutions for
the basic semi-membrane state, simple boundary effect near the shell edges and
parallels stiffened by rings. In the first approximation, we obtain(

w(i)
0

)IV −α4w(i)
0 = 0, α4 = m6λ0−ε8m8, (5.3)

where w(i)
0 is the approximate solution of system (5.1) and λ0 is the approximate

value of λ (Filin, 1975). Hereinafter, only the approximate solution is considered,
and notations w(i) and λ are used instead of w(i)

0 and λ0.
In the case when the shell edges are simply supported, the boundary conditions

for Eq. (5.3) can be written as:

w(1)(0) = w(1)′′ (0) = w(n)(l) = w(n)′′ (l) = 0. (5.4)

Suppose that the typical dimension of the ring cross section a � ε. Then, the
following matching conditions are fulfilled on the parallels stiffened by the rings
(Filippov, 1999):

w(i) = w(i+1), w(i)′ = w(i+1)′ , w(i)′′ = w(i+1)′′ ,

w(i)′′′ −w(i+1)′′′ = −ciw(i+1), s = si, (i = 1,2, . . . ,nr),
(5.5)

where

ci =
m8ε8lηi

n
, ηi =

12σnEcJi

h3El
, Ji =

a ·b3
i

12
.

Here, Ec is Young’s modulus of the ring material, ηi is the effective stiffness of
the ring placed in coordinate si (Alfutov, 2000), and Ji is the moment of inertia of
the ring cross section with the respect to the cylinder generatrix. Index i indicates
that the rings can differ from each other in height and thus in stiffness. For easier
representation, the following notations are introduced:c = c(η,m) = c1, η = η1.

The approximate value of the critical pressure parameter λ = p/(Eh) for a stiff-
ened shell with simply supported edges is determined by the formula

λ(η) =min
m

[
α4(c)
m6 +ε

8m2
]
, (5.6)

where α(c) is the eigenvalue of the boundary problem (5.3–5.5).
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5.3 Calculation of Eigenvalues of a Beam Stiffened by Springs

Eigenvalue problem (5.3)–(5.5) is equivalent to the problem of determining the vi-
bration frequencies of a simply supported beam stiffened by springs with stiffness
ci at points si. In Sharypov (1997), the cases of the nonuniform arrangement of
springs were analyzed. Exhaustive search method showed that the optimal arrange-
ment of the springs is in the nodes of the vibration mode of an unsupported beam.
In Lopatukhin and Filippov (2001), it was shown that in the case of simple support,
zeros of the vibration mode of the unsupported beam coincided with the points of
limiting optimal arrangement of the springs. In the case of simple support of a beam
si = il/n are the nodes of the vibration mode wn(s) = sin(αns), where αn = πn/l.

Let us consider the boundary value problem of buckling of a beam supported by
springs. We apply the Rayleigh method to solve this problem. The Rayleigh formula
for a spring-supported beam can be written in the following dimensionless form:

α4
1 = (I1+ I2)/I0,

I1 =

l∫
0

(w′′)2ds, I2 =

n−1∑
i=1

ciw2(si), I0 =

l∫
0

w2ds,
(5.7)

In Fig. 5.1, a shell with rings is shown in the section along the shell generatrix. We
equate Young’s modulus of the rings with Young’s modulus of the shell; hereinafter,
we assume that the ring stiffness depends only on its physical dimensions. Suppose
that all rings have the same width a, and the height of the first ring is b = ka. We also
introduce f (i) as a function of the ring height distribution along the cylinder genera-
trix: bi = b f (i)= ka f (i). Upon substituting the expressions for the ring dimensionless
stiffness and the first vibration mode of the smooth shell into the Rayleigh formula,
we obtain the following relation for :

α4
1(η,m) =

π4

l4
+

2
l

c(η,m)T (n), J =
ab3

12
,

Ji =
a4k3

12
f 3(si) = J f 3(si), T (n) =

n−1∑
i=1

f 3 (i) sin2
(
πi
n

)
.

(5.8)

Substituting the obtained α1 into the formula for critical pressure parameter (5.6)
we obtain

λ(η,m) = Xm−6+Ym2,

where

X =
π4

l4
, Y =

(
1+

2T (n)
n

η

)
ε8.

Let us find the smallest value of frequency parameter λ1 by minimizing the resulting
function λ(η,m) with respect to m:
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Fig. 5.1 Axial section of a ring-stiffened shell.

λ′m(η,m)=−6Xm−7+2Ym= 0, λ1(η)=
4

√
256
27

XY3 = ε6 · 4

√
256
27

π4

l4

(
1+

2T (n)
n

η

)3
.

Since relation ε8 = h2/(12σ) is satisfied for small parameter ε we write λ1 in the
following form:

λ1(η) =

√
6π

9l
h3/2

σ3/4

4

√(
1+

2T (n)
n

η

)3
. (5.9)

5.4 Shell Parameters Optimization

Let the mass of the stiffened shell be fixed. We consider the problem of determin-
ing the optimal mass distribution between the rings and the shell (coating), which
corresponds to the highest value of the critical pressure.

Critical pressure p0 for a smooth shell with length l and thickness h0 can be found
by the approximate Southwell–Papkovich formula taken from Filippov (1999):
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λ =

√
6π

9l

h3/2
0

σ3/4 , p0 = λEh0 =
4πEh5/2

0

63/2lσ3/4 . (5.10)

Suppose that nr rings with rectangular cross section a in width and bi in height are
mounted on the shell due to reducing the shell thickness to h; the ring-stiffened shell
mass is

Ms = M(h)+Mr,

where M(h) = 2πRρ ·Rh ·Rl is the mass of the coating, while ring mass

Mr =

n−1∑
i=1

2πRρ ·Ra ·Rak f (i)

coincides with the smooth shell mass M0 = M(h0).
In order to determine the critical pressure of the smooth and stiffened shells,

we can use formulas (5.9) and (5.10). Those formulas can be used only when η is
sufficiently small because the boundary problem (5.3)–(5.5) has a solution that is
independent of the relative stiffness of rings:

w = sin(αx), α = πn/l.

This solution corresponds to λ = n ·λ1(0). Let us introduce a function of the ratio be-
tween the critical pressures of the stiffened and smooth shells and find its maximum
value f ∗b :

fb � p1

p0
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩d5/2 4

√(
1+

2T (n)
n

η

)3
, 0 � η � η∗,

d5/2n, η∗ < η,

where d = h/h0, and parameter η∗ is called the effective stiffness of the ring (Filip-
pov, 1999; Alfutov, 2000) and can be found as the root of the following equation:(

1+
2T (n)

n
η∗
)3/4
= n, η∗ =

n
2T (n)

(n
4
3 −1).

Upon simplification, we obtain:

fb =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d5/2n, 0 � d � d∗,

d5/2 4

√(
1+

Ba4

d3

)3
, d∗ < d ≤ 1,

(5.11)

where

B =
2σk3

lh3
0

·T (n), A =
k

h0l
·P(n), P(n) =

n−1∑
i=1

f (i).

The condition of the equality of masses of ring-stiffened shell and smooth shell
can be written as follows:
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M(h0) = M(h)+Mr, a4 =
(1−d)2

A2 .

Substituting the expression for a4 into function fb(d), we obtain

fb =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d5/2n, 0 � d � d∗,

d5/2
(
1+

B
A2 ·

(1−d)2

d3

)3/4
d∗ < d ≤ 1,

where d* is the root of the cubic equation

d3∗ −
2σkl
h0
· T (n)

P2(n)(n4/3−1)
· (d∗ −1)2 = 0.

This equation has a single root on interval (0,1) that corresponds to the maximum
critical pressure of a simply supported shell stiffened by rings with various stiffness.
Here, a∗ and f ∗b corresponding to d∗ can be found by the following formulas:

a∗ =
√

1−d∗
A

, f ∗b = n ·d
5
2∗ .

5.5 Minimization of Mass

Consider a simply supported cylindrical shell with thickness h, length l and radius
R stiffened by nr uniformly spaced ribs of various height. We will look for the pa-
rameters of the shell with the lowest mass and critical pressure p. Then the mass of
stiffened shell Ms and unstiffened M0 shell can be expressed by the formulae:

Ms = 2πR3ρ

⎛⎜⎜⎜⎜⎜⎜⎝lh+ n−1∑
i=1

a ·ak f (i)

⎞⎟⎟⎟⎟⎟⎟⎠ , M0 = 2πR3ρlh0, (5.12)

where ρ is the density of the shell material. For convenience, we introduce the func-
tion F(a,d), which will show the ratio of the mass of the stiffened shell to the mass
of the smooth shell.

F(a,d) =
Ms

M0
= d+Aa2, d =

h
h0

A =
k

h0l
·P(n), P(n) =

n−1∑
i=1

f (i).

Then the function showing the ratio of the critical pressures of the stiffened shell to
the smooth shell is:
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fb � p1

p0
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩d5/2 4

√(
1+

2T (n)
n

η

)3
, 0 � η � η∗,

d5/2n, η∗ < η,

substitution

B =
2σk3

lh3
0

·T (n), T (n) =
n−1∑
i=1

f 3 (i) sin2
(
πi
n

)
.

drives the fb function to

fb =
p1

p0
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d5/2n, 0 ≤ d ≤ d∗

d5/2
(
1+

Ba4

d3

)3/4
, d∗ < d ≤ 1

.

The condition of equality of the critical pressures of a smooth and a reinforced shell
is reduced to solving the equation fb = 1 for η = η∗. The corresponding parameters
of the reinforced shell d∗ and a∗ can be found using the formulas

d∗ = n−2/5, a4∗ =

(
n4/3−1

)
·d3∗

B
.

Which, when substituted into F(a,d), reduce it to a function that depends on the
number of rings nr and the parameters of the distribution function of the heights of
the rings k and u:

F(n) = n−2/5+
A√
B
·
√

n2/15−n−6/5.

5.6 Results

Some results for the copper (ν = 0.35, E = 110 [GPa]) shell R = 1[m], l = 4[m],
h = 0.01[m], k = 1 and nr rings obtained by the both described analytical method
and finite element method (using Comsol software package) are driven. Table 5.1
shows the results for the critical pressure maximization problem and Table 5.2 shows
the mass minimization problem. Both the cases of stiffening the shell by rings with
equal heights and heights distributed according to the triangular law:

f (i) = (κ(i)−1)(u−1)+1, κ(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i, i <

n
2

n− i, i �
n
2

,

are considered.
The buckling modes of a shell stiffened by even ribs (top) and uneven ribs (bot-

tom) for three, four and five ribs are shown in Figs. 5.2-5.4.
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Fig. 5.2 Buckling of a shell stiffened by three ribs with even ribs (top) and uneven ribs (bottom).
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Fig. 5.3 Buckling of a shell stiffened by four ribs with even ribs (top) and uneven ribs (bottom).
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Fig. 5.4 Buckling of a shell stiffened by five ribs with even ribs(top) and uneven ribs(bottom).
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Table 5.1 Pressure maximization problem.

u = 1 u = 1.5

nr fb pmax,Pa pfem,Pa fb pmax,Pa pfem,Pa

0 1 259346 281240

1 1.79 464081 454120

2 2.32 603640 610520

3 2.69 698936 730570 2.9 752572 749210

4 2.94 786514 822300 3.29 852119 883650

5 3.11 806571 885130 3.76 975032 1000800

Table 5.2 Mass minimization problem.

u = 1 u = 2

nr d∗ a∗ Ms/M0 d∗ a∗ Ms/M0

0 1 0 1

1 0.758 0.035 0.786

2 0.644 0.034 0.703

3 0.574 0.033 0.655 0.574 0.023 0.625

4 0.525 0.032 0.625 0.525 0.02 0.586

5 0.488 0.031 0.605 0.488 0.016 0.546

5.7 Conclusion

The application of asymptotic and Rayleigh–Ritz methods permits to obtain simple
approximate formulas for evaluating of the critical external pressure and the optimal
parameter for the cylindrical shell stiffened by rings with various heights.

The calculations showed that the shell of the fixed mass stiffened by rings with
the various stiffness has a higher value of the critical pressure than the shell stiffened
by identical rings. Also, if the critical pressure is set, then the minimal weight of the
first shell is less than the minimal weight of the second one.

The relative error of approximate results in comparison with the results obtained
by the finite element method is less than 9%. Hence, the approach described in this
paper can be used for the approximate estimation of parameters before starting the
design.

Acknowledgements This work was supported by RFBR (grant 19-01-00280) which is gratefully
acknowledged.
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Chapter 6
Free Vibration Corrugated Open Cylindrical
Shells

Alexander Ya. Grigorenko, Maksym Yu. Borysenko, Olena V. Boychuk, and
Natalia P. Boreiko

Abstract The problem of the free vibrations of the thin circular corrugated open
cylindrical shells are presented. The finite element method was used. The frequen-
cies and forms of free vibrations of the in circular corrugated open cylindrical un-
der conditions of different longitudinal bisecting and different boundary conditions
shells are calculated. The dependence of the frequency of free vibrations on the
variant of longitudinal bisecting is analyzed.

Key words: Free vibrations, Corrugated circular cylindrical shell, Different bound-
ary conditions, Rigid fixes, FEM

6.1 Introduction

The problem of the free vibrations of corrugated open cylindrical shells is very
important for further basic research and for various practical problems. Solving such
problems is associated with great computational difficulties. Therefore, the current
problem of the mechanics and the applied mathematics of the free vibrations of
corrugated open cylindrical is proposed to be solved based on FEM.

Cylindrical shells, due to their high strength and stability with relatively low
weight, are widely used in various industries. Increasing the strength characteristics
while maintaining mass can be achieved by changing the wall thickness of the shell
or changing the shape of the cross section, for example, using corrugation. The
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design of the frames of various machines and mechanisms, and the shell elements
of buildings, structures, and other constructions is dependent on a number of prior
calculations. One of the important calculations is to determine the frequencies and
forms of free vibrations, since when the frequency of the external force coincides
with the frequency of free vibrations, resonance occurs, which can be destructive. In
modern science, these problems of dynamics are commonly solved using a variety
of computer-aided design software systems, which are based on various numerical
methods such as the finite element method (FEM). One such software system is
FEMAP with the NX Nastran solver. There arises an urgent problem of mechanics
and applied mathematics about the extension of FEM to the study of frequencies
and forms of free vibrations of corrugated open cylindrical shells.

Determination of the frequencies and forms of free vibrations of shells of a sim-
ple geometric shape is possible within the framework of the theory of thin shells
(Arnold and Warburton, 1953; Baron and Bleich, 1954; Greenspon, 1959; Grig-
orenko et al, 2018b; Grigorenko and Rozhok, 2004; Grigorenko and Efimova, 2008).
In the case of shells of a complex shape, which have non-circular cross-sections of
constant (Budak et al, 2016) or variable (Budak et al, 2017) thickness, or open con-
tours (Grigorenko et al, 2020a,b), or thick walls (Grigorenko et al, 2018a), it is
advisable to use the FEM. In addition to numerical methods, there is the use of ex-
perimental methods for determining the frequencies and forms of free vibrations of
shells of complex shapes, for example, the method of holographic interferometry
(Grigorenko et al, 2013; Budak et al, 2014).

Let us consider some of the literature. In Puzyrev (2013), a study was carried
out using the spline collocation method in combination with the method of dis-
crete orthogonalization of resonance frequencies of noncircular cylindrical shells
with an elliptical corrugated cross section. (Mousa Khalifa, 2015)) investigates the
influence of the parameters of corrugation and material homogeneity on the vibra-
tion frequencies of isotropic and orthotropic oval cylindrical shells with a sinus-like
contour. In Kim (2016), the free vibrations of longitudinally corrugated cylindri-
cal shells are theoretically investigated, and the frequencies are calculated using the
finite element method implemented in the ANSYS program. Nguyen et al (2021)
present a semi-analytical approach to the study of vibration of corrugated function-
ally graded sandwich cylindrical shells. In Semenyuk et al (2005) investigates the
influence of the length and amplitude of the corrugations on the fundamental fre-
quency of corrugated non-circular cylindrical shells both while unloaded and while
compressed along the axis. Xu et al (2008, 2010) investigate the dynamic charac-
teristics of coupled longitudinal and bending vibrations of corrugated cylindrical
piezoelectric shells. Yang et al (2015) study the vibration characteristics of corru-
gated composite cylindrical sandwich shells with free boundary conditions. Yuan
and Liu (2007) investigate, on the basis of the equations covering the dynamics
of large deflections of axisymmetric shallow shells in revolution, nonlinear forced
vibrations of a corrugated shallow shell under a uniform load.

The purpose of this work is to determine by the finite element method (FEM) the
frequencies and forms of free vibrations of thin circular open corrugated cylindrical
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shells with variations in rigid fastening and to establish the effect of the method of
longitudinal bisecting of the shell on the frequencies and forms of free vibrations.

6.2 Basic Relationships

The motion of a mechanical system with a finite number of degrees of freedom in
the absence of external forces is described by a system of Lagrange equations of the
second kind:

d
dt

(
∂L
∂q̇ j

)
−
(
∂L
∂q j

)
= 0, j = 1,2, . . . , s, (6.1)

where L = T −U. Using the discrete form of the kinetic energy and deformation
energy functionals:

T =
1
2
Φ̇

T
i MiΦ̇i, U =

1
2
Φ̇

T
i KiΦ̇i, (6.2)

where Ki and Mi are the stiffness matrix and the mass matrix of the i-th finite el-
ement, and Φi is the vector of nodal displacements of the i-th element. From the
Lagrange equation (6.1) we obtain the following equations of motion in the absence
of damping

KΦ j+MΦ̈ j = 0, (6.3)

where K and M are the stiffness matrix and the mass matrix of the mechanical
system, Φ j is the vector of displacements of the nodes of the system corresponding
to the j-th degree of freedom, and reproduces the j-th mode of vibration.

With free vibrations of the shells, all nodal points carry out harmonic vibrations
as a function of time

Φ j (t) =Φ j sin
(
ω jt
)
. (6.4)

After substituting functions (6.4) into the equation of motion (6.3), the determi-
nation of natural frequencies and vibration modes is reduced to solving the system
of algebraic equations

KΦ j−ω2
jMΦ j = 0, j = 1,2, . . . , s, (6.5)

where ω j is the ripple or frequency of harmonic vibrations.
For determining the natural modes and vibration frequencies in the case when en-

ergy dissipation and damping is not taken into account NX Nastran primarily uses
the Lanczos method, which requires fewer resources compared to other methods.
The Lanczos method allows one to determine the n−th number of necessary eigen-
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values and forms, while the results can be considered practically accurate for this
discrete model, since the error is ||Φ j−ω2

jK
−1MΦ j||/||Φ j|| ≤ 10−7.

The Lanczos’ method uses reduction to transform to the triodiagonal form of the
matrix T

T =QT
k MK−1MQk, (6.6)

where Qk = {q1,q2, ...,qk} is a rectangular matrix with elements Neq×k; Neq is the
number of equations; k is a step number according to the Lanczos method; qk is the
k-th vector of Lanczos.

The formula

βk+1 qk+1 =K−1M qk −αk qk −βk qk, (6.7)

generates the next Lanczos vector and determines the current row of the matrix T

T =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 β2
β2 α2 β3

β3 α3 β4
. . . .

βk αk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.8)

Thus, we get the eigenvalue problem:

T sk
h−λ

k
h sk

h = 0, h = 1,2, . . . ,k, (6.9)

(ωk
h)2 = 1/λk

h, (6.10)

where ωk
h is the k-th approximation of the circular frequency ωh, h = 1,2, . . . ,n; n is

the number of proper pairs.
The algorithm continues the calculations (for k increasing k, the step number of

the Lanczos procedure) until the specified accuracy is achieved for all the neces-
sary eigenvalues. The selective orthogonalization procedure maintains the required
level of orthogonalization of Lanczos vectors qk, which ensures the reliability and
stability of the numerical calculation process. In this case, economical methods are
used to implement the selectively orthogonalization procedure and to determine the
eigenvalues (6.9) by using double QR − iterations with shifts. The output eigenvec-
tors are determined by the formula

Φ
k
h = Qk sk

h = 0, h = 1,2, . . . ,n. (6.11)
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6.3 Solution to the Test Problem

In the FEMAP program environment, the geometry of four corrugated cylindrical
shells was built with corrugation densities k = 4, k = 6, k = 8 and k = 10 (Fig. 6.1),
height h = 120mm, thickness d = 2mm and a median surface, given by the paramet-
ric equations:

x(θ) = [a+ r cos(kθ)]cosθ; y(θ) = [b+ r cos(kθ)] sinθ; (6.12)

where a = b = 44 mm are the semi-axes of the base ellipse of the cross-section,
and r = 2 mm is the amplitude of the corrugation. The shell material was steel with
Young’s modulus E = 210GPa, Poisson’s ratio ν = 0.28 and density ρ = 7740kg/m3.
The shell was rigidly fixed along all edges (CCCC).

As a result of solving test problems, the frequencies of free vibrations were ob-
tained, which are presented in Table 6.1 together with the frequencies obtained by
Puzyrev (2013) and with the given discrepancy in the calculations in percent. The
resulting vibration modes are shown in Fig. 6.2.

Analyzing the obtained results of test problems, one can see agreement between
the frequencies of free vibrations obtained using FEMAP and the frequencies calcu-

Fig. 6.1 Finite-element models of test corrugated shells.

Fig. 6.2 Forms of free vibrations of test corrugated shells.
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Table 6.1 Frequencies of free vibrations ( f , Hz) of test corrugated shells.

No.
k = 4

ε,% No.
k = 6

ε,%
Puzyrev FEM Puzyrev FEM

1 4695 4668 0.58 1 3369 3269 3.06
2 4904 4880 0.49 2 4841 4681 3.42
3 6617 6581 0.55 3 4987 4827 3.31
4 6953 6897 0.81 4 6183 5962 3.71
5 7444 7391 0.72 5 6234 6011 3.71

No.
k = 8

ε,% No.
k = 10

ε,%
Puzyrev FEM Puzyrev FEM

1 4792 4753 0.82 1 5054 4879 3.59
2 5055 6581 0.55 3 4987 4827 3.31
4 6953 6897 0.81 4 6183 5962 3.71
5 7444 7391 0.72 5 6234 6011 3.71
3 6388 6294 1.49 3 6912 6643 4.05
4 6507 6433 1.15 4 7140 6778 5.34
5 7151 7001 2.14 5 8026 7676 4.56

lated by the spline collocation method in combination with the method of discrete
orthogonalization, which indicates the correctness of the proposed method. At the
same time, the discrepancy between the results increases with an increase in the
number of corrugations. It’s also possible to observe various wave forms for the
same number of the mode.

6.4 Construction of a Computational Model

Using the FEMAP system, the geometry of a circular corrugated closed cylindrical
shell was constructed with height h = 120 mm, thickness d = 2 mm, middle surface
with parametric equations (6.12), where a = b = 42.064 mm, r = 2 mm, k = 8. Then
the shell was cut in half at maxima points (Fig. 6.3a), midpoints (or 0) (Fig. 6.3b) or
minima points (Fig. 6.3c) of corrugation waves. Steel with the following character-
istics was set as the material: Young’s modulus E = 214GPa, Poisson’s ratio ν= 0.32
and density ρ = 7820 kg/m3. The shells were investigated with various rigidly fixed
(C) and free edges (F) (Fig. 6.4). The calculation was carried out to determine the
frequencies and forms of free vibrations.
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Fig. 6.3 Finite element models of corrugated shells with different locations of longitudinal bisect-
ing.

Fig. 6.4 Boundary conditions of the investigated corrugated shells.

6.5 Results of Numerical Calculations

As a result of calculations, we obtained the frequencies and forms of free vibra-
tions of steel circular corrugated open cylindrical shells with different locations of
longitudinal bisection and with k = 8 corrugations for all free edges and all rigidly
fixed edges. The first ten frequencies of free vibrations of the three investigated cor-
rugated shells of equivalent mass are presented in Table 6.2, where ε is the differ-
ence between the frequencies in percent. Analyzing the data in Table 6.2, one can
see that for shells with the boundary conditions FFFF, the first five frequencies for
shells with different bisecting locations have a small discrepancy compared to the
next five frequencies. Starting from the sixth mode of vibration (Figs. 6.5 and 6.6),
a different structural rigidity is manifested, which causes different shaping. That is,
different modes of vibration or slightly distorted vibration modes correspond to the
same shape number.
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Table 6.2 Frequencies of free vibrations of corrugated open cylindrical shells with different loca-
tions of longitudinal bisection.

No.
FFFF

ε0,% εmin,%
CCCC

ε0,% εmin,%
max 0 min max 0 min

1 428 429 430 0.23 0.47 5050 4801 4764 4.93 5.66

2 502 503 506 0.20 0.80 5193 5136 5123 1.10 1.35

3 842 849 852 0.83 1.19 6650 6668 6647 0.27 0.05

4 1430 1444 1463 0.98 2.31 6833 6705 6700 1.87 1.95

5 1771 1799 1821 1.58 2.82 7344 7205 7175 1.89 2.30

6 2087 2708 3146 29.76 50.74 7462 8105 8043 8.62 7.79

7 2154 2798 3518 29.90 63.32 8660 8195 8150 5.37 5.89

8 2868 2981 3846 3.94 34.10 8861 9279 9271 4.72 4.63

9 3113 3280 3921 5.36 25.96 9343 9732 9685 4.16 3.66

10 3786 4570 4577 20.71 20.89 9623 10312 10325 7.16 7.30

Fig. 6.5 Forms of free vibrations of corrugated open cylindrical shells with different profiles of
longitudinal bisecting with all free edges.

Fig. 6.6 Forms of free vibrations of corrugated open cylindrical shells with different profiles of
longitudinal bisecting with all free edges.
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For the shells with CCCC boundary conditions, the first ten frequencies have a
discrepancy that does not exceed 9%, while there is a greater similarity of vibration
modes for shells cut along the minima points and midpoints of corrugations (Figs.
6.7 and 6.8).

Further, the frequencies and forms of free vibrations of a steel circular corrugated
(k = 8) open cylindrical shell cut in half along the maxima points of the corrugation
waves with a variety of rigid fastening were calculated (Fig. 6.4). The first ten fre-
quencies of free vibrations of the considered corrugated shell under nine different
boundary conditions are presented in Table 6.3. The first five forms of free vibra-
tions of the considered corrugated shell with a variety of rigid fastening are shown
in Figs. 6.9-6.11, except for the cases of all free edges and rigid fastening along all
edges, which are shown in Figs. 6.5 and 6.7 with max indices, respectively.

Fig. 6.7 Forms of free vibrations of corrugated open cylindrical shells with different profiles of
longitudinal bisecting with all edges rigidly fixed.

Fig. 6.8 Forms of free vibrations of corrugated open cylindrical shells with different profiles of
longitudinal bisecting with all edges rigidly fixed.
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Table 6.3 Frequencies of free vibrations of a corrugated shell with variations of rigid fastening.

No. FFFF CFFF FCFF CCFF CFCF FCFC CCCF CCFC CCCC

1 428 709 120 756 1549 1183 1572 2948 5050

2 502 752 216 1822 1595 2538 3250 3300 5193

3 842 1770 375 2024 3244 2612 4674 5421 6650

4 1430 1815 506 2961 3257 4295 5235 5490 6833

5 1771 1968 1269 3521 4442 5229 5642 5561 7344

6 2087 2226 1359 3991 5266 5680 6567 6853 7462

7 2154 3138 2120 5073 5638 5834 6745 7034 8660

8 2868 3520 2741 5449 5643 6039 6877 7288 8861

9 3113 3528 2860 5629 6128 6810 7460 7491 9343

10 3786 4558 3791 5897 6671 6889 8697 7826 9623

Fig. 6.9 Forms of free vibrations of a corrugated open cylindrical shell with one rigidly fixed edge
and three free edges.

Fig. 6.10 Forms of free vibrations of a corrugated open cylindrical shell with two rigidly fixed
edges and two free edges.
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Fig. 6.11 Forms of free vibrations of a corrugated open cylindrical shell with three rigidly fixed
edges and one free edge.

6.6 Conclusion

In this work, the frequencies and forms of free vibrations of thin circular corrugated
open cylindrical shells with different locations of longitudinal bisecting and with
different variations of the boundary conditions are determined based on the finite
element method.

Test problems solved for open cylindrical shells with circular corrugated cross-
sections show a strong agreement between the first five frequencies of free vibrations
calculated by the proposed FEM and the frequencies calculated by another author,
while the discrepancy between the results does not exceed 5.5% and increases with
an increase in the number of corrugations. Forms of various wave are observed for
the same number of the mode.

The dependence of the frequency of free vibrations on the location of longitu-
dinal bisecting of the shell has been established. For example, for shells with the
boundary conditions FFFF, the first five frequencies have a small discrepancy com-
pared to the next five frequencies, where the discrepancy reaches almost 65%. This
is due to a different structural rigidity from a different method of cutting the shell,
which is well observed in different shapes, starting from the sixth form vibrations.
That is, the same shape number corresponds to different vibration modes, or slightly
distorted vibration modes. For shells with CCCC boundary conditions, the first ten
frequencies have a discrepancy that does not exceed 9%, while a smaller divergence
and uniformity of vibration modes is observed for shells with bisecting along the
minima and along the middle of the corrugation waves.

For a corrugated open cylindrical shell cut in half along the maxima for all meth-
ods of boundary conditions, the first ten frequencies of free vibrations are calculated.
The frequencies increase with an increase in the number of rigidly fixed ends, except
for the FCFF fixing option. These are the first five modes of vibration.
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Chapter 7
On a New Theory of the Cosserat Continuum
with Applications in Electrodynamics

Elena A. Ivanova

Abstract We consider an elastic Cosserat continuum of a special type. Next we sug-
gest analogies between quantities characterizing the stress–strain state of the con-
tinuum and quantities characterizing electrodynamic processes. Taking into account
the suggested analogies, we interpret equations describing the continuum as equa-
tions of electrodynamics. We identify parameters of our model by comparing the
obtained equations with Maxwell’s equations. As a result, in the framework of our
model, we obtain a set of differential equations that coincide with Maxwell’s first
equation (the one with the displacement current term), the Gauß law for electric
field, the charge conservation law, a modification of the Maxwell–Faraday equation
and a modification of the Gauß law for magnetic field. We also obtain the Gauß law
for gravitational field and introduce the concept of gravitating mass.

Key words: Cosserat continuum, Micropolar continuum, Electrodynamics, Elec-
tromagnetic field, Gravitational field

7.1 Introduction

It is well known that, in the 19th century, mechanical models were used to describe
all physical processes. These models are in large part based on the concept of the
ether (Whittaker, 1910). For example, when describing electromagnetic processes,
scientists of the 19th century were convinced that they were describing processes in
the ether. The ether may be viewed as a substance that has the capacity to occupy
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the whole free space and to penetrate into the material bodies endowing them with
additional physical properties.

The ether theory, which initially met with general acceptance, subsequently fell
into disuse. Now the interest in mechanical models of electromagnetic processes is
renewed. A large number of review papers are published, see, e.g., Siegel (1991);
Darrigol (2000); Chalmers (2001); Capria (2005); Silva (2007); Pietsch (2012);
Longair (2015). Studies aimed at creating mechanical models of physical processes
resume. Discussing the researches carried out at the turn of the 20th/21st centuries,
we can refer to models based on translational degrees of freedom (Jaswon, 1969;
Kelly, 1976; Zhilin, 1996b,a, 2006a,b; Larson, 1998; Zareski, 2001; Dmitriyev,
2003, 2008; Christov, 2007, 2009b,a, 2011; Wang, 2008; Lin and Lin, 2014) and
models based on rotational degrees of freedom (Zhilin, 2006a; Dixon and Eringen,
1965a,b; Teregulov, 1989; Grekova and Zhilin, 2001; Grekova, 2001; Zhilin, 2012,
2013; Ivanova et al, 2007; Ivanova and Kolpakov, 2013; Ivanova, 2015; Ivanova and
Kolpakov, 2016; Ivanova, 2019a,b; Ivanova and Matias, 2019; Müller et al, 2020;
Ivanova, 2021). We are convinced that the models based on rotational degrees of
freedom have several advantages over the models based on translational degrees of
freedom. Below, we discuss this issue in detail.

The present study continues and develops the research carried out in Zhilin
(2006a,b, 2012); Ivanova (2015, 2019a,b); Ivanova and Matias (2019); Ivanova
(2021). Unlike our previous works, where we considered only isotropic media, in
this study we focus on modeling electromagnetic processes in anisotropic materials.
In addition, we draw an analogy between electrostatic interaction and gravitational
interaction and propose an original model of the gravitational field.

7.2 Maxwell’s Equations for Anisotropic Materials

Maxwell’s equations can be written as

∇∇∇×HHH = JJJ+ dDDD
dt
, ∇∇∇×EEE = −dBBB

dt
, ∇∇∇ ·DDD = Q, ∇∇∇ ·BBB = 0, (7.1)

where EEE is the electric field vector, DDD is the electric induction vector, HHH is the mag-
netic field vector,BBB is the magnetic induction vector, JJJ is the electric current density,
and Q is the electric charge density. We note that the first equation in (7.1) is known
as the Maxwell’s first equation, the second equation in (7.1) is usually called the
Maxwell’s second equation or the Maxwell–Faraday equation, the third and fourth
equations in (7.1) are the Gauß laws for electric field and magnetic field, respec-
tively. Equations (7.1) should be supplemented by material equations, which take
the following form in the linear case:

DDD = ε0εεε ·EEE, BBB = μ0μμμ ·HHH. (7.2)
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where ε0 and μ0 are the permittivity and permeability of free space, εεε and μμμ are the
tensors of the relative permittivities and the relative permeabilities of the material.
It is well known that from Eq. (7.1) it follows the charge conservation law

dQ
dt
+∇∇∇ ·JJJ = 0, (7.3)

which, in fact, is a condition for the solvability of Eqs. (7.1) and (7.2).

7.3 A Cosserat Continuum of a Special Type: a Nonlinear
Theory

Let vector r identify the position of some point in space. For simplicity sake, we
consider a continuum possessing only rotational degrees of freedom. To be exact,
we assume that the translational velocity equals to zero and the strain measure as-
sociated with translational degrees of freedom equals to the unit tensor E. We use
the following notations: P(r, t) is the rotation tensor, ωωω(r, t) is the angular velocity
vector,ΘΘΘ(r, t) is the angular strain tensor, ρ(r) is the mass density of the continuum,
J(r, t) is the inertia tensor per unit mass. We note that the mass density does not de-
pend on time since translational degrees of freedom are ignored. Angular velocity
ωωω and strain tensorΘΘΘ are related to rotation tensor as

dP
dt
=ωωω×P, ∇∇∇P =ΘΘΘ×P. (7.4)

From Eq. (7.4) it follows that

dΘΘΘ
dt
=∇∇∇ωωω−ΘΘΘ×ωωω. (7.5)

Kinetic energy per unit mass T, linear momentum per unit mass KKK1, and angular
momentum per unit mass KKK2 are

T =
1
2
ωωω ·J ·ωωω, KKK1 = 0, KKK2 = J ·ωωω. (7.6)

The equations of motion have the form

∇∇∇ ·τττ+ f = 0, ∇ ·T+τττ× = ρ d(J ·ωωω)
dt

, (7.7)

where τττ is the stress tensor, T is the moment stress tensor, f is the external force
per unit volume, ( )× denotes the vector invariant of a tensor that is defined for an
arbitrary dyad as (ab)× = a×b.

Following Ivanova (2019a, 2021), we assume moment stress tensor T to be an
antisymmetric tensor:
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T = −M×E, (7.8)

where M is the moment stress vector. Also following Ivanova (2019a, 2021), we
accept the constitutive equation for vector M:

M = ρ−1CΨ ·ΘΘΘ×, (7.9)

where CΨ is the second rank stiffness tensor. As it has been shown in Ivanova
(2019a, 2021), in the case of the considered continuum, the constitutive equation
for the stress tensor has the form

τττ = (M ·ΘΘΘ×)E+M×ΘΘΘT. (7.10)

Substituting Eq. (7.8) and the first equation in (7.9) into the second equation in (7.7),
we reduce Eq. (7.7) to the form

∇∇∇×M =M · (ΘΘΘ− trΘΘΘE
)− dKKK

dt
, (7.11)

where KKK denotes
KKK = ρJ ·ωωω. (7.12)

Thus, we arrive at the closed system of equations (7.5), (7.9), (7.11), (7.12) in
four variables, namely vectors M, KKK, ωωω and tensor ΘΘΘ . Further, we use the theory
presented in this section to give a mechanical interpretation of Maxwell’s equations
written in the form of Eq. (7.1).

7.4 A Cosserat Continuum of a Special Type: the Linear Theory

In the linear approximation, the system of the basic equations can be written as two
independent systems. The first system consists of the material equations

M = ρ−1CΨ ·ΘΘΘ×, KKK = ρJ ·ωωω, (7.13)

the angular momentum balance equation

∇∇∇×M = −dKKK
dt

, (7.14)

and the vector invariant of the equation relating the strain tensor and the angular
velocity

∇∇∇×ωωω = dΘΘΘ×
dt

. (7.15)

It is evident that Eqs. (7.13), (7.14), (7.15) are the closed system. If at the initial
moment of time∇∇∇·KKK and∇∇∇·ΘΘΘ× are equal to zero, from Eqs. (7.14), (7.15) it follows
that
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∇∇∇ ·KKK = 0, ∇∇∇ ·ΘΘΘ× = 0. (7.16)

The second system includes the symmetric part of the relation between the strain
tensor and the angular velocity:

dΘΘΘs

dt
= (∇∇∇ωωω)s, (7.17)

where s denotes the symmetric part of a tensor. Finding of the symmetric part of ΘΘΘ
is not of interest to us. That is why, further we consider only the first system.

7.5 Mechanical Analogies of Physical Quantities in the Linear
Theory

Following Ivanova (2021), we suppose that moment stress vector M is the analogy
of electric field vector EEE, vector invariant of the strain tensor ΘΘΘ× is the analogy of
electric induction vector DDD, angular velocity vector ωωω is the analogy of magnetic
field vector HHH, and volume density of proper angular momentum KKK is the analogy
of magnetic induction vector BBB:

M = χEEE, ΘΘΘ× =
1
χ
DDD, ωωω =

1
χ
HHH, KKK = χBBB, (7.18)

where χ is the normalization factor. Inserting Eq. (7.18) into Eqs. (7.14), (7.15),
(7.16), we obtain Maxwell’s equations in the form of (7.1), but without electric
charge density Q and electric current density JJJ. Next, specifying the stiffness and
inertia parameters as

ρ−1CΨ = χ
2(ε0εεε)−1, ρJ = χ2μ0μμμ, (7.19)

and substituting Eqs. (7.18), (7.19) into Eq. (7.13), we obtain the constitutive equa-
tions (7.2), which are appropriate for the linear anisotropic materials.

7.6 The Nonlinear Theory and Maxwell’s Equations

First of all, we note that, in contrast to the linear theory, the system of the basic
equations of the nonlinear theory cannot be rewritten as two independent systems.
Nevertheless, as in the linear theory, we consider the antisymmetric part of the equa-
tion relating the strain tensor and the angular velocity. As shown in Ivanova (2021),
from Eq. (7.5) it follows a vector differential equation

∇∇∇×ωωω =ωωω · (ΘΘΘ− trΘΘΘE
)
+

dΘΘΘ×
dt

, (7.20)
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and also two scalar differential equations:

∇∇∇ ·ΘΘΘ× = 1
2

((
trΘΘΘ
)2−ΘΘΘ · ·ΘΘΘ) (7.21)

and
d
dt

[
1
2

((
trΘΘΘ
)2−ΘΘΘ · ·ΘΘΘ)]+∇ · [ωωω · (ΘΘΘ− trΘΘΘE

)]
= 0. (7.22)

It is easy to see that Eq. (7.21) has the form of the Gauß law and Eq. (7.22) has the
form of the balance law.

Now we turn to Eqs. (7.9), (7.11), (7.12), (7.20), (7.21), (7.22). It is evident that
Eq. (7.11) contains nonlinear term M · (ΘΘΘ− trΘΘΘE

)
and Eqs. (7.20), (7.22) contain

nonlinear term ωωω · (ΘΘΘ− trΘΘΘE
)
, neither of them can be expressed in terms of vectors

M, ΘΘΘ×, KKK, ωωω. That is why in order to close the system of Eqs. (7.9), (7.11), (7.12),
(7.20), (7.21), (7.22) we should supplement it with the symmetric part of Eq. (7.5),
namely

dΘΘΘs

dt
= (∇∇∇ωωω)s− 1

2

(
ΘΘΘ×ωωω−ωωω×ΘΘΘT

)
. (7.23)

In the present paper, we are not aiming to give any physical interpretations of
Eq. (7.23). Below, following ideas of Ivanova (2021) and making use of the analo-
gies between the physical and mechanical quantities given by Eqs. (7.18), (7.19),
we match Eqs. (7.9), (7.11), (7.12), (7.20), (7.21), (7.22) with Maxwell’s equa-
tions (7.1), material equations (7.2) and the charge conservation law (7.3).

Inserting Eqs. (7.18), (7.19) into Eqs. (7.9), (7.12), we obtain the material equa-
tions (7.2). Next, inserting Eq. (7.18) into Eq. (7.11), we obtain a differential equa-
tion

∇∇∇×EEE = −VVV− dBBB
dt
, (7.24)

where vector VVV is calculated as

VVV = −EEE · (ΘΘΘ− trΘΘΘE
) ⇔ VVV = −1

χ
M · (ΘΘΘ− trΘΘΘE

)
. (7.25)

Equation (7.24) can be interpreted as the modified Maxwell–Faraday equation since
it coincides with the classical Maxwell–Faraday equation ifVVV is assumed to be equal
to zero. Following Ivanova (2021), we interpret vector VVV as the electrical voltage
density. A discussion of the physical meaning of this quantity is beyond the scope
of this paper. This issue is covered in Ivanova (2021).

From Eq. (7.24) it follows that

d(∇∇∇ ·BBB)
dt

= −∇ ·VVV. (7.26)

It is evident that the Gauß law for magnetic field∇∇∇·BBB = 0 follows from Eq. (7.26) if
∇∇∇·VVV= 0 and∇∇∇·BBB= 0 at the initial moment of time. Hence, Eq. (7.26) can be treated
as a modified Gauß law for magnetic field. The physical meaning of this equation is
discussed in Ivanova (2021).
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Inserting Eq. (7.18) into Eq. (7.20) yields

∇∇∇×HHH = JJJ+ dDDD
dt
, (7.27)

where
JJJ =HHH · (ΘΘΘ− trΘΘΘE

) ⇔ JJJ = χωωω · (ΘΘΘ− trΘΘΘE
)
. (7.28)

Equation (7.27) coincides with Maxwell’s first equation if vector JJJ is interpreted
as an analogy of the electric current density. Comparing the modified Maxwell–
Faraday equation (7.24) with Maxwell’s first equation (7.27) we deduce that these
equations have the same structure. Furthermore, as it is seen from Eqs. (7.25),
(7.28), the expressions for VVV and JJJ contain the same tensor coefficient

(
ΘΘΘ− trΘΘΘE

)
.

Next, following Ivanova (2021), we introduce an analogy of the electric charge
density Q as

Q =
χ

2

((
trΘΘΘ
)2−ΘΘΘ · ·ΘΘΘ) . (7.29)

It is evident that, taking into account Eqs. (7.18), (7.29), we can rewrite Eq. (7.21)
as the Gauß law for electric field ∇∇∇ ·DDD = Q. In view of Eqs. (7.18), (7.28), (7.29),
the balance equation (7.22) takes the form of the charge conservation law (7.3). We
note that due to the properties of the second principal invariant of tensor, we can
represent the electric charge density (7.29) as the sum of two terms, one of which is
always positive, and the other is always negative, namely

Q = Q+ +Q−, (7.30)

where the positive charge per unit volume Q+ is defined as

Q+ =
χ

2

(
1
2
ΘΘΘ× ·ΘΘΘ×+ (trΘΘΘ)2

)
≥ 0, (7.31)

and the negative charge per unit volume Q− is defined as

Q− = −χ
2
ΘΘΘs · ·ΘΘΘs ≤ 0. (7.32)

Thus, in the framework of the nonlinear theory, we have introduced the analogies
of all quantities contained in Maxwell’s equations. Using these analogies we have
obtained: the material equations relating vectorDDD to vectorEEE and vectorHHH to vector
BBB; Maxwell’s first equation, the Gauß law for electric field and the charge conser-
vation law; the modified Maxwell–Faraday equation and the modified Gauß law for
magnetic field. If quantityVVV vanishes, the last two modified equations become indis-
tinguishable from the classical ones. That is why we are convinced that the proposed
analogies can actually be considered as analogies. In fact, in the present paper, we
have generalized the theory developed in Ivanova (2021) for isotropic materials to
the case of anisotropic materials.
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7.7 On the Theories Based on Translational Degrees of Freedom

It is well known that the mechanical models of the ether constructed in the 19th
century are based on translational degrees of freedom (Whittaker, 1910). It is also
known that the use of these models gave many interesting results, but at the same
time, raised questions that were not answered by scientists of that time. Eventually,
a number of 19th century scientists, namely Kelvin, Fitzgerald and Maxwell, came
up with an idea that mechanical models of electromagnetism should be based upon
rotational degrees of freedom (Whittaker, 1910). Nevertheless, models based on
translational degrees of freedom are still in use today. The question arises: What is
the reason? We believe that the main dominant reason is that the models based on
translational degrees of freedom are visual, intuitive, and familiar. But let us look at
the facts.

• It is not difficult to obtain Maxwell’s equations for isotropic media without cur-
rents and charges by means of a model similar to classical solids. But in order to
make the longitudinal wave velocity to be equal to zero, or at least, to be smaller
than the transverse wave velocity, we have to assume that the bulk modulus is
negative. The negative bulk modulus does not seem to be something intuitive,
since it is inherent only in some artificial structures, but not in the natural mate-
rials. On the contrary, using models based on rotational degrees of freedom, an
arbitrary ratio of the transverse and longitudinal wave velocities can be obtained
without any unnatural assumptions.

• If we use a model similar to classical solids in the case of an anisotropic medium,
we are forced to assume that the inertia properties of the model are characterised
by a mass density tensor. Such a model does not seem to be something familiar.
The tensor of inertia in a model based on rotational degrees of freedom is much
more familiar than the mass density tensor in a model based on translational
degrees of freedom.

• In the framework of a theory, based on translational degrees of freedom, it is
impossible to introduce an analogy of the electric charge density in the same
way as it is done in the framework of the proposed theory based on rotational
degrees of freedom. Our concept of the electric charge is in a large part based
upon the compatibility equation for angular strains in the ether. This equation
has the form

∇∇∇×ΘΘΘ = 1
2
ΘΘΘT××ΘΘΘ. (7.33)

Taking the trace of the both sides of Eq. (7.33), we arrive at the following equa-
tion

∇∇∇ ·ΘΘΘ× = 1
2

[(
trΘΘΘ
)2−ΘΘΘ · ·ΘΘΘ], (7.34)

which is an analogy of the Gauß law for electric field∇∇∇·DDD=Q, where the electric
induction vector and the electric charge density are determined by Eq. (7.18)
and Eq. (7.29), respectively. Let us turn to strain measure g, which is associated
with translational degrees of freedom and defined as g = E−∇∇∇u, where u is the
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displacement vector. It is evident that we cannot introduce a mechanical analogy
of the electric charge based on the compatibility equation for linear strains in the
ether

∇∇∇×g = 0, (7.35)

since the right-hand side of this equation is zero. Indeed, taking the trace of Eq.
(7.35), we obtain ∇∇∇ ·g× = 0.

We believe that in the late 19th century a mathematical model of a micropolar
continuum could be the long sought mechanical foundation for the ether theory. Un-
fortunately, the advent of the model proposed by the Cosserat brothers in 1909 was
somewhat belated. By that time, interest in the ether models was almost completely
lost and physics was developing in a different direction. Studies aimed at creating
the ether theories have been renewed only at the turn of the 20th/21st centuries.
We are convinced that the use of the ether models based on rotational degrees of
freedom can propel the inflow of new ideas regarding to the further development
of electrodynamics. At the same time, we do not deny the important role of trans-
lational degrees of freedom for modeling processes in the ether. For example, in
Ivanova (2019a), we discuss the possibility of formation of matter particles from
the ether. In the cited paper, we describe the formation of matter particles by means
of a model taking both rotational and translational degrees of freedom. In addition,
we suppose that a model with rotational and translational degrees of freedom can
bring together electromagnetism and gravitation. This subject matter goes a lot fur-
ther than the topic of the present paper. Nevertheless, in the next section, we provide
groundwork for the model of gravitation.

7.8 The Gauß Law for Gravitational Field

It is well know that Newton’s law of universal gravitation is similar to Coulomb’s
inverse-square law for electric charges. It is also known that Coulomb’s law can be
derived from the Gauß law for electric field if a number of additional assumptions
are taken into account, namely: the postulate that the force acting on a charged parti-
cle is proportional to the electric field vector; the assumption of spherical symmetry;
the assumption that the interacting charges are point charges. Hence, Newton’s law
can be derived from the Gauß law for gravitational field. The latter can be formu-
lated as

∇∇∇ ·GGG = ρm, (7.36)

where ρm is the gravitating mass per unit volume, vector GGG plays the same role as
the electric induction vector DDD in the Gauß law for electric field. It seems logical to
call vector GGG the gravitational induction vector.

Above, in the framework of the Cosserat continuum, we have obtained an anal-
ogy of the Gauß law for electric field, see Eq. (7.34). Now, also in the framework
of the Cosserat continuum, we are going to obtain an analogy of the Gauß law for
gravitational field. We start with Eq. (7.33). Multiplying it by tensor gT and taking
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the trace of the obtained equation, we have

tr
[
(∇∇∇×ΘΘΘ) ·gT

]
=

1
2

tr
[
(ΘΘΘT××ΘΘΘ) · gT

]
. (7.37)

It is not difficult to show that Eq. (7.37) can be rewritten as

tr
[
∇∇∇×
(
ΘΘΘ ·gT

)]
+ΘΘΘT · · (∇∇∇×g) = (det g)

1
2

tr
[(
ΘΘΘ ·g−1

)T×× (ΘΘΘ ·g−1
)]
. (7.38)

Taking into account Eq. (7.35) and performing a number of simple transformations,
we reduce Eq.(7.38) to the form

∇∇∇ ·
(
ΘΘΘ ·gT

)
× = (det g)

1
2

[(
tr
[
ΘΘΘ ·g−1

])2− (ΘΘΘ ·g−1
)
· ·
(
ΘΘΘ ·g−1

)]
. (7.39)

If tensor g equals to the unit tensor, Eq. (7.39) reduces to Eq. (7.34). In the gen-
eral case, Eq. (7.39) can be treated as the Gauß law for electric and gravitational
fields. We emphasize that tensor g determines the strain state of the ether, not the
ponderable matter.

It is well known that, at interatomic distances, the gravitational interactions are
negligible. It is also known that, at intergalactic distances, the electrical interactions
are negligible since the matter is electrically neutral on average. That is why, it
seems logical to introduce the strain tensor

e = g−E, (7.40)

and consider the difference of Eqs. (7.39) and (7.34). As a result, after simple trans-
formations, we arrive at the following equation

∇∇∇ ·
(
ΘΘΘ · eT

)
× = (det e)

1
2

[(
tr
[
ΘΘΘ · e−1

])2− (ΘΘΘ · e−1
)
· ·
(
ΘΘΘ · e−1

)]
. (7.41)

In our opinion, Eq. (7.41) can be interpreted as the Gauß law for gravitational field,
i.e., Eq. (7.41) is an analogy of (7.36). This means that vector

(
ΘΘΘ · eT

)
× matches

gravitational induction vector GGG:

GGG ↔
(
ΘΘΘ · eT

)
× , (7.42)

and the scalar quantity on the right-hand side of Eq. (7.41) matches the gravitating
mass per unit volume ρm:

ρm ↔ (det e)
1
2

[(
tr
[
ΘΘΘ · e−1

])2− (ΘΘΘ · e−1
)
· ·
(
ΘΘΘ · e−1

)]
. (7.43)

Comparing Eq. (7.41) with Eq. (7.34), we infer that although these equations are
similar, there are still some differences between them. Indeed, Eq. (7.34) includes
the vector invariant and the second principal invariant of the same tensor, whereas
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Eq. (7.41) includes the vector invariant and the second principal invariant of different
tensors. In addition, Eq. (7.41) contains the determinant of strain tensor e.

According to Eq. (7.43), the gravitating mass can be both positive and negative.
The question arises whether this is something contrary to common sense and ev-
eryday experience. To answer this question, first of all, we refer to the well-known
gravitational paradox. It consists in the fact that the Newtonian theory of gravitation
leads to infinite values of the gravitational potential. Within the framework of the
Newtonian theory of gravitation, models of the Universe free from the gravitational
paradox could be constructed only under the assumption that the average density of
matter in the Universe is equal to zero. We are not able to understand the deeper
physical reason of why negative masses could exist, because we live in the world
where all masses are positive. Nevertheless, the idea of matter with negative mass
is not new in physics. We can refer to Huang et al (2009); Wang (2014) that con-
struct models of metamaterials with negative mass, to experimental works (Tajmar
and Assis, 2015; Khamehchi et al, 2017) studying particles with negative mass, and
to cosmological theories (Farnes, 2018; Socas-Navarro, 2019) that use the concept
of negative-mass matter. In order to clarify our concept of negative mass, we note
that positive and negative mass can be distributed in the Universe in the same way
as the positive and negative charges are distributed in matter. The only difference is
that the characteristic size of regions containing only positive mass or only negative
mass is comparable to the size of galaxies.

7.9 Conclusions

In this paper, we discuss the mechanical analogies of the following quantities: the
electric field vector, the electric induction vector, the magnetic field vector, the mag-
netic induction vector, the electric current density, and the electric charge density.
We have obtained the set of differential equations that coincide with the following
ones: Maxwell’s equation with the displacement current, the Gauß law for electric
field and the charge conservation law. We have also obtained the modified Maxwell–
Faraday equation and the modified Gauß law for magnetic field. These equations
differ from the well-known ones by the presence of additional quantity VVV, which
is treated as the electric voltage density. In addition, we obtain the Gauß law for
gravitational field and introduce the concept of gravitating mass. Certainly, it is im-
possible to develop a theory of gravity within the framework of the model discussed
in this paper. To construct the theory of gravity, it is necessary not only to take into
account translational velocities, but also to consider a two-component model, which
includes the ether and the ponderable matter. The development of such a theory will
be the subject of further researches.

Acknowledgements The author is deeply grateful to M. B. Babenkov and E. N. Vilchevskaya for
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Chapter 8

Hierarchical Models of Conduction of Heat in

Continua Contained in Prismatic Shell-like

Domains

George Jaiani

Abstract We construct hierarchical models for the heat conduction in standard and
prismatic shell-like and rod-like 3D domains with non-Lipschitz boundary, in gen-
eral.

Key words: Hierarchical models, Heat conduction equations, Prismatic shell-like
and rod-like 3D domains with non-Lipschitz boundaries

8.1 Introduction

If the quantities, causing deformation and temperature, vary sufficiently slowly from
zero to their finite values and remain in such a state, then we have a steady process,
i.e., static process as t→∞. Therefore, displacements and temperature become in-
dependent of time and are functions only of the state. Thus, in the equation of con-
duction of Heat disappear derivatives with respect to time, in particular deformation
tensor velocity ε̇i j(x, t) ≡ 0. So, the governing system of thermoelasticity will be
split and after solving the independent BVPs for temperature change θ and substi-
tuting the found temperature change into governing system of thermoelasticity we
arrive at independent BVP of elasticity with the additional (caused by temperature)
member. In the theory of temperature stresses, which studies influence of heating
the body surfaces and heat sources on the stress state of body it is assumed that the
influence of ε̇kk involved in the equation of heat conduction on body deformation is
negligible (see Nowacki, 1975, pp. 90, 92, 93, 764).

Thus, for the above-mentioned and for analogous cases it is important to have
hierarchical models separately for the heat conduction in standard and prismatic
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shell-like and rod-like 3D domains with non-Lipschitz boundaries, in general, oc-
cupied by a continuum. In the present paper our purpose is to construct hierarchical
models for heat conduction in prismatic shell-like 3D domainsΩwith non-Lipschitz
boundaries, in general. To this and we use I. Vekua’s dimension redaction method
(Vekua, 1955, 1965, 1973, 1985). We have a definite experience of application of
this method, we have constructed hierarchical models: for micropolar elastic cusped
prismatic shells (Jaiani, 2016b), elastic prismatic shells with microtemperatures (Ja-
iani, 2015), piezoelectric viscoelastic Kelvin-Voigt prismatic shells with voids (Ja-
iani, 2018b) for prismatic shells with mixed conditions on face surfaces (Jaiani,
2016c), layered prismatic shells (Jaiani, 2016a). The above-mentioned hierarchi-
cal models we easily reformulate from elastic to thermoelastic if in the constitutive
relations, namely, in expression of stress tensor, to the right-hand side we add

−γTδi j, γ =
αE

1−2ν

with the linear thermal definition coefficient α.
Now, within the framework of the last hierarchical models we may consider the

states described at the beginning of the present section and handle them with the
way indicated there.

8.2 Governing System of Conduction of Heat

The conservation of energy equation has the form (see, e.g., Dautray and Lions
(1990, Chapter 1, Section 2, Subsection 6, Point 6.3 General Equations of Classi-
cal Thermoelasticity) and also Nowacki (1975, Chapter 3, Section 3.3; Section 3.4,
Point 4))

ρθ
ds
dt
+divq = f , θ := T (x, t)−T0, in Ω, (8.1)

provided the intrinsic energy is zero, where T0 is the absolute temperature in a nat-
ural state t = t0, T is the absolute temperature at the moment t, s is the specific
entropy, q(x, t) is the heat flux vector (with components qi in the considered refer-
ence frame, heat is crossing a unit element of fictitious surface ∂Ω passing through
x and perpendicular to a unit outward normal n. The passage being made in the
sense and direction of the vector q); here, it is the question of heat transmitted by
conduction of the interior of Ω, f (x, t) is density per unit volume defining a rate of
heat supplied by external elements in the medium under consideration, e.i., so called
"source" function is supposed to be given and is in fact zero in a certain number of
applications. Fourier’s law in the isotropic case looks like (see, e.g., Dautray and
Lions (1990, Chapter 1, Section 2, Subsection 6, Point 6.3 General Equations of
Classical Thermoelasticity)

q = −kgradθ, (8.2)

where k is the thermal conduction coefficient. In the steady case, from (8.1) we get
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divq = f . (8.3)

Now, about boundary conditions (BC):

(i) if the temperature T̄ is prescribed on a part at the boundary ∂ω, then we have

θ = T̄ −T0; (8.4)

(ii) if the flux of heat across a part of the boundary is imposed, then we have BC of
the type

−qini = q̄n given, (8.5)

which because of (8.2) becomes

∂θ

∂n
= ḡ given. (8.6)

Let the body occupy a prismatic 3D domain Ω with a non-Lipschitz boundary, in
general, and the upper and lower face surfaces of the prismatic 3D domain be given

by x3 =
(+)
h (x1, x2) and x3 =

(−)
h (x1, x2), respectively. Let further

2h (x1, x2) :=
(+)
h (x1, x2)− (−)

h (x1, x2) , (x1, x2) ∈ ω,
denote the thickness of the domain occupied by the body, ω is a projection of the
3D domain on the plane x3 = 0, a part of the boundary ∂ω is called a cusped edge if
2h = 0 there (see also the beginning of Sect. 3 of Jaiani, 2018b).

2̃h (x1, x2) :=
(+)
h (x1, x2)+

(−)
h (x1, x2) , (x1, x2) ∈ ω.

Substituting (8.2) into (8.3) we obtain the heat equation

−(k(x1, x2)θ, j ), j= f (8.7)

in the steady case.

8.3 Mathematical Moments

For the convenience of the reader we repeat the revelent material from Sect. 10 of
Jaiani (2018b). Let f (x1, x2, x3) be a given function in Ω having integrable partial
derivatives, let fr be its r-th order moment defined as follows

fr(x1, x2) :=

(+)
h (x1, x2)∫

(−)
h (x1, x2)

f (x1, x2, x3)Pr(ax3−b)dx3,



92 George Jaiani

where (see the end of Sect. 2 and the beginning of Sect. 3 of Jaiani, 2018b)

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

h̃(x1, x2)
h(x1, x2)

,

2h(x1, x2) =
(+)
h (x1, x2)− (−)

h (x1, x2) > 0,

2̃h(x1, x2) =
(+)
h (x1, x2)+

(−)
h (x1, x2) > 0,

and

Pr(τ) =
1

2rr!
dr(τ2−1)r

dτr
, r = 0,1, · · · ,

are the r-th order Legendre polynomials with the orhogonality property

+1∫
−1

Pm(τ)Pn(τ)dτ =
2

2m+1
δmn.

From here, substituting

τ = ax3−b =
2

(+)
h (x1, x2)− (−)

h (x1, x2)
x3−

(+)
h (x1, x2)+

(−)
h (x1, x2)

(+)
h (x1, x2)− (−)

h (x1, x2)
,

we have

(
m+

1
2

)
a

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pm(ax3−b)Pn(ax3−b)dx3 = δmn.

Using the well-known formulas of integration by parts (with respect to x3) and dif-
ferentiation with respect to a parameter of integrals depending on parameters (xα),
taking into account Pr(1) = 1, Pr(−1) = (−1)r, we deduce

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,3 dx3 = −a

(+)
h (x1, x2)∫

(−)
h (x1, x2)

P′r(ax3−b) f dx3+
(+)
f − (−1)r

(−)
f , (8.8)

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,α dx3 = fr,α−
(+)
f

(+)
h ,α+ (−1)r

(−)
f

(−)
h ,α
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−
(+)
h (x1, x2)∫

(−)
h (x1, x2)

P′r(ax3−b)(a,α x3−b,α ) f dx3, α = 1,2, (8.9)

where superscript prime means differentiation with respect to the argument ax3−b,
subscripts preceded by a comma mean partial derivatives with respect to the corre-

sponding variables,
(±)
f := f [x1, x2,

(±)
h (x1, x2)].Applying the following relations from

the theory of the Legendre polynomials (see e.g. Jaiani, 2018a, pp. 338-339)

P′r(τ) =
r∑

s=0

(2s+1)
1− (−1)r+s

2
Ps(τ) 1,

τP′r(τ) = rPr(τ)+P′r−1(τ) = rPr(τ)+
r−1∑
s=0

(2s+1)
1+ (−1)r+s

2
Ps(τ) 2, (8.10)

and, in view of a,α
a = (lna),α= − h,α

h ,
a,α
a b = h̃a,α , b,α= (̃ha),α , it is easily seen that

P′r(ax3−b)(a,α x3−b,α ) =
a,α
a

(ax3−b)P′r(ax3−b)+ (
a,α
a

b−b,α )P′r(ax3−b)

= −h,α h−1(ax3−b)P′r(ax3−b)− h̃,α h−1P′r(ax3−b)

= − r
aαrPr(ax3−b)−

r−1∑
s=0

r
aαsPs(ax3−b) 3, (8.11)

where

1 On the top of the symbol
∑

both r−1 and r are true since the last term equals zero.
2 On the top of the symbol

∑
both r−2 and r−1 are true since the last term equals zero.

3 The following relations are valid

r−1∑
s=0

(2s+1)
[

h,α+(−1)r+sh,α
2h

+
h̃,α−(−1)r+sh̃,α

2h

]
Ps(ax3 −b)

=

r−1∑
s=0

(2s+1)
2h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(+)
h ,α−

(−)
h ,α+

(+)
h ,α (−1)r+s − (−)

h ,α (−1)r+s

2

+

(+)
h ,α+

(−)
h ,α−

(+)
h ,α (−1)r+s − (−)

h ,α (−1)r+s

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠Ps(ax3 −b)

=

r−1∑
s=0

(2s+1)

(+)
h ,α−(−1)r+s

(−)
h ,α

2h
Ps(ax3 −b)

because of h =
(+)
h −

(−)
h

2 , h̃ =
(+)
h +

(−)
h

2 .
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r
aαr := r

h,α
h
,

r
aαs := (2s+1)

(+)
h ,α−(−1)r+s

(−)
h ,α

2h
, s � r. (8.12)

Now, bearing in mind (8.11) and (8.10), from (8.9) and (8.8) we have

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,α dx3

= fr,α+
r∑

s=0

r
aαs fs−

(+)
f

(+)
h ,α+ (−1)r

(−)
f

(−)
h ,α, α = 1,2, (8.13)

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,3 dx3 =

r∑
s=0

r
a3s fs+

(+)
f − (−1)r

(−)
f , (8.14)

respectively. Here
r
a3s := −(2s+1)

1− (−1)s+r

2h
, (8.15)

clearly,
r
a3r = 0. (8.16)

Let

f (x1, x2, x3) =
∞∑

r=0

a
(
r+

1
2

)
fr(x1, x2)Pr(ax3−b), (8.17)

then

(±)
f := f (x1, x2,

(±)
h (x1, x2)) =

∞∑
s=0

a
(
s+

1
2

)
fs(±1)s

=

∞∑
s=0

(±1)s(2s+1)
2h

fs, i = 1,3, (8.18)

whence

(+)
f − (−1)r

(−)
f = −

∞∑
s=0

r
a3s fs, i = 1,3, (8.19)

(+)
f

(+)
h ,α−(−1)r

(−)
f

(−)
h ,α=

∞∑
s=0

r
a∗αs fs, i = 1,3, α = 1,2, (8.20)

where
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r
a∗αs =

r
aαs, s � r,

r
a∗αr = (2r+1)

h,α
h
. (8.21)

Substituting (8.20) and (8.19) into (8.13) and (8.14), respectively, we get

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,α dx3 = fr,α+
r∑

s=0

r
aαs fs−

∞∑
s=0

r
a∗αs fs

= fr,α+
∞∑

s=r

r
bαs fs, (8.22)

where
r
b js := − r

a js, s > r;
r
b js = 0, s < r; (8.23)

r
bαr :=

r
aαr −

r
a∗αr = −(r+1)

(+)
h ,α−

(−)
h ,α

2h
,

r
b3r = − r

a3r = 0, (8.24)

and

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,3 dx3 =

r∑
s=0

r
a3s fs−

∞∑
s=0

r
a3s fs

= −
∞∑

s=r+1

r
a3s fs =

∞∑
s=r+1

r
b3s fs, (8.25)

respectively.

If
(+)
f and

(−)
f are known (prescribed), then from (8.13) and (8.14), correspond-

ingly, we obtain

(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,α dx3 = fr,α+
r∑

s=0

r
aαs fs

+
(+)
f

(+)
n α

√
1+ (

(+)
h ,1)2+ (

(+)
h ,2)2+ (−1)r

(−)
f

(−)
n α

√
1+ (

(−)
h ,1)2+ (

(−)
h ,2)2 (8.26)

and
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(+)
h (x1, x2)∫

(−)
h (x1, x2)

Pr(ax3−b) f ,3 dx3 =

r∑
s=0

r
a3s fs

+
(+)
f

(+)
n 3

√
1+ (

(+)
h ,1)2+ (

(+)
h ,2)2+ (−1)r

(−)
f

(−)
n 3

√
1+ (

(−)
h ,1)2+ (

(−)
h ,2)2, (8.27)

since

(±)
n α =

∓(±)
h ,α√

1+ (
(±)
h ,1)2+ (

(±)
h ,2)2

,
(±)
n 3 =

±1√
1+ (

(±)
h ,1)2+ (

(±)
h ,2)2

.

8.4 Construction of Hierarchical Models

To this end, applying Vekua’s dimension reduction method (Vekua, 1955, 1965,
1973, 1985), we multiply (8.1), (8.2), (8.4), and (8.6) by Pr(ax3 −b) and then inte-

grate within the limits
(−)
h (x1, x2) and

(+)
h (x1, x2). Using formulas (8.6), (8.7), (8.15),

and (8.18), we assume the heat flux vector normal component q(x, t,n) to be pre-
scribed on the face surfaces, while on the lateral boundary of the body we assume
to be hold either BC (8.4) or BC (8.6). Besides, we consider ρ = ρ(x1, x2) and by
calculations for temperature change θ on the face surfaces we employ (8.19), (8.20).

Thus, in the steady case: from (8.3), by virtue of (8.26), (8.27), we have

(+)
h∫

(−)
h

qk,kPr(ax3−b)dx3 =

(+)
h∫

(−)
h

qγ,γPr(ax3−b)dx3+

(+)
h∫

(−)
h

v3,3Pr(ax3−b)dx3

= qγr,γ +
r∑

s=0

r
aγsqγs− (+)

qγ
(+)
h,γ + (−1)r(−)

qγ
(−)
h,γ +

r∑
s=0

r
a3sq3s+

(+)
q3 − (−1)r(−)

q3

= qγr,γ +
r∑

s=0

r
aγsqγs+q(+)

n

√
1+

(+)
h,γ

(+)
h,γ + (−1)rq(−)

n

√
1+

(−)
h,γ

(−)
h,γ = fr, (8.28)

r = 0,1,2, ...,

because of

(±)
nγ =

∓
(±)
h,γ√

(±)
h,α

(±)
h,α+1

,
(±)
n3 =

±1√
(±)
h,α

(±)
h,α+1

from (8.2), provided k = k(x1, x2), by virtue of (8.22)-(8.24), we get
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qγr = k(x1, x2)

(+)
h (x1,x2)∫

(−)
h (x1,x2)

θ,γ (x1, x2, x3)Pr(ax3−b)dx3

= k(x1, x2)
[
θr,γ +

r∑
s=0

r
aγsθs−

(+)
θ

(+)
h,γ + (−1)r (−)

θ
(−)
h,γ
]

= k(x1, x2)
[
θr,γ +

r∑
s=0

r
aγsθs−

r∑
s=0

r
a∗γsθs

]

= k(x1, x2)
[
θr,γ +

∞∑
s=r

r
bγsθs

]

= k(x1, x2)hr+1(θ̄r),γ+
∞∑

s=r+1

r
bγshs+1θ̃s, (8.29)

γ = 1,2, r = 0,1,2, ...,

because of θr,γ +
r

bγrθr = hr+1(θ̃r),γ , θ̃r := θr
hr+1

q3r(x1, x2) = k(x1, x2)
[ r∑

s=0

r
a3sq3s+

(+)
θ + (−1)r (−)

θ
]

= k(x1, x2)
∞∑

s=r

r
b3sθs, r = 0,1,2, .... (8.30)

If we multiply by hr the last equality in (8.28), the obtained equation

hrqγr,γ +hr
r∑

s=0

r
aγsqγs+hr

r
Q = hr fr, r = 0,1, ..., (8.31)

where

r
Q := q(+)

n

√
1+

(+)
h,γ

(+)
h,γ + (−1)rq(−)

n

√
1+

(−)
h,γ

(−)
h,γ (8.32)

we can rewrite as

(hrqγr,γ+hr
r−1∑
s=0

r
aγsqγs+hr

r
Q = hr fr, r = 0,1, ..., (8.33)

because of

hrqγr,γ+hr r
aγrqγr = hrqγr,γ +hrr

h,γ
h
= (hrqγr),γ . (8.34)

Now, considering weighted moments
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q̃ jr :=
q jr

hr+1 , j = 1,3, θ̃r :=
θr

hr+1 (8.35)

from (8.33) we get the following equations

(h2r+1q̃γr),γ+hr
r−1∑
s=0

r
aγshs+1q̃γs+hr

r
Q = hr fr, (8.36)

γ = 1,2, r = 0,1, ...,

with respect to weighted moments q̃γr, inserting (8.29) into (8.33) we derive hit
equation in terms of weighted moments of θ:

[
k(x1, x2)h2r+1(x1, x2)θ̃r,γ

]
,γ+
[
k(x1, x2)

∞∑
s=r+1

r
bγshs+1θ̃s

]
,γ= fr, (8.37)

r = 0,1,2, ....

In other words we have rewritten heat equation (8.7) in terms of moments θ̃s, s = r,
r+1, .... If we neglect moments of order r > N, we get Nth order approximation, i.e.,
Nth hierarchical model of heat transfer with the following BCs in moments

θr = θ̄r, r = 0,1,2, ...,N, qnr = q̄nr, r = 0,1,2, ...,N, (8.38)

where θ̄r, q̄nr we calculate from prescribed θ̄ and q̄n after multiplying them by

Pr(ax3 − b) and then integrating within the limits
(−)
h (x1, x2) and

(+)
h (x1, x2). In the

case of cusped edges they should be calculated as limits from the inside of domain.
The last, according to (8.29) may be rewritten as weighted Neumann BC

khr+1 ∂θ̄r
∂n
= ḡr, r = 0,1, ...,N, (8.39)

Concentrated at point and at cusped edge (line) heat flux we define similar to defi-
nition of concentrated at point and at cusped edge (line) force (see Jaiani, 2008)

8.5 The N = 0 Approximation

In this case from (8.37)-(8.39) we get the following two BVPs:
Find θ0 ∈C2, satisfying equation[

k(x1, x2)h(x1, x2)θ̃0,γ
]
,γ= f0(x1, x2) (8.40)

under either BC
θ0 = θ̄0 (8.41)

or BC
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qn0 = q̄n0, i.e., kh
∂θ̃0
∂n
= ḡ0 (8.42)

with prescribed θ̄0 and ḡ0.

8.6 Case of Cusped Bodies

Let now, in the N = 0 approximation (model) consider the body Ω with the half-
thickness

h = h0xκ2, h0, κ = const > 0, (8.43)

whose projection ω on plane x3 = 0 is a strip

{(x,y) : −∞ < x < +∞, 0 < y < L, L = const > 0},
Eq. (8.40) will get the form:

xκ2(kθ̃0,1),1+ (kxκ2θ̃0,2),2 =
f0(x1, x2)

h0
.

First we assume k = k0 = const, then Eq. (8.40) looks like the following singular
differential equation

u,11+u,22+
κ

x2
u,2=

x−κ2

kh0
f0(x1, x2), (8.44)

i.e.,

x2Δu+ κu,2=
x1−κ

2

k0h0
f0(x1, x2). (8.45)

Let us consider the rectangular part of the cusped strip bounded by lines x= a, x= b,
a < b. From the main theorem (Jaiani, 1995) it immediately follows:

Theorem 8.1. If f0(x1, x2) ≡ 0, then for κ < 1 the Dirichlet Problem is well-posed,
i.e. the weighted temperature θ̃0 should be prescribed on the whole boundary ∂ω,
while for κ ≥ 1 the Keldysh Problem is well-posed, i.e., on the three non-cusped
edges of the rectangular boundary weighted temperature θ̃0 should be prescribed
but cusped edge y = 0, a < x < b should be left without BC, provided solution θ̃0 is
bounded.

Now, we consider particular case when θ̃0 = θ̃0(x2), f0 = f0(x2), k = k(x2) and
k(x2)h(x2) > 0 as x2 ∈]0,L], k(0)h(0) = 0, then the general solution of equation
(8.40), which takes the form of the following degenerate partial differential equa-
tion [

k(x2)h(x2)θ̃0,2(x2)
]
,2= f0(x2), (8.46)

has the form
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θ̃0(x2) = c1

x2∫
L

dτ
k(τ)h(τ)

+

x2∫
L

dτ
k(τ)h(τ)

τ∫
L

f0(t)dt+ c2. (8.47)

Whence, the Dirichlet problem is well-posed, i.e., the weighted temperature should
be prescribed on both the edges y = 0 and y = L if and only if

x0
2∫

0

dτ
k(τ)h(τ)

<∞, (8.48)

for Keldysh type problem we have the condition

x0
2∫

0

dτ
k(τ)h(τ)

= +∞, (8.49)

therefore, only at the edge y = L should be prescribed the weighted temperature
and the edge y = 0 should be freed from BC, provided we are looking for bounded
solutions, i.e. we have the Keldysh type BVP. Moreover, both the BVP we solve in
the explicit form under BCs

θ̃0(0) = ¯̃θ0, (8.50)

θ̃0(L) = ¯̃θL, (8.51)

in the case of the Dirichlet type BVP and under BC (8.51) in the case of the Keldysh
type BVP. The unique solutions have the form (8.47), where

c2 =
¯̃θ0, (8.52)

c1 =
[ 0∫

L

dτ
k(τ)h(τ)

]−1[ ¯̃θ0− ¯̃θL −
0∫

L

dτ
k(τ)h(τ)

τ∫
L

dt
k(t)h(t)

]

for the Dirichlet type BVP and with c1 = 0 and (8.52) for the Keldysh type BVP
(clearly in the particular case (8.43), when k(τ) = k0 � 0 we again obtain the condi-
tion κ < 1 for the Dirichlet Problem and the condition κ≥ 1 for the Keldysh problem).

The mixed BVP under BC (8.51) and the weighted Neumann condition (8.42)
has a unique explicit solution (8.47), where

c1 = ḡ0−
0∫

L

f0(t)dt− ¯̃θL,

c2 =
¯̃θL.

Indeed, from (8.42), bearing in mind (8.49) we obtain
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ḡ0 = c1+

0∫
L

f0(t)dt+ θ̃L.

8.7 Conclusions

Differential hierarchical models for the heat condition equation in prismatic shell-
like domains non-Lipschits, in general, are constructed and the peculiarities of set-
ting of boundary conditions in the case of cusped domains are discussed. These
results allow to investigate well-posedness of boundary value problems for ther-
moelastic bodies with non-Lipschits boundaries, in general when deformation and
temperature vary sufficiently slowly and the governing system of thermoelasticity
will be split into two independent BVPs for temperature and the deformed state of
the body.

The peculiarities of nonclassical setting of BCs when either the thickness, or ther-
mal conduction coefficient, or both ones vanish at the edge of prismatic shells are
discussed, criteria of setting the Dirichlet and Keldysh type BVPs are established.
Some concrete BVPs are solved in the explicit form.

In the N = 0 approximation a mixed BVP, when at non-cusped edge the weighted
temperature and at cusped edge the concentrated at edge heat flux are prescribed, is
solved.
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Chapter 9
Dynamic Sliding Contact for a Thin Elastic
Layer

Julius Kaplunov, Danila A. Prikazchikov, and Tomaž Savšek

Abstract The contribution is concerned with dynamics of a thin elastic layer, sub-
ject to sliding contact. Both one- and two-sided sliding contact are studied, revealing
the presence of the fundamental vibration modes. First, mixed boundary conditions
modelling two-sided sliding are addressed, allowing a factorisation of the disper-
sion relation. Then, the asymmetric problem of one-sided sliding contact is tackled,
with mixed conditions along the contact surface and prescribed normal stress on the
opposite face. Using symmetry, this problem is found to be related to that for a layer
of a double thickness, with classical boundary conditions in terms of stresses. In
this case, the fundamental mode of interest coincides with the zero-order Rayleigh-
Lamb symmetric wave. A long-wave low-frequency perturbation scheme is imple-
mented for the forced problem.
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9.1 Introduction

Usually, within the mathematical theories of thin plates and shells theories the face
boundary conditions are either traction-free or contain prescribed stresses, see e.g.
Goldenveizer et al (1979); Kaplunov et al (1998); Le (1999); Mikhasev and Tovstik
(2020). In case of layered structures, these boundary conditions are accompanied by
continuity conditions along the interfaces which often model a perfect contact, see
Belyaev et al (2019, 2021); Nolde et al (2004) and containing asymptotic treatments
for various material models. This type of boundary conditions supports fundamental
vibration modes over the low-frequency range.

At the same time, for both or one faces fixed only the high-frequency harmonics
may propagate, see e.g. Kaplunov (1995); Kaplunov and Nolde (2002); Kaplunov
et al (2005); Aghalovyan (2015), and also Nolde and Rogerson (2002); Rogerson
et al (2007); Lashhab et al (2015) dealing with pre-stressed elastic solids. The ex-
ception is a special setup of layered elastic structures with a strong vertical inho-
mogeneity, for which the lowest harmonics may also emerge in the low-frequency
region, see Prikazchikova et al (2020). In addition, we cite the observation of tran-
sition between the boundary conditions corresponding to fixed and free faces in
Moukhomodiarov et al (2010).

It is worth mentioning that the contact problems involve two limiting scenarios
for interaction between a coating layer and a half-space, which may be regarded as
"soft" and "stiff" contact. The first scenario is associated with plate bending, with
the layer being much stiffer than the substrate, see asymptotic analysis in Erbaş et al
(2018); Kaplunov et al (2019), whereas the second one corresponds to a Winkler-
Fuss foundation, see Kaplunov et al (2018); Kudish et al (2021) for classifications
of possible regimes. We also note an asymptotic consideration in Erbaş et al (2011),
as well as related problems in lubrication (Kudish et al, 2020) and nanoindentation
(Borodich, 2014; Borodich et al, 2019; Argatov and Mishuris, 2011, 2018), includ-
ing bio-mechanical applications, e.g. Argatov and Mishuris (2016) and references
therein.

An important sub-class of problems is concerned with sliding contact between
elastic solids, which has received relatively less attention compared to other types
of contact beginning with the perfect one, see references above. Among the con-
tributions analysing sliding contact we mention Barnett et al (1988); Darinskii and
Weihnacht (2005); Vinh and Ngoc Anh (2014). However, further insight into the
peculiarities of dynamic behaviour of thin layers subject to a sliding contact seems
to be of interest.

In this chapter, a simple manifestation of sliding contact is studied, including
both one-sided and two-sided sliding. It is revealed that even for an absolutely rigid
substrate, precluding vertical displacements of the layer, the fundamental vibration
modes may occur, however, the situations for one- and two-sided sliding are quite
different. For a two-sided sliding the transverse coordinate may be separated, see
e.g. a similar technique implemented for 3D edge waves (Kaplunov et al, 2005),
leading to straightforward factorisation of the dispersion relation. As for one-sided
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sliding, using symmetry, the problem is transformed to plane stress at long-wave
low-frequency limit.

The layout of the chapter is as follows. In Sect. 9.2 the problem for two-sided
sliding of elastic layer is treated. It is observed that for the fundamental mode the
problem is equivalent to plane-strain one. In Sect. 9.3 one-sided sliding is inves-
tigated. For traction-free upper face it is shown that the vibration phenomena is
governed by the classical Rayleigh-Lamb dispersion relation. A forced vibration
problem with the opposite side subject to prescribed normal stress is analysed in
more detail. It is demonstrated that the problem is reduced to transverse compres-
sion for a thin layer earlier treated in Kaplunov et al (1998). Leading order and
refined equations of motion are presented.

9.2 Two-Sided Sliding

Consider a thin elastic layer of thickness 2h, occupying the domain −∞< x1, x2 <∞,
−h ≤ x3 ≤ h. In absence of the body forces, the governing equations of motion are
conventionally given by

∂σi j

∂x j
= ρ

∂2ui

∂t2 , i, j = 1,2,3, (9.1)

with comma in the subscript denoting differentiation with respect to associated vari-
able, σi j and ui being the stress tensor and displacement components, respectively,
and ρ standing for the volume mass density. The constitutive relations of linear
isotropic elasticity are taken in standard form as

σi j =
E

2(1+ ν)

[
2ν

1−2ν
δi j

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
+

(
∂ui

∂x j
+
∂u j

∂xi

)]
, (9.2)

where E and ν are the Young’s modulus and the Poisson’s ratio, respectively. The
mixed boundary conditions on the faces x3 = ±h, considered in this section, are
written as

u3 = σ13 = σ23 = 0, (9.3)

corresponding to motion of sliding type, see Fig. 9.1.
It is known that the transverse variable x3 may be separated as

Fig. 9.1 Schematic of a slid-
ing layer.
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up = Up(x1, x2, t)cos(Λnx3) , u3 = U3(x1, x2, t) sin(Λnx3) , p = 1,2, (9.4)

so that the boundary conditions (9.3) are satisfied automatically. In above

Λn =
Ωn

h
, Ωn = nπ, n = 0,1,2,3, . . . , (9.5)

corresponding to thickness resonance frequencies. In view of (9.4), the equations of
motion (9.1), rewritten in terms of displacements, take the form

γ2 ∂
2U1

∂x2
1

+
∂2U1

∂x2
2

−Λ2
nU1+

(
γ2−1

) ( ∂2U2

∂x1∂x2
+Λn

∂U3

∂x1

)
=

1
c2

2

∂2U1

∂t2 ,

∂2U2

∂x2
1

+γ2 ∂
2U2

∂x2
2

−Λ2
nU2+

(
γ2−1

) ( ∂2U1

∂x1∂x2
+Λn

∂U3

∂x2

)
=

1
c2

2

∂2U2

∂t2 , (9.6)

∂2U3

∂x2
1

+
∂2U3

∂x2
3

−γ2Λ2
nU3−Λn

(
γ2−1

) (∂U1

∂x1
+
∂U2

∂x2

)
=

1
c2

2

∂2U3

∂t2 ,

where

γ =
c1

c2
=

√
2−2ν
1−2ν

, (9.7)

with

c1 =

√
E(1− ν)

(1+ ν)(1−2ν)ρ
, c2 =

√
E

2(1+ ν)ρ
(9.8)

denoting the conventional longitudinal and transverse wave speeds, respectively.
Next, we adopting the ansatz of travelling harmonic waves

Ui = Aieik(n1 x1+n2 x2−ct), i = 1,2,3, (9.9)

where k is wave number, and n = (n1,n2) is a 2D unit vector associated with wave
propagation in (x1, x2) plane. Now, substituting (9.9) into (9.6), from solvability of
the resulting algebraic system in A1, A2 and A3 we deduce the dispersion relation in
the form (

k2c2− c2
1(k2+Λ2

n)
) (

k2c2− c2
2(k2+Λ2

n)
)
= 0. (9.10)

Introducing the dimensionless wave number K, speed C and frequency Ω as

K = kh, C =
c
c2
, Ω = KC, (9.11)

the relation (9.10) transforms to(
Ω2−γ2(K2+Ω2

n)
)
(Ω2− (K2+Ω2

n)) = 0. (9.12)
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It may be observed that the dispersion branches originate from the two families of
thickness resonance frequencies, namely the thickness shear Ω = Ωn and thickness
stretch frequencies Ω = γΩn, following from (9.12) on setting K = 0.

The dispersion curves illustrating the relation (9.12) are shown in Fig. 9.2, for the
Poisson’s ratio ν = 0.25. The branches associated with thickness shear frequencies
are depicted by solid lines, whereas the ones related to thickness stretch frequencies
are presented as dotted lines. Clearly, since γ > 1, there are fewer dotted curves than
solid ones over in the illustrated frequency domain.

Note that in case of the first mode (n = 0) the problem degenerates, implying
Ωn = 0, hence, as follows from (9.4), u3 = 0, and equations (9.6) become

γ2 ∂
2U1

∂x2
1

+
∂2U1

∂x2
2

+
(
γ2−1

) ∂2U2

∂x1∂x2
=

1
c2

2

∂2U1

∂t2 , (9.13)

∂2U2

∂x2
1

+γ2 ∂
2U2

∂x2
2

+
(
γ2−1

) ∂2U1

∂x1∂x2
=

1
c2

2

∂2U2

∂t2 , (9.14)

with the problem being equivalent to plane-strain formulation. Thus, for frequencies
below the first thickness shear resonance (Ω < Ω1), the branches demonstrate non-
dispersive behaviour.

9.3 One-Sided Sliding

In this section we deal with one-sided sliding for an elastic layer occupying the
domain −∞ < x1, x2 <∞, 0 ≤ x3 ≤ h, with boundary conditions taking the form

σ13 = σ23 = σ33 = 0, at x3 = h, (9.15)
σ13 = σ23 = 0, u3 = 0, at x3 = 0. (9.16)

Fig. 9.2 Dispersion curves
corresponding to relation
(9.12) for ν = 0.25.
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In view of the symmetry it may be observed that the problem is closely related to
symmetric motions of a layer of double thickness −h ≤ x3 ≤ h with traction-free
faces, for which the conditions (9.16) are satisfied on the middle surface. There-
fore, the dispersion relation will be the conventional symmetric Rayleigh-Lamb one
(Rayleigh, 1888; Achenbach, 1973). In this case, the fundamental mode corresponds
to classical theory for plate extension within leading order of the long-wave low-
frequency approximation, see Kaplunov et al (1998).

Below, we consider in greater detail the associated forced vibration problem,
which appears to be relevant for various applications, with the transverse loading
imposed on the upper face.

σ13 = σ23 = 0, σ33 = P, at x3 = h, (9.17)

and the same boundary conditions (9.16) along the sliding contact surface x3 = 0.
Here P = P(x1, x2, t) is a prescribed loading, see Fig. 9.3.

In view of the symmetry of the problem, it may be reformulated. It is possible to
add a fictitious domain −h ≤ x3 ≤ 0, and prescribe a symmetrical loading at x3 = −h
as

σ13 = σ23 = 0, σ33 = P, at x3 = −h. (9.18)

Then, it would be possible to modify the results presented in Kaplunov et al
(1998) for a refined asymptotic theory for transverse compression of a plate. We
introduce the dimensionless variables

ξi =
xi

λ
, ζ =

x3

h
, (9.19)

and a small parameter associated with the long-wave limit

ε =
h
λ
� 1, (9.20)

with λ denoting the typical wave length. Then, the asymptotic expansions for the
components of the displacement and stress fields demonstrate polynomial depen-
dence on ζ, i.e.

Fig. 9.3 Schematic: trans-
verse compression of a sliding
layer.

P
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ui = λ
[
u(0)

i + ε
2
(
ζ2u(1)

i +U(1)
i

)]
,

u3 = λεζ
[
u(0)

3 + ε
2
(
ζ2u(1)

3 +U(1)
3

)]
,

σii = E
[
σ(0)

ii + ε
2
(
ζ2σ(1)

ii +S (1)
ii

)]
, (9.21)

σi j = E
[
σ(0)

i j + ε
2
(
ζ2σ(1)

i j +S (1)
i j

)]
,

σ3i = Eε3ζ
[
ζ2σ(0)

3i +S (0)
3i

]
,

σ33 = E
[
σ(0)

33 + ε
2
(
ζ2σ(1)

33 +S (1)
33

)]
,

Here and below 1 ≤ i � j ≤ 2, and quantities with brackets in the superscript are
assumed independent of the transverse variable.

At leading order, using the equations of motion (9.1) and the constitutive relations
(9.2), we have

σ(0)
33 =

P
E
, (9.22)

σ(0)
ii =

1
1− ν2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂u(0)
i

∂ξi
+ ν

∂u(0)
j

∂ξ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠+ ν

1− ν
P
E
, (9.23)

σ(0)
i j =

1
2(1+ ν)

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂u(0)
i

∂ξ j
+
∂u(0)

j

∂ξi

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (9.24)

∂σ(0)
ii

∂ξi
+
∂σ(0)

i j

∂ξ j
− 1

2(1+ ν)
∂2u(0)

i

∂τ2 = 0, (9.25)

σ(0)
3i +S (0)

3i = 0, (9.26)

u(0)
3 = σ

(0)
33 − ν

(
σ(0)

ii +σ
(0)
j j

)
. (9.27)

On substituting (9.23) and (9.24) into (9.25), we deduce

E
(

1
1− νgraddivu(0)+

1
1+ ν

Δu(0)
)
−2ρ

∂2u(0)

∂t2 = − 2ν
1− νgrad P, (9.28)

where grad, div and Δ are standard two-dimensional gradient, divergence and
Laplace operators in x1, x2, and u(0) is the leading order approximation for the in-
plane displacement field u(0) = λ

(
u(0)

1 ,u(0)
2

)
. In addition, (9.27) may be rewritten as

u(0)
3 =

(1−2ν)(1+ ν)
1− ν

P
E
− ν

1− ν

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂u(0)
i

∂ξi
+
∂u(0)

j

∂ξ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (9.29)

At next order,
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u(1)
i = −

1
2

∂u(0)
3

∂ξi
,

σ(1)
33 =

1
4(1+ ν)

∂2u(0)
3

∂τ2 ,

σ(1)
33 +S (1)

33 = 0,

σ(1)
ii =

1
1− ν2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂u(1)
i

∂ξi
+ ν

∂u(1)
j

∂ξ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠+ ν

1− ν σ
(1)
33 ,

S (1)
ii =

1
1− ν2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂U(1)
i

∂ξi
+ ν

∂U(1)
j

∂ξ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠+ ν

1− ν S (1)
33 ,

σ(1)
i j =

1
2(1+ ν)

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂u(1)
i

∂ξ j
+
∂u(1)

j

∂ξi

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (9.30)

S (1)
i j =

1
2(1+ ν)

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂U(1)
i

∂ξ j
+
∂U(1)

j

∂ξi

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
σ(0)

3i = −
1
3

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂σ(1)
ii

∂ξi
+
∂σ(1)

i j

∂ξ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠+ 1
6(1+ ν)

∂2u(1)
i

∂τ2 , ,

S (0)
3i = −

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂S (1)
ii

∂ξi
+
∂S (1)

i j

∂ξ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠+ 1
2(1+ ν)

∂2U(1)
i

∂τ2 ,

u(1)
3 = σ

(1)
33 − ν

(
σ(1)

ii +σ
(1)
j j

)
, ,

U(1)
3 = S (1)

33 − ν
(
S (1)

ii +S (1)
j j

)
.

Using (9.30), we deduce from (9.30), (9.30), (9.31) and (9.31)
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σ(1)
ii =

1
4(1− ν2)

⎛⎜⎜⎜⎜⎜⎜⎝ν∂2u(0)
3

∂τ2 −2
∂2u(0)

3

∂ξ2
i

−2ν
∂2u(0)

3

∂ξ2
j

⎞⎟⎟⎟⎟⎟⎟⎠ ,
σ(1)

i j = −
1

2(1+ ν)

∂2u(0)
3

∂ξi∂ξ j
(9.31)

σ(0)
3i =

1
12(1− ν2)

⎛⎜⎜⎜⎜⎜⎜⎝2∂3u(0)
3

∂ξ3
i

+2
∂3u(0)

3

∂ξi∂ξ
2
j

− ∂3u(0)
3

∂ξi∂τ2

⎞⎟⎟⎟⎟⎟⎟⎠ ,
u(1)

3 =
1−2ν

4(1− ν)
∂2u(0)

3

∂τ2 −
ν

2(1− ν)

⎛⎜⎜⎜⎜⎜⎜⎝∂2u(0)
3

∂ξ2
i

+
∂2u(0)

3

∂ξ2
j

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where u(0)

3 is defined in (9.29).
On substituting (9.32) and (9.31) into (9.26), and using (9.28), we obtain the

refined 2D equation for the two-term approximate displacement

u ≈ λ
(
u(0)

1 +ε
2U(1)

1 , u(0)
2 +ε

2U(1)
2

)
, (9.32)

namely

E
(

1
1− νgraddivu+

1
1+ ν

Δu
)
−2ρ

∂2

∂t2

[
u− ν2

3(1− ν)2 h2graddivu
]

= grad
[
1
3

h2ΔP− 2ν
1− ν P− (1+ ν)(1−2ν)(1−3ν)

3(1−3ν)2E
ρh2 ∂

2P
∂t2

]
. (9.33)

This equation may be recognised as that of the refined plane-stress state, arising in
the case of transverse compression, see Kaplunov et al (1998). It contains correc-
tions to both 2D inertia of the layer and the expression of the external loading. It
is remarkable that transverse compression is usually not a feature of engineering
plate models. It also should be noted that at vanishing Poisson’s ratio (ν = 0) the last
equation reduces to

E
(
graddivu+Δu

)−2ρ
∂2u
∂t2 =

h2

3

[
Δ − ρ

E
∂2

∂t2

]
grad P, (9.34)

where the left hand side corresponds to the leading order equation, whereas the right
hand is two orders of magnitude smaller than the loading term in equation (9.28).

The analysis in this chapter helps to further interpret the results for a thin plate
supported by a relatively soft Winkler foundation presented in Erbaş et al (2018,
2021). In the latter case, a bending mode arises, demonstrating veering with the
extensional mode, which is very similar to that analysed within the consideration
above. Such interaction restricts considerably the range of validity of the famous
2D engineering model of an elastically supported Kirchhoff plate.
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9.4 Concluding Remarks

In this chapter, elastodynamics of a thin layer subject to sliding contact has been
studied, revealing that the fundamental symmetric vibration modes are supported. It
has been demonstrated that for one- and two-sided sliding, the fundamental modes
correspond to the Rayleigh-Lamb dispersion relation for a layer of double thickness
with traction-free faces, and to longitudinal and shear bulk waves, respectively.

The results of asymptotic analysis of a forced problem for the one-sided sce-
nario with prescribed normal stress along the upper face are presented. In particular,
a refined long-wave low-frequency 2D equation on the surface of contact, earlier
derived for transverse compression of a thin layer, is adapted.

The proposed approach may be developed further to incorporate more gen-
eral types of contact, as well as take into consideration curvature, the effect of
edge boundary conditions, and also more advanced material properties, including
anisotropy, pre-stress and viscosity.
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Erbaş B, Kaplunov J, Nobili A, Kılıç G (2018) Dispersion of elastic waves in a layer interacting
with a winkler foundation. The Journal of the Acoustical Society of America 144(5):2918–2925
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Chapter 10
Analytical Approach to the Derivation of the
Stress Field of a Cylindrical Shell with a
Circular Hole under Axial Tension

Stanislava V. Kashtanova and Alexey V. Rzhonsnitskiy

Abstract A new analytical approach to the stress field problem of the cylindrical
shell with a circular cutout under axial tension is proposed. Classical models be-
cause of an expansion into small parameter have narrow range of applicability and
almost do not differ from Kirsch case for plate. The new approach opens up opportu-
nities for the analytical study of the stress field. The idea is to decompose each basis
function into a Fourier series by separating the variables, which allows us to obtain
an infinite system of algebraic equations for finding coefficients. One of the impor-
tant steps of the study is that the authors were able to prove which of the equations
of the system is a linear combination of several others. Excluding it made it possible
to create a reduced system for finding unknown coefficients. The proposed approach
does not impose mathematical restrictions on the values of the main parameter that
characterizes the cylindrical shell.

Key words: Cylindrical Shell, Circular cutout, Elasticity theory

10.1 Introduction

In this paper1, we propose a new analytical approach to the derivation of the stresses
of a cylindrical shell with a circular hole under tension along forming axis. The state-

Stanislava V. Kashtanova
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Russian
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ment of the problem and the solution by the method of decomposition in the small
parameter belongs to Lurie (1946). This parameter β characterizes the ratio of the
radius of the hole, the thickness of the shell and the radius of curvature. Later, in
the mid-1960s-70s, a surge of interest in this problem occurred not only among So-
viet researchers, but also among foreign scientists who found an error in setting the
boundary conditions at the boundary of a circular hole. Some of them reconsidered
it by the same method (Houghton, 1961; Naghdi and Eringen, 1965; Pirogov and
Iumatov, 1968; Murthy, 1969), others by numerical method of collocation (Eringen
et al, 1965; Lekkerkerker, 1965; van Dyke, 1965). However, the proposed analytical
approach was extremely cumbersome and worked for a very small range of values
of the parameter β, which differed a little from the plane Kirsch problem, and the
results obtained by the collocation method differed (Kashtanova et al, 2021). There
were also attempts to solve this problem using the energy method (Pirogov and
Iumatov, 1968; Adams, 1971) and the method of complex variables for arbitrary
holes (Chekhov and Zakora, 1972; Hu et al, 1998). The resources of the consid-
ered methods have exhausted themselves without providing a convenient solution
but no alternative methods have yet been proposed. Follow-up works rely on com-
puter modelling, in particular, based on the finite element method (Yu et al, 2015;
Chowdhury et al, 2016; Celebi et al, 2017; Storozhuk et al, 2018; Russo et al, 2019).

However, until now, the relevance and applicability of this problem remain high
(Wu and Mu, 2003; Oterkus et al, 2007; Zhuang et al, 2015; Ray-Chaudhuri and
Chawla, 2018), especially in the field of the aviation industry. And the analytical
solution for the stress field in the hole area can give an impetus to the fundamental
study of the issues of fracture and stability. This paper presents a new idea that
makes it easy to find numerical values of stresses and opens up prospects for their
analytical study. In this way, there are no mathematical restrictions on the values
of the parameter β as it was before. In this paper, special attention is paid to the
technique of solving the problem and a strict mathematical formulation.

10.2 Problem Formulation

We consider a cylindrical shell with a circular hole under tension p applied at infinity
along forming axis x. The following symbols are used: parameter

β2 = r2
0

√
3(1− ν2)
4Rh

,

where r0 – the radius of the hole (without belittling the generality, we can take r0 as
a unit of measurement, i.e. r0 = 1), R,h – the radius of curvature and the thickness
of the shell, respectively, ν – Poisson’s ratio. Parameter β is the main parameter
responsible for the ratio of geometric parameters, including the curvature of the
shell.
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Note that the limiting case for β→ 0 leads us to the Kirsch problem. As it offered
in Lurie (1946) we also introduce the function

Φ =
Eh

8β2R
w− iU,

which depends on the deflection w and the stress function U. The relationship be-
tween the effort T and the function U is given as follows

(
Tx Txy
Txy Ty

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂2U
∂y2 − ∂

2U
∂x∂y

− ∂
2U

∂x∂y
∂2U
∂y2 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The stress of the median surface of the thin shell is σ = T/h.

It is shown in Lurie (1946), Guz (1974), that the system of shell equilibrium
equations reduces to the following equation

ΔΔΦ+8iβ2 ∂
2Φ

∂x2 = 0. (10.1)

The full problem statement is to find a function that satisfies equation (10.1) and
next boundary conditions

• at infinity
Tx = p, Txy = 0, Ty = 0, w = 0; (10.2)

• at the boundary of a circular hole in the polar coordinate system (r,ϑ)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Trr |r=r0 = 0,
Trϑ|r=r0 = 0,
Mr |r=r0 = 0,
Qr |r=r0 = 0.

(10.3)

Here Mr is the moment, Qr is the generalized boundary condition on a free edge
(Lurie, 1946).

10.3 Solution

Despite the fact that the method for solving equation (10.1) is well known (Lurie,
1946; Naghdi and Eringen, 1965; Pirogov and Iumatov, 1968; Murthy, 1969; Guz,
1974; Kashtanova et al, 2021), some technical details were not given due attention.
Consider two commuting linear operators

L1 =

(
Δ−2iα

∂

∂x

)
and L2 =

(
Δ+2iα

∂

∂x

)
,
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where α = (1+ i)β. Then Eq. (10.1) can be written as

L1L2Φ = 0⇔Φ ∈ KerL1L2.

That is, the problem is reduced to finding the kernel of the product L1L2. From the
fact that the operators commute, it follows that

KerL1+KerL2 ⊂ KerL1L2.

Finding the solutions of the equations L1Φ = 0 and L2Φ = 0 separately with the
subsequent possibility of finding their sum greatly simplifies the solution of the
original equation, since lowers its order. However, it is important to note that the
sum of kernels KerL1 +KerL2 does not coincide with the set of all solutions of
equation (10.1), which can lead to the loss of solutions. Therefore, this method can
be used to prove the existence of a solution and find it constructively, but the study
of uniqueness should be carried out separately.

By replacing and separating variables, it is easy to establish (Lurie, 1946; Guz,
1974) that the solutions of L1,2Φ = 0 are functions e±iαxH(1)

n (αr)e±inϑ, where n ∈ Z+.
The choice of Hankel functions in the construction of the solution is due to the fact
that these are the only Bessel functions that tend to zero at an infinitely distant
complex point (Watson, 1945):

lim
ρ→+∞H(1)

n (ρeiϕ) = lim
ρ→+∞H(2)

n (ρe−iϕ) = 0, ϕ ∈ [ε;π−ε].

Since α = (1+ i)β has the argument π/4 ∈ [ε;π−ε], functions e±iαxH(2)
n (αr)e±inϑ ob-

viously do not satisfy the boundary conditions, since the deflection w � 0 at infinity.
At the same time, guided by Watson (1945), we can deduce that

|e±iαxH(1)
n (αr)e±inϑ| ≤ C̃√

r
e−βr(1−|cosϑ|).

Note that the first three boundary conditions of system (10.2) are set not with respect
to the function U, but with respect to its second derivatives. Therefore, it is necessary
to make sure that not only the potential, but also the stresses tend to zero at large r.
This is true, since it follows from the recurrence relations for the Bessel functions
(Watson, 1945) that

∂

∂r

(
e±iαxH(1)

n (αr)e±inϑ
)

is a linear combination of functions of the same type e±iαxH(1)
m (αr)e±inϑ. Moreover,

calculations show that
1
r
∂

∂ϑ

(
e±iαxH(1)

n (αr)e±inϑ
)

is a linear combination of functions

e±iαxH(1)
n (αr)e±inϑ and

e±iαxH(1)
n (αr)e±inϑ

r
.
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Thus, the solution e±iαxH(1)
n (αr)e±inϑ satisfies all boundary conditions at infinity.

Using trigonometric form for e±iαxH(1)
n (αr)e±inϑ and taking into account the cir-

cular hole symmetry we get that the solution of the problem (10.1)-(10.3) is possible
to find in following form for even and odd n (Lurie, 1946; Chowdhury et al, 2016):

Φ = −i
py2

2
+

∞∑
n=0

(An+ iBn)
[

cos(αx) ·H(1)
n (αr) · cos(nϑ)

sin(αx) ·H(1)
n (αr) · cos(nϑ)

]
. (10.4)

The function Φ is the solution of the equation of mathematical physics (10.1), while
Φ satisfies the boundary conditions (10.2). It remains only to find the coefficients
An and Bn from the boundary conditions (10.3). Namely at this step the authors of
previous works faced the greatest difficulties (for more information, see Kashtanova
et al, 2021). Therefore, the main content part of the present paper is the method of
searching for unknown coefficients.

10.4 New Approach

The main idea is to separate the variables r and ϑ in each basic function. Only in
contrast to Lurie (1946), to achieve this goal, an expansion in the trigonometric
Fourier series is proposed. The known Laurent series expansion e

(
z
2 (t− 1

t )
)

(Watson,
1945) of

e
z
2 (t− 1

t ) =

∞∑
m=−∞

tmJm(z)

for eiαxeinϑ leads us to

eiαxeinϑ = e
β(1+i)r

2

(
2i eiϑ+e−iϑ

2

)
einϑ = e

β(1+i)r
2

(
ieiϑ− 1

ieiϑ

)
einϑ

=

⎛⎜⎜⎜⎜⎜⎝ ∞∑
m=−∞

(
ieiϑ
)m

Jm((1+ i)βr)

⎞⎟⎟⎟⎟⎟⎠einϑ

=

∞∑
m=−∞

imei(n+m)ϑJm((1+ i)βr)

=

∞∑
m=−∞

ik−nJk−n((1+ i)βr)eikϑ =

∞∑
m=−∞

(−i)k−nJn−k((1+ i)βr)eikϑ

Replacing n with ˘n results in

eiαxe−inϑ =

∞∑
m=−∞

ik+nJk+n((1+ i)βr)eikϑ

If we add both equalities obtained, we get
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eiαx
(
einϑ+ e−inϑ

)
=

∞∑
m=−∞

[
(−i)k−nJn−k((1+ i)βr)+ ik+nJk+n((1+ i)βr)

]
eikϑ

Now we can replace α by ˘α in the last formula and add both equalities for even n,
and for odd n subtract the other from one:

cosαx · cosnϑ =
1
4

(
eiαx + e−iαx

) (
einϑ+ e−inϑ

)
= (−1)n/2Jn((1+ i)βr)

+

∞∑
l=1

(−1)l+(n/2)(Jn−2l((1+ i)βr)+ Jn+2l((1+ i)βr))cos2lϑ

sinαx · cosnϑ =
1
4i

(
eiαx − e−iαx

) (
einϑ+ e−inϑ

)
= (−1)(n−1)/2Jn((1+ i)βr)

+

∞∑
l=1

(−1)l+((n−1)/2)(Jn−2l((1+ i)βr)+ Jn+2l((1+ i)βr))cos2lϑ

As a result, even and odd basis functions can be written in one general formula[
cos(αx) ·H(1)

n (αr) · cosnϑ
sin(αx) ·H(1)

n (αr) · cosnϑ

]
= fn(r,ϑ) = (−1)

[
n
2

]H(1)
n ((1+ i)βr)

H(1)
n ((1+ i)β)

[Jn((1+ i)βr)

+

∞∑
l=1

(−1)l(J(n+2l)((1+ i)βr)+ J(n−2l)((1+ i)βr))cos2lϑ],

(10.5)
where

[
n
2

]
is an integer part of the number. In the denominator a normalizing factor

H(1)
n ((1+ i)β) is introduced. The latter is done so that the numerical values of the

unknown coefficients have moderate values, with which it is convenient to work.
Further, for convenience, we introduce the notation for the Fourier coefficients in

the trigonometric expansion of the basis function g(r,n, l):

g(r,n, l) = (−1)
[

n
2

]
+l H(1)

n ((1+ i)βr)

H(1)
n ((1+ i)β)

(Jn+2l((1+ i)βr)+ Jn−2l((1+ i)βr))

with n = 0,1, . . . ,∞, l = 0,1, . . . ,∞. Then (10.5) takes the form

fn(r,ϑ) =
g(r,n,0)

2
+

∞∑
l=1

g(r,n, l)cos2lϑ. (10.6)

Now solution (10.4) can be written as

Φ(r,ϑ) = −i
py2

2
+

∞∑
n=0

(an+ ibn) fn(r,ϑ) (10.7)
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That is convenient for substitution into the boundary conditions (10.3).

10.5 Boundary Conditions

First boundary condition σrr = 0 in polar coordinates

L1(U) =L1(−ImΦ) = 0, L1 =
1
r2

∂2

∂ϑ2 +
1
r
∂

∂r

leads us to the equation

p
2
+

p
2

cos2ϑ− Im
∞∑

n=0

(an+ ibn)

⎛⎜⎜⎜⎜⎜⎜⎝g′(r,n,0)
2

+

∞∑
l=1

(−4l2g(r,n, l)+g′(r,n, l))cos2lϑ

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

(10.8)
The cosine coefficients give us the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos0 :
p
2
− Im

∞∑
n=0

(an+ ibn) · g
′(r,n,0)

2
= 0

cos2ϑ :
p
2
+ Im

∞∑
n=0

(an+ ibn) · (4g(r,n,1)−g′(r,n,1)
)
= 0

cos4ϑ : Im
∞∑

n=0

(an+ ibn) · (16g(r,n,2)−g′(r,n,2)
)
= 0

. . .

cos2lϑ : Im
∞∑

n=0

(an+ ibn) ·
(
4l2g(r,n, l)−g′(r,n, l)

)
= 0

(10.9)

Second boundary condition σrϑ = 0

L2(U) =L2(−ImΦ) = 0, L2 =
1
r2

∂

∂ϑ
− 1

r
∂2

∂r∂ϑ

give us

− p
2

sin2ϑ− Im
∞∑

n=0

(an+ ibn)2
∞∑

l=1

l · (g′(r,n, l)−g(r,n, l)) sin2lϑ = 0. (10.10)

The sine coefficients are:
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sin2ϑ : − p
2
− Im

∞∑
n=0

2(an+ ibn) · (g′(r,n,1)−g(r,n,1)) = 0

sin4ϑ : −Im
∞∑

n=0

4(an+ ibn) · (g′(r,n,2)−g(r,n,2)
)
= 0

. . .

sin2lϑ : −Im
∞∑

n=0

2l(an+ ibn) · (g′(r,n, l)−g(r,n, l)
)
= 0

(10.11)

From the third boundary condition Mrr = 0

L3(ReΦ) = 0, L3 = −D
(
∂2

∂r2 +
ν

r
∂

∂r
+
ν

r2
∂2

∂ϑ2

)
, D =

Eh3

12(1− ν2)
,

where E – Young modulus and ν - Poisson ratio, we get

Re
∞∑

n=0
(an+ ibn)⎛⎜⎜⎜⎜⎜⎜⎝g′′(r,n,0)

2
+ ν

g′(r,n,0)
2

+

∞∑
l=1

[g′′(r,n, l)+ ν(g′(r,n, l)−4l2g(r,n, l))]cos2lϑ

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

(10.12)
The cosine coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos0 : Re
∞∑

n=0

(an+ ibn) · νg
′(r,n,0)+g′′(r,n,0)

2
= 0

cos2ϑ : Re
∞∑

n=0

(an+ ibn) · (−4νg(r,n,1)+ νg′(r,n,1)+g′′(r,n,1)
)
= 0

cos4ϑ : Re
∞∑

n=0

(an+ ibn) · (−16νg(r,n,2)+ νg′(r,n,2)+g′′(r,n,2)
)
= 0

. . .

cos2lϑ : Re
∞∑

n=0

(an+ ibn) ·
(
−4l2νg(r,n, l)+ νg′(r,n, l)+g′′(r,n, l)

)
= 0

(10.13)

From the fourth boundary condition Q∗r = 0

L4(ReΦ) = 0, L4 = −D
(
∂

∂r
Δ+ (1− ν)1

r
∂

∂r
1
r
∂

∂ϑ2

)
, Δ =

∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂ϑ2

we find
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Re
∞∑

n=0

(an+ ibn)
[−g′(r,n,0)+g′′(r,n,0)+g′′′(r,n,0)

2

+

∞∑
l=1

[
4l2(3− ν)g(r,n, l)− (1+4l2(2− ν))g′(r,n, l)

+g′′(r,n, l)+g′′′(r,n, l)
]
cos2lϑ)

]
= 0.

(10.14)

The cosine coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos0 : Re
∞∑

n=0

(an+ ibn) ·
(−g′(r,n,0)+g′′(r,n,0)+g′′′(r,n,0)

2

)
= 0

cos2ϑ : Re
∞∑

n=0

(an+ ibn) · (4(3− ν)g(r,n,1)

−(9−4ν)g′(r,n,1)+g′′(r,n,1)+g′′′(r,n,1)) = 0

cos4ϑ : Re
∞∑

n=0

(an+ ibn) · (16(3− ν)g(r,n,2)

−(33−16ν)g(r,n,2)+g′′(r,n,2)+g′′′(r,n,2)) = 0

. . .

cos2lϑ : Re
∞∑

n=0

(an+ ibn) · (4l2(3− ν)g(r,n, l)

−(1+4l2(2− ν))g′(r,n, l)+g′′(r,n, l)+g′′′(r,n, l)) = 0
(10.15)

10.6 System Investigation

In the second pair of systems (10.13)–(10.15), the expressions under the sum sign
can be multiplied by i. Then all the equations of the four systems will include only
the imaginary part of the sum. From all the systems obtained, we compose a general
linear system with an infinite number of unknowns and equations. Firstly, let us do
some elementary transformations:

1. for l > 1, the equations of systems (10.9) and (10.11) can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
4l2Im

∞∑
n=0

(an+ ibn)g(n, l)+ (−1)Im
∞∑

n=0

(an+ ibn)g′(n, l) = 0

2l · Im
∞∑

n=0

(an+ ibn)g(n, l)−2l · Im
∞∑

n=0

(an+ ibn)g′(n, l) = 0
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The result is a homogeneous system with respect to unknowns
∞∑

n=0
(an+ ibn)g(n, l)

and
∞∑

n=0
(an+ ibn)g′(n, l) with a determinant different from zero

∣∣∣∣∣∣4l2 −1
2l −2l

∣∣∣∣∣∣ � 0,

and consequently, it has only a trivial solution⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Im

∞∑
n=0

(an+ ibn)g(n, l) = 0

Im
∞∑

n=0

(an+ ibn)g′(n, l) = 0
(10.16)

2. for l = 1 the same equations give an inhomogeneous system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
4Im

∞∑
n=0

(an+ ibn)g(n,1)+ (−1)Im
∞∑

n=0

(an+ ibn)g′(n,1) = − p
2

2Im
∞∑

n=0

(an+ ibn)g(n,1)−2Im
∞∑

n=0

(an+ ibn)g′(n,1) =
p
2

Solving it with respect to unknowns, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Im

∞∑
n=0

(an+ ibn)g(n,1) = − p
4

Im
∞∑

n=0

(an+ ibn)g′(n,1) = − p
2

(10.17)

3. Let introduce the notation

t3(n, l) = i(−4l2νg(n, l)+ νg′(n, l)+g′′(n, l)),
t4(n, l) = i(12l2g(n, l)− (1+ ν+4l2(2− ν))g′(n, l)+g′′′(n, l)).

In order to get rid of g′′(n, l) in the expression t4(n, l), we can subtract from the
last equation of system (10.15) the last equation (10.13):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Im
∞∑

n=0

(an+ ibn)t3(n, l) = 0

Im
∞∑

n=0

(an+ ibn)t4(n, l) = 0
(10.18)

It is important to note that the first equation of system (10.9), as proved by the
authors, is a consequence of four equations: two equations of system (10.17) and
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two equations of system (10.18) at l = 0. The proof is based on the properties of the
Bessel functions (Watson, 1945) and the idea is presented in the Appendix. The fact
of linear dependence of the equations, but the lack of understanding of which ones
perplexed the author of a previous work (Murthy, 1969; Pirogov and Iumatov, 1968;
Naghdi and Eringen, 1965).

All equations of systems (10.16) - (10.18) can be written in matrix form (see Ta-
ble 10.6). Thus, a linear system with an infinite number of equations and unknowns
is obtained. In this case, the elements of the infinite matrix of the system, which
differ significantly from zero, are located near the main diagonal. This is due to
the values Jk((1+ i)β), on which all elements of the matrix of the system depend,
become very small with increasing k, namely, next to the main diagonal there are
elements whose index k = n− 2l is close to zero. The submatrix composed of the
first 4N rows and columns will have a nonzero determinant. The solving the sys-
tem allows to find uniquely the coefficients for the first 2N basis functions. At the
same time, as calculations show, with an increase in N, the first found coefficients
practically do not change, and the coefficients at basis functions with large indexes
tend to zero. This method has no mathematical restrictions on the values of the main
parameter β. From the point of view of mechanics, this model is applicable for the
range 0 ≤ β ≤ 3,5−4,5 (Guz, 1974).

10.7 Results

The found coefficients an and bn can be substituted into (10.4). Herewith, any finite
partial sum

Table 10.1 System (10.16) - (10.18) in matrix form.

n 0 1 2 3 unknown free terms

Im Re Im Re Im Re Im Re

l

0 t3(0,0) t3(0,0) t3(1,0) t3(1,0) t3(2,0) t3(2,0) t3(3,0) t3(3,0) a0 0

0 t4(0,0) t4(0,0) t4(1,0) t4(1,0) t4(2,0) t4(2,0) t4(3,0) t4(3,0) b0 0

1 g(0,1) g(0,1) g(1,1) g(1,1) g(2,1) g(2,1) g(3,1) g(3,1) a1 − p
4

1 g′(0,1) g′(0,1) g′(1,1) g′(1,1) g′(2,1) g′(2,1) g′(3,1) g′(3,1)
... b1 − p

2
1 t3(0,1) t3(0,1) t3(1,1) t3(1,1) t3(2,1) t3(2,1) t3(3,1) t3(3,1) a2 0

1 t4(0,1) t4(0,1) t4(1,1) t4(1,1) t4(2,1) t4(2,1) t4(3,1) t4(3,1) b2 0

2 g(0,2) g(0,2) g(1,2) g(1,2) g(2,2) g(2,2) g(3,2) g(3,2) a3 0

2 g′(0,2) g′(0,2) g′(1,2) g′(1,2) g′(2,2) g′(2,2) g′(3,2) g′(3,2) b3 0

· · ·
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Φ = −i
py2

2
+

∞∑
n=0

an+ ibn

H(1)
n [(1+ i)β]

[
cos(αx) ·H(1)

n (αr) · cos(nϑ)
sin(αx) ·H(1)

n (αr) · cos(nϑ)

]
.

is an exact solution of the mathematical physics equation in the domain (in contrast,
for example, from the solution of this problem by the Ritz method) and satisfies
the boundary conditions at infinity. As calculations show, the boundary conditions
on the hole boundary are satisfied quite accurately for any β ∈ (0;4] for 18 basis
functions, the coefficients of which are found from the reduced system. E.g., the
maximum deviation of the boundary conditions from zero for β = 0.212 is no more
than 10−14, and for β = 4 no more than 6 · 10−3. With increasing β, the maximum
deviation increases: for greater accuracy, you can take 24 basis functions for large
values of β, and then the deviation will be no more than 5 ·10−6. As β increases, the
number of basis functions that significantly affect the response increases, i.e., the
basis coefficients increase for large n. The results shown in the graph (Fig. 10.1a)
completely coincide with the results obtained in van Dyke (1965) by the collocation
method. In the works of different authors were different the results, and it remained
unclear what results to rely on. Now it has been possible to find an analytical method
that is easy to implement and gives reliable results and the possibility of further
investigation of stresses.
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Appendix

Statement: the first equation in (10.9) is a consequence of four equations: two equa-
tions of system (10.17) and two equations of the system (10.18) for l = 0.

Proof. The following notation is introduced:

I: (10.9) Im
∞∑

n=0

(an+ ibn)g′(n,0) = p,

II: (10.18)1, l = 0 Im
∞∑

n=0

(an+ ibn)t3(n,0) = 0,

III: (10.18)2, l = 0 Im
∞∑

n=0

(an+ ibn)t4(n,0) = 0,

IV: (10.17)1 Im
∞∑

n=0

(an+ ibn)g(n,1) = −p/4,

V: (10.17)2 Im
∞∑

n=0

(an+ ibn)g′(n,1) = −p/2.
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The following fact is asserted:

4β2[I+V +2IV] = II+ III.

Equality for the right-hand sides is obvious. For the left-hand sides, we need to
prove that ∀n ∈ Z+:

4β2[g′(n,0)+g′(n,1)+2g(n,1)] = i(g′′(n,0)+g′′′(n,0)−g′(n,0)). (10.19)

Consider the linear differential operator

Ly = y′′+
y′

z
+

(
1− n2

z2

)
y.

Lemma 10.1. Let be, v ∈KerL, i.e. u,v – Bessel function of index n, G(z) = u(z)v(z).
So

G′′′(z)+
3
z

G′′(z)+
(
4− 4n2−1

z2

)
G′(z)+

4
z

G(z) = 0.

The proof of the lemma is derived from the relations for the Bessel functions. If we
apply the assertion of the lemma to

u(z) = (−1)
[

n
2

] 2

H(1)
n ((1+ i)β)

H(1)
n (z), v(z) = Jn(z), G(z) = u(z)v(z),

then we prove the Eq. (10.19).



Chapter 11
Analysis of Solutions for Elliptic Boundary
Layer in Cylindrical Shells at Edge Shock
Loading

Irina V. Kirillova and Leonid Y. Kossovich

Abstract This paper is devoted to analysis of the asymptotic solution behaviour
for the elliptic boundary layer in cylindrical shells in small vicinities of the surface
Rayleigh wave front under normal edge shock loading. The boundary layer is de-
scribed by the elliptic equations along the thickness of shells and the hyperbolic
equations which are defined boundary conditions on the faces. These boundary con-
ditions on cylindrical faces characterise wave motion on them.
The sought for solution is presented by the composite ones. The first one is the
particular solution, satisfeing only the boundary conditions on the shell edge. The
boundary value problem for the second one is reduced to the problem for shock
loading on the faces of the infinite cylindrical shell. This one is solved with the help
of the Laplace transform on time and the Fourier transform on the longitudinal co-
ordinate.
Invertiation of the Laplace and Fourier transforms allows us represent the solution
on the base of elementary function arctg of the complicated arguments. Analysis
of this solution in a small quasifront vicinity by the asymptotic method defined
properties of them at moving from the quasifront along the longitudinal coordinate.
Numerical calculations confirmed this quality analysis of the solution.

Key words: Elliptic boundary layer, Cylindrical shell, Rayleigh wave front, Laplace
transform, Fourier transform

11.1 Introduction

The solution scheme of the problem for transient waves in shells of revolution on the
basis of asymptotic methods is described in Kirillova and Kossovich (2015). This
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scheme is based on representation of the solution with the help of components with
different variability and dynamicity indices. There are the bending component (the
low-frequency approximation corresponding to the bending component on the base
of the Kirchhoff-Love shell theory), the Saint-Venant quasi-static boundary layer
in a small vicinity of shell edge, the quasi-antiplane high-frequency, short wave
component and two types of boundary layers: the hyperbolic boundary layer in the
vicinity of shear wave front and the elliptic boundary layer in a small vicinity of the
Rayleigh surface wave front. The asymptotic equations for the bending component
Kirchhoff-Love shell theory, the Saint-Venant boundary layer, high frequency, short
wave component and hyperbolic boundary layer were derived in Kossovich (1986);
Kaplunov et al (1998).

The elliptic boundary layer has place in a small vicinity of the Rayleigh surface
wave front and is described by the elliptic equations along the shell thickness with
the boundary conditions on the faces which are defined by the hyperbolic equations.
The asymptotic equations of this boundary layer in shells of revolution under normal
shock surface loading were reduced in Kirillova and Kossovich (2017). The asymp-
totic equations of this boundary layer in shells of revolution under normal edge
shock loading were constructed in Kirillova and Kossovich (2021). In this case the
sought for solution is presented in the form of the composition of the particular one
and some solution for the infinite shell with shock loading on the faces. The partic-
ular solution satisfies the boundary conditions on the shell edge. The problem for
this boundary layer in the case of a cylindrical shell was considered in Kirillova and
Kossovich (2020).

Present paper is devoted to the analysis of the solution for the elliptic boundary
layer in cylindrical shells at edge shock loading, represented by the shear stress. The
problem formulation is given in Sect. 11.2. Section 11.3 describes the particular
solution for cylindrical shells, obtained on the basis of the particular solution for
shells of revolution Kirillova and Kossovich (2020). Construction of the solution
for the elliptic boundary layer is described in Sect. 11.4 and it is based on using the
Laplace transform on time and the Fourier transform on the longitudinal coordinate.
Numerical calculations and asymptotic analysis of the solution in the small vicinity
of the Rayleigh surface wave front completely define the properties of this boundary
layer.

11.2 Statement of the Problem

Consider a cylindrical shell (see Fig. 11.1), where α is the longitudinal coordinate
on the midsurface, θ is the angular coordinate, z is the distance from the midsurface
along the normal. Consider the following boundary conditions on the cylindrical
shell faces defining axisymmetric case of the SSS (stress strain state)

σ33 = σ13 = 0, z = ±h (11.1)
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Fig. 11.1 Cylindrical shell.

and on the edge α = 0
σ13 = IH(t), v1 = 0, α = 0, (11.2)

where σi j and vi (i, j = 1,2,3) denote stresses and displacements, h is the shell
thickness, t is time, I is the amplitude of the load, H(t) is Heaviside unit function.
Let us consider the homogeneous initial conditions

vi =
∂vi

∂t
= 0 (i = 1,2,3) at t = 0. (11.3)

Now we introduce the dimensionless variables, setting

ξ =
α

h
, ζ =

z
h
, τ =

tc2

h
, c2 =

√
E

2ρ(1+ ν)
, (11.4)

where E, ν,ρ are the Young’s modulus, the Poisson’s ratio and the mass density of
the body; c2 is the shear wave speed. Let us introduce the small parameter η:

η =
h
R
, (11.5)

where R is the radius of the cylindrical midsurface. We assume that differentiation
with respect to the dimensionless variables ξ and τ does not change the asymp-
totic order of unknown quantities with respect to small parameter η� 1. Then the
dimensionless equations in displacements can be written as follows

κ−2 ∂
2v1

∂ξ2 +
∂2v1

∂ζ2 +
1

1−2ν
∂2v1

∂ξ∂ζ
− ∂

2v1

∂τ2 +η
∂v1

∂ζ
+η

1
1−2ν

∂v1

∂ξ
= 0,

1
1−2ν

∂2v1

∂ξ∂ζ
+
∂2v3

∂ξ2 + κ
−2 ∂

2v3

∂ζ2 −
∂2v3

∂τ2 +η
3−4ν
1−2ν

∂v1

∂ξ
+ηκ−2 ∂v3

∂ζ
= 0, (11.6)

and
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σ11 =
E

2(1+ ν)κ2h

(
∂v1

∂ξ
+

ν

1− ν
∂v3

∂ζ
+η

ν

1− νv3

)
,

σ33 =
E

2(1+ ν)κ2h

(
ν

1− ν
∂v1

∂ξ
+
∂v3

∂ζ
+η

ν

1− νv3

)
, (11.7)

σ13 =
E

2(1+ ν)h

(
∂v1

∂ζ
+
∂v3

∂ξ

)
,

where κ2 = c2/c1, c1 is the dilatation wave speed. Similarly to the general case of
shell of revolution (Kirillova and Kossovich, 2021) we consider our SSS as short-
wave SSS and represent it as combination of symmetric and antisymmetric parts.
Similarly to Kirillova and Kossovich (2021) symmetric part of SSS is asymptotical
main and governing equations can be written in the following form

κ−2 ∂
2v1

∂ξ2 +
∂2v1

∂ζ2 +
1

1−2ν
∂2v3

∂ξ∂ζ
− ∂

2v1

∂τ2 = 0,

1
1−2ν

∂2v1

∂ξ∂ζ
+
∂2v3

∂ξ2 + κ
−2 ∂

2v3

∂ζ2 −
∂2v3

∂τ2 = 0, (11.8)

and

σ11 =
E

2(1+ ν)κ2h

(
∂v1

∂ξ
+

ν

1− ν
∂v3

∂ζ

)
,

σ33 =
E

2(1+ ν)κ2h

(
ν

1− ν
∂v1

∂ξ
+
∂v3

∂ζ

)
, (11.9)

σ13 =
E

2(1+ ν)h

(
∂v1

∂ζ
+
∂v3

∂ξ

)
.

11.3 Equivalent Problem for the Infinite Shell

Represent the solution in the following form:

S S S = S S S (0)+S S S (1), (11.10)

where index "0" denote the particular solution of equations (11.8), which satisfy
only boundary conditions (11.2) on the edge. It is obviously that this particular so-
lution has following simple form:

v(0)
1 = 0, v(0)

3 =
(1+ ν)h

E
I(τ− ξ)H(τ− ξ),

σ(0)
11 = σ

(0)
33 = 0, σ(0)

13 = IH(τ− ξ). (11.11)

The boundary conditions for S S S (1) on the edge and surface are written as follows
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∂v(1)
3

∂ξ
= 0, v(1)

1 = 0, ξ = 0,

σ(1)
33 = 0, σ(1)

13 = IH(τ− ξ), ζ = ±1. (11.12)

Boundary conditions (11.12) show (Kirillova and Kossovich, 2021) that the de-
formed edge section in the problem (11.12) remains rectilinear and perpendicular
to the axis ξ. Hence, if the infinite cylindrical shell is taken, as shown in Fig. 11.2,
deformation of each symmetric part is equivalent to deformation of the considered
semi-infinite shell. Let us name such problem for the infinite shell by the equivalent
problem for the semi-infinite one.

Accordingly to Kirillova and Kossovich (2021) we introduce the potential func-
tions ϕ and ψ:

ϕ = ϕ1+ϕ2, ψ = ψ1+ψ2, (11.13)

where the index "1" denote the solution for the region ξ ≥ 0 and the index "2" denote
the solution for ξ ≤ 0. Equations for the regions ξ > 0 can be written in the following
form (the index "1" we omit):

a2 ∂
2ϕ

∂ξ2 +
∂2ϕ

∂ζ2 = 0,

b2 ∂
2ψ

∂ξ2 +
∂2ψ

∂ζ2 = 0 (11.14)

under the following boundary conditions

Fig. 11.2 Equivalent problem
for semi-infinite shell.
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κ2
R
∂2Ψ

∂ξ2 −
∂2Ψ

∂τ2 =
κRBω

g
IH(τ− ξ), ζ = −1,

κ2
R
∂2Ψ

∂ξ2 −
∂2Ψ

∂τ2 = −
κRBω

g
IH(τ− ξ), ζ = 1, (11.15)⎛⎜⎜⎜⎜⎝g+ κ2

R

2

⎞⎟⎟⎟⎟⎠ ∂2ϕ

∂ξ2 −
1
2
∂2ϕ

∂τ2 +

⎛⎜⎜⎜⎜⎝b+ κ2
R

2

⎞⎟⎟⎟⎟⎠ ∂2ψ

∂ξ2 −
1

2b
∂2ψ

∂τ2 = 0, ζ = ∓1,

where

Ψ =
1
b
∂ψ

∂ζ
, Bω = 2

⎡⎢⎢⎢⎢⎣ κR

1− κ2
R

+
κκR

1− κ2κ2
R

− 4κR

2− κ2
R

⎤⎥⎥⎥⎥⎦−1

, (11.16)

a =
√

1− κ2κ2
R, b =

√
1− κ2

R/2, g = 1− κ2
R/2, κR = cR/c2,

cR is the velocity of the surface Rayleigh waves.
Displacements and stresses are described throw potential functions by the ex-

pressions

v1 = h
(
∂ϕ

∂ξ
+b

∂ψ

∂ξ

)
, v3 = h

(
∂ϕ

∂ζ
+

1
b
∂ψ

∂ζ

)
,

σ33 = − Eh
1+ ν

(
g
∂2ϕ

∂ξ2 +b
∂2ψ

∂ξ2

)
, (11.17)

σ13 =
Eh

1+ ν

⎛⎜⎜⎜⎜⎝ 1
a2

∂2ϕ

∂ξ∂ζ
− κ

2κR

a2
∂2ϕ

∂ζ∂τ
+

g+ κ2
R

b
∂2ψ

∂ξ∂ζ
+
κR

b
∂2ψ

∂ζ∂τ

⎞⎟⎟⎟⎟⎠ .
The expression for σ13 in (11.17) is not convenient at application of the Fourier
transform on the longitudinal coordinate. In this case we can use the alternative
form (Kirillova and Kossovich, 2020):

∂σ13

∂ζ
=

E
(1+ ν)h

⎛⎜⎜⎜⎜⎝2− κ2κ2
R

2a
∂2Φ

∂ξ2 −
κ2κR

2a
∂2Φ

∂τ2 +
∂2Ψ

∂ξ2 −
1
2
∂2Ψ

∂τ2

⎞⎟⎟⎟⎟⎠ ,
Φ =

1
a
∂ϕ

∂ζ
. (11.18)

11.4 Solution of the Equivalent Problem for the Cylindrical Shell

Consider the equivalent problem on propagation of transient waves in the cylindrical
shell at boundary conditions (11.15). The equations for the region ξ < 0 are written
similarly to this case. Let us consider only the wave which is initiated by the face
surface ζ = −1. Then the governing equations for potential functions ϕ, ψ remain
the form (11.14), but boundary conditions are described for regions ξ > 0 and ξ < 0
in the following form:
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κ2
R
∂2Ψ

∂ξ2 −
∂2Ψ

∂τ2 =
κRBω

g
IH(τ∓ ξ), ζ = −1, (11.19)⎛⎜⎜⎜⎜⎝g+ κ2

R

2

⎞⎟⎟⎟⎟⎠ ∂2ϕ

∂ξ2 −
1
2
∂2ϕ

∂τ2 +

⎛⎜⎜⎜⎜⎝b+ κ2
R

2

⎞⎟⎟⎟⎟⎠ ∂2ψ

∂ξ2 −
1

2b
∂2ψ

∂τ2 = 0, ζ = −1.

The expressions for stresses and displacements at ξ < 0 remain the form (11.17)
and (11.18). To solve this boundary value problem we apply the Laplace transform
on time and the Fourier transform on the longitudinal coordinate. Then boundary
conditions (11.19) and expression for the transformation of stress σ13 are repre-
sented as

(κ2
Rχ

2+ s2)ΨLF = −
√

2
π

I
κRBω

g
χ2

s(s2+χ2)
, ζ = −1,⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝g+ κ2

R

2

⎞⎟⎟⎟⎟⎠χ2+
1
2

s2
⎤⎥⎥⎥⎥⎦ϕLF+

⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝b+ κ2
R

2b

⎞⎟⎟⎟⎟⎠χ2+
1

2b
s2
⎤⎥⎥⎥⎥⎦ψLF = 0, ζ = −1, (11.20)

σLF
13 = −i

E
(1+ ν)h

1
χ

⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝2− κ2κ2
R

2a
χ2+

κ2

2a
s2
⎞⎟⎟⎟⎟⎠ΦLF+

(
χ2+

1
2

s2
)
ΨLF
⎤⎥⎥⎥⎥⎦ , (11.21)

where upper indices L and F denote Laplace and Fourier integral transforms conse-
quently:

ϕF =
1√
2π

∞∫
−∞

ϕe−ıχξdξ, ϕL =

∞∫
0

ϕe−sτdτ (11.22)

and χ, s are Fourier and Laplace transform parameter, and ı =
√−1.

Taking into account that the equations for the integral transform of potential func-
tions ϕ and ψ have the form:

d2ϕLF

dζ2 −a2χ2ϕLF = 0,

d2ψLF

dζ2 −b2χ2ψLF = 0 (11.23)

we can obtain the solution for the transform of stress σ11

σLF
13 = −ı

√
2
π

I
κRBω

g

⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝g χ3

s(κ2
Rχ

2+ s2)(χ2+ s2)

+

(
κ2g
2a2 +

g
2b2 −

1
2

)
χ

χ2+ s2

)
e∓aχ(1+ζ) (11.24)

−
⎛⎜⎜⎜⎜⎝g χ3

s(κ2
Rχ

2+ s2)(χ2+ s2)
+

1
2

χ

s(χ2+ s2)

⎞⎟⎟⎟⎟⎠e∓χ(1+ζ)
⎤⎥⎥⎥⎥⎦ ,

where signs "∓" relate correspondingly to the regions ξ > 0 and ξ < 0.
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Let us turn transform (11.24). Using the following formulae for turning the
Laplace transform (Kirillova and Kossovich, 2020)

χ

s(κ2
Rχ

2+ s2)
=⇒ 1

κ2
Rχ

(1− cosκRτχ) (11.25)

we obtain the formulae for the Fourier transform of our solution

σF
13 = −ı

√
2
π

I
κRBω

g

⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝ g
b2κ2

R

1
χ

(1− cosκRτχ)

+

(
κ2g
2a2 −

g
2b2 −

1
2

)
1
χ

(1− cosτχ)
)
e∓aχ(1+ζ)

−
⎛⎜⎜⎜⎜⎝ g

b2κ2
R

1
χ

(1− cosκRτχ) (11.26)

+

(
− g

b2 +
1
2

)
1
χ

(1− cosτχ)
)
e∓bχ(1+ζ)

]
.

Now we return the Fourier transform with the help of following integral

∞∫
0

1− cosτχ
χ

e−aχ sinξχdχ = arctan
(
ξ

a

)
− 1

2
arctan

(
2ξa

a2− ξ2+τ2

)
(11.27)

and obtain the expression for σ13:

σ13 =
2
π

I
κRBω

g

⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝ g
b2κ2

R

+
κ2g
2a2 −

g
2b2 −

1
2

⎞⎟⎟⎟⎟⎠arctan
(

ξ

a(1+ ζ)

)
+

⎛⎜⎜⎜⎜⎝− g
b2κ2

R

+
g
b2 −

1
2

⎞⎟⎟⎟⎟⎠arctan
(

ξ

b(1+ ζ)

)
−

− g
2b2κ2

R

arctan
⎛⎜⎜⎜⎜⎝ 2aξ(1+ ζ)

a2(1+ ζ)2− ξ2+ κ2
Rτ

2

⎞⎟⎟⎟⎟⎠− (11.28)

− 1
2

(
κ2g
2a2 −

g
2b2 −

1
2

)
arctan

(
2aξ(1+ ζ)

a2(1+ ζ)2− ξ2+τ2

)
+

g
2b2κ2

R

arctan
⎛⎜⎜⎜⎜⎝ 2bξ(1+ ζ)

b2(1+ ζ)2− ξ2+ κ2
Rτ

2

⎞⎟⎟⎟⎟⎠
+

1
2

(
− g

b2 +
1
2

)
arctan

(
2bξ(1+ ζ)

b2(1+ ζ)2− ξ2+τ2

)]
.

Our boundary layer has place in small vicinity of the surface Rayleigh wave front
ξ = κRτ. Here:

ξ� 1, τ� 1, τ− ξ� 1 and |κRτ− ξ| � 1, (11.29)

therefore we can consider the next estimation of the functions in (11.28)
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arctan
(

ξ

a(1+ ζ)

)
=
π

2
, arctan

(
ξ

b(1+ ζ)

)
=
π

2
,

arctan
(

2aξ(1+ ζ)
a2(1+ ζ)2− ξ2+τ2

)
= 0, arctan

(
2bξ(1+ ζ)

b2(1+ ζ)2− ξ2+τ2

)
= 0. (11.30)

Then we obtain very simple expression for σ13 in a small vicinity of the Rayleigh
wave front:

σ13 = I+ σ̃13,

σ̃13 = I
Bω

πκRb2

⎡⎢⎢⎢⎢⎣−arctan
⎛⎜⎜⎜⎜⎝ 2aξ(1+ ζ)

a2(1+ ζ)2− ξ2+ κ2
R

⎞⎟⎟⎟⎟⎠ (11.31)

+ arctan
⎛⎜⎜⎜⎜⎝ 2bξ(1+ ζ)

b2(1+ ζ)2− ξ2+ κ2
Rτ

2

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ .
Now we consider the solution behaviour outside the small vicinity of the quasifront
|ξ− κRτ| � 1. This one is defined by rhe behaviour of the function arctan argument.
We denote

y =
2aξ(1+ ζ)

a2(1+ ζ)2− ξ2+ κ2
Rτ

2
. (11.32)

This argument can be represented in the form for the asymptotic analysis

y =
2a(1+ ζ)

a2(1+ζ)2

ξ − ξ+κRτ
ξ (ξ− κRτ)

. (11.33)

In the region ξ� 1 (i.e. at |α− κRt| � h, x� h) we have a2(1+ ζ)2/ξ� 1, (ξ+
κRτ)/ξ = O(1) and consequently y� 1. Thus we have next values for the functions
in (11.25)

arctan
⎛⎜⎜⎜⎜⎝ 2aξ(1+ ζ)

a2(1+ ζ)2− ξ2+ κ2
Rτ

2

⎞⎟⎟⎟⎟⎠ | � 1,

arctan
⎛⎜⎜⎜⎜⎝ 2bξ(1+ ζ)

b2(1+ ζ)2− ξ2+ κ2
Rτ

2

⎞⎟⎟⎟⎟⎠ | � 1 (11.34)

and σ̃13 tends to zero at moving off quasifront. Dependence of the stress σ13 on lon-
gitudinal coordinate ξ in small vicinity of Rayleigh wave front is shown at Fig. 11.3.
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Chapter 12
Dimension Reduction in the Plate with Tunnel
Cuts

Alexander G. Kolpakov and Sergei I. Rakin

Abstract We carry out dimension reduction in the homogenization theory 3D peri-
odicity cell problem for the plate with a unidirectional system of channel cuts. We
demonstrate that the original 3D problem may be reduced to several 2D problems.
The main attention is paid to the solution near the top and the bottom surfaces of the
plate Our numerical analysis indicates the existence of a new type of boundary layer
at the upper and lower surfaces of the plate. We estimate the thickness of the found
boundary layer. We also find a wrinkling effect on the top and bottom surfaces of
the plate.

Key words: Plate with channel cuts, Dimension reduction, Top/bottom face bound-
ary layers, Wrinkling effect

12.1 Introduction

The homogenization problem for the elastic bodies with holes/pores attracted the
attention of numerous researchers. One can mention the pioneering paper of Cio-
ranescu and Paulin (1979). Relevant references may be found in Cioranescu and Do-
nato (1999); Cioranescu et al (2018) (mathematics) and Kalamkarov and Kolpakov
(1997); Kolpakov and Kolpakov (2009) (applications to composite materials). The
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papers on the homogenization problem for plates with holes/pores/channels are not
so numerous as the papers devoted to the homogenization problem for solids with
holes/pores/channels.

The boundary layers in plates and shells were intensively discussed in literature
after Rayleigh, Love, Lamb, and Basset (Sendeckyj, 1974). In the 1970s-1980s,
boundary layers were intensively discussed for laminated composite materials (van
Dyke, 1994; Pipes and Pagano, 1970), later - for fiber-reinforced composite materi-
als see, e.g., Kalamkarov and Kolpakov (1997); Andrianov et al (2011). Numerous
experimental, theoretical, and numerical results were reported. Note that the bound-
ary layers in the plates and shells were associated exclusively with the transverse
cut surface.

When considering the plates with channel cuts, we meet the new type of bound-
ary layers associated with the top and the bottom surfaces of the plate. The boundary
layers of this type never occur in the homogeneous or in the laminated plates.

12.2 Statement of the Problem

We consider a plate with a periodic system of cylindrical geometry channels. Sup-
pose the cylinders are parallel to the 0x–axis and form a periodic structure in the
0xz-plane. The periodicity cell (PC) of such a structure is shown in Fig. 12.1a , and
the cross-section is displayed in Figs. 12.1b. The choice of the length of the PC in
Fig. 12.1a is voluntary.

Since the plate under consideration is invariant with respect to translation in the
direction 0y-axis, there is a reason to look for two-dimensional models to the plate.
The dimension reduction procedures are known for the solids with periodic systems
of fibers or holes (Grigolyuk et al, 1991; Grigolyuk and Fil’shtinskij, 1992; Lu,
1995; Mityushev and Rogozin, 2000; Drygaś et al, 2020). To the best knowledge of
the authors, the first paper devoted to the dimension reduction in the bending prob-
lem for an elastic layer with tunnel cuts was Grigolyuk et al (1991). The mentioned
paper was based on the double periodic function technique, thus treated the layer

Fig. 12.1 Periodicity cell (a) and the cross-section (b) of the plate with the channel cuts and the
deformation modes of PC: (c) - tension, (d) - bending.
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of "infinite" thickness. It means that Grigolyuk et al (1991) can be used to predict
the stress-strain state (SSS) inside the plate, but not near-surface phenomena. But
the plate has a finite thickness. The aim of this paper is the dimension reductions
for plates of finite thickness. Our research indicates the existence of a new range of
boundary layers - boundary layers at the upper and lower surfaces of the plate. We
also find a wrinkling effect on the top and bottom surfaces of the plate. The results
of Grigolyuk et al (1991) can be used to describe the stress-strain state (SSS) inside
the plate, but not near-surface phenomena.

The starting point of our research is the periodicity cell problem (PCP) of the
homogenization theory as applied to plates (Caillerie, 1984; Kohn and Vogelius,
1984), which has the following form:

(ai jklN
ABμ
k,l + (−1)μai jABzμ), j = 0 in P,

(ai jklN
ABμ
k,l + (−1)μai jABzμ)n j = 0 on Γ∪H,

NABμ(y) periodic in x,y.

(12.1)

with the superscript μ taking the values 0 or 1. In the plate PCP, the top Γ+ and
bottom Γ− surfaces are free. The PC may be subjected to in-plane (μ = 0) or bend-
ing/torsion (μ = 1) macroscopic deformation. These features distinguish the plates
from the solids PCP. In the plate with channel cuts, the surfaces Hi of the channels
are also free. Denoted: Γ =Γ+∪Γ− and H =∪n

i=1, where n is the number of channels
per one PC. The variables notation correspondence: x↔ 1,y↔ 2,z↔ 3; the index
μ = 0,1.

In the general case (Caillerie, 1984; Kohn and Vogelius, 1984), the local stresses
in the PC are computed with the following formula:

σi j = ais jklN
ABμ
k, j + (−1)μai jABzμ,

and the macroscopic stiffnesses of the plate are computed as

S ν+μ
αβAB =

1
|PrP|

∫
P

(aαβklNABν
k, j + (−1)νzνaαβAB)(−1)μzμdxdz,

where PrP is projection of the PCP to the 0xy-plane. The superscript ν can take the
values 0 or 1.

The PCP is a cylinder parallel to the 0y-axis, see Fig. 12.1, and the elastic con-
stants ai jkl are constants (we assume the plate is made of a homogeneous isotropic
material). In this case, the solution to the problem (12.1) does not depend on the
variable y and has the form NABμ = NABμ(x,z). Substituting NABμ = NABμ(x,z) into
(12.1), we arrive at the following 2D PCP:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(aiαkβNABμ
k,β + (−1)μaiαABzμ),α = 0 in P,

(aiαkβNABμ
k,β + (−1)μaiαABzμ)nα = 0 on Γ,

NABμ(x,z) periodic in x.

(12.2)
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Hereafter α,β = 1,3 : i,k = 1,2,3;A,B = 1,1;2,2;1,2;2,1. We use the same notation
for the PC and its cross-sections, as well as for the boundaries of the plate and the
boundaries of the channels. In (12.2)

aiαkβNABμ
k,β (y)+ (−1)μaiαABz = aiαθβNABμ

θ,β (x,z)+aiα2βNABμ
2,β (x,z)+ (−1)μaiαABzμ.

(12.3)
Equation (12.3) makes it possible to decompose the boundary-value problem (12.1)
into several 2D problems. The form of the 2D problems is determined by the index i
in (12.2). For this reason, we consider problem (12.2) for i = 2 and i = ξ = 1,3 = x,z,
separately.

12.3 Problem 12.1 with Index i = 2

We assume the plate is made of homogeneous isotropic material. We will use the
tensor notations ai jkl (it is convenient in our computations) for the elastic constants
keeping into mind the relation of the elastic constants with Young’s modulus E and
Poisson’s ratio ν (Love, 2013)

a1111 = a3333 =
E(1− ν)

(1+ ν)(1−2ν)
, a1133 = a3311 = a1122 = a3322 =

Eν
(1+ ν)(1−2ν)

.

(12.4)
In the case under consideration, a2αθβ = 0,a2αAB = 0 (Love, 2013) and expression in
(12.3) takes the form (α = 1,3)

a2αθβNABμ
θ,β +a2α2βNABμ

2,β + (−1)μa2αABzμ = a2α2αNABμ
2,α +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)μa2121zμ

if AB = 21,12

0 else

(12.5)

By virtue of (12.5), the solution to (12.2) NABν
2 (x,z) = 0 if AB � 21. Only the com-

ponent N21ν
2 (x,z) is non-zero. It is the case of in-plane shift (μ= 0) or torsion (μ= 1).

The in-plane shift is also called anti-plane deformation (Love, 2013).
The problem for N21ν

2 (x,z) takes the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(a2α2αN21μ

2,α + (−1)μa2121zμδα1),α = 0 in P,

(a2α2αN21μ
2,α + (−1)μa2121zμδα1)nα = 0 on Γ∪H,

N21μ
2 (x,z) periodic in x.

(12.6)

The term (−1)μa2121zμδα1 in (12.6) may be eliminated. There exists a function
w(x,z), such that (ν = 0,1)

a2δ2δw,δ = (−1)νa2121zν. (12.7)
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For δ = 2 and δ = 3, we obtain from (12.7) a2121w,1 = (−1)νa2121zν and a2323w,3 = 0.
From these equalities, we obtain the following system of differential equations

w,1 = (−1)νzν, w,3 = 0. (12.8)

12.3.1 In-plane Shift

For ν = 0, the system (12.8) takes the form w,1 = 1,w,3 = 0. The solution to this sys-
tem is w(x,z) = x. We introduce function M(x,z) = N120

2 (x,z)+ x and rewrite (12.6)
in the form of the following boundary-value problem for the Laplace equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ΔM = 0 in P,

∂M
∂n
= 0 on Γ∪H,

M(x,z)− x periodic in x ∈ [−L,L].

(12.9)

After some algebra we obtain the following formula for the computation of the local
stresses:

σi j = ai j2αN120
2,α +ai j21 = ai j2αM,α,

and the following formula for the computation of homogenized shift stiffness:

S 0
2121 =< a212αN210

2,α +a2121 >=< a212αM,α > .

Hereafter
< . . . >=

1
L

∫
P

. . .dxdz

means the “average value”, where L is the width of the 2D periodicity cell, Fig.
12.1b.

12.3.2 Torsion

For μ = 1, (12.6) takes the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(a2α2αN211

2,α −a2121zδα1),α = 0 in P,

(a2α2αN211
2,α −a2121zδα1)nα = 0 on Γ∪H,

N211
2 (x,z) periodic in x.

(12.10)

For ν = 1, the system (12.8) takes form w,1 = −z,w,3 = 0. It is a not integrable sys-
tem of differential equations. For this system, the necessary integrability condition
(Sedov, 1971) is not satisfied because w,13 = −z,3 = −1 �,w,31 = 0. As a result, it is
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impossible to eliminate the term a2121zδα1 in (12.10) in a simple way as above. The
problem (12.10) may be written in a compact form in the following way. Introduce
function ϕ(x,z) as

ϕ,3 = a2121(N211
2,1 − z), ϕ,1 = −a2323N211

2,3 (12.11)

The definition (12.11) uses the idea of the conjugate functions (Sedov, 1971). The
existence of the function ϕ(x,z) follows from the equality

ϕ,31 = (a2121(x,z)(N211
2,1 − z)),1+ (a2323(x,z)N211

2,3 ),3 = 0,

which is the consequence of (12.10).
Express N211

2 (x,z) from (12.11)

N211
2,1 =

1
a2121

ϕ,3+ z, N211
2,3 = −

1
a2121

ϕ,1. (12.12)

Differentiation of (12.12) yields

0 = N211
2,13−N211

2,31 =

(
1

a2121
ϕ,3+ z

)
,3
+

(
1

a2121
ϕ,1

)
,1
.

Grouping the terms in the last equation, we arrive at the following Poisson equation:

Δϕ = a2121. (12.13)

Consider the boundary conditions on the top and the bottom boundaries Γ+,Γ− and
the holes Hi (12.6). With the use of the function ϕ(x,z), these conditions can be
written as follows:

(a2121N21ν
2,1 −a2121)n1+a2323N21ν

2,3 n3 = ϕ,3n1−ϕ,1n3 =
∂ϕ

∂s
= 0 on Γ+,Γ− or Hi,

(12.14)
where ∂/∂s is the derivative along the boundary Γ+,Γ− or Hi. In view of (12.14),
the function ϕ(x,z) is constant on the top and bottom boundaries Γ+,Γ− and Hi:

ϕ = const on Γ+,Γ−,Hi. (12.15)

Without loss of generality, we can fix one constant. Let us assume that at the bottom
boundary Γ−,ϕ(x,z) = 0.

Integrating the first equation in (12.11) over S i, see Fig. 12.1b, we can have

ϕ(h,−L) = ϕ(−h,−L)+

h∫
−h

a2121(N211
2,1 − z)dz. (12.16)

The asymmetric (out-of-plane) stiffness
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S 1
2121 =

1
L

∫
P

a2121(N211
2,1 − z)dxdz.

Multiplying the differential equation in (12.10) by x and integrating by parts, we
have ∫

P

a2121(N211
2,1 − z)dxdz = 2

L
2

h∫
−h

a2121(N211
2,1 dz− z)dx.

Then Eq. (12.16) becomes ϕ(h,−L) = ϕ(−h,−L) + S 2121. We have assumed that
ϕ(x,z) = 0 on the bottom boundary Γ−, thus, ϕ(−h,−L) = 0. Then ϕ(h,−L) = S 2121
and ϕ(x,z) = S 2121 on the top boundary Γ+. As a result, we arrive at the following
boundary value problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δϕ = a2121 in P0,

ϕ = 0 on Γ−, ϕ = S 1
2121 on Γ+,ϕ =C1on Hi,

ϕ(x,z) periodic in x ∈ [−L,L].

(12.17)

The local stresses are expressed in the form

σi j = ai j2αN211
2,α +ai j21z =

ai j21

a2121
(ϕ,3−ϕ,1) (12.18)

and the homogenized torsion stiffness is expressed in the form

S 2
2121 = − < ϕ,3−ϕ,1 > .

12.4 Problem 12.2 with Indices i = ξ = 1,3 = x,z. Deformation in
the Direction Perpendicular to the Fibers

In this case, aξαα2β(y) = 0 and (12.3) takes the following form:

aiαkβNABμ
k,β (y)+aξα2βzμNABμ

2,β (y)+ (−1)μaξαABzμ = aξαθβNABμ
θ,β (y)+ (−1)μaξαABzμ.

Here AB = 11;22;12;21;α,β,θ,ξ = 1,3. Then the PCP (12.2) takes the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(aξαθβNABμ

θ,β + (−1)μaξαABzμ),α = 0 in P,

(aξαθβNABμ
θ,β + (−1)μaξαABzμ)nα = 0 on Γ∪H,

(NABμ
1 ,NABμ

3 )(x,z) periodic in x.

(12.19)

In the case under consideration elastic constants aξα12 = 0 and aξα21 = 0 for i = ξ =
1,3, then (N21μ

1 ,N21μ
3 = N12μ

1 ,N12μ
3 = 0. The problem is non-trivial only for AB =

11;22. Let us demonstrate the term (−1)μaξαABzμ in (12.19) may be represented in
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the form (−1)μaξαABeABμ
θβ (δ = 2,3) with the strains eABμ

θβ = vABμ
θβ (μ = 0,1):

aξαAB(x,z)zμ = aξαθβ(x,z)eABμ
θβ (12.20)

12.4.1 Index AB = 22. Tension-compression and Bending Along
the Fibers (in the 0xz-plane)

The typical overall deformations of the PC are shown in Figs. 12.1c, d. In the case
under consideration, Eq. (12.20) takes the form aξαθβeθβ = aξα22zμ. Be written in the
coordinate-wise form, it becomes

a1111e11+a1133e33 = −a1122zμ,
a3311e11+a3333e33 = −a3322zμ,
a1313e13 = −a1322zμ = 0,a3131e31 = −a3122zμ = 0.

(12.21)

Substituting into (12.21) the elastic constants (12.4), we obtain from the first two
equations in the following system:{

(1− ν)e11+ νe33 = −ν(x,z)zμ,
νe11+ (1− ν)e33 = −ν(x,z)zμ. (12.22)

Solution to (12.22) is
e11 = e33 = −νzν. (12.23)

In addition, e13 = e31 = 0. Then

∂v1

∂x
= −νzμ, ∂v3

∂z
= −νzμ, ∂v1

∂z
+
∂v3

∂x
= 0. (12.24)

The solution to (12.24) may be obtained in the explicit form. For μ = 0 from the
first two equations in (12.24), we have ν1 = −νx+ f (z) and ν3 = −νz+g(x). Substi-
tuting into the third equation in (12.24), we have f ′(z)+g′(x) = 0, then f (z) = 0 and
g(x) = 0.

For μ = 1, we have from (12.24) ν1 = −νzx+ f (z) and ν3 = − ν2 z2+g(x). Substitut-
ing into the third equation in (12.24), we arrive at −νx+ f ′(z)+g′(x) = 0, and obtain
f ′(z) = 0,g′(x) = νx. Then f (z) = 0 and g(x) =

ν

2
x2. Finally, we have

ν
22μ
1 =

{−νx if μ = 0,
−νzx if μ = 1, ν

22μ
3 =

⎧⎪⎪⎨⎪⎪⎩−νz if μ = 0,
− ν

2
z2+

ν

2
x2 if μ = 1. (12.25)

Introduce (MABμ
1 ,MABμ

3 ), (NABμ
1 ,NABμ

3 )+ (νABμ
1 , ν

ABμ
3 ). For (M22μ

1 ,M22μ
3 ), the third

condition in (12.19) takes the form: (M22μ
1 − ν22μ

1 ,M22μ
3 − ν22μ

3 ) is periodic in x, or
[M22μ

1 ]x = −νzμ[x]x, [M22μ
3 ]x = 0 (the square brackets [. . .]x mean the difference of
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the function on the opposite sides of the periodicity cell in the direction Ox). Here
we use that

[ν22μ
1 ]x =

{−ν[x]x if μ = 0,
−νz[x]x if μ = 1, ν

22μ
3 =

⎧⎪⎪⎨⎪⎪⎩0 if μ = 0,
− ν

2
[x2]x = 0 if μ = 1

and

N220
1 = M220

1 + νx,N220
3 = M220

3 + νx,N221
1 = M221

1 + νzx,N2201
3 = M221

3 + ν
z2

2
− ν x2

2
.

The problem (12.19) takes the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(aξαθβM22ν

θ,β ),α = 0 in P,

(aξαθβM22ν
θ,β nα = 0 on Γ∪H,

[M22ν
1 ]x = −νzν[x]x, [M22ν

3 ]x = 0.

(12.26)

The local stresses are computed with the formula

σi j = ai j21M220
1,1 +ai j21ν+ai j23M220

1,3 +ai j22 (12.27)

for ν = 0 - the tension along 0x-axis; and with the formula

σi j = ai j21M221
1,1 +ai j21νz+ai j23M221

1,3 +ai j23νz+ai j22z (12.28)

for ν = 1 - the bending in 0xz-plane. The homogenized in-plane stiffnesses are com-
puted with the formula

S 0
i j22 =< ai j21M220

1,1 +ai j21ν+ai j23M220
1,3 +ai j22 > (12.29)

and the homogenized bending/torsion stiffnesses are computed with the formula

S 2
i j22 =< (ai j21M221

1,1 +ai j21νz+ai j23M221
1,3 +ai j22)z > .

12.4.2 Index AB = 11. Tension-compression and Bending
Perpendicular to the Fibers (in the 0yz-plane)

In this case, Eq. (12.20) takes the form aξαθβeθβ = aξξα11zν or, in the coordinate-wise
form

a1111e11+a1133e33 = −a1111zμ,
a3311e11+a3333e33 = −a3311zμ,
a1313e13 = −a1311zμ = 0,a3131e31 = −a3111zμ = 0.

(12.30)

Writing in (12.30) the elastic tensor components in the terms of Young’s modulus
and Poisson ratio, see (12.4), we obtain from the first two equations in (12.30) the
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following system of equations:

(1− ν)e11+ νe33 = −(1− ν)zμ,
νe11+ (1− ν)e33 = −νzμ.

The solution to this system is e11 = −zν,e33 = 0. Taking into account that e13 = e31 =

0, we arrive at
∂v1

∂x
= −zμ,

∂v3

∂z
= 0,

∂v1

∂z
+
∂v3

∂x
= 0. (12.31)

The problem (12.31) may be solved in the explicit form. For μ = 0, from the first
two equations in (12.22), we have ν1 = −x+ f (z) and ν3 = g(x). Substituting into the
third equation in (12.22), we arrive at f ′(z)+ g′(x) = 0, then f (z) = 0 and g(x) = 0.
For μ = 1, we have ν1 = −zx+ f (z) and ν3 = g(x). Substituting into the third equation
in (12.22), we arrive at −x+ f ′(z)+g′(x) = 0, and obtain f ′(z) = 0,g′(x) = νx. Then

f (z) = 0 and g(x) =
x2

2
. Finally,

ν11
1 = zμx, ν11

3 = μzμ−1 x2

2
=

x2

2

{
0 if μ = 0,
1 if μ = 1. (12.32)

The third condition for (M11ν
1 ,M11ν

3 ) in (12.19) takes the form: (M11ν
1 − ν11

1 ,M
11ν
3 −

ν11
2 , ) periodic in x. With regard to (12.32), it can be written as [M11ν

1 ]x = −νzμ[x]x,

[M11ν
1 ]x = 0. Then (12.19) takes the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(aξαθβM11ν
θ,β ),α = 0 in P,

(aξαθβM11ν
θ,β nα = 0 on Γ∪H,

[M11ν
1 ]x = −νzν[x]x, [M11ν

3 ]x = 0.

(12.33)

The boundary displacements in (12.33) are similar to one displayed in Fig. 12.1d.

12.4.3 Index AB = 12,21. Shift/Torsion Perpendicular to the Fibers
(in the 0yz-plane)

For AB= 12, Eq. (12.20) takes the form aξαθβeθβ = aξα12zν = 0, ξ,α= 1,3. Its solution
is eθβ = 0. Then ν12

1 = ν
12
3 = 0 and solution to (12.19) is (M12ν

1 ,M12ν
3 ) = 0. The non-

trivial M21ν
2 � 0 was discussed in Sect. 12.2.

12.5 Numerical Solutions

We present numerical solutions to several PCPs. In our computations Young’s mod-
ulus Eb = 2 GPa and Poisson’s ratio νb = 0.36. The periodicity cell dimensions are
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h1 = 1.1,h2 = 2,h3 = 1.1, h = 0.1 and 2H = 0.1. The radius of the fiber is 0.45.
These values are indicated in the non-dimensional "fast" variables y. The corre-
sponding actual dimensional values are computed by multiplying by the character-
istic size ε. The programs we developed by using the APDL programming language
of the ANSYS FEM software (Thompson and Thompson, 2017). The finite elements
PLANE183 are used for the fibers and the matrix, the characteristic size of the finite
elements is 0.03. The total number of finite elements is about 11000.

12.5.1 The Boundary Layers

The deformed PC and the local von Mises stress are displayed in Fig. 12.2. Figure
12.2a corresponds to the tension in 0x-direction and Fig. 12.2b corresponds to the
bending. The boundary layers at the top and the bottom surfaces of the PC are seen.
The boundary layer thickness is less the thickness of one structural layer 2R+h (di-
ameter of hole + surrounding material). In the core of plate the solution is periodic
in the in-plane tension/shift modes. It the bending/torsion mode, the solution in the
core of plate coincides with solution in the plate of “infinite” thickness Grigolyuk
et al (1991).

If the plate is thick, these boundary layers do not influence the effective stiffness
of the plate. But the boundary layers do influence the local SSS in the plate of any
thickness. In particular, the boundary layers influence the strength of the plate. In
the tension mode, the maximum von Mises stress σvM = 0.196109 in the core of the
plate occurs between the holes, see Fig. 12.2a. The maximum von Mises stress in
the boundary layer is σvM = 0.252109. The ratio of the maximuma is 1.29.

Fig. 12.2 5-hole PC and the top and the bottom surfaces of the PC (zoomed): a - tension and b -
bending modes.
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12.5.2 Wrinkling of the Top and Bottom Surfaces of the Plate

Figure 12.2 displays the top and bottom surfaces of the plate with channel cuts
subjected to the overall tension - Fig. 12.2a, the overall bending - Fig. 12.2b. It is
seen that the top and bottom surfaces are not flat in the case of the tension and not
cylindrical in the case of bending. They are wavy. This is the wrinkling effect. The
amplitude and period of the wrinkling are small (have the order of the PC dimen-
sion) but the corresponding change of the total length of the surfaces is not small.
The wrinkling never occurs in the homogeneous or in the laminated plates. For the
homogeneous or laminated plates, top and bottom surfaces are flat in the case of the
tension and cylindrical in the case of bending.

12.6 The Macroscopic SSS of General Form

Solutions to a partial PCP corresponds to the basis macroscopic SSS: eνAB = δAB,
where δAB is Kronecker delta. For plate, we distinguish six basic macroscopic SSSs:
two in-plane tensions and shift e0

AB, and two bending and torsion ρAB. In accordance
with the homogenization theory (Caillerie, 1984; Kohn and Vogelius, 1984), the
local strains are computed as

ekl = [δA
k δ

B
l +NAB0

k,l (x,z)]e0
AB+ [−δA

k δ
B
l z+NAB1

k,l (x,z)]ρAB,

and the local stresses are computed as

σi j = [ai jAB(x,z)+ai jAB(x,z)NAB0
k,l ]e0

AB+ [−ai jAB(x,z)z+ai jAB(x,z)NAB1
k,l ]ρAB.

These formulas may be used for prospective analysis of the behavior of plates of uni-
directional structures subjected to the macroscopic SSS {e0

AB,e
1
AB} of general form,

for example, the investigation of the strength of such kind plates.

12.7 Conlusions

The original 3D PCP (12.1) is reduced to several 2D boundary-value problems. The
boundary-value problems for Laplace (12.9) and Poisson (12.17) equations corre-
spond to the anti-plane elasticity problems. The boundary-value problems (12.26)
and (12.33) are the planar elasticity problems.

The obtained 2D problems may be analyzed numerically with high accuracy. Our
numerical solutions demonstrate the existence of boundary layers near the top and
the bottom surfaces of PC. The boundary layer thickness is less the thickness of one
structural. The wrinkling effect takes place for the plates with a system of tunnel
cuts.
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Chapter 13
Topological Optimization of Multilayer
Structural Elements of MEMS/NEMS
Resonators with an Adhesive Layer Subjected to
Mechanical Loads

Anton V. Krysko, Jan Awrejcewicz, Pavel V. Dunchenkin, Maxim V. Zhigalov, and
Vadim A. Krysko

Abstract The paper considers the problem of topological optimization of multi-
layer structural elements of MEMS/NEMS resonators with an adhesive layer under
the action of mechanical loads. The purpose of this work is to obtain a design solu-
tion that is least susceptible to destruction due to an increase in the rigidity of the
elements to be joined and, as a consequence, providing smoothing of stress peaks in
the adhesive layer. To demonstrate the operation of the topological optimization al-
gorithm for this class of problems, several examples are given that show significant
improvements in the set target indicators. The problems were solved by the finite
element method with the application of the sliding asymptotes method.

Key words: Topological optimization, Shear stresses, Adhesive, Method of sliding
asymptotes

13.1 Introduction

Adhesive bonding technology, alone or in combination with mechanical fastening,
can significantly improve the mechanical performance of a structure, both in terms
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of rigidity and in terms of strength and fatigue (Hart-Smith, 1982; Kelly, 2006;
da Silva et al, 2018). Adhesive joints have advantages over alternative bonding
methods (bolted or riveted), as they provide stress distribution over a wider area
of the joints, minimal thermal effect (as opposed to welding), high rigidity and high
strength-to-weight ratio. In addition, adhesives have better corrosion resistance as
well as good damping performance. In contrast to the uneven distribution of loads
when joining fasteners, the transfer of load between glued or soldered components
is continuous throughout the entire layer. This allows simpler and lighter connec-
tions to be used. In other words, the adhesive bond provides the ability to reduce
the weight of the structure while providing mechanical strength. Based on this, such
connections are increasingly used in the design of mechanical systems (Adams et al,
1997; Dixon, 2005; Watson, 2005).

Quite a lot of studies have been devoted to the problem of increasing the strength
of adhesive joints. Most of them were based on parametric optimization, where it
was assumed that the design variables were changed in a selected range using spec-
ified intervals Groth and Nordlund (1991); Hildebrand (1994); Rispler et al (2000);
Taib et al (2006). For example, in da Silva et al (2011), such factors influencing the
strength of the joint, as the adhesive properties of the material, the thickness of the
intermediate layer, the contact area, and residual stresses, were determined.

In recent years, a number of works have been devoted to the problem of improv-
ing and researching structures with an adhesive layer, including research based on
analytical formulations (Spaggiari and Dragoni, 2014; da Silva and Lopes, 2009),
numerical modeling (Pires et al, 2003; Nimje and Panigrahi, 2014) or a combination
of these two methods (das Neves et al, 2009; das Neves et al, 2009; Carbas et al,
2014). In all the studies considered, modifications were made to the shape of the
elements to be joined or the shape and location of the adhesive layer.

Awrejcewicz et al (2020) developed a technique based on a combination of topo-
logical optimization methods (moving asymptotes method) and a finite element
method for obtaining an optimal structure to reduce the stress level in a soldered
joint. Krysko et al (2019) constructed a mathematical model and a technique for
solving a wide class of problems of topological optimization of the adhesive layer
under the action of both mechanical and thermal loads to obtain an optimal mi-
crostructure and gradient properties in order to reduce the stress level in it. It is
shown that it is possible to achieve almost uniform shear stresses in the solder, aris-
ing due to the difference in the coefficients of linear thermal expansion. Krysko et al
(2018) investigated the nonlinear dynamics of inhomogeneous beams with an op-
timal distribution of material over thickness and length. Comparison of static and
dynamic results of optimal and homogeneous beams for different values of the scale
parameter of material length and temperature was carried out. The influence of the
scale parameter of the length of the material on the chaotic behavior of the beam
was investigated. Scenarios of transition to chaos were constructed for various val-
ues of temperature, both for a homogeneous beam and for a beam with an optimal
microstructure.

Zhu et al (2017) presented a systematic approach to the design of membrane
structures for a piezoresistive pressure sensor using topology optimization. The
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design problem was interpreted as the problem of optimizing a three-dimensional
topology with calculated dependent loads, in which the dependence was considered
due to the transferred loads. The topological optimization problem was solved using
the popular SIMP (Solid Isotropic Material with Penalization) method.

A topological optimization method for a local resonator was presented in Jung
et al (2020) to adapt flexural band gaps in plate structures. Topological optimization
was performed with simulated annealing (SA) and using the finite element method.
Numerical examples demonstrated the effectiveness of the presented method of cre-
ating a band gap at frequencies below 500 Hz. The above studies show that, under
the action of mechanical loads, the destruction of structures occurs mainly due to
peak stresses in the adhesive layer.

This paper poses the problem of topological optimization of the shape of the
connected elements under the action of mechanical loads in order to obtain a de-
sign solution that is least susceptible to destruction. The solution was achieved by
increasing the rigidity of the elements to be joined, which ensures the smoothing of
stress peaks in the adhesive layer.

13.2 Statement of the Topological Optimization Problem

At present, the most widely used approaches to solving problems of topological
optimization of structures are methods of explicit parameterization, which work on
a fixed domain of finite elements; however, instead of a set of elastic properties
of the microstructure, each finite element contains only one design variable. This
variable is often understood as the density of the element material, ρe. To determine
the defining characteristics of the material, one of the most well-known methods was
chosen - the SIMP method. Power-law interpolation is used; in the case of setting
the problem on a region containing a void and one phase of the material, it has the
following form (Bendsøe and Sigmund, 2004)

Ee (ρe) = ρp
e ; 0 ≤ ρmin ≤ ρe ≤ 1, (13.1)

where ρ stands for amount of penalty. Design variable ρ is bounded from below by a
small positive constant ρmin, which is introduced in order to prevent the degeneracy
of the finite element matrix. Note that for the values ρmin ≤ ρ ≤ 1 and positive ρ,
modulus Ee (ρe) are limited to small value at density ρe = ρmin and the value of
Young modulus of the phase of the base material E0, for ρe = 1.

Here, the optimization problem relies on achieving a structure with maximum
rigidity by modifying the structure of the elements connected by the adhesive layer
while maintaining a given amount of modeling material. The redistribution of the
material should ensure a decrease in stresses both in the elements to be joined and
in the adhesive layer, which is the most susceptible to destruction.

Here, the algorithm minimizes strain energy Ws by increasing density in areas of
higher sensitivity
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min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1
Ws0

∫
Ω

Ws (x)dΩ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (13.2)

where: Ω - area of the structure under consideration, Ws0 - normalizing factor. At
the same time, restrictions on the amount of material used for modeling must be met
in the area of solving the optimization problem

0 ≤
∫
Ω

ρi (x)dΩopt ≤ γiA, (13.3)

where: A - optimized area Ωopt, γ - material volumetric ratio. To eliminate the
checkerboard effect in the optimal structure, a penalty function is introduced in the
form

h0hmax

A

∫
Ω

|∇ρ (x)|2dΩ, (13.4)

where: h0 - initial grid size, which controls the size of the elements in the split,
hmax - the current size of the element at the given level. The penalty function is
dimensionless and has a value of the order of unity for the worst possible solution.
Dimensionless target function (13.2) and penalty function (13.4) must be consistent,
for example, in the form of a linear combination (13.2) and (13.4) with a given
parameter q, i.e. we have

f =
1−q
Ws0

∫
Ω

W (x)dΩ+q
∫
Ω

|∇ρ (x)|2dΩ. (13.5)

Below we will consider several examples for the problems of topological op-
timization of multilayer structures with an adhesive layer under the action of me-
chanical loads. The problems are solved by the finite element method, and linear
triangular elements are used. The optimization algorithm is based on the sliding
asymptote method.

13.3 Case Study 1

Consider a three-layer elastic structure, the dimensions and boundary conditions
for which are shown in Fig. 13.1. Area Ω1 filled with aluminium 2024-T3 with
Young modulus equal to E1 = 73.1 GPa, and Ω2 stands for the area for solving the
problem of topological optimization, in which it is necessary to find the optimal
microstructure of the distribution of a given amount of aluminium 2024-T3, while
Ω3 is the area of evenly distributed adhesive FM73-M solder with E2 = 2260 MPa.
Mechanical load acting on the right F = 100 kN

m2 , the left border is fixed. The material
data are taken from Mubashar et al (2011).
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Fig. 13.1 Design and boundary conditions.

When overlapping, there are tears at the ends of the adhesive line. These inho-
mogeneities lead to bending moments due to eccentric loading as well as uneven
distribution of moments around the adhesive layer. These moments create breaking
stresses in the adhesive layer. Geometric rupture also creates high shear stresses in
the adhesive. There are ways to reduce this eccentric load in lap joints. For example,
it has been shown to be effective for this to taper the edges of the layers to be joined.
A decrease in the maximum shear and peel stresses can be achieved by increasing
the length of the joint, the thickness of the solder, and the thickness of the layers
to be brazed. In this example, all geometrical and physical parameters of the solder
remain constant, and a decrease in the maximum stress values at the ends of the
solder is achieved due to the topological optimization of the microstructure of the
layers to be joined.

Figure 13.2 shows three-layer constructions commonly found in practical appli-
cations (Fig. 13.2 (A, B)) and the optimal design obtained as a result of solving
the problem of topological optimization (Fig. 13.2 (C)). The construction in Fig.
13.2 (B) features beveled corners of the elements to be joined, which is a classic
engineering technique for reducing shear stresses. Note that the amount of duralu-
min and silver solder material in structures (Fig. 13.2 (A, B, C)) is the same, while
solving the optimization problem, the coefficient γ should be taken equal to 0.5.

The Table 13.1 shows the numerical results: maximum values of von Mises
stresses in the solder layer, maximum values of shear stresses in the solder layer,
and total strain energy throughout the structure. For main stresses σ1,σ2,σ3 the
von Mises stress formula is defined as follows:

σvM =
1√
2

√
(σ1−σ2)2+ (σ2−σ3)2+ (σ1−σ3)2 (13.6)

It can be seen from the table that when using the classical design option to reduce
shear stresses (b), there is a slight improvement in this parameter. However, in terms
of von Mises stresses σvM and deformation energy Ws this design is slightly inferior
to the original one. For a topologically optimal design in solder, the maximum values
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Fig. 13.2 Three-layer con-
structions (A, B, C) with an
adhesive layer.

Table 13.1 Values of maximum stresses and strain energy.

Construction Maximum value of Maximum shear stress Ws (Nm) by
σvM (Pa) in the solder (Pa) in the solder construction

Straight (original construction) (a) 196620 97941 9118,3

Bevel (Classic design for reducing
shear stresses) (b) 217390 93368 9383,9

Topologically optimal design (c) 100356 56308 456,0

are as σvM and the maximum values of shear stresses decrease by more than 2 times.
The strain energy target for the entire structure has improved more than 20 times.

The graphs in Figs. 13.3, 13.4 show distribution σvM and shear stresses, respec-
tively, in the adhesive layer for the cases of structures A, B, C. Here and further

Fig. 13.3 Stresses σvM (Pa)
for structures A, B, C.
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Fig. 13.4 Shear stresses (Pa)
for structures A, B, C.

in the work, the graphs are given for the coordinate axes passing through the center
of the adhesive layer (as shown in Fig. 13.5). These plots confirm the previous con-
clusions, and also demonstrate the uniformity of stress distribution in the adhesive
layer for a topologically optimal design.

13.4 Case Study 2

Consider the construction shown in Fig. 13.6 having two uniform overlapping adhe-
sive joints. The physical properties of the materials are similar to the previous case.

Problems were solved for four different cases of load action:

• Symmetrical action of loads on the top and bottom of the structure F = 100 kN
m2 ;

• Symmetrical action of loads on the top and bottom of the structure F = 150 kN
m2 ;

Fig. 13.5 Location of coordi-
nate axes for graphs.
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Fig. 13.6 Construction and
boundary conditions.

• Load on the top of the structure F = 100 kN
m2 , to the bottom F = 150 kN

m2 ;
• Load on the top of the structure F = 100 kN

m2 , to the bottom F = 200 kN
m2 .

Table 13.2 shows the numerical results for each of these load cases. Figure 13.7
shows the optimal topology of structures under symmetric loading (cases 1, 2). The
optimal topologies of structures for different load intensities are almost identical,
however, with a stronger impact (case 2), the result has a finer structure, which can
be explained by the higher sensitivity of the objective function.

The graphs in Figs. 13.8 and 13.9 show the distribution σvM and shear stress for
load case 2 at the center of the upper adhesive layer. In the case of a symmetric
action of loads, the distribution graphs are symmetrical, but have different signs.

For example, in Fig. 13.10 the optimal topology of the structure with an asym-
metric action of loads, for the case of loading 3, is reported.

Table 13.2 Numerical results for different loading cases.

Load Construction Adhesive Maximum Maximum Integral Ws (Nm)
layer σvM (Pa) shear stress (Pa) von Mises stress (Pa) designs

in the solder in the solder over the solder area

First elementary - 134870 62601 17892 4019,7

case optimized - 98299 56604 17423 961,6

Second elementary - 202310 93902 26838 9044,3

case optimized - 147390 84884 26137 2164,4

elementary top 120030 53499 17931 8298,9

Third bottom 237550 109640 26837

case optimized top 98824 56968 17455 1552,6

bottom 147190 84827 26093

elementary top 132430 58057 18016 17117,0

Fourth bottom 340430 156390 35795

case optimized top 99920 56914 52145 4722,2

bottom 296110 17046 17553
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Fig. 13.7 Optimal topologies
for two load cases.

Fig. 13.8 Shear stress (Pa)
along the central axis of the
solder region for loading
case 2 (A - not optimal, B -
optimal).

Fig. 13.9 Von Mises stress
(Pa) along the central axis of
the solder region for loading
case 2 (A - not optimal, B -
optimal)

Fig. 13.10 Optimal topology
with asymmetric loads.
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In Figs. 13.11 and 13.12 shear stresses along the central axis of the region of the
solder for the case of loading 3 along the upper and lower layers of the adhesive are
shown.

For optimal structures, the stresses in all cases are distributed almost evenly,
in contrast to the original structures. The optimization process makes it possible
to reduce the stress drops for both symmetrical action of loads and for different
intensities of loads in different parts of the structure.

13.5 Concluding Remarks

In this paper, the topological optimization algorithm was used to optimize sandwich
structures with an adhesive layer under the action of mechanical loads in order to
reduce peak stresses. The results show that the obtained optimal structures signifi-
cantly reduce the peak shear and von Mises stresses in the solder layer in comparison
with other common engineering solutions for this class of problems.

As a result of solving the problem of topological optimization, a design solution
was obtained that is least susceptible to destruction due to an increase in the rigidity
of the elements being connected and, as a consequence, provides smoothing of stress

Fig. 13.11 Shear stress (Pa)
along the central axis of the
solder region for the case of
loading 3 (A - not optimal,
B - optimal) along the upper
layer.

Fig. 13.12 Shear stress (Pa)
along the central axis of the
solder region for loading
case 3 (A - not optimal, B
- optimal) along the bottom
layer.
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peaks in the adhesive layer. This was achieved by modifying the optimization area
with the same amount of material.
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Chapter 14
Forced Vibration Analysis of Laminated
Piezoelectric Plates by a Strong Sampling
Surfaces Formulation

Gennady M. Kulikov and Svetlana V. Plotnikova

Abstract This paper focuses on implementation of the sampling surfaces (SaS)
method for the 3D vibration analysis of laminated piezoelectric plates. The SaS
formulation is based on choosing inside the layers the arbitrary number of SaS par-
allel to the middle surface to introduce the displacements and electric potentials of
these surfaces as basic plate variables. Such choice of unknowns allows the pre-
sentation of the laminated piezoelectric plate formulation in a very compact form.
The feature of the proposed approach is that all SaS are located inside the layers
at Chebyshev polynomial nodes that improves the convergence of the SaS method
significantly. The use of outer surfaces and interfaces is avoided that makes possi-
ble to minimize uniformly the error due to Lagrange interpolation. Therefore, the
strong SaS formulation based on direct integration of the equations of motion and
the charge equation can be applied efficiently to the obtaining of exact solutions for
laminated piezoelectric plates, which asymptotically approach the 3D solutions of
piezoelectricity as the number of SaS tends to infinity.

Key words: Piezoelectricity, 3D vibration analysis, Laminated piezoelectric plate,
Sampling surfaces method

14.1 Introduction

The exact vibration analysis of laminated piezoelectric plates was first carried out
by Heyliger and Brooks (1995); Heyliger and Saravanos (1995) using the Pagano
approach. The most popular state space approach was utilized for the free vibra-
tion of simply supported electroelastic plates in Chen et al (1998); Haojiang et al
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(1999); Chen and Ding (2002); Deü and Benjeddou (2005); Zhong and Yu (2006).
Messina and Carrera (2015) proposed to employ the transfer matrix method to solve
the ordinary differential equations in terms of the displacements and electric poten-
tial derived from the system of partial differential equations through the separating
variable procedure. The dynamic response of laminated piezoelectric plates by a
Taylor series expansion through the thickness was studied in Gao et al (1998); Vel
et al (2004); Baillargeon and Vel (2005). The sampling surfaces (SaS) approach was
also used for the free vibration analysis of piezoelectric laminated plates (Kulikov
and Plotnikova, 2017a).

The SaS method (Kulikov and Plotnikova, 2012) has been applied effectively to
the 3D stress analysis of laminated piezoelectric structures by Kulikov and Plot-
nikova (2013a,b). According to this method, we choose the arbitrary number of SaS
throughout the layers parallel to the middle surface and located at Chebyshev poly-
nomial nodes in order to introduce the displacements and electric potentials of these
surfaces as basic plate unknowns. Such choice of unknowns with the consequent use
of Lagrange polynomials in the through-thickness distributions of displacements,
strains, electric potential and electric field leads to a robust laminated piezoelectric
plate formulation. The above works are based on the variational SaS formulation,
which requires including the interfaces into a set of SaS. However, it is important to
take all SaS located at Chebyshev polynomial nodes due to the convergence criterion
(Bakhvalov, 1977).

The present paper is intended to extend the variational SaS formulation for the
free vibration of laminated piezoelectric plates (Kulikov and Plotnikova, 2017a)
to the strong SaS formulation. The latter is based on the choice of all SaS inside
the layers at Chebyshev polynomial nodes and direct integration of the equations
of motion and the charge equation. The use of interfaces is avoided that allows
one to minimize uniformly the error due to the higher-order Lagrange interpolation
(Kulikov and Plotnikova, 2017b,c; Kulikov et al, 2017, 2019). Thus, the strong SaS
formulation can be applied efficiently to the 3D vibration analysis of piezolaminated
plates.

14.2 Basic Assumptions

Consider a laminated piezoelectric plate of the thickness h. Let the middle surfaceΩ
be described by Cartesian coordinates x1 and x2. The coordinate x3 is oriented in the
thickness direction. According to the SaS concept, we choose inside the nth layer
In SaS Ω(n)1, Ω(n)2, ..., Ω(n)In parallel to the middle surface (see Fig. 14.1), where
n = 1, 2, ..., N; N is the number of layers and In ≥ 3. The transverse coordinates of
SaS of the nth layer located at Chebyshev polynomial nodes (roots of the Chebyshev
polynomial of order In) are written as

x(n)in
3 =

1
2

(x[n−1]
3 + x[n]

3 )− 1
2

hn cos
(
π

2in−1
2In

)
, (14.1)
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Fig. 14.1 Geometry of the
laminated plate.

where x[0]
3 = −h/2, x[N]

3 = h/2; x[m]
3 are the transverse coordinates of interfaces Ω[m];

hn = x[n]
3 − x[n−1]

3 is the thickness of the nth layer; the index m = 1 , 2, ..., N −1 iden-
tifies the belonging of any quantity to the interface; the indices in, jn = 1, 2, ..., In
identify the belonging of any quantity to the SaS of the nth layer.

The through-thickness SaS approximations can be expressed as

[u(n)
i , ε(n)

i j , σ
(n)
i j , ϕ

(n), E(n)
i , D(n)

i ] = (14.2)∑
in

L(n)in [u(n)in
i , ε(n)in

i j , σ(n)in
i j , ϕ(n)in , E(n)in

i , D(n)in
i ] ,

where u(n)
i , ε(n)

i j , σ
(n)
i j , ϕ

(n), E(n)
i , D(n)

i are the displacements, strains, stresses, elec-

tric potential, electric field and electric displacements of the nth layer; u(n)in
i , ε(n)in

i j , σ(n)in
i j ,

ϕ(n)in , E(n)in
i , D(n)in

i are the displacements, strains, stresses, electric potential, elec-
tric field and electric displacements of SaS of the nth layer Ω(n)in ; L(n)in (x3) are the
Lagrange basis polynomials of degree In−1 corresponding to the nth layer:

L(n)in =
∏
jn�in

x3− x(n) jn
3

x(n)in
3 − x(n) jn

3

. (14.3)

14.3 Strong SAS Formulation

For simplicity, we consider the case of linear piezoelectric materials given by

σ(n)
i j =C(n)

i jklε
(n)
kl − e(n)

ki jE
(n)
k , (14.4)

D(n)
i = e(n)

ikl ε
(n)
kl + ∈(n)

ik E(n)
k , (14.5)
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where C(n)
i jkl, e(n)

ki j and ∈(n)
ik are the elastic, piezoelectric and dielectric constants of the

nth layer. Here, the summation on repeated Latin indices is implied.
The equations of motion and the charge equation of the laminated piezoelectric

plate are written as
σ(n)

i j, j = ρnü(n)
i , (14.6)

D(n)
i,i = 0, (14.7)

where ρn is the mass density of the nth layer; ü(n)
i is the second order derivative of

displacements with respect to time t; the symbol (. . .),i stands for the partial deriva-
tives with respect to coordinates xi.

The boundary conditions on bottom and top surfaces are defined as

u(1)
i (−h/2) = w−i or σ(1)

i3 (−h/2) = p−i , ϕ
(1)(−h/2) = φ− or D(1)

3 (−h/2) = Q−, (14.8)

u(N)
i (h/2) = w+i or σ(N)

i3 (h/2) = p+i , ϕ(N)(h/2) = φ+ or D(N)
3 (h/2) = Q+, (14.9)

where w−i , p−i , φ
−, Q− and w+i , p+i , φ

+, Q+ are the prescribed displacements, sur-
face tractions, electric potentials and electric charges at the bottom and top surfaces.

The continuity conditions at interfaces are

u(m)
i (x[m]

3 ) = u(m+1)
i (x[m]

3 ), σ(m)
i3 (x[m]

3 ) = σ(m+1)
i3 (x[m]

3 ), (14.10)

ϕ(m)(x[m]
3 ) = ϕ(m+1)(x[m]

3 ), D(m)
3 (x[m]

3 ) = D(m+1)
3 (x[m]

3 ). (14.11)

Satisfying equations of motion (14.6) and charge equation (14.7) at inner layer
points x(n)mn

3 by using the SaS approximations (14.2), the following differential
equations are obtained:

σ(n)mn
i1,1 +σ

(n)mn
i2,2 +

∑
in

M(n)in (x(n)mn
3 )σ(n)in

i3 = ρnü(n)mn
i , (14.12)

D(n)mn
1,1 +D(n)mn

2,2 +
∑

in

M(n)in (x(n)mn
3 )D(n)in

3 = 0 , (14.13)

where M(n)in = L(n)in
,3 are the derivatives of the Lagrange basis polynomials whose

values at SaS Ω(n)mn are presented in Kulikov and Plotnikova (2013a,b); mn =

2, 3, ..., In−1.
Next, we satisfy the boundary conditions on bottom and top surfaces∑

i1

L(1)i1 (−h/2)u(1)i1
i = w−i or

∑
i1

L(1)i1 (−h/2)σ(1)i1
i3 = p−i , (14.14)

∑
i1

L(1)i1 (−h/2)ϕ(1)i1 = φ− or
∑

i1

L(1)i1 (−h/2)D(1)i1
3 = Q−,

∑
iN

L(N)iN (h/2)u(N)iN
i = w+i or

∑
iN

L(N)iN (h/2)σ(N)iN
i3 = p+i , (14.15)
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iN

L(N)iN (h/2)ϕ(1)iN = φ+ or
∑
iN

L(N)iN (h/2)D(N)iN
3 = Q+,

and the continuity conditions at interfaces∑
im

L(m)im (x[m]
3 )u(m)im

i =
∑
im+1

L(m+1)im+1 (x[m]
3 )u(m+1)im+1

i , (14.16)

∑
im

L(m)im (x[m]
3 )σ(m)im

i3 =
∑
im+1

L(m+1)im+1 (x[m]
3 )σ(m+1)im+1

i3 ,

∑
im

L(m)im (x[m]
3 )φ(m)im =

∑
im+1

L(m+1)im+1 (x[m]
3 )φ(m+1)im+1 ,

∑
im

L(m)im (x[m]
3 )D(m)im

3 =
∑
im+1

L(m+1)im+1 (x[m]
3 )D(m+1)im+1

3 .

Thus, the proposed strong SaS formulation deals with 4NSaS governing equations
(14.12)-(14.16) for obtaining the same number of SaS displacements u(n)in

i and SaS
electric potentials ϕ(n)in , where NSaS = I1 + I2 + ...+ IN is the total number of SaS.
These differential and algebraic equations have to be solved to describe the dynamic
response of the laminated piezoelectric plate.

14.4 Free Vibrations of Simply Supported Piezoelectric Plates

In this section, we consider a laminated piezoelectric rectangular plate with simply
supported edges. The boundary conditions on the edges are written as

σ(n)
11 = u(n)

2 = u(n)
3 = ϕ

(n) = 0 at x1 = 0 and x1 = a, (14.17)

σ(n)
22 = u(n)

1 = u(n)
3 = ϕ

(n) = 0 at x2 = 0 and x2 = b,

where a and b are the length and width of the plate.
To satisfy boundary conditions (14.17), we seek the analytical solution of the

problem in the following form:

u(n)in
1 = u(n)in

1rs eiωrst cos r̄x1 sin s̄x2, u(n)in
2 = u(n)in

2rs eiωrst sin r̄x1 cos s̄x2, (14.18)

u(n)in
3 = u(n)in

3rs eiωrst sin r̄x1 sin s̄x2, ϕ
(n)in = ϕ(n)in

rs eiωrst sin r̄x1 sin s̄x2,

where r̄ = rπ/a, s̄= sπ/b; r and s are the half-wave numbers in x1 and x2 directions;
u(n)in

irs and ϕ(n)in
rs are the amplitudes of displacements and electric potentials of SaS;

ωrs is the circular frequency; i =
√−1 is the imaginary unit.

Using (14.18) in relations between the SaS variables (Kulikov and Plotnikova,
2017a), one finds

(ε(n)in
11 , ε(n)in

22 , ε(n)in
33 , σ(n)in

11 , σ(n)in
22 , σ(n)in

33 ) =
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(ε(n)in
11rs , ε

(n)in
22rs , ε

(n)in
33rs , σ

(n)in
11rs , σ

(n)in
22rs , σ

(n)in
33rs)eiωrst sin r̄x1 sin s̄x2,

(E(n)in
3 , D(n)in

3 ) = (E(n)in
3rs , D(n)in

3rs )eiωrst sin r̄x1 sin s̄x2, (14.19)

(ε(n)in
13 , σ(n)in

13 , E(n)in
1 , D(n)in

1 ) = (ε(n)in
13rs , σ

(n)in
13rs , E(n)in

1rs , D(n)in
1rs )eiωrst cos r̄x1 sin s̄x2,

(ε(n)in
23 , σ(n)in

23 , E(n)in
2 , D(n)in

2 ) = (ε(n)in
23rs , σ

(n)in
23rs , E(n)in

2rs , D(n)in
2rs )eiωrst sin r̄x1 cos s̄x2,

(ε(n)in
12 , σ(n)in

12 ) = (ε(n)in
12rs , σ

(n)in
12rs)eiωrst cos r̄x1 cos s̄x2,

where
ε(n)in

11rs = −r̄u(n)in
1rs , ε(n)in

22rs = −s̄u(n)in
2rs , 2ε(n)in

12rs = s̄u(n)in
1rs + r̄u(n)in

2rs ,

2ε(n)in
13rs = r̄u(n)in

3rs +β
(n)in
1rs , 2ε(n)in

23rs = s̄u(n)in
3rs +β

(n)in
2rs , ε(n)in

33rs = β
(n)in
3rs ,

β(n)in
irs =

∑
jn

M(n) jn (x(n)in
3 )u(n) jn

irs , (14.20)

E(n)in
1rs = −r̄ϕ(n)in

rs , E(n)in
2rs = −s̄ϕ(n)in

rs , E(n)in
3rs = −

∑
jn

M(n) jn (x(n)in
3 )ϕ(n) jn

rs .

In the case of the piezoelectric material with 4mm symmetry, the constitutive equa-
tions (14.4) and (14.5) can be written in terms of SaS variables

σ(n)in
i jrs =C(n)

i jklε
(n)in
klrs − e(n)

ki jE
(n)in
krs , (14.21)

D(n)in
irs = e(n)

ikl ε
(n)in
klrs + ∈(n)

ik E(n)in
krs . (14.22)

For the vibration analysis of piezoelectric plates with stress-free and voltage-free
external surfaces, the boundary conditions (14.14) and (14.15) are used with p±i = 0
and φ± = 0. Substituting (14.18)-(14.22) in governing equations (14.12)-(14.16), we
arrive at the homogeneous system of linear equations([

Kuu
rs Kuϕ

rs
Kϕu

rs Kϕϕ
rs

]
−ω2

rs

[
Mrs 0

0 0

]) [
Urs
Φrs

]
= 0, (14.23)

where Kuu
rs , Kuϕ

rs , Kϕu
rs = (Kuϕ

rs )T and Kϕϕ
rs are the mechanical, piezoelectric and dielec-

tric stiffness matrices; Mrs is the mass matrix; Urs is the SaS displacement vector of
order 3NSaS; Φrs is the SaS electric potential vector of order NSaS given by

Urs =
[
UT

1rs UT
2rs UT

3rs

]T
, (14.24)

Uirs =
[
u(1)1

irs u(1)2
irs . . . u(1)I1

irs u(2)1
irs u(2)2

irs ...u(2)I2
irs ... u(N)1

irs u(N)2
irs . . . u(N)IN

irs

]T
,

Φrs =
[
ϕ(1)1

rs ϕ(1)2
rs . . . ϕ

(1)I1
rs ϕ(2)1

rs ϕ(2)2
rs . . . ϕ

(2)I2
rs ...ϕ(N)1

rs ϕ(N)2
rs . . . ϕ

(N)IN
rs

]T
. (14.25)

Eliminating the vector Φrs from (14.23), one gets

Φrs = −(Kϕϕ
rs )−1Kϕu

rs Urs. (14.26)
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Inserting (14.26) in the first row of (14.23), the following reduced homogeneous
system is obtained

(Krs−ω2
rsMrs)Urs = 0, (14.27)

which has a non-trivial solution only if

det(Krs−ω2
rsMrs) = 0, (14.28)

where Krs =Kuu
rs −Kuϕ

rs (Kϕϕ
rs )−1Kϕu

rs is the stiffness matrix of order 3NSaS×3NSaS.
The polynomial equation (14.28) has to be solved to obtain the circular frequen-

cies 0 < ω(1)
rs < ω(2)

rs < ... < ω
(3NSaS−6N)
rs arranged in an increasing order. The number

of frequenciesω(q)
rs for each set of SaS depends on the number of zero rows in a mass

matrix Mrs, where the superscript q = 1, 2, ..., 3NSaS −6N stands for the number of
through thickness modes. The eigenvectors U(q)

rs associated with the corresponding
eigenvalues λ(q)

rs = (ω(q)
rs )2 can be evaluated by using the linear system (14.27).

14.5 Forced Vibrations of Simply Supported Piezoelectric Plates

Here, we study forced vibrations of the simply supported laminated piezoelectric
rectangular plate with boundary conditions on the bottom and top surfaces

σ(1)
13 = σ

(1)
23 = σ

(1)
33 = ϕ

(1) = 0 at x3 = −h/2, (14.29)

σ(N)
13 = σ

(N)
23 = 0, σ(N)

33 = p+3 , ϕ(N) = φ+ at x3 = h/2.

Consider time-harmonic loading distributed on the top surface as follows:

Problem A: p+3 = p0eiωt sin
πx1

a
sin

πx2

b
, φ+ = 0; (14.30)

Problem B: p+3 = 0, φ+ = φ0eiωt sin
πx1

a
sin

πx2

b
, (14.31)

where p0 = 1 Pa, φ0 = 1 V and ω is the forcing frequency.
To satisfy boundary conditions (14.17), we seek the analytical solution of the

problem in the following form:

u(n)in
1 = u(n)in

10 eiωt cos
πx1

a
sin

πx2

b
, u(n)in

2 = u(n)in
20 eiωt sin

πx1

a
cos

πx2

b
, (14.32)

u(n)in
3 = u(n)in

30 eiωt sin
πx1

a
sin

πx2

b
, ϕ(n)in = ϕ(n)in

0 eiωt sin
πx1

a
sin

πx2

b
,

where u(n)in
i0 and ϕ(n)in

0 are the amplitudes of displacements and electric potentials of
SaS of the nth layer.

The described algorithm was performed with the Symbolic Math Toolbox, which
incorporates symbolic computations into the numeric environment of MATLAB.
This makes it possible to obtain the analytical solutions for free and forced vibra-
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tions of the simply supported laminated piezoelectric rectangular plate in the frame-
work of the SaS formulation, which asymptotically approach the 3D exact solutions
of electroelasticity as the number of SaS goes to infinity.

As a numerical example, we consider a simply supported two-ply square plate
[0/90] made of the graphite epoxy composite and covered with PZT-4 piezoelec-
tric layers at the bottom and at the top. Therefore, we deal here with a hybrid
four-layer plate [PZT/0/90/PZT] with ply thicknesses [0.25h/0.25h/0.25h/0.25h].
The material properties of the PZT-4 (Kulikov and Plotnikova, 2017a) polarized
in the thickness direction are E1=E2=81.3 GPa, E3=64.5 GPa, G12=30.6 GPa,
G13=G23=25.6 GPa, ν12=0.329, ν13 = ν23=0.432, e311=e322=-5.2 C/m2, e333=15.08
C/m2, e113=e223=12.72 C/m2, ∈11=∈22=13.06 nF/m, ∈33=11.51 nF/m and ρ =7600
kg/m3. The material properties of the graphite epoxy (Kulikov and Plotnikova,
2017a) are E1=172.5 GPa, E2=E3=6.9 GPa, G12=G13=3.45 GPa, G23=1.38 GPa,
ν12=ν13=0.25, ν23=0.35, ∈11=0.031 nF/m, ∈22=∈33=0.027 nF/m and ρ=1800 kg/m3.

To evaluate the results effectively, we introduce the dimensionless frequency (Ku-
likov and Plotnikova, 2017a)

ω̄ = ωa2
√
ρ0/E0/h (14.33)

and dimensionless basic variables at crucial points as functions of the thickness
coordinate

ū3 = 109u3(a/2, a/2, z)/h, σ̄11 = σ11(a/2, a/2, z)/σ0,

σ̄13 = σ13(0, a/2, z)σ0, σ̄33 = σ33(a/2, a/2, z)/σ0, (14.34)

ϕ̄ = ϕ(a/2, a/2, z)/ϕ0, D̄3 = 109ϕ0 D3(a/2, a/2, z)/aσ0, z = x3/h,

where a=1 m, h=0.1 m, E0=81.3 GPa, ρ0=7600 kg/m3, σ0=1 Pa and ϕ0 =1 V.
Figures 14.2 and 14.3 display the distributions of displacements, stresses, electric

potential and electric displacement (14.34) through the thickness of the plate for
the forcing frequencies ω̄ = 0, 0.8ω̄0, 0.95ω̄0 and 1.05ω̄0 using seven SaS inside
each layer, where ω̄0 =6.0932 is the fundamental frequency in the case of stress-
free and voltage-free external surfaces (Kulikov and Plotnikova, 2017a). It is seen
that the boundary conditions on bottom and top surfaces for the transverse stresses
and the continuity conditions at interfaces for the transverse stresses and electric
displacement are satisfied correctly. Note also that the displacements and stresses
become larger as the forcing frequency approaches the fundamental frequency.

14.6 Conclusions

An efficient strong SaS formulation is developed for the 3D vibration analysis of
laminated piezoelectric plates with the SaS located at Chebyshev polynomial nodes
within the layers. It is based on direct integration of the equations of motion of
piezoelectricity. The use of interfaces and outer surfaces is avoided that makes it
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Fig. 14.2 Through-thickness distributions of transverse displacement, stresses, electric potential
and electric displacement for the four-layer plate subjected to mechanical loading (problem A).
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Fig. 14.3 Through-thickness distributions of transverse displacement, stresses, electric potential
and electric displacement for the four-layer plate subjected to electric loading (problem B).
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possible to minimize uniformly the error due to Lagrange interpolation. Therefore,
the proposed strong SaS formulation allows one to obtain the analytical solutions
for free and forced vibrations of laminated piezoelectric plates with a prescribed
accuracy, which asymptotically approach the exact solutions of electroelasticity as
the number of SaS goes to infinity.
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Chapter 15
Asymptotic Analysis of Buckling of Layered
Rectangular Plates Accounting for Boundary
Conditions and Edge Effects Induced by Shears

Gennadi Mikhasev and Rovshen Ataev

Abstract Based on the equivalent single layer theory for laminated shells, buck-
ling of layered rectangular plate under uniaxial compression with different variant
of boundary conditions is studied. Equations in terms of the displacement, shear
and stress functions, which take into account transverse shears inside the plate and
near the edges with and without diaphragms, are used as the governing ones. Us-
ing the asymptotic approach, the buckling modes are constructed in the form of a
superposition of the outer solution and the edge effect integrals induced by shears
in the vicinity of the edges with or without diaphragms. Closed form relations for
the critical buckling force accounting for shears are obtained for different variants
of boundary conditions. It is detected that within one group of boundary conditions,
the critical buckling forces can differ significantly depending on whether the edge is
supplied with the diaphragm or not.

Key words: layered rectangular plate, shears, uniaxial compression, buckling,
asymptotic approach, edge diaphragm, edge effects

15.1 Introduction

Buckling of thin plates is one of the extensive problems in the theory of thin-walled
structures subjected to loading, which includes problems on buckling of single layer
isotropic plates with various boundary conditions and under different schemes of
loading, of composite and laminated plates based on different kinematic hypotheses,
and others. Apparently, the first study on the stability of thin single layer isotropic
rectangular plates in the framework of the classical Kirchhoff theory, was carried
out by Bryan (1890). Applying the energy method, he obtained a simple formula for
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the critical force resulting in buckling of an uniaxially loaded rectangular plate with
simply supported edges. Soon, following the Euler approach, Timoshenko (1907,
1910) and Reissner (1909) independently considered similar problems for a plate in
which two edges loaded by a compressive force are simply supported, and the other
ones have arbitrary boundary conditions. Later, Bubnov (1912) solved the problem
on buckling of a rectangular plate, in which a pair of opposite sides is loaded by
forces linearly varying along these sides. There was also considered a rectangular
simply supported plate under the action of shear stresses uniformly distributed along
the contour of the plate.

The above closed form classical solutions together with many others (e.g., see
Timoshenko, 1936; Donell, 1976; Alfutov, 2000), obtained for isotropic plates obey-
ing Kirchhoff’s hypotheses, became a benchmark for subsequent investigations on
buckling of layered plates. Solutions of problems on buckling of laminated plates
with different boundary conditions and under various scheme of loading, using the
equivalent single layer (ESL) theories based on the Kirchhoff assumptions, can be
found in Ashton and Witney (1970); Reddy (2004). Obviously, similar solutions,
ignoring shears and the transverse normal stresses, are not sufficiently accurate for
laminated plates (Khdeir, 1989a,b). Therefore, the next contribution to the theory
of buckling of layered plates was the use of the first-order shear deformation theory
(FSDT) first proposed by Reissner (1945, 1952); Mindlin (1951) and then improved
by other researches, see, e.g., the review papers Altenbach (1998); Qatu et al (2010).
The series of studies based on this approach (see, among many others, Khdeir et al,
1987; Reddy and Khdeir, 1989; Nosier and Reddy, 1992) showed that taking trans-
verse shears into account may give a large correction to the critical buckling force
estimated within the classical shells theory for layered plates. The main drawback of
the FSDT is that it does not allow satisfying the traction-free boundary conditions at
the top and bottom surfaces of a laminated plate and so, it requires to introduce the
shear correction factors (Mindlin, 1951). The next step in the development of more
accurate approaches for modeling mechanical behavior of laminated plates is asso-
ciated with the higher-order shear deformation theories (HSDT)s. They are based on
quadratic, cubic and higher-order expansions at least of the in-plane displacements
as functions of the transverse coordinate and comply with the traction-free bound-
ary conditions on the face planes of a laminated plate, see relatively early papers
Whitney and Sun (1973, 1974); Reddy (1984); Librescu et al (1987); Grigoliuk and
Kulikov (1988), and also some more recent (Swaminathan and Ragounadin, 2004;
Tovstik and Tovstik, 2007; Aydogdu, 2009; Amabili, 2015; Shi et al, 2018, to name
a few). Using the developed HSDTs, many buckling problems of rectangular lami-
nated plates were analyzed for various boundary conditions and schemes of loading,
taking into account anisotropy of layers composing the plate. A lot of examples on
buckling of laminated plates with symmetric and antisymmetric, cross- and angle-
ply orientation of fibres can be found in Reddy (2004). An extensive literature on
early studies of buckling of laminated plates can be also found there.

Due to the widespread use of composite plates and shells in engineering prac-
tice, the number of papers devoted to the buckling of laminated and functionally
graded material plates, based on using HSDTs and high accurate layer-wise theo-
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ries accounting the zig-zage effects, has increased dramatically, e.g., see the review
article by Swaminathana et al (2015). These studies carried out, as a rule, using nu-
merical methods, are characterized by high accuracy, but at the same time they are
numerically highly-cost and do not allow obtaining closed form solutions and sim-
ple assessments for the critical buckling loads. In particular, a review of the available
literature indicates the absence of any research of the transverse shear effects near
the plate edges, induced by the edge diaphragms, on a value of the critical buckling
load. At the same time, it should be noted that the asymptotic analysis of free vibra-
tion of a laminated cylindrical shell performed in Mikhasev and Botogova (2017);
Mikhasev and Altenbach (2019c) displayed the strong dependence of the lowest
eigenfrequencies on whether the shell edge is supplied with a diaphragm or not.

Motivated by the outcomes of Mikhasev and Botogova (2017); Mikhasev and
Altenbach (2019c), we aim to investigate the influence of the transverse shears near
edges on the value of the critical buckling force for rectangular plates which are pli-
able to shears. As the model we will use the ESL theory developed by Grigoliuk and
Kulikov (1988) which is based on the generalized kinematical hypotheses of Tim-
oshenko for the in-plane displacements and the parabolic distribution of transverse
shear stresses through the plate thickness. This model complies with the traction-
free boundary conditions on the top and bottom surfaces of a laminated plate and
was verified by finite element simulation (Mikhasev and Altenbach, 2019a). In the
framework of this theory, the full system of differential equations w.r.t. five un-
knowns is readily simplified and reduced to three equations for the displacement,
stress and shear functions. These equations have more higher order than similar
equations like Timoshenko-Reissner and, in a particular case, completely coincide
with equations derived by Tovstik and Tovstik (2017a,b) from the 3D theory of elas-
ticity. The higher order of this equations allows differing boundary conditions be-
longing to the same group (e.g., the clamped support group) depending on whether
an edge has a diaphragm or not.

The asymptotic solutions of equations governing buckling of a rectangular lam-
inated plate with various boundary conditions are constructed in the form of a su-
perposition of the outer solution and the edge effect integrals induced by shears in
the vicinity of an edge with or without a diaphragm. The corrections to classical
relations for the critical buckling forces are derived.

15.2 Governing Equations

Consider a rectangular laminated plate with the sides a,b consisting of N transver-
sally isotropic elastic layers. Each layer is characterized by the thickens hk, Young’s
modulus Ek, the shear modulus Gk and Poisson’s ratio νk, where k = 1,2, . . . ,N.
The plate is referred to an orthogonal Cartesian coordinate system Ox1x2x3 with the
original plane Ox1x2 coinciding with the middle surface of any layer.

Let the plate be loaded with edges forces which generally generate the stress
resultants T ◦11,T

◦
22,T

◦
12 in the original plane Ox1x2, where T ◦11, T ◦22 are the membrane
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forces acting in the x1- and x2- directions, respectively, and T ◦22 is the membrane
shear force. Then the governing equations describing buckling of the plate based on
the ESL theory by Grigoliuk-Kulikov can be written as follows:

D
(
1− θh

2

β
Δ

)
Δ2χ−

⎛⎜⎜⎜⎜⎜⎝T ◦11
∂2

∂x2
1

+2T ◦12
∂2

∂x1∂x2
+T ◦22

∂2

∂x2
2

⎞⎟⎟⎟⎟⎟⎠w = 0, (15.1)

w =
(
1− h2

β
Δ

)
χ,

1− ν
2

h2

β
Δφ = φ. (15.2)

Here Δ is the Laplace operator, h =
N∑

k=1
hk is the total plate thickness, w is the normal

displacement, χ and φ are the displacement and shear functions, respectively, E,
D and ν are the reduced Young’s modulus, bending stiffness and Poisson’s ratio,
respectively, and θ,β are the reduced shear parameters determined by equations:

D =
Eh3

12(1− ν2)
η3, E =

1− ν2

h

N∑
k=1

Ekhk

1− ν2
k

, ν =

N∑
k=1

Ekhkνk

1− ν2
k

⎛⎜⎜⎜⎜⎜⎜⎝ N∑
k=1

Ekhk

1− ν2
k

⎞⎟⎟⎟⎟⎟⎟⎠
−1

,

θ = 1− η2
2

η1η3
, β =

12(1− ν2)
Ehη1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
[

N∑
k=1

(
rk − r2

k0
rkk

)]2
N∑

k=1

(
rk − r2

k0
rkk

)
G−1

k

+

N∑
k=1

r2
k0

rkk
Gk

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭ .
(15.3)

Parameters ηi,rk,rkn, where i = 1,2,3;n = 0,k, appearing in (15.3) are introduced by
the following relations:

rk =

zk∫
zk−1

f 2
0 (z)dz, rkn =

zk∫
zk−1

fk(z) fn(z)dz, η1 =

N∑
k=1

ξ−1
k π1kγk −3c2

12,

η2 =

N∑
k=1

ξ−1
k π2kγk −3c12c13, η3 = 4

N∑
k=1

(
ξ2

k +3ζk−1ζk
)
γk −3c2

13,

(15.4)

where

γk =
Ekhk

1− ν2
k

⎛⎜⎜⎜⎜⎜⎜⎝ N∑
k=1

Ekhk

1− ν2
k

⎞⎟⎟⎟⎟⎟⎟⎠
−1

(15.5)

is the in-plane reduced stiffness of the k-th lamina, and
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c12 =

N∑
k=1

ξ−1
k π3kγk, c13 =

N∑
k=1

(ζk−1+ ζk)γk,

1
12

h3π1k =

zk∫
zk−1

g2(x3)dx3,
1

12
h3π2k =

zk∫
zk−1

x3 g(x3)dx3,

1
2

h2π3k =

zk∫
zk−1

g(x3)dx3, η1 =

N∑
k=1

ξ−1
k π1kγk −3c2

12,

η2 =

N∑
k=1

ξ−1
k π2kγk −3c12c13, η3 = 4

N∑
k=1

(
ξ2

k +3ζk−1ζk
)
γk −3c2

13,

hξk = hk, hζn = zn (n = 0, k).

(15.6)

Functions f0, fk,g are taken in the polynomial form:

f0(x3) =
1
h2 (x3− z0)(zN − x3) for x3 ∈ [z0,zN],

fk(x3) =
1
h2

k

(x3− zk−1)(zk − x3) for x3 ∈ [zk−1,zk],

fk(x3) = 0 for x3 � [zk−1,zk], g(x3) =

x3∫
0

f0(z)dz.

(15.7)

In Eqs. (15.4), (15.6), (15.7), x3 = zk is the coordinate of the upper bound of the kth

layer, and x3 = z0 is the coordinate of the bottom face.
The dimensionless parameter θ depends on a number of layers and thickness of

each lamina. For instance, for a single layer isotropic plate, θ = 1/85. The estimates
of this parameter for layered plates and panels depending on a number of layers
and their mechanical properties can be found in Mikhasev et al (2019); Mikhasev
and Altenbach (2019d). If θ = 0, then Eq. (15.1) together with the first equation
from (15.2) degenerates into the fourth-order differential one which coincides with
the equation like Timoshenko-Reissner obtained by Tovstik and Tovstik (2017a,b);
Morozov et al (2016a,b) for plates inhomogeneous in the thickness direction. How-
ever, the shear parameter β is calculated in other way. We note that the parameter
G = Eη1β/[12(1− ν2)] can be here treated as the effective (or reduced) shear mod-
ulus for laminated plate (Mikhasev and Altenbach, 2019b; Mikhasev and Tovstik,
2020).

We consider two groups of boundary conditions, the simple support group, and
the clamped support group, which will be denoted by the letters S and C, respec-
tively. Each of these groups consists of two variants boundary conditions which
differ in the presence or absence of a diaphragm that prevents shears in the edge
plane. To distinguish these condition in the framework of one fixed group, we will
use the signs + and − for the edges with and without a diaphragm, respectively:
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• S + – conditions,

χ = Δχ = Δ2χ =
∂φ

∂xi
= 0; (15.8)

• S − – conditions, (
1− h2

β
Δ

)
χ =

∂2

∂x2
i

(
1− h2

β
Δ

)
= 0,

⎛⎜⎜⎜⎜⎜⎜⎝ ∂2

∂x2
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∂2

∂x2
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2
∂2χ

∂x1∂x2
+
∂2φ

∂x2
i

− ∂
2φ

∂x2
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= 0;

(15.9)

• C− – conditions, (
1− h2

β
Δ

)
χ =

∂χ

∂xi
=

∂

∂xi
(Δχ) = φ = 0; (15.10)

• C+ – conditions, (
1− h2

β
Δ

)
χ =

∂

∂xi

(
1− h2

β
Δ

)
χ = 0,

∂χ

∂xi
− ∂φ

∂x j
=
∂χ

∂x j
+
∂φ

∂xi
= 0

(15.11)

for xi = 0, x∗i , where i, j = 1,2; i � j, and x∗1 = a, x∗2 = b.
There are 9 essentially different combinations of boundary conditions. In what

follows, we consider only the following variants:

S ±S ±S +S +, S ±C±S +S +, C±C±S +S +,

where the first pair of letters denotes the boundary conditions at the edges x1 =

0, x1 = a, while the second one corresponds to conditions for x2 = 0, x2 = b. For
instance, S +S +S +S + stands for the plate with simply supported edges supplied with
the diaphragms, while the combination C−C−S +S + denotes a clamped support of
the edges x1 = 0, x1 = a without diaphragms.

As a rule, the plate loading is assumed to be one-parametric, so that

T ◦i j = −λ
D
a2 t◦i j, (15.12)

where t◦i j is the dimensionless counterpart of T ◦i j, and λ is the dimensionless load
parameter. It is important that at least one of the parameters t◦i j be positive, that cor-
responds to the plate compression. The problem is to find the minimum positive
value of a parameter λ for which the governing Eqs. (15.1), (15.2) with some speci-
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fied variant of boundary conditions (15.8)-(15.11) have a non-trivial solution. Here,
the case t◦12 � 0 is not considered.

15.3 Simply Supported Plate with the Edge Diaphragms

Consider the simplest case denoted as S +S +S +S + when all edges are simply sup-
ported and supplied with the diaphragms. The corresponding boundary conditions
are given by Eqs. (15.8). This case is probably the only one that allows us to con-
struct a solution in the explicit simple form and analyse the effect of shears on the
critical load. Without loss of generality, we assume that t◦22 = 1, and t◦11 = t1 is any
constant.

In this case the unique solution of the last equation from (15.2) satisfying the
boundary conditions (15.8) is the trivial function, φ = 0, while the displacement
function can be represented as

χ = c0 sin
πmx1

a
sin

πnx2

b
, (15.13)

where n,m are natural numbers, and c0 is a nonzero constant. The substitution of
(15.13) into Eqs. (15.1), (15.2) results in the simple formula for the eigenvalue

λ =
π2

l2
(n2+ l2m2)2[1+ θK(n2+ l2m2)]
(n2+ t1l2m2)[1+K(n2+ l2m2)]

, (15.14)

where l = b/a, and

K =
π2h2

βb2 (15.15)

is the dimensionless shear parameter. The required critical value

λ∗ =min
n,m

λ(n,m) = λ(n∗,m∗) (15.16)

is the function of θ and K, where the dimensionless shear parameter K depends on
the reduced shear modulus G, see Eq. (15.3). Because θ is a small value, the shear
parameter K is the main one affecting the critical buckling force.

If all edges are uniformly loaded (t1 = 1), then

n∗ = m∗ = 1, λ∗ = λ∗cl
1+ θK(1+ l2)
1+K(1+ l2)

, (15.17)

where the eigenvalue

λ∗cl =
π2(1+ l2)

l2
(15.18)

corresponds to the classical value of the buckling force for a single layer isotropic
plate (Alfutov, 2000).
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Equation (15.17) shows that an increase in the shear parameter K (i.e., a decrease
in the effective shear modulus G) leads to a decrease in the critical buckling force
for a multilayer plate pliable to transverse shears. Because φ = 0, then the edge
effect in the case under consideration is absent. In other words, the presence of the
diaphragms at simply supported edges does not generates shears localized near these
edges.

15.4 Buckling Modes Accounting for the Edge Effects

In this section we consider the plates with boundary conditions belonging to the
group Y±Z±S +S +, where Y and Z denote either S or C conditions. In what follows,
we assume that t◦22 = 1 and t◦11 = 0, i.e., the plate is compressed only in the x2 –
direction. For these combinations of boundary conditions the general solution of
Eqs. (15.1), (15.2) can be represented in the form:

χ = X(x) sinδny, φ =Φ(x)cosδny, (15.19)

where
x =

x1

a
, y =

x2

a
, δ =

πn
l
. (15.20)

Then Eqs. (15.1), (15.2) can be rewritten as follows:

(1− θκΔ1)Δ2
1X−λδ2 (1− κΔ1) X = 0, (15.21)

1− ν
2

κΔ1Φ−Φ = 0, (15.22)

where Δ1 =
d2

dx2 − δ2 is the differential operator, and κ = h2

βa2 is the dimensionless
shear parameter.

Accounting for (15.19), the boundary conditions for an unloaded edge (x = 0 or
x = 1) read:

• S + – conditions,

X = 0,
(

d2

dx2 −δ2
)

X = 0,
(

d2

dx2 −δ2
)2

X = 0,
dΦ
dx
= 0. (15.23)

• S − – conditions,

(1− κΔ1) X = 0,
d2

dx2 (1− κΔ1) X = 0,(
d2

dx2 − νδ2
)

X+ (1− ν)δdΦ
dx
= 0,

2δ
dX
dx
+

d2Φ

dx2 +δ
2Φ = 0;

(15.24)
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• C− – conditions,

(1− κΔ1) X = 0,
dX
dx
= 0,

Δ1
dX
dx
= 0, Φ = 0;

(15.25)

• C+ – conditions,

(1− κΔ1) X = 0,
d
dx

(1− κΔ1) X = 0,

dX
dx
+δΦ = 0, δX+

dΦ
dx
= 0.

(15.26)

Depending on the orders of the shear parameters κ and θ, there are the following
two distinctive cases:

• Case (A) κ = ε2 is a small parameter, and θ = O(1) as ε→ 0;
• Case (B) θ is a small parameter, and κ = O(1) as θ→ 0.

Case (A) corresponds to very thin plates with the reduced Young’s and shear
moduli of the same order (E ∼ G), and case (B) is related to thin plates for which
G� E.

15.4.1 Layered Plates with the Reduced Young’s and Shear Moduli
of the same Order

Consider case (A). Regardless of the type of boundary conditions, the general solu-
tion of Eq. (15.22) is the function

Φ = ει1c1e−
1
ε

√
2+ε2δ2(1−ν)

1−ν x +ει2c2e
1
ε

√
2+ε2δ2(1−ν)

1−ν (x−1), (15.27)

where ιi are the indices of intensity of the function Φ, and c1,c2 are constants of the
order O(1) to be determined from appropriate boundary conditions.

Consider Eq. (15.21). Its solution can be constructed in the form of the superpo-
sition of a solution, X(m), valid in the plate interior (the so-called "outer solution"),
with a pair of boundary layers, X(e)

1 and X(e)
2 , fading off away from the left and from

the right plate ends, respectively:

X = X(m)(x, ε)+εα1 X(e)
1 (x, ε)+εα2 X(e)

2 (x, ε), (15.28)

where α1,α2 are indices of intensity of the edge effect integrals. We assume also
that the following order relations hold:

∂X(m)

∂x
∼ X(m),

∂X(e)
i

∂x
∼ ε−ςi X(m)

i as ε→ 0. (15.29)
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The positive parameters ςi are named the indices of variation of the edge effect
integrals. The indices α1,α2 depends on the boundary conditions and should be
specified for each edge.

To derive an edge effect equation describing behaviour of the solution in the
neighbourhood of the left and right ends, we scale in the vicinity of both edges.
For instance, for the left edge we assume x = ες1ζ and compare the main term in
Eq. (15.21) containing the six-order derivative with others. As a result, we obtain
ςi = 1 for both ends, and the edge effect equation reads

θ
d6X(e)

i

dζ6 −
(
1+3ε2θδ2

) d4X(e)
i

dζ4 +ε
2δ2
(
2+3ε2θδ2−ε2λ

) d2X(e)
i

dζ2

−ε4δ2
[
δ2+ε2θδ4−λ

(
1+ε2δ2

)]
X(e)

i = 0.

(15.30)

Its solution is sought in the form of asymptotic series

X(e)
i =

∞∑
j=1

ε jχ(e)
i j (ζ).

Here we give only the leading terms of these expansions, returning to the original
argument x:

X(e)
1 = a1e

− x
ε
√
θ +O

(
εe
− x
ε
√
θ

)
, X(e)

2 = a2e
x−1
ε
√
θ +O

(
εe

x−1
ε
√
θ

)
, (15.31)

where ai are constants to be determined from the boundary conditions.
The outer solution X(m) as well as the eigenvalue λ are also sought in the form of

series
X(m) = χ0(x)+εχ1(x)+ . . . , λ = λ0+ελ1+ . . . (15.32)

Substituting (15.32) into Eq. (15.21) and grouping coefficients of the same pow-
ers of ε leads to the sequence of differential equations:

k∑
j=0

L jχk− j = 0, (15.33)

where

L0 =
d4

dx4 −2δ2 d2

dx2 +δ
2
(
δ2−λ0

)
, L1 = −λ1δ

2, . . . (15.34)

To specify the boundary conditions for the functions χk(x), we substitute ex-
pansions (15.28), (15.31), (15.32) into appropriate conditions from (15.23)-(15.26),
equate coefficients at the same powers of ε and impose the following requirements:

• in the leading approximation (k = 0), the boundary conditions for χ0(x) should
be homogeneous;

• the leading approximation generates equations coupling constants ci with the
function χ′0(x) evaluated at the boundaries;
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• the kth-order (k ≥ 1) approximation results in the inhomogeneous boundary con-
ditions for χk(x) and relations for ai as well.

We note that indices αi, ιi depend on the type of boundary conditions and can be
different on the left and right edges.

15.4.1.1 Plate with S−S−S+S+ - Boundary Conditions

Let the unloaded edges be simply supported and not supplied with diaphragms. The
corresponding boundary conditions are given by relations (15.24). Here, we obtain
αi = 3, ιi = 2 for i = 1,2.

In the leading approximation, one obtains the homogeneous boundary condi-
tions,

χ0(0) = χ0(1) = 0, χ′′0 (0) = χ′′0 (1) = 0, (15.35)

and the pair of relations:

2δχ′0(0)+
2

1− νc1 = 0, 2δχ′0(1)+
2

1− νc2 = 0. (15.36)

The first-order approximation leads to the inhomogeneous boundary conditions,

χ1(0) = χ1(1) = 0, (15.37)

χ′′1 (0)− θ−1
θ2 a1 = 0, χ′′1 (1)− θ−1

θ2 a2 = 0, (15.38)

and generates two the equations coupling constants ai,ci with the function χ′′1 (x)
evaluated at x = 0 and x = 1:

χ′′1 (0)+
a1

θ
−δ(1− ν)

√
2√

1− νc1 = 0,

χ′′1 (1)+
a2

θ
+δ(1− ν)

√
2√

1− νc2 = 0.

(15.39)

Interrupting the process of finding the boundary conditions for functions χk(x),
we consider the boundary-value problems arising in the first two approximations.

In the leading approximation (k = 0), one has the homogeneous differential equa-
tion L0χ0 = 0 with the homogeneous boundary conditions (15.35). The solution of
this classical boundary-value problem is the eigenfunction χ0 = c0 sinπmx with the
associated eigenvalue

λ0 = λ0(n,m) =

[
(πm)2+δ2

]2
δ2 . (15.40)

The critical buckling force is evaluated as
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λ∗0 =min
n,m
= λ(n∗,m∗) = λ(n∗,1) =

π2
(
l2+n∗2

)2
l2n∗2

, (15.41)

where n∗ = 1, if l = b/a ≤ 1, and n∗ = In(l) for l > 1. Here In(z) stands for the integer
part of a number z. Then χ∗0 = c0 sinπx is the associated eigenfunction. Below, the
asterisk ∗ is omitted for all parameters and the eigenfunction.

Now we can calculate

c1 = −πδ(1− ν)c0, c2 = πδ(1− ν)c0, (15.42)

where c0 is an arbitrary constant that remains undefined in the framework of the
linear problem. Here and below, the parameter δ = δn is calculated at n = n∗.

Subtracting Eqs. (15.39) from Eqs. (15.38) and accounting for (15.42), we obtain
the relations for constants

a1 = a2 =
√

2πδ2(1− ν)3/2θ2c0. (15.43)

Then the pair of boundary conditions (15.39) can be rewritten as

χ′′1 (0) = χ′′1 (1) = κc0, (15.44)

where
κ =
√

2πδ2(1− ν)3/2(1− θ)c0. (15.45)

Consider the inhomogeneous differential equation (15.33) in the first-order ap-
proximation:

d4χ1

dx4 −2δ2 d2χ1

dx2 +δ
2
(
δ2−λ0

)
χ1 = λ1δ

2χ0. (15.46)

We note that the operator L0 is self-conjugated. Therefore, regardless of the type of
boundary conditions imposed on the function χ1(x), the condition for the existence
of a solution to Eq. (15.46) will be as follows:

χ′′′1 (1)χ0(1)−χ′′′1 (0)χ0(0)−χ′′1 (1)χ′0(1)+χ′′1 (0)χ′0(0)

+χ′1(1)χ′′0 (1)−χ′1(0)χ′′0 (0)−χ1(1)χ′′′0 (1)+χ1(0)χ′′′0 (0)

−2δ2
[
χ′1(1)χ0(1)−χ′1(0)χ0(0)−χ1(1)χ′0(1)+χ1(0)χ′0(0)

]
−λ1δ

2

1∫
0

χ2
0(x)dx = 0.

(15.47)

Returning to the case of S −S −S +S + – boundary conditions specified by rela-
tions (15.35), (15.37) and (15.44), we arrive at the parameter correcting the eigen-
value:

λ1 =
4κπ
δ2 . (15.48)
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Then an approximate relations for the required eigenvalue and eigenmode can be
written as follows:

λ =

(
π2+δ2

)2
δ2

[
1+εΛ1+O

(
ε2
)]
,

χ ≈ c0 sinδny
[
sinπx+εχ1(x)+ε3

√
2πδ2θ2(1− ν)3/2

(
e
− x
ε
√
θ + e

x−1
ε
√
θ

)]
,

(15.49)

where

Λ1 =
4
√

2π2(1− ν)3/2δ2(1− θ)
(π2+δ2)2 > 0, (15.50)

and χ1(x) is the partial solution of Eq. (15.46) with the boundary conditions (15.37),
(15.44).

We note that although the correction of the edge effect integrals to the eigenmode

is of the order ε3
(
e
− x
ε
√
θ , e

x−1
ε
√
θ

)
, the error of relation (15.49) for χ has the order

O
(
ε2
)
.

We compare eigenvalue (15.49) with the analogous value given by relations (15.14),
(15.16), corresponding to the simply supported plate with diaphragms at all edges.
Note that m∗ = 1 for t1 = 0 in (15.14), (15.16). Since Eqs. (15.49), (15.49) are asymp-
totic, we expand formula (15.14) also into the series in a small parameter ε keeping
in mind that K = ε2π2l−2:

λ =

(
π2+δ2

)2
δ2

[
1+ε2Λ2+O(ε4)

]
, Λ2 = (1− θ)

(
π2+δ2

)
> 0. (15.51)

It can be seen that in the leading approximation the classical eigenvalues λ∗0 eval-
uated by Eqs. (15.49) and (15.51), which ignore the shear effects in a plate, are
the same. The effect of shears on the buckling force turns to be different in plates
with and without diaphragms. In the plate with simply supported edges with the
diaphragms, the edge effects induced by shears are absent, and shears, taking place
in the interior region of the plate, leads to a minor reduction of the buckling force
with respect to the classical value λ∗0, the normalized correction being a value of the
order O(ε2).

Conversely, if there are no diaphragms at the simply supported edges, then near
these edges shears occur, which lead to edge effects in the buckling form and in-
crease the critical force with a normalized correction of the order O(ε). It is in-
teresting to note that similar reinforcing effect of the edge shears takes place in a
cylindrical shell without diaphragms at the simply supported edges when the shell
is under external pressure (Mikhasev and Botogova, 2017).
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15.4.1.2 Plate with C±C±S+S+ - Boundary Conditions

Consider a plate with the clamped unloaded edges without diaphragms (C−C−S +S +

– conditions). The corresponding boundary conditions are given by relations (15.25).
In this case α1 = α2 = 3, and c1 = c2 = 0 so that Φ = 0.

In the leading approximation, the boundary conditions read

χ0(0) = χ0(1) = 0, χ′0(0) = χ′0(1) = 0. (15.52)

In addition, one obtains constants

a1 = −a2 = θ
3/2χ′′′0 (0). (15.53)

Consider the homogeneous differential equation L0χ0 = 0 with the boundary con-
ditions (15.52). This boundary-value problem has a straightforward exact solution

χ0(x, δ) = c1e−αx + c2eα(x−1)+ c3 sinγx+ c4 cosγx, (15.54)

where c j are constants determined from conditions (15.52), and

α =

√
δλ1/2

0 +δ
2, γ =

√
δλ1/2

0 −δ2, δ2 < λ0. (15.55)

Let λ(δ) be the minimum positive eigenvalue for a fixed δ. The required eigen-
value λ∗0 corresponding to the plate buckling is determined as follows:

λ∗0 =min
n
λ0(δ(n)) = λ0(δ(n∗)) = λ0(δ∗).

The procedure to determine n∗, δ∗,λ∗0 will be described below (for different variants
of boundary conditions).

In the fist-order approximation, one has the inhomogeneous differential equation
(15.46) with the homogeneous boundary conditions (15.52) for χ1. This inhomo-
geneous boundary-value problem implies λ1 = 0, and the eigenfunction χ1 is given
with accuracy up to a constant by Eq. (15.54).

The second-order approximation, taking into account (15.53), generates the in-
homogeneous boundary-value problem:

L0χ2 = Nχ0+λ2δ
2χ0, (15.56)

χ2(0) = χ′′0 (0), χ2(1) = χ′′0 (1),

χ′2(0) =
a1√
θ
= θχ′′′0 (0), χ′2(1) = − a2√

θ
= θχ′′′0 (1),

(15.57)

where N is the differential operator introduced as follows:

N = θ
d6

dx6 −3θδ2 d4

dx4 +δ
2
(
3θδ2−λ0

) d2

dx2 +δ
4
(
λ0− θδ2

)
.
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The condition for existence of a solution of this problem results in the correction for
the eigenvalue λ∗0:

λ2 =
{
(θ−1)[χ′′0 (1)χ′′′0 (1)−χ′′0 (0)χ′′′0 (0)]−ZN

}
Z−1

1 , (15.58)

where

ZN =

1∫
0

χ0(x)Nχ0(x)dx, Z1 = δ
2

1∫
0

χ2
0(x)dx. (15.59)

We note that the correction λ2 is evaluated for λ0 = λ
∗
0, δ = δ

∗.
Breaking the process of constructing the buckling mode, we write the approx-

imate formulas for the critical load parameter λ∗ and the corresponding bucking
mode:

λ∗ = λ∗0
[
1+ε2Λ2+O

(
ε3
)]
,

χ ≈ sinδny
{
χ0(x)+ε2χ2(x)−ε3θ3/2

[
χ′′′0 (0)e

− x
ε
√
θ +χ′′′0 (1)e

x−1
ε
√
θ

]}
,

(15.60)

where Λ2 = λ2/λ
∗
0.

Now, let the unloaded edges be clamped and supplied with diaphragms (C+C+S +S +

– conditions). This case is not much different from the previous one (for C−C−S +S +–
conditions, see Eqs. (15.26)). Here, α1 = α2 = 3, and the boundary-value prob-
lems arising in the first three approximations are the same, so that all equations
from (15.52) to (15.60) are valid. The only difference is that the function Φ de-
fined by Eq. (15.27) is nonzero here. The asymptotic analysis of the boundary-value
problems (15.33), (15.26) implies ι1 = ι2 = 3 and constants

c1 =

√
1− ν

2
δχ′′0 (0), c2 = −

√
1− ν

2
δχ′′0 (1). (15.61)

Thus, the presence of diaphragms on the clamped edges does not influence on the
critical parameter λ∗, see Eq. (15.60), found from the first three approximations. An
additional correction for the eigenvalue λ∗ can be determined from considering the
highest approximations.

15.4.1.3 Plate with S±C−S+S+ - Boundary Conditions

Let the left edge be simply supported and the right one be clamped, with both edges
free of diaphragms (S −C−S +S + – conditions, see Eqs. (15.24), (15.25)). In this case
α1 = α2 = 3, ι1 = 2, c2 = 0. In the leading approximation, one has the homogeneous
boundary conditions

χ0(0) = χ′′0 (0) = 0, χ0(1) = χ′0(1) = 0. (15.62)
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The first approximation implies

c1 = −δ(1− ν)χ′0(0), a1 = −
√

2(1− ν)3/2θ2δ2χ′0(0), a2 = −θ3/2χ′′′0 (1), (15.63)

and the boundary conditions for χ1(x) become as follows:

χ1(0) = 0, χ′′1 (0) = −√2(1− ν)3/2(1− θ)δ2χ′0(0), χ1(1) = χ′1(1) = 0. (15.64)

Condition (15.47) for the existence of a solution of the inhomogeneous boundary-
value problem (15.33), (15.64) at k = 1 results in the following correction

λ1 = −
√

2(1− ν)3/2(1− θ)[χ′0(0)]2

1∫
0
χ2

0(x)dx

. (15.65)

Hence, we arrive at the following relations for the critical value of the load parameter
and associated buckling mode:

λ∗ = λ∗0
[
1+εΛ1+O

(
ε2
)]
,

χ ≈ sinδny {χ0(x)+εχ1(x)

−ε3
[√

2(1− ν)3/2θ2δ2χ′0(0)e− x
ε

√
θ + θ3/2χ′′′0 (1)e

x−1
ε
√
θ

]}
,

(15.66)

where Λ1 = λ1/λ
∗
0.

Now we consider the variant of S +C−S +S + – conditions, see Eqs. (15.23) and
(15.25). In contrast to the previous case, here the left simply supported edge is sup-
plied with the diaphragm. The asymptotic analysis of the sequence of Eqs. (15.33)
with corresponding boundary conditions implies α1 = 4,α2 = 3, Φ = 0.

The homogeneous boundary conditions for the leading approximation are as in
the previous case and specified by Eqs. (15.62). Considering the first-order approxi-
mation gives λ1 = 0,χ1 = 0, and the second-order approximation implies parameters

a1 = −θ2χIV
0 (0), a2 = −θ3/2χ′′′0 (1), (15.67)

and the boundary conditions for χ2:

χ2(0) = 0, χ′′2 (0) = θχIV
0 (0),

χ2(1) = χ′′0 (1), χ′2(1) = θχ′′′0 (1).
(15.68)

A solution of the inhomogeneous boundary-value problem (15.56), (15.68) exists if
and only if
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λ2 =

θ
[
χIV

0 (0)χ′0(0)+χ′′′0 (1)χ′′(1)
0

]
−χ′′0 (1)χ′′′0 (1)−

1∫
0
χ0Nχ0dx

δ2
1∫

0
χ2

0(x)dx

. (15.69)

Thus, for the S −C−S +S + – boundary conditions the critical value of the load pa-
rameter is calculated by the first relation from (15.60), the associated buckling mode
being the function

χ ≈ sinδny
[
χ0(x)+ε2χ2(x)−ε3θ3/2χ′′′0 (1)e

x−1
ε
√
θ −ε4θ2χIV

0 (0)e
− x
ε
√
θ

]
. (15.70)

15.4.2 Layered Plates with Small Reduced Shear Modulus

Consider case (B), where θ is a small parameter, and κ = O(1) as θ→ 0. The pro-
cedure of constructing the asymptotic solution remains the same with the following
modifications. A solution of Eq. (15.21) is sought in the form:

X = X(m)(x, θ)+ θα1 X(e)
1 (x, θ)+ θα2 X(e)

2 (x, θ), (15.71)

where

X(m) = χ0(x)+ θ1/2χ1(x)+ θχ2(x)+ . . . , λ = λ0+ θ
1/2λ1+ θλ2+ . . . (15.72)

and

X(e)
1 = a1e

− x√
θ +O

(
θ1/2e

− x√
θ

)
, X(e)

2 = a2e
x−1√
θ +O

(
θ1/2e

x−1√
θ

)
, (15.73)

The differential equation of the leading approximation reads

L0χ0 ≡ d4χ0

dx4 − (2δ2−λ0δ
2κ)

d2χ0

dx2 + [δ4−λ0δ
2(1+ κδ2)]χ0 = 0. (15.74)

Its general solution is defined by Eq. (15.54), where

α =

√
2

2

√
δ2(2−λ0κ)+

√
δ2λ0(4+λ0κ2δ2),

γ =

√
2

2

√
−δ2(2−λ0κ)+

√
δ2λ0(4+λ0κ2δ2),

(15.75)

and λ0 >
δ2

1+κδ2 .
Here we restrict ourselves to the consideration of the C−C−S +S + – boundary

conditions. In this case, Φ = 0, α1 = α2 = 3/2, and the boundary conditions in the
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leading approximation read

κχ′′0 (0)− (1+ κδ2)χ0(0) = 0, χ′0(0) = 0,

κχ′′0 (1)− (1+ κδ2)χ0(0) = 0, χ′0(1) = 0
(15.76)

In what follows, λ0 is the minimum positive eigenvalue of the boundary-value prob-
lem (15.74), (15.76).

The next approximation yields the inhomogeneous boundary-value problem

L0χ1(x) = λ1δ
2
[
(1+ κδ2)χ0(x)− κχ′′0 (x)

]
,

κχ′′1 (0)− (1+ κδ2)χ1(0) = −κχ′′′0 (0), χ′1(0) = 0,

κχ′′1 (1)− (1+ κδ2)χ1(0) = κχ′′′0 (1), χ′1(1) = 0

(15.77)

and the pair of constants, a1 = χ
′′′
0 (0), a2 = −χ′′′0 (1) for the edge effect inte-

grals (15.73).
We note that the boundary-value problem (15.74), (15.76) is not self-conjugated.

Let the function χ∗(x) be a solution of the homogeneous Eq. (15.74) with the fol-
lowing conjugated boundary conditions:

κχ′′′∗ (0)− (κδ2−λ0κ
2δ2−1)χ′∗(0) = 0, χ∗(0) = 0,

κχ′′′∗ (1)− (κδ2−λ0κ
2δ2−1)χ′∗(1) = 0, χ∗(1) = 0.

(15.78)

Then the comparability conditions for the inhomogeneous boundary-value prob-
lem (15.77) results in the following correction for the eigenvalue λ0:

λ1 = −
χ′′′0 (0)χ′∗(0)+χ′′′0 (1)χ′∗(1)

δ2(1+ κδ2)
1∫

0
χ0(x)χ∗(x)dx−δ2κ

1∫
0
χ′′0 (x)χ∗(x)dx

. (15.79)

15.5 Analysis of Influence of Boundary Conditions and Edge
Effects on Critical Force

At first, we consider case (A). In the leading approximation (k = 0), the homoge-
neous boundary-value problems represented by Eq. (15.33) and by corresponding
boundary conditions coincide with similar classical problems for single layer plates
when shear effect is ignored. The careful analysis of the influence of boundary con-
ditions on buckling of single layer isotropic rectangular plates can be found in Al-
futov (2000). In particular, diagrams of the critical compressive force versus the
side ratio l = b/a are presented for all possible variants of boundary conditions.
Here, we give similar plots of the load parameter λ0 as of the function of a param-
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eter δ = πn/l. The minimum positive eigenvalue λ0(δ) versus a fixed parameter δ
is depicted in Fig. 15.1 for the three distinctive variants of boundary conditions,
S ±S ±S +S +, S ±C±S +S + and C±C±S +S + – conditions (as a reminder, the value of
λ0 does not depend on whether the edges are equipped with diaphragms or not).

Let δm be a value at which the function λ0(δ) takes a minimum value λm. Here,
δm = π, λm ≈ 39.478 for S ±S ± – boundary conditions at the unloaded edges, δm ≈
3.95,λm ≈ 53.392 for S ±C± – conditions and δm ≈ 4.75,λm ≈ 68.800 for C±C± –
conditions. The required eigenvalue λ∗0 corresponding to the plate buckling strongly
depends on the sides ratio l = b/a and is determined as follows. If l < π/δm, then
n∗ = 1, δ∗ = πn∗/l = π/l, and for l ≥ π/δm, one obtains n∗ = In(δml/π), where the sign
In(z) as above denotes the integer part of a number z. In both cases, λ∗0 = λ0(δ∗).

The correction εkλk, taking into account shears, strongly depends on the type of
boundary conditions. For the plates with S −S −, S −C− – conditions at the unloaded
edges x = 0,1, we obtain the correction ελ1 of order O(ε), while for the plates with
S +S +,C±C±,S +C− – conditions this correction becomes smaller and is a value of
order O(ε2). Other words, if even one simply supported edge is free of a diaphragm,
then the effect of shears on the critical buckling force increases.

A sign of the correction as well as its value depend on the ratio δ = b/a and
the shear parameter θ. We remind that a parameter θ is the function of many mag-
nitudes such as a number of layer, thickness and Young’s modulus of each layer.
A parameter θ is generally small (Mikhasev et al, 2019). In Figs. 15.2 - 15.4, the
relative corrections Λ1 = λ1/λ0 and Λ2 = λ2/λ0 are depicted as functions of δ for
θ = 0.01, 0.1, 0.5, 0.8.

It is seen that for S −S − – conditions at the unloaded edges, the correction Λ1
is always positive. When θ is infinitely small, then the correction is maximum for
any δ. Note that θ = 0 corresponds to the Timoshenko-Reissner model (Tovstik and
Tovstik, 2017a) when the edge effects are ignored and only the transverse shears
inside the plate are taken into account. Hence, accounting for shears near the simply
supported edges without diaphragms reduces the positive correction and, as conse-
quence, the critical buckling force. For any fixed θ, the correction Λ1 reaches the

Fig. 15.1 The first positive
eigenvalue λ0(δ) vs. a param-
eter δ for S ±S ±, S ±C±, C±C±
– boundary conditions at the
unloaded edges. Case (A).
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Fig. 15.2 The relative cor-
rection Λ1 = λ1/λ0, tak-
ing into account shears,
vs. parameter δ at various
θ = 0.01, 0.1, 0.5, 0.8 (curves
1, 2, 3, 4, respectively) for
plates with S −S − – boundary
conditions at the unloaded
edges.

Fig. 15.3 The relative cor-
rection Λ1 = λ1/λ0, tak-
ing into account shears,
v.s parameter δ at various
θ = 0.01, 0.1, 0.5, 0.8 (curves
1, 2, 3, 4, respectively) for
plates with S −C− – boundary
conditions at the unloaded
edges.

Fig. 15.4 The relative cor-
rection Λ2 = λ2/λ0, tak-
ing into account shears,
vs. parameter δ at various
θ = 0.01, 0.1, 0.5, 0.8 (curves
1, 2, 3, 4, respectively) for
plates with C±C± – boundary
conditions at the unloaded
edges.

maximum value at δ = π. When δ→ 0 or δ→∞ (that corresponds to the degenera-
tion of a plate into an infinitely narrow stripe or beam, respectively), the correction
Λ1 vanishes.

For S −C−– boundary conditions at the unloaded edges, the relative correction Λ1
becomes negative. The maximum absolute value of Λ1 is achieved at δ ≈ 3.95 for
any θ; the smaller the parameter δ, the greater the value of |Λ1|.

Finally, for C±C± – conditions, the correction is always negative for any δ and its
absolute value increases together with δ. We note that relations (15.58), (15.60) for
C±C± – conditions as well as Eq. (15.69) for S +C− – conditions are asymptotically
correct if ε2Λ2� 1.
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Now we analyze case (B) for C−C− – conditions at the unloaded edges. Here,
θ is assumed to be a small parameter, while κ is a finite value of the order O(1) as
θ→ 0. In this case, in contrast to case (A), the eigenvalue λ0 evaluated in the leading
approximation takes into account the transverse shear inside the plate. In Fig. 15.5,
the first positive eigenvalue λ0 of the boundary-value problem (15.74), (15.76) is
shown as the function of a parameter δ for different values of the shear parameter
κ. The minimum value λm of the function λ0(δ) and the associated argument δm are
shown in Table 15.1 for various κ. We note the following limit relation lim

κ→0
λm =

68.80, where λm = 68.80 corresponds to the C±C± – boundary conditions for case
(A), see Fig. 15.1. The required critical buckling force λ∗0 is evaluated in accordance
with the rule described above for case (A).

In Fig. 15.6, the relative corrections Λ1 are depicted as functions of δ for dif-
ferent κ. In contrast to case (A) considered for C±C± – boundary conditions (see
Eq. (15.58) and Fig. 15.4), the positive correction εΛ1 takes into account only the
edge effect integrals induced by the transverse shears in the neighborhood of the
clamped edges x = 0, x = 1 without diaphragms. Thus, accounting for shears in the
vicinity of the clamped edges results in the increase of the critical buckling force
evaluated in the framework of the Timoshenko-Reissner model. It can be seen that
the correction Λ1 falls down when the shear parameter κ decreases. For each fixed
κ, there exists such value of δ for which this correction takes the maximum value. It
is also interesting to note that the correction Λ1 becomes weakly dependent on the
shear parameter for large δ (when a plate is degenerated into a beam) and vanishes
as δ→∞ for any κ.

Fig. 15.5 The first positive
eigenvalue λ0(δ) vs. a param-
eter δ for C−C− – boundary
conditions at the unloaded
edges for different values
of the shear parameter κ =
0.005, 0.07, 0.01, 0.02, 0.05, 0.1
(curves 1, 2, 3, 4, 5, 6, respec-
tively). Case (B).

Table 15.1 Parameters λm, δm for different values of the shear parameter κ.

κ 0.005 0.007 0.01 0.02 0.05 0.1

δm 4.92 4.96 5.02 5.21 6.25 15.00

λm 52.21 47.81 42.56 31.54 18.00 10.01
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Fig. 15.6 The relative
correction Λ1 = λ1/λ0, taking
into account shears in the
vicinity of the unloaded
edges with C−C− – boundary
conditions, vs. a parameter
δ for different values of
the shear parameter κ =
0.005, 0.07, 0.01, 0.02, 0.05, 0.1
(curves 1, 2, 3, 4, 5, 6, respec-
tively). Case (B).

15.6 Conclusions

Based on the ESL theory for laminated shells, buckling of layered rectangular plates
uniaxially compressed by in-plane forces was studied. The loaded edges were as-
sumed to be simply supported and supplied with diaphragms while for other edges
two groups of boundary conditions, the clamped and simple support groups, with or
without diaphragm(s) were considered. The solutions of governing equations were
constructed in the form of a superposition of the outer solution and the edge ef-
fect integrals accounting shears in the neighbourhood of the unloaded edges. It was
found out that the effect of boundary conditions on the critical buckling load de-
pends on whether one of the unloaded edges is equipped with the diaphragm or not.
In particular, if there are no diaphragms at all unloaded simply supported edges,
then a correction to the classical buckling force turns out to be an order of mag-
nitude higher than for a plate equipped with a diaphragm at least on one of the
unloaded simply supported edges.
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Chapter 16
Semi-analytical Model for the Close-range Stress
Analysis of Transverse Cracks in Composite
Plates

Clemens Peiler, Andreas Kappel, and Christian Mittelstedt

Abstract In this paper, an efficient method for the computation of the stress state in
the vicinity of transverse cracks in symmetric fibre-reinforced composite laminated
plates under tensile load is presented. To determine the stress field, the solution
of the Classical Lamination Theory (CLT) of the uncracked structure is superim-
posed with a so-called “internal solution” which is based on a subdivision of the
layers into an arbitrary number of numerical plies. The displacement field of the
composite laminated plate is approximated by introducing a priori unknown inter-
face displacement functions. By employing the principle of minimum total potential
energy, the governing equations are obtained in a closed-form manner and yield a
quadratic eigenvalue problem, which is solved numerically. In order to obtain a full
description of the state variables, the underlying boundary conditions as well as the
continuity conditions have to be utilized. Comparisons with two-dimensional finite
element studies indicate that the semi-analytical method is able predict the stress
field with similar accuracy while only using a fraction of the underlying computa-
tional effort.

Key words: Composite plates, Transverse cracks, Interlaminar stresses, Layerwise
analysis, Semi-analytical method

16.1 Introduction

Fibre-reinforced plastics are increasingly being used in a wide variety of engineer-
ing applications. Due to their favorable strength-to-weight ratio and the possibility to
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optimize the material properties by tailoring the stacking sequence, they especially
offer a great potential for lightweight construction applications. However, in order
to ensure the integrity of those kinds of structural elements, potential flaws, such
as transverse cracks, have to be considered in the development process or during
maintenance work. Therefore, it is crucial to gain knowledge about the underlying
stress state in close proximity of transverse cracks. At this point, one can refer to
the finite element computations wherein especially the detailed discretization leads
to computational efforts which in most cases turn out to be inefficient. An alterna-
tive approach is the method of complex potentials. Wang and Chen (1993) as well
as Sator (2010) utilized this approach in order to determine the stress state in the
vicinity of a transverse crack in a laminated plate wherein they assumed isotropic
material behavior for each laminate layer. Hosoi and Kawada (2008), on the other
hand, presented an analysis method in which the transverse cracks were specified
as boundary effects while the potential stress concentrations at the tips of the cracks
were neglected during the modelling process. Another approach is the scaled bound-
ary finite element method, which was utilized by Lindemann (2013) in order to de-
termine the stress field in composite laminated plates with transverse cracks which
were subjected to thermomechanical loading conditions. Semi-analytical modelling
techniques for similar structural situations were introduced by McCartney (1995),
McCartney and Pierse (1997b,a), as well as Schoeppner and Pagano (1998). A de-
tailed overview on the topic of the stress analysis of transverse cracks in laminated
structures is given by McCartney et al (2000). Concerning crack initiation and crack
growth, the interested reader is referred to García et al (2014).

The objective of this contribution is to present an efficient method which enables
the computation of the state variables in symmetric cross-ply laminated plates with
transverse cracks by utilizing a layerwise approach which also has been employed
in the works of Mittelstedt and Becker (2006, 2007) in order to analyze the free-
edge stress fields in composite laminates. At first, the layers of the composite plate
have to be subdivided into a number of numerical layers. Further on, for each of
the numerical plies, a displacement field is introduced in which a closed-form CLT
solution is combined with a layerwise approach. By virtue of the minimum total
potential energy principle, the governing equations as well as the boundary con-
ditions can be obtained in a closed-form manner. Modification of the equilibrium
equations yields a quadratic eigenvalue problem which has to be solved numeri-
cally. Finally, by employing the boundary conditions at the transverse cracks, the
analysis method enables a prediction of the state variables in the symmetric cross-
ply laminated plate. The results of the semi-analytical approach are compared to
highly detailed two-dimensional finite element computations. They reveal that the
developed semi-analytical method is able to predict the stress field with high accu-
racy although using only a fraction of the underlying computational effort coming
of full-scale numerical finite element analyses.
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16.2 Structural Situation

The presented analysis method considers symmetric cross-ply laminated plates with
transverse cracks. Due to the assumption of plane strain with respect to the y-
direction, the model can be reduced to two dimensions as shown in Fig. 16.1. Further
on, the composite plate has to be divided into two sections which are characterized
by two coordinate systems. In this regard, the xI ,z- as well as the xII ,z-coordinate
system originate in the middle plane of the laminated plate at the cross-section of
the transverse cracks. The length of each section is defined in terms of l1 and l2. The
thickness of each laminate layer, on the other hand, is specified as hi. The consid-
ered structure is fixed at its right edge, while the left edge is subjected to a tensile
load in x-direction characterized by the initial displacement uinit. The fibres of a 0◦
layer are parallel to the xI- and xII-directions while of a 90◦ layer, the fibres run
along the y-axis. The underlying material properties are displayed in Table 16.1.

Fig. 16.1 Structural situation of the considered symmetric
[
0◦2/90◦2

]
S

-laminated plate with trans-
verse cracks in the fifth and seventh laminate layer.

Table 16.1 Considered dimensions as well as material properties (T300/Epoxy).

Dimensions

l1 10 [mm] Length of structure section I

l2 10 [mm] Length of structure section II

hi 0.125 [mm] Thickness of individual layers

uinit 0.004 [mm] Initial displacement

Material properties for a 0◦ layer

Ey = Ez 10800 [MPa] Young’s modulus

Ex 132000 [MPa] Young’s modulus

Gyz 3360 [MPa] Shear modulus

Gxz =Gxy 5650 [MPa] Shear modulus

νyz = νxz = νxy 0.238 [-] Poisson’s ratio
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16.3 Semi-analytical Approach

The presented analysis method is based on the superposition of a closed-form an-
alytical solution and a layerwise approach. In this context, the CLT solution is de-
scribing the intact areas of the composite laminated plate, while the internal solution
is utilized in order to consider the influence of the transverse cracks onto the state
variables. In the following, the derivation of both solution procedures will be devel-
oped.

16.3.1 CLT Solution

Based on the plane stress assumption with regard to the thickness direction z, the
CLT solution for a symmetric cross-ply laminated plate is characterized as:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nxx,0
Nyy,0
Nxy,0
Mxx,0
Myy,0
Mxy,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 0 0 0
A12 A22 0 0 0 0
0 0 A66 0 0 0
0 0 0 D11 D12 0
0 0 0 D12 D22 0
0 0 0 0 0 D66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxx,0
εyy,0
γxz,0
κxx,0
κyy,0
κxy,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(16.1)

Furthermore, by considering the structural situation as illustrated in Fig. 16.1, the
following assumptions can be made:

εI
yy,0 = ε

II
yy,0 = 0, γI

xy,0 = γ
II
xy,0 = 0,

κI
yy,0 = κ

II
yy,0 = 0, κI

xy,0 = κ
II
xy,0 = 0,

NI
yy,0 = NII

yy,0 = 0, NI
xy,0 = NII

xy,0 = 0,

MI
xx,0 = MII

xx,0 = 0, MI
yy,0 = MII

yy,0 = 0,

MI
xy,0 = MII

xy,0 = 0, NI
xx,0 = NII

xx,0 (16.2)

Concerning the continuity and boundary conditions, the displacement functions of
both structural areas are formulated as:

uI
0 (xI) =

xI − l1
l1+ l2

uinit,

uII
0 (xII) =

xII + l1
l1+ l2

uinit (16.3)
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16.3.2 Internal Solution

The CLT solution considers a two-dimensional stress state with respect to the x,y-
plane without taking any transverse cracks into account. Since for the underlying
structural situation, two-dimensional stress concentrations in close proximity to the
introduced transverse cracks are expected, the CLT solution has to be upgraded by a
layerwise displacement-based approach. Herein, each of the n physical layers in the
composite plate is subdivided into m numerical plies with respect to the thickness
direction z. This can be carried out in the form of an equidistant distribution of
the mathematical layers, or by concentrating the numerical plies at the interfaces
of the laminate layers by utilizing a space ratio function α in z-direction which, in
this regard, characterizes the ratio of two adjacent layers (Kappel and Mittelstedt,
2020). Nonetheless, both approaches lead to nL = m · n mathematical layers and
nL +1 mathematical interfaces which are displayed in Fig. 16.2. It should be noted
that in the following, only the solution procedure for section I is derived, since
section II can be described analogously. To attain a formulation for the resulting
displacements in z-direction for each numerical layer, Hooke’s generalized law has
to be utilized: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ(k)
xx

σ(k)
yy

σ(k)
zz

τ(k)
yz

τ(k)
xz

τ(k)
xy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̄(k)
11 C̄(k)

12 C̄(k)
13 0 0 0

C̄(k)
12 C̄(k)

22 C̄(k)
23 0 0 0

C̄(k)
13 C̄(k)

23 C̄(k)
33 0 0 0

0 0 0 C̄(k)
44 0 0

0 0 0 0 C̄(k)
55 0

0 0 0 0 0 C̄(k)
66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε(k)
xx

ε(k)
yy

ε(k)
zz

γ(k)
yz

γ(k)
xz

γ(k)
yz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(16.4)

Taking (16.2) and the assumption of plane strain with regard to the y-direction into
account, the displacement wI,(k)

0 can be formulated as:

wI,(k)
0 = −C̄(k)

13

C̄(k)
33

∫ z(k+1)

z(k)

ΔuI,(k)
0

ΔxI
Δz (16.5)

Fig. 16.2 Visualization of the
different layerwise discretiza-
tion schemes: Equidistant dis-
tribution of the mathematical
layers (top) and concentrated
distribution with a stretching
factor of α = 0.5 (bottom).
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In order to include transverse cracks for each numerical layer, the displacements of
the CLT solution have to be upgraded by a priori unknown displacement functions:

uI,(k) = uI,(k)
0 (xI)+UI,(k)

VAR (xI ,z)

wI,(k) = wI,(k)
0 (z)+WI,(k)

VAR (xI ,z) , (16.6)

wherein UVAR and WVAR are linearly approximated for all layers by means of La-
grangian interpolation functions ψ(k)

1 and ψ(k)
2 with respect to the thickness direction

z from the neighboring displacement functions UI,(k) and WI,(k) in the interfaces.
Consequently, the internal displacements displayed in Fig. 16.3 can be formulated
as:

UI,(k)
VAR = UI,(k) (xI)ψ

(k)
1 (z)+UI,(k+1) (xI)ψ

(k)
2 (z) ,

WI,(k)
VAR =WI,(k) (xI)ψ

(k)
1 (z)+WI,(k+1) (xI)ψ

(k)
2 (z) (16.7)

By virtue of (16.6) and the underlying kinematics, the layerwise strain field can be
specified as:

εI,(k)
xx =

ΔuI,(k)
0

ΔxI
+
∂UI,(k)

∂xI
ψ(k)

1 +
∂UI,(k+1)

∂xI
ψ(k)

2 ,

εI,(k)
zz =

ΔwI,(k)
0

Δz
+WI,(k) ∂ψ

(k)
1

∂z
+WI,(k+1) ∂ψ

(k)
2

∂z
,

γI,(k)
xz = UI,(k) ∂ψ

(k)
1

∂z
+UI,(k+1) ∂ψ

(k)
2

∂z
+
∂WI,(k)

∂xI
ψ(k)

1 +
∂WI,(k+1)

∂xI
ψ(k)

2 (16.8)

which, further on, can be employed in order to gain an insight into the stress state
by consideration of (16.4). To obtain a formulation for the unknown interface dis-
placements UI,(k) and WI,(k), the minimum total potential energy principle will be
employed:

Fig. 16.3 Illustration of the
linear shape functions (left)
and displacements (right) of
the k-th mathematical layer.
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Π = Π I
i +Π

II
i +Πa =

1
2

nL∑
k=1

∫
VI,(k)

εI,(k)T
C̄I,(k)εI,(k)ΔVI,(k)

︸���������������������������������������︷︷���������������������������������������︸
Π I

i

+

1
2

nL∑
k=1

∫
VII,(k)

εII,(k)T
C̄II,(k)εII,(k)ΔVII,(k)

︸��������������������������������������������︷︷��������������������������������������������︸
Π II

i

−N0
xxuint︸�︷︷�︸
−Πa

=Min (16.9)

Since the external potential has a costant value, it will vanish due to the variation
of the total potential energy. Thus, only the internal potentials of the two sections
remain, each of which must fulfill the requirement to become minimal. Therefore
the minimum total potential energy principle for section I can be reduced to:∫ zk+1

zk

εI,(k)T
C̄I,(k)εI,(k)Δz =Min (16.10)

Applying the Euler-Lagrange-equations eventually yields the governing equations:

δUI,(k+1) : −E(k)
1112

Δ2UI,(k)

Δx2
I
−
(
E(k)

1122+E(k+1)
1111

)
Δ2UI,(k+1)

Δx2
I
−E(k+1)

1112
Δ2UI,(k+2)

Δx2
I

+G(k)
5512UI,(k)+

(
G(k)

5522+G(k+1)
5511

)
UI,(k+1)+G(k+1)

5512 UI,(k+2)

+
(
F(k)

5512−F(k)
1321

)
ΔWI,(k)

ΔxI

+
(
F(k)

5522+F(k+1)
5511 −F(k)

1322−F(k+1)
1311

)
ΔWI,(k+1)

ΔxI

+
(
F(k+1)

5521 −F(k+1)
1312

)
ΔWI,(k+2)

ΔxI
= 0

δWI,(k+1) : +
(
F(k)

1312−F(k)
5521

)
ΔUI,(k)

ΔxI

+
(
F(k)

1322+F(k+1)
1311 −F(k)

5522−F(k+1)
5511

)
ΔUI,(k+1)

ΔxI

+
(
F(k+1)

1321 −F(k+1)
5512

)
ΔUI,(k+2)

ΔxI

−E(k)
5512

Δ2WI,(k)

Δx2
I
−
(
E(k)

5522+E(k+1)
5511

)
Δ2WI,(k+1)

Δx2
I
−E(k+1)

5512
Δ2WI,(k+2)

Δx2
I

+G(k)
3312WI,(k)+

(
G(k)

3322+G(k+1)
3311

)
WI,(k+1)+G(k+1)

3312 WI,(k+2)

+DI,(k)
132 +DI,(k+1)

131 +FI,(k)
332 +FI,(k+1)

331 = 0

(16.11)

The abbreviations in (16.11) are provided in the Appendix. Summarizing the inter-
face displacements into the vectors UI and WI, eventually leads to:

K1
Δ2

Δx2
I

UI +K2
Δ

ΔxI
WI +K3UI = 0,

K4
Δ2

Δx2
I

WI +K5
Δ

ΔxI
UI +K6WI = RI (16.12)

Herein, K j ( j = 1,2, . . .6) are (nL +1)× (nL +1) coefficient matrices, while RI repre-
sents the right-hand side vector. The vectors UI and WI specify the interface dis-
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placements in xI- and z-direction and, in the following, are assembled into a single
displacement vector:

UI
tot =

(
UI
WI

)
(16.13)

Utilizing (16.13), the differential equation systems in (16.12) can be summarized as:[
K1 0
0 K4

]
︸����︷︷����︸

K1,tot

Δ2

Δx2
I

UI
tot +

[
0 K2

K5 0

]
︸����︷︷����︸

K2,tot

Δ

ΔxI
UI

tot +

[
K3 0
0 K6

]
︸����︷︷����︸

K3,tot

UI
tot =

(
0

RI

)
(16.14)

The coefficient matrices K j,tot ( j = 1,2,3) are of the dimension 2(nL +1)×2(nL +1).
Equation (16.14) is a inhomogeneous ordinary differential equation system of sec-
ond order and can be solved by means of the following approach:

UI
hom = AIeλ

I xI (16.15)

Substituting UI
tot in (16.14) with (16.15) yields a quadratic eigenvalue problem that

can be solved numerically:(
λI2

K1,tot +λ
IK2,tot +K3,tot

)
AI = 0 (16.16)

Herein, AI is the eigenvector for the corresponding eigenvalue λI . In total, there are
4(nL +1) eigenvalues. It can be expected, that the transverse cracks only influence
the stress field of the composite plate in close proximity. In order to be able to depict
the decaying behavior remote from the transverse cracks, only the negative eigen-
values and their corresponding eigenvectors are considered. Thus 2(nL +1) eigen-
values remain. To avoid zero eigenvalues, the coefficient matrices K j ( j = 1,2, . . .6)
are modified as:

K j,mod = K j− kkKΔ (16.17)

The definition of KΔ can be found in the Appendix, while kk is set to kk = −10−3.
Eventually, by solving (16.16), the unknown displacement functions can be formu-
lated as:

UI
hom =

2(nL+1)∑
r=1

bI
rA

I
re
λI

r xI (16.18)

The particular solution of (16.14) is neglected in order to avoid rigid-body displace-
ments and due to the fact that the additional displacements are already incorporated
by the global CLT solution. Note that the so-called weight factors bI

r are still un-
known. To determine them, boundary and continuity conditions for each numerical
layer have to be utilized which are obtained by virtue of the minimum total potential
energy principle. The continuity conditions are used for intact mathematical layers
to connect the sections I and II:
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z(k−1)
σI,(k−1)

xx (xI = 0)ψ(k−1)
2 Δz+

∫ z(k+1)

z(k)
σI,(k)

xx (xI = 0)ψ(k)
1 Δz =∫ z(k)

z(k−1)
σII,(k−1)

xx (xII = 0)ψ(k−1)
2 Δz+

∫ z(k+1)

z(k)
σII,(k)

xx (xII = 0)ψ(k)
1 Δz,∫ z(k)

z(k−1)
τI,(k−1)

xz (xI = 0)ψ(k−1)
2 Δz+

∫ z(k+1)

z(k)
τI,(k)

xz (xI = 0)ψ(k)
1 Δz =

−
∫ z(k)

z(k−1)
τII,(k−1)

xz (xII = 0)ψ(k−1)
2 Δz−

∫ z(k+1)

z(k)
τII,(k)

xz (xII = 0)ψ(k)
1 Δz,

UI,(k) (xI = 0) = −UII,(k) (xII = 0) ,
WI,(k) (xI = 0) =WII,(k) (xII = 0) (16.19)

For layers with a transverse crack, following boundary conditions are employed:∫ z(k)

z(k−1)
σI,(k−1)

xx (xI = 0)ψ(k−1)
2 Δz+

∫ z(k+1)

z(k)
σI,(k)

xx (xI = 0)ψ(k)
1 Δz = 0,∫ z(k)

z(k−1)
τI,(k−1)

xz (xI = 0)ψ(k−1)
2 Δz+

∫ z(k+1)

z(k)
τI,(k)

xz (xI = 0)ψ(k)
1 Δz = 0,∫ z(k)

z(k−1)
σII,(k−1)

xx (xII = 0)ψ(k−1)
2 Δz+

∫ z(k+1)

z(k)
σII,(k)

xx (xII = 0)ψ(k)
1 Δz = 0,∫ z(k)

z(k−1)
τII,(k−1)

xz (xII = 0)ψ(k−1)
2 Δz+

∫ z(k+1)

z(k)
τII,(k)

xz (xII = 0)ψ(k)
1 Δz = 0 (16.20)

16.4 Results

The stress field of a
[
0◦2/90◦2

]
S

-laminate with two transverse cracks in the fifth and
seventh physical layer (as illustrated in Fig. 16.1) is computed using the previously
derived analysis method. In this regard, linear interpolation functions, 16 mathemat-
ical layers per physical layer and a space ratio of α = 0.8 are utilized. The results are
compared with those of a highly detailed two-dimensional finite element computa-
tion, as displayed in Fig. 16.4. Note that the semi-analytically calculated stresses at
the mathematical interfaces are averaged from those of their neighboring layers.

Figure 16.5 displays the stresses in the cracked cross-section over the z-axis. In
Fig. 16.6, the stresses over the xI-axis are illustrated on the left starting from the
crack tip of the cracked 0◦ layer at z = −0.375mm, while the right diagrams display
the stresses at the middle of the crack (z = −0.0625mm) in the 90◦ layer over xI . The
results indicate, that the semi-analytical approach shows an adequate prediction of
the underlying stress field.
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Fig. 16.4 Discretization of
the finite element model at the
tips of the transverse cracks.

16.5 Summary and Conclusions

In the present work, a semi-analytical method for the computation of the intra- and
interlaminar stresses in close proximity of transverse cracks in a symmetric cross-
ply laminated plate subjected to a tensile load was developed. The results of the
semi-analytical approach were compared with those of finite element computations.
It was revealed that the proposed method yields results of similar accuracy while
being highly efficient in terms of the computational effort. Therefore, the semi-
analytical method can be confidently used in order to predict the stress state in trans-
versely cracked composite laminated plates and thus help to evaluate the behavior
of such components in preliminary design conceptualizations or during parametric
studies.
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Appendix

E(k)
opqr =
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C̄(k)

opψ
(k)
q ψ(k)

r Δz,
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12 Δ(1)
22 +Δ
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...
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. . .
...

...
...

0 0 0 · · · Δ(nL−1)
12 Δ

(nL−1)
22 +Δ

(nL)
11 Δ

(nL)
12

0 0 0 · · · 0 Δ
(nL)
12 Δ

(nL)
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Chapter 17
Shear Deformable Elastic Beam Models in
Vibration and Sensitivity of Natural Frequencies
to Warping Effects

Castrenze Polizzotto, Isaac Elishakoff, and Paolo Fuschi

Abstract A theory of shear deformable beams in vibration is formulated using a
shear-warping theory whereby the cross section is allowed to warp according to a
parametrically specified warping rule (parametric warping). A continuous family of
beams is generated which is controlled by a warping parameter s ≥ 0 spanning from
s = 0 (Timoshenko-Ehrenfest beam) to s =∞ (Euler-Bernoulli beam) and intersect-
ing the Levinson-Reddy model for s = 0.5. This enables one to express any response
parameter as a function of s useful to describe the sensitivity of the beam’s behav-
ior to warping effects. The governing transverse displacement differential equation
(DE) - of the fourth order in the case of no warping - is instead of the sixth order in
the presence of warping effects, but remarkably the maximum order of time deriva-
tives is still four. The vibration motion of the family’s general beam is characterized
by two basic macroscopic space and time scales, which make it possible to ascer-
tain that the terms of the governing DE with the fourth order time derivative are
negligible with respect to the others. The simplified governing DE without fourth
order time derivatives is applied to a beam case to derive the physically meaningful
spectrum with warping effects and to assess the sensitivity of natural frequencies
to the warping effects. Every frequency as a function of s exhibits a waved pattern
featured by softening for 0 < s < sh (with smaller frequencies therein), by hardening
for s > sh (with larger frequencies therein), sh varying with the vibration mode.
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Key words: Shear deformable elastic beams, Parametric warping theory, Free vi-
bration analysis, Sensitivity of natural frequencies to warping effects

17.1 Introduction

Historically, Timoshenko (1916, 1921, 1922), in cooperation with Ehrenfest, pro-
posed his beam model as an improvement of the Euler–Bernoulli (EB) and Bresse–
Rayleigh (BR) beam models, whereby the cross section is allowed to remain plane,
but not necessarily orthogonal to the deflected axis of the beam. Contrary to the EB-
beam, which is shear undeformable, the Timoshenko–Ehrenfest (TE) beam is fully
shear deformable in the sense that the shear strain is uniformly distributed through
the whole thickness of the beam, thus contradicting the requirement of zero shear
stress at the lower and upper free surfaces of the beam. Shear deformable beams
were subsequently proposed, in which this requirement was satisfied by allowing
the beam cross section to warp according to specified warping rules, thus making
superfluous the shear correction introduced by Timoshenko (1921) (see also En-
gesser, 1891; Föppl, 1897; Cowper, 1966; Kaneko, 1978; Elishakoff, 2020). For
this purpose the axial displacement, say ux, of the generic point was enriched by
the addition of suitable terms varying through the thickness as f (z)φ(x), with φ(x)
being the cross section rotation at the abscissa x, f (z) a warping function of the
thickness co-ordinate z. This function has been chosen in a variety of forms, ei-
ther as a polynomial (Levinson, 1981; Bickford, 1982; Heyliger and Reddy, 1988;
Subramanian, 2006; Reddy, 2007; Shi and Voyiadjis, 2011; Carrera and Giunta,
2010; Giunta et al., 2013), or trigonometric functions (Arya, 2003; Jun and Hongx-
ing, 2009; Touratier, 1991; Sayyad and Ghugal, 2014), or hyperbolic functions
(Soldatos, 1992), or exponential functions (Karama et al., 2003; Aydogdu, 2008;
Mantari et al., 2011). For more details about these shear warping theories, see the
papers by Eltaher et al. (2016) and Sayyad and Ghugal (2018) and the literature
therein.

All the above shear warping theories adopt each a fixed warping profile of the
beam’s cross section with which the motion analysis is pursued. A mention is due
to the unified formulation by Carrera and Giunta (2010) and Giunta et al. (2013) by
Carrera and his associates, of which almost all the other models are particular cases.

Of particular interest for our purposes are the theories proposed by Levinson
(1981); Reddy (1984); Heyliger and Reddy (1988) in which the added term is of
the form Δux = z3φ(x). In this way, mainly through the research work by Reddy and
co-workers (Reddy, 2004, 2007), a third order theory (usually referred to as Reddy,
or Levinson-Reddy (LR beam), theory) was constructed, in contrast to the first order
(EB beam) and second order (TE beam) theories. The interested reader can consult
with the book of Reddy (2004) for applications of this third order theory to various
engineering problems and in particular to composite structural models in statics and
dynamics.
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In a recent paper (Polizzotto, 2015), the above theory was generalized by consid-
ering additional displacement terms of the form Δux = zN f (x), with N = 1+2n, (n =
0,1, ...). In this way a discrete numerable family of shear deformable beam mod-
els was introduced, which spans from the EB beam (n = 0) to the TE beam
(n → ∞). Every beam model in the family is governed by the same differential
equations and boundary conditions, hence the solution for the generic beam holds
good for the whole family. In a subsequent study (Polizzotto, 2017) this theory
was extended to plate models, but using additional displacement terms of the form
Δuα = |z|ω f (xα), (α = 1,2), with ω ≥ 0 being a real scalar warping parameter. In the
latter form, this shear warping theory has been extended to nonlocal beam models
(Pisano et al., 2020).

The above parametric shear warping theory is substantially different from all
other analogous theories. Whereas with every other theory a precise warping rule is
used for the analysis of a specific beam model, instead with the parametric theory
the governing equations incorporate the warping parameter. This implies that with
the parametric theory the sensitivity analysis of any output of interest (maximum
deflection, buckling load, natural frequencies) to the warping effect can be achieved
for use within the inherent designing purposes.

In the present paper, the parametric warping theory is applied to shear deformable
beams in free vibration in the purpose to evaluate the sensitivity of the natural fre-
quencies to the warping effects. The obtained results will be illustrated by graphi-
cally reporting a few natural frequencies each as a function of the warping parame-
ter. It will be shown that - at least for the examples here considered- the sensitivity
exhibits a waved pattern, more pronounced for higher orders of every natural fre-
quency.

The paper is organized as follows. In Sect. 17.2, the kinematics and stress-strain
relations for a shear deformable beam with warping are reported together with
the inherent shear-warping function. Also, the relations between bending moments
M, M̂, shear forces Q, Q̂ and the beam distributed degrees of freedom (deflection w
and shear angle γ) are reported. In Sect 17.3, the equilibrium equations are employed
to derive the two basic governing DEs, of which one is a sixth order space/time DE
in the deflection w, the other is a differential relation between the shear angle γ and
w. In Sect. 17.4, an alternative form of the sixth order governing DE is derived, in
which the beam’s geometrical characteristics (A, I) ad the inertia ones (ρA,ρI) are
incorporated into two basic space and time scale parameters, i.e. r (radius of inertia
of the cross section) and τ (time interval for a wave to travel the distance r). The
time scale τ, as small as ≈ 10−4 sec, is a basis to ascertain that the fourth order time
derivatives can be disregarded from the governing DE. In Sect. 17.5, an applica-
tion to a simply supported beam is addressed in which the frequencies sensitivity to
warping effect is stated. Sect. 17.6 is devoted to the conclusions.
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17.2 Kinematics, Stresses, and Warping Function

Let us consider a prismatic beam of length L and uniform rectangular cross section
of height h and width b, constrained at the ends such as to impede global rigid mo-
tions, but with constrains that remain unspecified for the moment. The undeformed
beam is referred to a Cartesian orthogonal co-ordinate system, say x,y,z, with the x
axis coinciding with the centroid line, such that the beam ends are located at x = 0
and x = L, respectively, whereas the z axis is downward oriented in the thickness
direction, the y axis in the width direction. The axes y and z are parallel to the inertia
axes of the cross section. The beam finds itself in a free vibration state, whereby it
experiences (infinitesimal) transverse displacements w(x, t) of the centroids in the z
direction, along with (absolute, infinitesimal) rotations φ(x, t) of the cross sections
around the y axis, positive in the anticlockwise sense. The symbol t denotes the
time variable. The usual simplifying assumptions of EB beam theory are valid, ex-
cept that the cross sections are allowed to warp according to warping rules specified
hereafter.

Following the axiomatic approach, let the beam’s displacements be taken as

ux = −zw′(x, t)+ θ(z)γ(x, t)︸�����︷︷�����︸
Δux

uz = w(x, t), uy ≡ 0
(17.1)

where θ(z) is the warping function also depending on the warping parameter s;
whenever it is appropriate, we shall write θ(z, s) instead of θ(z). The notation
w′(x, t) := ∂xw(x, t) and ẇ(x, t) := ∂tw(x, t) is used hereinafter. The symbol γ denotes
the shear angle, that is, the (relative, anticlockwise) rotation of the cross section
with respect to the plane orthogonal to the deflected beam axis; it is related to the
absolute rotation of the same cross section through the relation

γ(x, t) = w′(x, t)+φ(x, t) (17.2)

According to (17.1)1, the displacement increment Δux = θ(z)γ(x, t) produced by
warping is measured from the plane normal to the deflected axis. In the deformed
state, the cross section finds itself rotated of the shear angle γ measured at the cen-
troid c, but its profile is an antisymmetric curve like a-c-b, which has the slope γ at
c, but slopes zero at the ends a, b, see Fig. 17.1.

The only not identically vanishing strain components are

εxx = −zw′′(x, t)+ θ(z)γ′(x, t)
2εxz = θ

′(z)γ(x, t) (17.3)

For simplicity, isotropic material is considered. Denoting E,G the Young and shear
elastic moduli, respectively, the stresses corresponding to the strains (17.3) are

σxx = −Ezw′′(x, t)+Eθ(z)γ′(x, t)
σxz =Gθ′(z)γ(x, t) (17.4)
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Fig. 17.1 Profile of the
warped cross section for some
value of s > 0 and γ = 1 with
the related non-dimensional
axial displacement increment
2θ(z)/h.
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The function θ(z) is the shear-warping function (Polizzotto, 2015, 2017), which is
here chosen in the form

θ(z) := z− |z|
1+1/s sign(z)

(1+1/s)
(
h/2
)1/s , (17.5)

where s ≥ 0 is a specified non-negative real number, here called warping parameter.

Since
θ′(z) = 1−

(2|z|
h

)1/s
, ∀s ≥ 0 (17.6)

and thus θ′(±h/2) = 0, it follows by (17.3)2 that the shear strain εxz, along with the
corresponding shear stress σxz, is vanishing at the lower and upper free surfaces of
the beam, no matter the values of γ and s. The function θ(z) of (17.5) is suitable to
rectangular cross sections with the elastic centroid at the middle of the thickness,
but it may be somewhat changed such as to deal with anisotropic material whereby
generally the elastic centroid finds itself at different distances from the lower and
upper surfaces.

It may be useful to have a graphical representation of the warping effects. In
Fig. 17.2(a) a small segment of a deformed beam around a generic cross section is
considered, in which the dashed straight line is tangent to the cross section profile
having a slope γ = 1 at the centroid. The exact shape of the cross section profile
depends on the chosen value of s, but it is always an antisymmetric curve which
- at parity of γ - is in between the dashed straight line (with which it coincides
for s = 0, that is, in the TE beam case) and the normal to the deflected axis (with
which it coincides for s =∞, that is, in the EB beam case). In Fig. 17.2(b) the shear
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Fig. 17.2 Warping effects
with increasing the warping
parameter s: a) Evolution
of the warped cross section
profile for s = 0,0.25,0.5,1,4;
b) Analogous evolution of
the shear strain distribution
through the thickness.
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b)

strain distribution over the thickness is reported for a few values of s, which shows a
symmetric convex shape for s > 1, a bi-linear shape for s = 1, a two-branch concave
shape for s < 1. For s = 0 the strain is constant equal to γ (TE beam), for s =∞ the
strain is vanishing (EB beam).

It is noted that the shear-warping function of (17.5) is similar to functions pro-
posed in Polizzotto (2015, 2017) for beam and plate models, respectively, and in
Pisano et al. (2020) for nonlocal beam models, with the difference that in the latter
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quoted works the warping parameter was taken in the form ω = 1/s, so as ω = 0
corresponds to the EB beam, ω = ∞ to the TE beam. Instead, with the warping
parameter s as in (17.5), s = 0 corresponds to the fully shear deformable TE beam,
whereas values s > 0 correspond to consistently shear deformable beams, with shear
deformability decreasing as s increases, till s =∞ corresponding to the shear unde-
formable EB beam. The value s = 0.5 corresponds to the Levinson-Reddy model.

The following stress resultants are needed for the following developments (Poliz-
zotto, 2015), namely, the bending moment M and warping bending moment M̂ as

M :=
∫

A
zσxx(x, t)dA = EI

[
−w′′(x, t)+a1γ

′(x, t)
]

M̂ :=
∫

A
θ(z)σxx(x, t)dA = EI

[
−a1w′′(x, t)+a2γ

′(x, t)
] (17.7)

along with the shear force Q and the warping shear force Q̂ as

Q :=
∫

A
σxz dA = k1GAγ(x, t)

Q̂ :=
∫

A
θ′(z)σxz dA = k2GAγ(x, t)

(17.8)

Here above, A, I denote the area and the second area moment of the cross section,
whereas a1,a2,k1,k2 denote shear-warping coefficients defined as

(a1,a2) =
1
I

∫
A

(
zθ(z), θ2(z)

)
dA

(k1,k2) =
1
A

∫
A

(
θ′(z), θ′2(z)

)
dA

(17.9)

These all are functions of s, but for simplicity of notation this dependence is not
explicitly indicated. The analytical expressions of the above coefficients for a rect-
angular cross section are reported (with a different notation) in Polizzotto (2015) in
terms of the discrete parameter 2n = 1/s, (n = 0,1,2, ...), and in Polizzotto (2017) in
terms of the real continuous parameter ω = 1/s. In the following the (non-negative)
coefficient a0 defined as

a0 := a2− (a1)2 (17.10)

will be also required.

17.3 Equilibrium Equations and Governing Differential
Equations

The equilibrium equations for a shear deformable beam with warping effects read
as (Polizzotto, 2015)
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M′′(x, t)+ pz(x, t)+m′(x, t) = 0
M̂′(x, t)− Q̂(x, t)+ m̂(x, t) = 0

(17.11)

where pz,m, m̂ denote applied transverse distributed loads and distributed (anticlock-
wise) couples, all of them being here generated by inertia forces. Denoting by bx,bz
the inertia body forces given by

bx = −ρüx = −ρ
[
−zẅ′(x, t)+ θ(z)γ̈(x, t)

]
bz = −ρüz = −ρẅ(x, t)

(17.12)

then we obtain

pz =

∫
A

bz dA = −ρAẅ(x, t)

m =
∫

A
zbx dA = −ρI

[
−ẅ′(x, t)+a1γ̈(x, t)

]
m̂ =

∫
A
θ(z)bx dA = −ρI

[
−a1ẅ′(x, t)+a2γ̈(x, t)

] (17.13)

The boundary conditions for a shear deformable simple beam under warping
effects - to be used later on - are as follows (Polizzotto, 2015):

Either w, or M′ specified
Either w′, or M specified
Either γ, or M̂ specified

(17.14)

Next, substituting (17.7), (17.8) and (17.13) into (17.11) results in the equations

EI(−wiv+a1γ
′′′)−ρAẅ+ρI(ẅ′′ −a1γ̈

′) = 0
EI(−a1w′′′+a2γ

′′)− k2GAγ+ρI(a1ẅ′ −a2γ̈) = 0 (17.15)

On differentiating (17.15)2 once more with respect to x and multiplying it by a1,
then subtracting the obtained relation from (17.15)1 multiplied by a2, we get

a1k2GAγ′ = a0EIwiv︸���︷︷���︸
bending

+ a2ρAẅ︸�︷︷�︸
EB inertia

−a0ρIẅ′′︸��︷︷��︸
BR inertia

(17.16)

where a0 is defined by (17.10).
Equation (17.16) constitutes a differential relation between the shear angle γ and

the deflection w within an equilibrium configuration of the beam. It states that the
shear curvature γ′ is formed up by three different contributions of which the first
one comes from the bending deformation (first addend on the r.h.s. of (17.16)), the
other two arise from the Euler–Bernoulli (EB) transverse inertia and, respectively,
the Bresse–Rayleigh (BR) rotary inertia.

Equation (17.16) can be used to eliminate γ from (17.15). Therefore, after a
further double differentiation of (17.16) either in space, or in time, then substituting
into (17.15)1 gives
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− a0EI
k2GA

EIwvi+EIwiv+ρAẅ−ρI
(
1+

a2E
k2G

)
ẅ′′

+
2a0EI
k2GA

ρIẅiv+
ρ2I
k2G

∂4
t

(
a2w− a0I

A
w′′
)
= 0 (17.17)

Equation (17.17) is the governing DE in terms of deflection w(x, t). We note the
following:

• For s = 0 (TE beam) it is a0 = 0,a1 = a2 = k2 = 1, hence (17.17) identifies with
the Bresse–Rayleigh/Timoshenko–Ehrenfest equation (taken with the shear cor-
rection coefficient equal to 1, see Challamel and Elishakoff, 2019), namely,

EIwiv+ρAẅ−ρI
(
1+

E
G

)
ẅ′′+

ρ2I
G
∂4

t w = 0 (17.18)

• For s→∞ (EB beam) it is a0 = a1 = a2 = 0, hence (17.17) identifies with the
Bresse–Rayleigh (BR) equation, that is,

EIwiv+ρAẅ−ρIẅ′′ = 0 (17.19)

Let us also observe that a notable feature of the beam undergoing warping defor-
mation is that the governing displacement equation is a space/time DE of the sixth
order, but with time derivatives up to the fourth order like with the Bresse–Rayleigh
(BR) beam. This means that the existence of a second spectrum of natural frequen-
cies does occur also in the presence of warping effect (Stephen, 2006; Elishakoff et
al., 2015).

17.4 An Alternative Form of the Motion Equation

An alternative more expressive form of the governing Eq. (17.17) is obtained by
multiplying it by the factor

( I
A
)2/(EI). By a re-ordering we obtain the following

equation ( I
A

)2
wiv+

ρI
EA

ẅ︸��������������︷︷��������������︸
EB beam

−
(
1+

a2E
k2G

) ρI
EA

I
A

ẅ′′︸������������������︷︷������������������︸
BR and TE corrections

+
a2E
k2G

( ρI
EA

)2
∂4

t w︸�������������︷︷�������������︸
h.o. TE correction

+

+
a0E
k2G

[
−
( I

A

)3
wvi+2

ρI
EA

( I
A

)2
ẅiv︸���������������������������︷︷���������������������������︸

warping correction

−
( ρI

EA

)2 I
A
∂4

t w′′︸�����������︷︷�����������︸
h.o. warping correction

]
= 0

(17.20)

in which “h.o.” stands for higher order. Next, let us introduce the notation:
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r :=
√

I
A (radius of inertia of cross section)

c :=
√

E
ρ (velocity of propagation of a wave in isotropic elastic medium)

τ := r
c =

√
ρI
EA (time interval for a wave to travel a distance r)

With this notation, Eq. (17.20) takes on a notable form as

r4wiv(x, t)+τ2ẅ(x, t)︸��������������������︷︷��������������������︸
EB beam

−
(
1+

a2E
k2G

)
τ2r2ẅ′′(x, t)︸����������������������︷︷����������������������︸

BR and TE corrections

+
a2E
k2G

τ4∂4
t w(x, t)︸�������������︷︷�������������︸

h.o. TE correction

+
a0E
k2G

[
−r6wvi(x, t)+2τ2r4ẅiv(x, t)︸�����������������������������︷︷�����������������������������︸

warping correction

− τ4r2∂4
t w′′(x, t)︸�����������︷︷�����������︸

h.o. warping correction

]
= 0

(17.21)

This latter time/space DE is cast in a form whereby the various addends of the
first line represent the bending effect of the EB beam and the BR/TE corrections,
whereas those of the second line provide the warping corrections. The notable as-
pect of (17.21) is that the equation coefficients are expressed in terms of a few
essential physical/geometrical parameters. These include, beside the warping coef-
ficients a0,a2,k2 and the elastic moduli through the ratio E/G, two novel parameters,
namely r and τ, having the meaning of macroscopic space and time scales of the vi-
brating beam. These novel coefficients carry in the essential pieces of information
needed by the vibrating beam problem concerning the geometrical (A, I) and the
inertial (ρA,ρI) characteristics of the vibrating beam.

17.4.1 A Simplification: From Double Spectrum to Single
Spectrum

Assuming r and τ as unit space and time measures, that is, using the non-dimensional
space and time co-ordinates X = x/r,T = t/τ, and considering the deflection w as a
function of (X,T ), then (17.21) becomes

∂4
Xw+∂2

T w−
(
1+

a2E
k2G

)
∂2

X∂
2
T w+

a2E
k2G

∂4
T w

+
a0E
k2G

[
−∂6

Xw+2∂4
X∂

2
T w−∂2

X∂
4
T w
]
= 0

(17.22)

Equation (17.22) provides the vibration modes of a class of beams whose geomet-
rical and inertial characteristics satisfy the scale conditions r(A, I) = r̄, τ(ρ,A, I) = τ̄,
with r̄, τ̄ being fixed values of r and τ.
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It is obvious that Eq. (17.22), as well as Eq. (17.21), predicts two series of nat-
ural frequencies of the vibrating beam, due to the presence of the fourth order time
derivative. However, considering e.g. r = 10 cm and c = 5300 m/second for steel
(Eringen and Suhubi, 1975, p. 505) the time scale turns out to be as small as τ≈ 10−4

second. Therefore, the two additive terms on the l.h.s. of Eq. (17.21), which contain
the fourth order time derivative (assumed to be each not excessively large by its
own), both terms being affected by the factor τ4 ≈ 10−16, result to be negligible with
respect to the other terms and they can thus be disregarded. This provision is in
agreement with the findings of Stephen (2006); Elishakoff (2010) and Elishakoff et
al. (2015). In the latter quoted paper a limit asymptotic analysis was accomplished
to prove that only one of the two predicted series of natural frequencies of a vibrat-
ing Timoshenko–Ehrenfest beam has to be considered physically meaningful. With
this provision Eq. (17.21) simplifies as

r4wiv(x, t)+τ2ẅ(x, t)−
(
1+

a2E
k2G

)
τ2r2ẅ′′(x, t)

+
a0E
k2G

[
−r6wvi(x, t)+2τ2r4ẅiv(x, t)

]
= 0

(17.23)

which leads to the prediction of a single spectrum instead of two. Equation (17.23)
is an extension of Eq. (24) of Elishakoff et al. (2015) (but the shear correction coef-
ficient equal to 1), which takes into account warping effects on the vibrating beam.
Indeed, taking s = 0 (TE beam), since then a0 = 0,a2 = k2 = 1, (17.23) further sim-
plifies as

r4wiv(x, t)+τ2ẅ(x, t)−
(
1+

E
G

)
τ2r2ẅ′′(x, t) = 0 (17.24)

Apart the notation, this equation coincides with the mentioned Eq. (24) of Elishakoff
et al. (2015) carrying in the correction of Timoshenko–Ehrenfest correction.

17.5 Application to a Simply Supported Beam

Let the vibrating beam be a simply supported beam of length L, with the ends lo-
cated at x = 0 and x = L. The boundary conditions (17.14) applied to this beam can
be expressed as:

w(0, t) = w(L, t) = 0
M(0, t) = M(L, t) = 0
M̂(0, t) = M̂(L, t) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∀t ≥ 0 (17.25)

This implies that both the bending rotation −w′ and the shear angle γ play each the
role of free variable. By the constitutive Eqs. (17.7) we write

−w′′(0, t)+a1γ
′(0, t) = −w′′(L, t)+a1γ

′(L, t) = 0
−a1w′′(0, t)+a2γ

′(0, t) = −a1w′′(L, t)+a2γ
′(L, t) = 0

}
∀t ≥ 0 (17.26)
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which are satisfied if, and only if, the following conditions are met:

w′′(0, t) = w′′(L, t) = 0

γ′(0, t) = γ′(L, t) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∀t ≥ 0 (17.27)

Also, by (17.16) the conditions (17.27)2 require that

wiv(0, t) = wiv(L, t) = 0 ∀t ≥ 0 (17.28)

Next, let the solution to (17.23) be sought in the form

w(x, t) =
∞∑

m=1

Cm sin
mπx

L
eiωmt, (i =

√−1) (17.29)

which guarantees that (17.25)1, (17.27) and (17.28) be identically satisfied. Here the
ωm, (m = 1,2, ...), constitute a discrete numerable set of natural frequencies. Then,
substituting (17.29) into (17.23) and using the notation Ωm := τωm, (m = 1,2, ...), we
obtain

∞∑
m=1

{[
1+

a0E
k2G

(mπr
L

)2](mπr
L

)4
+

−Ω2
m

[
1+
(
1+

a2E
k2G

)(mπr
L

)2
+

2a0E
k2G

(mπr
L

)4]}
Cm sin

mπx
L
= 0

(17.30)

Therefore the non-dimensional natural frequencies Ωm (measuring each the number
of waves in the scale time interval τ) turn out to be expressed as

Ωm =

(
mπ
λ

)2√
1+ a0E

k2G

(
mπ
λ

)2
√

1+
(
1+ a2E

k2G

)(
mπ
λ

)2
+

2a0E
k2G

(
mπ
λ

)4 , (m = 1,2, ...), (17.31)

where λ = L/r denotes the slenderness ratio of the beam. Since the warping co-
efficients a0,a2,k2 are (continuous) functions of the warping parameter s, then the
natural frequencies Ωm turn out to be functions of s, Ωm = Ωm(s).

Equation (17.31) is the extension to the present theory of the result given by El-
ishakoff et al. (2015), see Eq. (25) of the latter quoted paper, with which it identifies
taking s = 0, that is,

Ωm(0) =

(
mπ
λ

)2√
1+
(
1+ E

G

)(
mπ
λ

)2
+ 2E

G

(
mπ
λ

)4 . (m = 1,2, ...) (17.32)
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For comparison, a few other shear warping theories from the literature have been
considered and the corresponding natural frequencies have been computed. The fol-
lowing warping functions, say f (z), representative of polynomial, trigonometric,
hyperbolic and exponential warping functions, respectively, have been considered:

1. Levinson (1981); Reddy (1984, 2007) f (z) = θ(z,0.5) = z− (4z3/3h2)
2. Touratier (1991); Sayyad and Ghugal (2014, 2018) f (z) = (h/π) sin(πz/h)
3. Soldatos (1992) f (z) = zcosh(1/2)−hsinh(z/h)
4. Karama et al. (2003) f (z) = ze−2(z/h)2

In Figs. 17.3(a,b), the first natural frequency computed with the parametric warp-
ing theory is plotted as a function of s (solid lines) against the analogous frequen-
cies computed using the above other shear warping theories (straight discontinuous
lines), using the slenderness ratio λ = 10 in a) and λ = 50 in b).
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Fig. 17.3 First and fourth nondimensional natural frequencies Ωm(s) = τωm(s) of the simply
supported beam versus the warping parameter s, computed with the parametric theory (solid
lines), Levinson-Reddy theory (dashed lines), Touratier-Sayyad & Ghugal theory (dash-dot lines),
Soldatos theory (double dash-dots lines), Karama et al. theory (dotted lines): a) m = 1, λ = 10; b)
m = 1, λ = 50.



230 Castrenze Polizzotto, Isaac Elishakoff, and Paolo Fuschi

Analogous results are reported in Figs. 17.4(a,b) for the fourth natural frequency.
Every curve Ωm(s) exhibits a waved pattern whereby for every s the natural fre-
quency of a particular beam in the family is represented, namely, the TE beam for
s = 0, the LR beam for s = 0.5, the EB beam for s→∞. For every m = 1,2, ..., a
particular value of s exists, namely s = sh(m), such that Ωm(s) < Ωm(0) ∀ s : 0 < s <
sh(m) (softening), whereas Ωm(s) > Ωm(0) ∀ s > sh(m) (hardening). For easy refer-
ence, the numbers sh(m) are called separation sh numbers, whereas the correspond-
ing beam models are called neutral frequency beams, exhibiting neither softening
nor hardening. The main salient feature emerging from these plots is that the fre-
quencies determined with warping theories different from the proposed one are all
below Ωm(0), that is in the softening zone, more or less in the vicinity of Ωm(0.5).

The values of Ωm(s)(m = 1,2,3,4) related to the TE (Ωm(0)), LR (Ωm(0.5)) and
EB (Ωm(∞)) beam models, as well as to the neutral frequency beam (Ωm(sh)), are
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Fig. 17.4 First and fourth nondimensional natural frequencies Ωm(s) = τωm(s) of the simply
supported beam versus the warping parameter s, computed with the parametric theory (solid
lines), Levinson-Reddy theory (dashed lines), Touratier-Sayyad & Ghugal theory (dash-dot lines),
Soldatos theory (double dash-dots lines), Karama et al. theory (dotted lines): a) m = 4, λ = 10; b)
m = 4, λ = 50.
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reported in Tables 17.1 and 17.2 for λ = 10 and λ = 50, respectively. The first
four natural frequencies, Ωm (m = 1,2,3,4), computed with the four different shear
warping theories borrowed from the literature are also reported in Tables 17.3 and
17.4, for λ = 10 and λ = 50, respectively.

Two more plots are finally given to highlight the above discussed effects of the
parametric warping on the natural frequencies of the simply supported beam. Pre-
cisely, in Figs. 17.5(a,b) the ratio Ωm(s)/Ωm(0) versus the warping parameter s and
for m = 1,2,3,4, is plotted for λ = 10 and λ = 50, respectively. Apart from the above
mentioned waved pattern of the curves, a sensitivity of the natural frequencies to the
slenderness ratio λ = L/r can also be observed.

17.5.1 Other Comments on the Obtained Numerical Results

The curves Ωm(s) plotted in Figs. 17.3(a,b), 17.4(a,b) and 17.5(a,b) show some fea-
tures worthy of mention. Namely, every curve has a minimum for some s = s∗(m) ≈
0.5, which means that the LR beam model is characterized by natural frequencies
close to the minimum. The value s = sh(m) that separates, for every m = 1,2, ..., the
softening/hardening zones from each other corresponds to a particular beam of the
family which has natural frequency equal to the m-th frequency of the TE beam.

Table 17.1 Nondimensional frequencies Ωm (m = 1,2,3,4) of the simply supported beam for par-
ticular beams in the family: TE beam (s = 0); LR beam (s = 0.5); Neutral frequency beam (s = sh);
EB beam (s =∞), computed with the parametric warping theory and for slenderness λ = L/r = 10.

Ωm(s) TE beam LR beam Neutral frequency beam EB beam
s = 0 s = 0.5 (sh); s = sh s =∞

Ω1 0.0848 0.0832 (4.75); 0.0848 0.0941

Ω2 0.2537 0.2441 (3.75); 0.2537 0.3343

Ω3 0.4335 0.4142 (2.75); 0.4335 0.6464

Ω4 0.6108 0.5836 (2.00); 0.6108 0.9833

Table 17.2 Nondimensional frequencies Ωm (m = 1,2,3,4) of the simply supported beam for par-
ticular beams in the family: TE beam (s = 0); LR beam (s = 0.5); Neutral frequency beam (s = sh);
EB beam (s =∞), computed with the parametric warping theory and for slenderness λ = L/r = 50.

Ωm(s) TE beam LR beam Neutral frequency beam EB beam
s = 0 s = 0.5 (sh); s = sh s =∞

Ω1 0.0039 0.0039 (5.50); 0.0039 0.0039

Ω2 0.0154 0.0153 (5.25); 0.0154 0.0157

Ω3 0.0334 0.0332 (5.25); 0.0334 0.0349

Ω4 0.0570 0.0563 (5.00); 0.0570 0.0613
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Table 17.3 Nondimensional frequencies Ωm (m = 1,2,3,4) of the simply supported beam, with
slenderness λ = L/r = 10, using four different shear warping theories from the literature.

Shear warping theory 102Ω1 101Ω2 101Ω3 101Ω4

1. Levinson (1981);
Reddy (1984, 2007) 8.3239 2.4416 4.1418 5.8364

2. Touratier (1991);
Sayyad and Ghugal (2014);
Sayyad and Ghugal (2018) 8.3257 2.4437 4.1495 5.8551

3. Soldatos (1992) 8.3239 2.4415 4.1413 5.8351

4. Karama et al. (2003) 8.3304 2.4477 4.1617 5.8812

Table 17.4 Nondimensional frequencies Ωm (m = 1,2,3,4) of the simply supported beam, with
slenderness λ = L/r = 50, using four different shear warping theories from the literature.

Shear warping theory 103Ω1 102Ω2 102Ω3 102Ω4

1. Levinson (1981);
Reddy (1984, 2007) 3.9161 1.5301 3.3186 5.6274

2. Touratier (1991);
Sayyad and Ghugal (2014);
Sayyad and Ghugal (2018) 3.9161 1.5302 3.3189 5.6282

3. Soldatos (1992) 3.9161 1.5301 3.3186 5.6274

4. Karama et al. (2003) 3.9163 1.5304 3.3196 5.6303

Also, for every other warping theory considered in Tables 17.3 and 17.4, there exist
two differently warped beams in the family which possess the same natural frequen-
cies. Though the numerical investigation is not sufficiently wide for a safe judge-
ment on the sensitivity of the natural frequencies to the warping effects, nevertheless
it clearly appears that these effects may be notable and that further studies would be
hoped for. The plots of Figs. 17.5(a,b) show that the natural frequencies Ωm(s) ex-
hibit some sensitivity to the slenderness ratio λ = L/r. Though this outcome may be
considered self-intuitive, further investigation is needed on this point.

17.6 Conclusion

A class of shear deformable beams in vibration has been presented whereby a warp-
ing theory (called parametric warping) is used to make the cross section to warp
according to a fixed warping rule controlled by a warping parameter s ≥ 0. On let-
ting s vary from zero to infinite, a continuous family of shear deformable beams
models is generated, which spans from the TE beam for s = 0 (no warping is active,
full shear deformability), to the EB beam for s→∞ (again no warping is active,
but zero shear deformation). Remarkable feature of this formulation is that what-
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Fig. 17.5 Ratios of nondimensional natural frequencies of the simply supported beam Ωm(s) over
Ωm(0) (TE-beam nondimensional frequencies), plotted for m = 1,2,3,4, versus warping parameter
s and obtained with the parametric theory: a) for slenderness ratio λ = L/r = 10; b) for λ = 50.

ever may be the chosen (non-negative) value of s, the shear stress is vanishing at the
bottom and top surfaces of the beam. Another remarkable property is that no shear
correction coefficient is needed.

The differential equation of the generic shear deformable beam in vibration has
been found to be of the sixth order in the spacial variable, but still of fourth order in
the time variable, it therefore predicts two distinct series of natural frequencies like
for the TE beam. It is also found that the vibration motion of the beam is controlled
by two basic scale parameters, namely r (radius of inertia of the cross section) and
τ (time interval for a wave to travel the distance r). As in practice τ takes on small
values, then the term of the differential equation with the fourth order time derivative
can be disregarded. In this way a simpler differential equation is obtained which is
still of the sixth order in the spacial variable, but of the second order in the time
variable, hence it predicts only a single spectrum.
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The simplified differential equation has been used to derive the natural frequen-
cies of a simply supported beam. The first four frequencies were reported graphi-
cally as functions of the warping parameter s ≥ 0, so evaluating the sensitivity of the
natural frequencies to the warping effects. This sensitivity is smaller for the first or-
der frequency, but increases with the frequency order. The natural frequencies were
also computed using other shear warping theories from the literature for compari-
son.

The main original contributions of the present research work can be summarized
as follows:

• Extension to vibrating beams of a parametric warping theory previously ad-
vanced in Polizzotto (2015, 2017).

• Formulation of the governing sixth order time/space differential equation for
shear deformable vibrating beams taking into account the warping effect.

• Introduction of two parameters with the meaning of macroscopic space and time
scales of the vibrating beam, which carry in the basic pieces of information re-
garding the inherent geometrical and inertial features of the vibrating system.

• Exploitation of these scale parameters to ascertain that the addends of the govern-
ing differential equation incorporating the (upmost) fourth order time derivatives
are negligible with respect to the others, which extends previous results by El-
ishakoff et al. (2015) and Elishakoff (2020) to shear deformable beams.

• Assessment of the sensitivity of natural frequencies to the warping effects.
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Chapter 18
Conceptual Approaches to Shells.
Advances and Perspectives

Oksana R. Polyakova and Tatiana P. Tovstik

Abstract The history of scientific discoveries in elasticity theory that preceded the
creation of the theory of shells is described. The way of finding solutions and the
logic of scientific discoveries are indicated, including the history of the question of
the position of the neutral line of a loaded beam and the history of the derivation
of the equations of elasticity theory. Some applied questions of analytical methods,
including the method of asymptotic expansions, are discussed. The prospects and
current use of methods of mechanics and the concept of shells in interdisciplinary
research are described.

Key words: History of shell theory, Elastic plates and shells, Analytical methods,
Asymptotic methods

18.1 Introduction

At present, many questions of the theory of shells, which were open several gener-
ations ago, are solved and considered as classical results of the theory. Hence the
more interesting and important it is to see the prospects for the development of the
mechanics of shells and shell media. The historical perspective of the future is more
clearly seen with a scientific view of the perspective of the past, and the deeper and
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more accurately we understand it, the greater and more diverse will be the vision of
further directions of development.

In addition, on the example of the theory of shells over the centuries one can
clearly see the stages of development of mechanics as a whole in its many sections,
as well as mathematics, without which mechanics would not have taken place as a
science.

It is difficult to say when the shells first appeared in science. According to the
available medieval references, there was a work by Archimedes dedicated to finding
the center of gravity of plates. One should also mention the mechanisms invented
by Leonardo da Vinci, in which shells were used. They include

• wings allowing to rise into the air,
• fans for fanning the fire, and
• underwater spacesuit for humans.

Already at the beginning of the Renaissance, many phenomena of mechanics
necessary for the beginning of research in the mechanics of shells were discov-
ered. They ranged from the simplest ones, capable of providing data on the elastic
properties of matter such as experiments on the breaking of a wire, experiments on
measuring the deflection of a beam freely supported at its ends, to more complex
and beautiful experiments related, for example, to the phenomenon of resonance.
Here is how Leonardo da Vinci (1452–1519) describes the resonance: "The stroke
given in the bell will cause response and some slight movement in another bell sim-
ilar to itself; and the string of a lute as it sounds will cause response and movement
in another similar string of like tone in another lute; and this you will see by plac-
ing a straw on the string similar to that which has sounded" (Timoshenko, 1953;
Ravaisson-Mollien, 1881, p. 22).

As Charles-Augustin de Coulomb (1736–1806) wrote in 1773, giving his work
for publication in the French Academy of Science: "The sciences are monuments
consecrated to the public good. Each citizen ought to contribute to them according
to his talents" (Timoshenko, 1953). What path did the scientists of the XVI–XXI
century have to go from the descriptive works of the Renaissance to the modern
differential and integral and differential equations describing, for example, the same
resonance!

It is clear that the development of mechanics could not have taken place with-
out the development of the corresponding branches of mathematics. As Leonardo
da Vinci wrote in his Paris notebook in 1513–1514: "Mechanics is the paradise of
mathematical science because here we come to the fruits of mathematics" (Timo-
shenko, 1953; Ravaisson-Mollien, 1891, p. 8). Let us outline the most beautiful and
significant achievements in the theory of shells.
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18.2 Historical Perspective

18.2.1 On the Tension-torsion Test of Beams

One of the first issues with which the practice of shell research began was the
strength testing of shells and membranes, beams, and wires. The history of search-
ing for models of mechanics shows us that the correct solutions to problems were
not achieved immediately. For example, consider in this regard a simple tension of
a body. After making a series of tensile tests for iron wire, Leonardo da Vinci con-
cludes that the shorter the wire, the greater tensile stress it can withstand. Perhaps
this answer was due to various defects distributed along the length of wires man-
ufactured at that time. Already Galileo Galilei (1564–1642) finds that the tensile
strength of a copper sample is proportional to the cross-sectional area and does not
depend on its length. Robert Hooke (1635–1703) established a linear relationship
between force and strain and in 1678 published the first ever printed work on the
theory of elasticity "De Potentia Restitutiva, or of Spring".

In 1784, Charles Coulomb conducted experiments on wire torsion and observed
torsional vibrations of a weight suspended on it. He was able, similarly to the well-
known Hooke formula for rod tension, to experimentally establish a formula that
relates the angle of rotation of the rod ϕ to the torque M (Timoshenko, 1953)

M =
μd4

l
ϕ, (18.1)

where l and d are the length and diameter of the rod, respectively, μ is the mate-
rial constant. In addition, Coulomb discovered the existence of another value that
characterizes the elastic limit for a given material — the critical torsion up to which
the deformation remains elastic and beyond which the accumulation of residual de-
formation occurs. For example, the elastic limit of a rod increases if it is twisted
far beyond its elastic limit, but the modulus of elasticity μ does not change in this
case. And further, the elastic limit again decreases if the wire obtained in this way
is annealed. On the contrary, the elastic limit increases when the metal is quenched.
Explaining this result, Coulomb made the assumption that each elastic material is
characterized by a certain arrangement of molecules, and with a deformation beyond
the limits of elasticity these molecules begin to slip relative to each other, which ul-
timately leads to an increase in the molecular coupling forces and an increase in the
elastic limit. However, small elastic deformations do not change the relative posi-
tion of the molecules. The English scientist Thomas Young (1773–1829) finds an
additional term for the torque in (18.1). This is the resistance to torque, proportional
to the cube of the twist angle and caused by the longitudinal stresses of the fibers
bending along the helical lines. In this case, the outer fibers are stretched, and the
inner fibers are compressed.
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18.2.2 Beam Bending and Neutral Line Detection History

The first studies of bending of freely supported and cantilevered beams were per-
formed by Leonardo da Vinci and Galileo: Leonardo investigated the influence of
the length and width of the beam on its deflection, while Galileo investigated also
the effect of its thickness. The existence of a neutral beam line was not addressed
by Galileo, since he assumed that the bending load is distributed uniformly over the
transversal section.

In engineering calculations, the question of the location of the neutral line in the
beam bending problem was treated differently throughout the 17–18th centuries, and
partly even the 20th century. For brittle materials, such as stone beams, the Galilean
hypothesis of the uniform stress distribution over the beam thickness was accepted.
For flexible materials, for example, wooden beams, a later model was used in the
calculations, according to which the beam is not stressed on the inner side, and the
tensile stresses of the fibers are maximal on the outer side.

Many mechanical scientists like Edme Mariotte (1620–1684), Robert Hooke,
Antoine Parent (1666–1716), Leonhard Euler (1707–1783) devoted their time to the
search for a formula for calculating the beam strength during bending. During the
initial consideration of the problem, all of them first placed the neutral unstressed
line of the curved beam tangentially to the contour of the cross-section of the beam
from its concave side, and only then solved the problem by placing the neutral line
inside the beam. With this statement of the problem, the stress pattern and the calcu-
lation formulas undergo changes, for example, the fibers stretch on the convex side
of the beam and shrink on the concave side.

When comparing the problems of bending and stretching, Thomas Young deter-
mined the most advantageous shape of a rectangular beam if it is cut from a beam
with a given circular cross-section. If we need to minimize the deflection, then the
ratio of the height of the beam to its width should be

√
3 : 1, if we need the maxi-

mum bending strength, then the ratio should be
√

2 : 1, for the most rigid beam in
tension, the cross-section shape will be 1 : 1.

18.2.3 To the History of the Derivation of the Shell Equations

After Isaac Newton (1643–1727) in England and Gottfried Leibniz (1646–1716) in
Europe laid the foundation of the calculus of infinitesimals, this new mathematical
apparatus began to be used by mathematicians in the study of mechanical prob-
lems. Daniel Bernoulli (1700–1782) and Leonhard Euler became interested in the
equilibrium problems of elastic rods and found the shape of an elastic line (elas-
tica) for a number of various problems. They then derived the differential equation
of transverse vibrations of a prismatic beam. Daniel Bernoulli sets up experiments,
which he shares in a letter with Leonhard Euler: "These oscillations arise freely,
and I have determined various conditions, and have performed a great many beau-
tiful experiments on the position of the knot points and the pitch of the tone, which
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agree beautifully with the theory" (Fuss, 1843). Leonhard Euler found a solution to
the 4th order differential equation of beam oscillation for various conditions at the
ends: cantilever rod, freely supported ends, rigidly fixed ends, and completely free
ends. Euler noted that the obtained result can be used not only for experimental ver-
ification of the theory, but also for determination of the elastic constant of the rod
material.

Next, Leonhard Euler obtains a partial differential equation for the vibration of
a membrane. Here it takes the model of a membrane in the form of two mutually
perpendicular systems of strings. He applies the same method for the problem of
bell oscillations. Jacob Bernoulli (1759–1789) deduced the formula of vibrations of
a plate, which he also modeled as two systems of cross beams. However, he notes
that this is only the first attempt to derive these equations, and if the beams are taken
at different angles, the form of the equations will change. In its modern form, the
equations of vibrations of a plate were derived by Sophie Germain (1776–1831) via
the Euler equation.

Since the beginning of the 19th century, the European scientific community has
become interested in the forms of plate vibrations thanks to the amazing experiments
of Ernst Chladni (1756 – 1827), see Chladni (1802, 2015); Faraday (1837). Pouring
a thin layer of fine-grained sand on a glass plate and passing a violin bow along
the edge of the plate, Chladni excited vibrations of the plate with sand at different
frequencies. As a result, sand nodal lines were formed as a consequence of plate
vibrations.

After Chladni’s presentation of his experiments at the French Academy, a com-
petition was announced and, at the suggestion of Napoleon, a prize was awarded for
the development of a mathematical theory of plate vibrations and for a comparison
of theoretical and experimental results. Sophie Germain submitted her work to this
competition three times (there were no other contestants), and on the third time she
received the prize, although the commission was not completely satisfied with her
justification of the formula of the integral of the deformation energy of the plate
(Euler’s formula), from which the equation of plate vibrations was obtained.

Simeon Denis Poisson (1781–1840), Louis-Marie Henri Navier (1785–1836),
and Augustin Louis Cauchy (1789–1857) worked on the derivation of the equilib-
rium equations of an isotropic elastic body. To derive the equations of elasticity
theory, Cauchy considers the equilibrium of an elementary tetrahedron, introduces
the concept of stress for the first time, describing it as the pressure on the plane, but
not perpendicular to the plane, unlike the pressure in gas theory. Navier and Poisson
used a model of a body consisting of molecules interacting with each other (molec-
ular theory). The equations of the molecular theory gave only one elastic constant of
the material for an isotropic body and 15 constants (for in the general an anisotropic
linear model). Cauchy’s theory gave 2 and 21 independent constants, respectively.
In the middle of the 19th century, the increased accuracy of experiments showed the
need of taking into account the Poisson ratio as the second constant of an isotropic
material.

George Green (1793–1841) considered both ways of deriving the equations of
elasticity and derived them in a third way, not using the assumption about the struc-
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ture of the matter, but rather relying on the law of conservation of energy and in-
troducing the potential function, which for small displacements was found to be a
homogeneous function of the second degree of the six components of deformation.

18.3 Analytical Methods in the Shell Theory

The solution of the problem of elasticity theory for a shell as a three-dimensional
body in the spatial formulation is an involved problem of mathematical physics. Tak-
ing into account the geometric and elastic (or rheonomic) characteristics of the shell,
as well as the loading conditions and other factors, various approaches were devel-
oped to simplify the problem. There are four main analytical methods for studying
the stress-strain state of beams, plates, and shells — the method of hypotheses, de-
composition with respect to the parameter, the asymptotic method and the direct
method:

1. The method of hypotheses is based on the acceptance of hypotheses about the na-
ture of the distribution of stresses, deformations or displacements over the thick-
ness. This is the so-called semi-inverse method of elasticity theory. This method
of solution is transparent and allows one to obtain simple resolution relations.
The disadvantage of this method is the lack of criteria for evaluating the error. To
refine the results obtained, it is necessary to move on to more general hypothe-
ses and solve a virtually different problem. This method is used in models of the
Bernoulli–Euler beam and the Kirchhoff–Love shell. The Timoshenko–Ehrenfest
beam and Uflyand–Mindlin plate theories (Elishakoff, 2020), the theories of E.
Reissner, S.A. Ambartsumian, and Timoshenko-type theories were constructed
on the basis of relaxed hypotheses.

2. For an expansion in terms of the thickness parameter, all the desired functions
are represented as the product of two functions, one of which depends on the
coordinates of the median surface and the second one is selected as a series of
the transverse coordinate. In this case, to refine the results, it is necessary to take
a larger number of terms of the series and increase the order of the system being
solved.

3. When solving problems by the method of asymptotic integration, all the desired
values are represented as an asymptotic series in the powers of some dimension-
less physical or geometric small (or large) parameter. The solution is sought in
the form of recurrent formulas for unknown functions. This method gives the
asymptotic order of error of the solution.
The results obtained by asymptotic methods provide approximate solutions that
can be used directly in technical applications as well as analytical solutions; they
are indispensable for verification of numerical results. The main value of asymp-
totic solutions is because they are capable of given a qualitative description of
the behavior of the shell as its parameters change. The idea of asymptotic ex-
pansions is a very deep idea in science, which reflects the cognitive capabilities
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of a person, when more and more hierarchical complexity levels are consistently
comprehended starting from the simple ones.
The asymptote is translated from Greek as "not coincident"; in other words, it
does not coincide, but it brings us closer to the fullness of knowledge of the pic-
ture of the world. And if it is not yet possible to solve the problem in full, there
is a possibility to build its approximations, grasping in them the most fundamen-
tal and important features. The question of what to pay attention to and what
"features" will be important in this task is decided by the scientist.
Initially, asymptotic methods were used for regularly perturbed equations. Start-
ing from the 1960s, asymptotic methods have also been used for singularly per-
turbed equations. In a regularly perturbed problem the asymptotic solution is con-
structed by a single representation, but in a singularly perturbed problem there
may be several such representations, which leads to the problem of merging these
expansions.
Justification of the classical theory of shells, including the derivation of two-
dimensional shell equations from the three-dimensional equations of the theory
of elasticity using asymptotic analysis, is contained in the fundamental mono-
graph (Goldenveizer, 1961), which includes justifications of the classical theory
of shells based on the hypotheses of Kirchhoff–Love and Timoshenko–Reissner,
the nonlinear theory of shells, and the theories of anisotropic and multilayer
shells. A great contribution to the solution of involved problems of vibrations
and stability of shells and to the development of asymptotic methods was made
by Professor Peter E. Tovstik of St. Petersburg University.
Consideration of the anisotropy and inhomogeneity of shells provides a huge
field for the application of asymptotic methods in the development and refine-
ment of classical theories. The situation arises when one needs to choose a model
for solving the problem with the corresponding small parameters. Here, the most
important phenomenon and the basis for success is the scientist himself, with his
or her immersion in the study. "To successfully find something, it is always de-
sirable to know at least approximately what is being looked for" (Blekhman et al,
1983).
The second necessary characteristic of a scientist is intuition, which should help
to find a way to solution. The choice can be made in many ways, but achieve-
ment of simplicity and accuracy of constructions requires subtlety, sensitivity
and insight as some necessary components of intuition. Professor P.E. Tovstik
had this remarkable talent of having deep scientific "asymptotic intuition". This
is evidenced by his works. For singularly perturbed equations, algorithms were
obtained for solving problems on the oscillations and stability of shells, when the
merging of asymptotic expansions is required. In particular, for the shells of zero
curvature, when one of the coefficients of the equation of oscillations vanishes.
For integrals in the vicinity of the rotation points, the solutions are constructed
using reference functions that do not depend on the shape of the shell and the os-
cillation frequency. An effective asymptotic method was constructed and critical
loads of shell stability loss were found for many classes of problems interesting
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for practice, for which only numerical results were previously known (Tovstik
and Smirnov, 2001; Bauer et al, 2015; Mikhasev and Tovstik, 2020).

4. A direct method for deriving of equations of plates and shells was developed by
Zhilin (1976); Altenbach and Zhilin (1988, 2004); Zhilin (2006c). This method
does not rely on any hypotheses, but directly deduces the equations of the shell as
a two-dimensional body with the use of the fundamental law of energy balance
and the two principles: the principle of momentum and the principle of moment
of momentum. Both principles results in the Eulerian laws of motion (Truesdell,
1964). Under this approach, the principle of material objectivity is satisfied au-
tomatically. Concrete forms of the tensors of elastic modules of the medium are
obtained by applying the Curie-Neumann principle. The direct tensor calculus
is used for writing down the laws of mechanics and describing the character-
istics of the medium. The problem in application of the direct approach is the
establishment of the constitutive equations and the identification procedure for
the effective stiffness properties. Recently, new applications of this method were
found due to the appearance of new materials, in particular, nanomaterials, and
in view of the increasing requirements for the accuracy of calculation (Altenbach
and Eremeyev, 2008, 2009).

A number of directions of the nonclassical theory of elastic media and shells have
appeared with the advent of advanced technologies pertaining to shells of involved
structure. For a survey and discussion of generalized Cosserat-type theories of plates
and shells, see Altenbach et al (2010). The Cosserat continuum is used as a model
for inhomogeneous materials with granular structure and for composite materials
consisting of sufficiently rigid grains that can both move and rotate inside the mate-
rial under load (superplastic media, acoustic metamaterials).

18.4 A Mathematical View of Shells

Almost four centuries have passed since the discovery of the Newton–Leibniz for-
mula, the most important formula of integral calculus, which gives a connection
between two operations: the operator taking the Riemann integral and the operator
of determination the primitive. In calculus, this formula is generalized, via Fubini’s
theorem, to problems of higher dimension. In general, the formula reads as∫

σ
dω =

∫
∂σ
ω, (18.2)

where σ is an orientable p-dimensional submanifold defined on an oriented man-
ifold M of dimension n, (p < n); ω is the differential form of degree p− 1; dω
is the exterior derivative of the form; dσ is the positive oriented boundary of the
submanifold. For proofs and derivations of such formulas, see, for example, Zorich
(2016).
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For two-dimensional spaces, this formula becomes the Green formula, for three-
dimensional spaces, this is the Gauss–Ostrogradsky formula, and in general space,
this is the Stokes formula. These formulas are have great value and are used in
the theory of elasticity, hydro- and aerodynamics, electrodynamics, and many other
sciences. These formulas relate mathematically the things happening "inside" and
"on the boundary", where a philosophical understanding of this fact leads to the
assumption of the "limit" of the boundary of a submanifold, which concentrates
certain parameters of the submanifold itself.

For closed shell forms let us show some interesting points supporting the thesis
that the shell is related to the internal content of the vol that it restricts. A clear
illustration of this fact is given in the Gauss–Ostrogradsky formula, which states
that the integral of the divergence of a vector field A over a volume G is equal to the
flow of the vector through the surface,�

G

div AdV =
�

S

AdS . (18.3)

Just like the Green formula for the two-dimensional case, the Gauss–Ostrogradsky
formula relates integrals of different dimensions.

Recall the concept of the linear hull from linear algebra. The linear hull can be de-
fined in a linear space of any dimension. The linear hull in an N-dimensional space
X over a field F (real or complex) is defined for a family x1, x2, . . . , xm of elements of
the space. For a linear space, the operations of vector addition and multiplication by
a number are defined, and so by taking the linear combination of elements x j with
coefficients c j form the field F, we get the set of linear combinations of elements
x1, x2, . . . , xm of the space X; that is, the linear hull

Lin {x1, x2, . . . , xm} =
{∑

c j x j , c j ∈ F
}
. (18.4)

So, for m, strictly smaller than the dimension of the space X, it is possible to interpret
the shell as the shape of a body for which at least one of the dimensions significantly
smaller than the others.

18.5 On Forms of Shells

Reticulated shells provide an interesting modern example of shells in construction.
As building structures, they have a relatively short history due to the complexity
of the calculation and the high requirements for the materials from which they
are made. However, one cannot but admire their architectural elegance. Shell tow-
ers, shell overlaps, reticulated shell structures of complex geometric shapes have a
piercing aesthetic effect on a person with a plexus of their "one-dimensional linear
shells".
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The American design engineer Paul Weidlinger, who wrote about hyperbaric
structures (forms of hyperbolic paraboloids) accurately conveyed the essence of the
inner beauty of such architectural: "The beauty of forms is not achieved by means of
"cosmetics", but follows from the essence of the structures. The form itself is almost
an epitome of the effort it must take in" (Voloshinov, 1992).

Of all the forms of shells, the most remarkable is the sphere as a form that has
maximum symmetry. The problems of elasticity of spherical shells were studied by
such scientists as Louis Navier, Simeon Poisson, Gabriel Lamé (1795–1870) and
Benoît Clapeyron (1799–1864). Philosophically speaking, Isaac Newton chose an
apple-shaped object for his legend of the discovery of the law of gravity.

Mathematicians and mechanics in complex problems always tend to first inves-
tigate the reference (canonical) form, which usually has the undeniable advantages
of obtaining explicit solutions. In this sense, the advantages of the spherical shape
of shell, as well as of the objects modeled by spherical manifolds, are obvious. The
concept of sphericity, which is equivalent to the diameter, is introduced for the study
of complex objects. The equivalent diameter of a nonspherical particle is equal to
the diameter of a spherical particle that exhibits the same properties (for example,
aerodynamic, hydrodynamic, optical, electrical) as the nonspherical particle under
study. Sphericity is a measure of how spherical an object is.

Let us see where similar spherical shells can occur. The human body and all
living organisms consist of cells covered with a cytoplasmic membrane. In terms
of mechanical properties, the cell membrane ensures the integrity of the cell and
separates the contents of the cell from the external environment. On the example of a
cell, one can see the philosophical foundations and the functionality that any closed
shell carries — these being the wholeness and integrity of what the shell "envelops"
with simultaneous protection and separation from what is happening outside.

The variety of functions of biomembranes includes:

1. The barrier shell with selective permeability,
2. Transport shell with the specifics of passive and active transport,
3. Matrix shell, which ensures optimal interaction of membrane proteins, and so on.

The mechanical properties of the shell, on the one hand, can be distinguished sepa-
rately, but on the other hand, they cannot but reflect the complexity of the processes
occurring in the cell (Gennis, 1989).

Perhaps the first steps in the study of the mechanical properties of cell shells
will begin with the study of cell walls. The cell wall, which is the cell envelope
located outside of the cytoplasmic shell, is found in most bacteria and plants. A
strong cell wall is the most important feature of a plant cell, and its main component
is cellulose. Higher plants have a cell wall, which is a complex, mostly polymeric,
extracellular matrix that surrounds each cell. The cells of animals and humans do
not have such a structure, being more highly organized matter in comparison with
plants.

Let us consider an interesting aspect of approaches to the study of objects belong-
ing to different realms of nature. Here we mean the realms of plants, animals, and
human being. The typology of matter in these royal forms has different specifics and
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features. If we look at scientific research from this angle, then the evolution of the
development of science involves a consistent complication of the objects of research,
starting with the kingdom of minerals, which includes all "deformable solids", and
further to the objects of the plant and animal kingdoms. The pinnacle of research
is the study of the human realm, which consists of the most complexly organized
matter. Modern participants in this direction are such sciences as biophysics and
biomechanics. Here it is appropriate to recall the words of Isaac Newton, which in
many ways have not lost their relevance in our time: "I do not know what I may
appear to the world; but to myself I seem to have been only like a boy playing on
the sea-shore, and diverting myself in now and then finding a smoother pebble or
a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered
before me" (Brewster, 2010).

18.6 Problems of Modern Biomechanics

Biomechanics considers, in particular, problems for analysis and modeling of shells.
Biomechanics of the hearing organs sets the task of evaluation of parameters of
the tympanic membrane (tympanic membrane). This problem arises when planning
surgical operations to restore the integrity of the tympanic membrane and improve
auditory conductivity. To solve this problem, experimental studies are conducted for
identification of the amplitude-frequency characteristics of the tympanic membrane
of the ear in the normal mode and after the installation of cartilage grafts of various
configurations.

Analysis involve mathematical models of the middle ear. Finite element mod-
eling is used to calculate the forced vibrations of the middle ear with a cartilage
graft. One finds the mechanical rigidity of the tympanic membrane, the motion of
the points of the middle ear, and the principal forms of vibration. To improve the
auditory conductivity it is necessary to meet the condition of equality of free vibra-
tion frequencies for the corresponding principal forms of oscillations of the middle
ear in normal mode and of the middle ear with an installed cartilage graft of optimal
thickness and configuration.

Analysis of the shells of the eye is a new direction in biomechanics, which makes
use of almost all modern achievements of the theory of shells. Performance of the
eye is governed by the laws of hydromechanics, thermodynamics, mechanics, and
optics. At the turn of the 20th and 21st centuries, fundamental studies of the mechan-
ics of the eye were initiated with the use of the theory of shells and the mechanics
of deformable solids.

The outer shell of the eye is multi-layered and consists of the sclera, choroid, and
retina. Detachment of some layers can occur in the process of injury or disease. An
important issue is the study of the conditions under which such detachment can oc-
cur and the study of treatment methods. Mathematical models of the theory of shells
make more clear the mechanisms and processes of retinal detachment, detachment
of the vascular membrane. When simulating the effect of intraocular pressure on
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the sclera, the problem of equilibrium of the transversally isotropic or even the or-
thotropic shell under the action of internal pressure is considered. The anisotropy is
due to the fact that the shells of the eye (sclera and cornea) have elastic modulus in
the direction of the thickness of the shell significantly smaller than in the tangential
directions. Currently, it is known that often myopia of the eye is associated with the
fact that the modulus of elasticity along the meridian becomes less than the modulus
of elasticity along the parallel and the eye becomes ellipsoidal.

New knowledge in the field of biomechanics of the eye allows one to individ-
ualize the diagnosis, to study the influence of the parameters of the eyeball on the
indicators of measuring devices, and to predict changes in the eye pressure after
injections and surgeries. Thus, there is a constant search for new techniques and
methods of treatment, where mathematical models are important to help predict the
results of therapeutic and surgical treatment.

The collection of papers (Altenbach and Mikhasev, 2015) contains the result of
long-time fruitful international cooperation in the field of shell structures in biome-
chanics.

18.7 Micro- and Macro-scale Shells

Everyone knows the concept of the electron shell of an atom. This concept combines
the electrons and the nucleus and determines the place of the atom in the periodic
table.

There is a conjecture that the electron shells, which have been studied by physi-
cists for more than a decade, can later be described in the framework of the etheric
form of matter (Zhilin, 2006b, 2013). (These studies are discussed in more detail
in the next section). We can expect that the next stages of the development of ex-
act sciences will lead to new conceptual approaches in relation to any elementary
particles, where each particle will necessarily have a shell, and hence the "elastic"
properties of the shells.

The study of shells will expand to macroscales as well. So, with the new math-
ematical apparatus, it will be possible to study the geographical shell of the Earth,
not only in the form of studying its individual layers by individual sciences, but
also as a whole, as a complete shell, including the lithosphere, the lower part of the
atmosphere (troposphere, stratosphere), hydrosphere, biosphere, anthroposphere or
noosphere. All spheres are in continuous interpenetration and interaction, in which
the exchange of matter, energy and other components is carried out. The list of
spheres can be supplemented by singling out the Earth’s magnetosphere and iono-
sphere separately. An integrated approach requires taking into account the effects of
the Sun, Moon, planets, and matter of the Solar System.

On the scale of the macrocosm, let us consider the ultimate (at present) shell of
the universe. In analogy with the known shells that exist around the Planet, the Solar
System and the Milky Way galaxy, we can assume the existence of a shell around
the entire metagalaxy, the relic radiation from which has been studied for more than
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half a century (Doroshkevich and Novikov, 1964, 2018). It is known that the relic
radiation in the metagalaxy, which is observed nowadays, was formed during the
transition of the original plasma to the gaseous state of neutral particles. The region
of space in which the relic radiation was formed is called the surface of the last
scattering. Since the degree of uniformity of the relic radiation is extremely high, it
is represented as a sphere within which the universe or metagalaxy is transparent. In
the future, studies of the processes of macroscale phenomena of nature will lead to
the description of the shell of the surface of the last scattering by a system of differ-
ential equations with the possibility of directly calculating the natural frequencies
that cause certain cosmic phenomena.

18.8 The Role of Mechanics in the Development of Science

Mechanics is developed in two directions. On the one hand, with the development
of new branches of mathematics, scientists are able to model and describe in the
language of mathematics more and more complex natural phenomena. On the other
hand, physics provides mechanical scientists with the results of experiments waiting
for their scientific explanation.

So, many equations of physics that were written by trial and error, bypassing
the stage of derivation of formulas, were later derived by mechanics using tensor
calculus. Professor Pavel Andreevich Zhilin derived (Zhilin, 2006b, p. 71) the equa-
tion for the Kelvin medium, which at one limit transition gives the well-known
Schrodinger equation, and in the other limit case passes into the equally well-known
Klein–Gordon equation.

In Zhilin (2006a, p. 32), Zhilin showed that the Maxwell equations are a special
case of the well-known and strictly mathematically obtained equations of the the-
ory of elasticity describing the oscillations of the elastic continuum. Moreover, the
Maxwell equations are obtained from the equations of the theory of elasticity by the
limit transition as the velocity of longitudinal waves tends to infinity. The speed of
light is the speed of transverse waves. Note that for the equations of the theory of
elasticity, the existence and uniqueness theorems of the solution are proved, which
cannot be said about the Maxwell equations in their classical version. Maxwell him-
self also noted (Maxwell, 1873, p. 784) that his equations describe a transverse wave
in an incompressible medium. In turn, it is known that the incompressibility of the
medium in the limit leads to an infinite velocity of propagation of the longitudinal
wave.

Zhilin’s models of mechanics of multi-spin particles (Zhilin, 2013, 2006a, p.
112), which are capable of providing mechanical interpretations of the concepts of
temperature, entropy, and chemical potential, are developed by his pupils (Gavrilov
and Krivtsov, 2020; Grekova and Zhilin, 2001; Grekova, 2019a,b; Ivanova, 2015,
2019, 2021; Kuzkin and Krivtsov, 2021; Shishkina and Gavrilov, 2017; Shishkina
et al, 2020; Tovstik, 2008, 2011; Vilchevskaya and Müller, 2021). Thus, mechan-
ics, which deals with precise theories with strict derivation of formulas, provides a
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deeper look at the structure of the world and completes the missing bricks in the
building of science.
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Chapter 19
Necessary Conditions for Energy Minimizers in
a Cosserat Model of Fiber-reinforced Elastic
Solids

Milad Shirani and David J. Steigmann

Abstract Pointwise necessary conditions for energy minimizers are derived in the
context of a Cosserat model of fiber-reinforced elastic solids in which the Cosserat
rotation field accounts for the kinematics of the embedded fibers, modelled as spatial
Kirchhoff rods. The analysis requires careful consideration of constraints associated
with the fact that fibers are convected by the continuum deformation field as material
curves.

Key words: Cosserat elasticity, Fiber-reinforced materials, Legendre-Hadamard
conditions

19.1 Introduction

Our aim in this work is to obtain pointwise necessary conditions of the Legendre-
Hadamard type for energy minimizing states of fiber-reinforced solids in which the
fibers are regarded as continuously distributed Kirchhoff rods (Landau and Lifshitz,
1986; Dill, 1992; Antman, 2005) that convect with the underlying continuum defor-
mation. The kinematics of these rods are controlled by a rotation field and its gra-
dient. Accordingly, Cosserat elasticity furnishes the appropriate conceptual frame-
work for this model (Steigmann, 2012, 2015). Unlike conventional Cosserat elastic-
ity (Cosserat and Cosserat, 1909; Truesdell and Noll, 1965; Reissner, 1975, 1987;
Neff, 2006; Pietraszkiewicz and Eremeyev, 2009), the fibers induce a directional
Cosserat effect associated with the trajectories of the fibers. A complicating feature
of the present model vis a vis the derivation of the Legendre-Hadamard condition
is the materiality of the embedded fibers. This entails non-standard constraints in-
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volving the deformation and rotation fields. A derivation of the Legendre-Hadamard
condition for unconstrained Cosserat continua is given in Shirani et al (2020).

We present a brief resumé of Cosserat elasticity in Sect. 19.2, together with its
adaptation to materials reinforced by a single family of continuously distributed
fibers. Conservative problems are discussed in Sect. 19.3, where the Legendre-
Hadamard conditions for energy minimizers are derived.

We use standard notation such as AAAt, AAA∗, SkwAAA and det AAA. These are respectively
the transpose, the cofactor, the skew part and the determinant of a tensor AAA, regarded
as a linear transformation from a three-dimensional vector space to itself. The axial
vector ax(SkwAAA) of SkwAAA is defined by ax(SkwAAA)×vvv = (SkwAAA)vvv for any vector vvv.
The tensor product of three-vectors is indicated by interposing the symbol ⊗, and the
Euclidean inner product of tensors AAA,BBB is denoted and defined by AAA · BBB = tr(AAABBBt),
where tr(·) is the trace; the induced norm is |AAA| = √AAA ·AAA. The symbol |·| is also used
to denote the usual Euclidean norm of three-vectors. Latin and Greek indices take
values in {1,2,3} and {2,3} respectively, and, when repeated, are summed over their
ranges. Finally, bold subscripts are used to denote derivatives of scalar functions
with respect to their vector or tensor arguments.

19.2 Cosserat Elasticity of Fiber-reinforced Materials

Cosserat elasticity theory furnishes the natural setting for elastic solids with em-
bedded fibers - modelled as continuously distributed Kirchhoff rods - that support
bending and twisting moments. The fibers are assumed to be perfectly bonded to an
underlying matrix material and aligned locally with a unit-vector field DDD(XXX),,, where
XXX is the position of a material point in a fixed reference configuration κ. If a fiber is
sufficiently stiff relative to the matrix then its deformation gradient is approximated
by a rotation field RRR(XXX). In Dill’s interpretation of the Kirchhoff theory (Dill, 1992)
this is accompanied by a small axial strain. Moreover, the fiber is convected as a
material curve with respect to the underlying matrix deformation. Thus,

FFFDDD = λddd,,, where ddd = RRRDDD and λ = |FFFDDD| , (19.1)

where λ is the fiber stretch and FFF is the gradient of a deformation field χχχ(XXX). The
fields FFF and RRR are otherwise independent. Equivalently, RRRtFFFDDD = λDDD and this entails
two constraints

DDDα ·RRRtFFFDDD = 0; α = 2,3, (19.2)

involving the fiber rotation and matrix deformation, where DDDα are cross-sectional
vectors embedded in the fiber but not in the matrix. Accordingly, their images,
dddα = RRRDDDα, in the current configuration are free to shear relative to the matrix while
remaining mutually orthogonal and perpendicular to ddd.
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19.2.1 Kinematical and Constitutive Variables in Cosserat
Elasticity

The constitutive response of an elastic Cosserat continuum is embodied in a strain-
energy density U(FFF,,,RRR,,,∇RRR;;; XXX), per unit volume of κ, where ∇RRR is the rotation gra-
dient. In Cartesian index notation, these are

FFF = FiAeeei⊗EEEA, RRR = RiAeeei⊗EEEA and ∇RRR = RiA,Beeei⊗EEEA⊗EEEB (19.3)

with
FiA = χi,A, (19.4)

where
(·),A= ∂(·)

∂XA

and where {eeei} and {EEEA} are fixed orthonormal bases associated with the Cartesian
coordinates xi and XA, with xi = χi(XA).

We assume the strain energy to be Galilean invariant and thus require

U(FFF,,,RRR,,,∇RRR;;; XXX) = U(QQQFFF,,,QQQRRR,,,QQQ∇RRR;;; XXX), (19.5)

where QQQ is an arbitrary spatially uniform rotation with

(QQQ∇RRR)iAB = (Qi jR jA),B= Qi jR jA,B.

The restriction
U(FFF,,,RRR,,,∇RRR;;; XXX) =W(EEE,,,ΓΓΓ;;; XXX), (19.6)

with (Pietraszkiewicz and Eremeyev, 2009)

EEE = RRRtFFF = EABEEEA⊗EEEB; EAB = RiAFiB, (19.7)

ΓΓΓ = ΓDC EEED⊗EEEC ; ΓDC =
1
2

eBADRiARiB,C , (19.8)

where W is the reduced strain-energy function and eABC is the permutation sym-
bol, is both necessary and sufficient for Galilean invariance. Sufficiency is obvious,
whereas necessity follows by choosing QQQ === RRRt

|X , where X is the material point in
question, and making use of the fact that, for each fixed C ∈ {1,2,3}, the matrix
RiARiB,C is skew. This follows by differentiating RiARiB = δAB (the Kronecker delta).
The axial vectors ΓΓΓC associated with this skew matrix have components

ΓD(C) =
1
2

eBADRiARiB,C , (19.9)

yielding (Pietraszkiewicz and Eremeyev, 2009)

ΓΓΓ = ΓΓΓC ⊗EEEC . (19.10)
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19.2.2 Virtual Power and Equilibrium

We define equilibria to be states that satisfy the virtual-power statement

Ė = P, (19.11)

where P is the virtual power of the loads acting on the body,

E = S +
∫
κ

ΛαDDDα ·EEEDDDdv, (19.12)

is the extended energy, Λα are Lagrange multipliers accompanying the constraints
(19.2),

S =
∫
κ

Udv (19.13)

is the total strain energy, and superposed dots are used to denote variational deriva-
tives. Thus,

U̇ = Ẇ = σσσ ··· ĖEE+μμμ ··· Γ̇ΓΓ,,, (19.14)

where
σσσ =WEEE and μμμ =WΓΓΓ (19.15)

are evaluated at equilibrium. Further,

(DDDα ·EEEDDD)· = DDDα⊗DDD ··· ĖEE (19.16)

so that
Ė =
∫
κ

[(σσσ+++ΛΛΛ⊗⊗⊗DDD)·ĖEE+μμμ·Γ̇ΓΓ+ Λ̇αDDDα ·EEEDDD]dv, (19.17)

where
ΛΛΛ = ΛαDDDα. (19.18)

It follows easily from (19.7) that

ĖEE = RRRt(∇uuu−ΩΩΩFFF), where uuu === χ̇χχ and ΩΩΩ === ṘRRRRRt. (19.19)

We also have
Γ̇ΓΓ = RRRt∇ωωω, (19.20)

where ωωω = axΩΩΩ... To demonstrate this we combine (19.8)2 and (19.19)3 to derive
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Γ̇DC =
1
2

eBAD(ṘiARiB,C +RiAṘiB,C)

=
1
2

eBAD[ΩimRmARiB,C +RmA(Ωm j,CR jB+Ωm jR jB,C)]

=
1
2

eBADRmA[Ωmi,CRiB+ (Ωmi+Ωim)RiB,C]

=
1
2

eBADRiBRmAΩmi,C . (19.21)

Because detRRR= 1 we have eBADRiBRmAR jD = eim j, and hence eBACRiBRmA = eim jR jC ,
where use has been made of R jDR jC = δDC . Altogether, we find

Γ̇DC = R jDω j,C , (19.22)

where
ω j =

1
2

eim jΩmi,

and thus arrive at (19.20).
We these results elementary calculations (Shirani and Steigmann, 2020) deliver

the virtual power (cf. (19.11)) in the form

P =
∫
∂κ

(ttt ···uuu+++ ccc ···ωωω)da+
∫
κ

(ggg ···uuu+++πππ ···ωωω)dv, (19.23)

where

ggg === −Div(RRRσσσ+++λλλ⊗⊗⊗DDD) and πππ = −Div(RRRμμμ)−2ax{RRRSkw[(σσσ+++ΛΛΛ⊗⊗⊗DDD)EEEt]RRRt}
(19.24)

are volumetric densities of force and couple acting in κ, with

λλλ === RRRΛΛΛ = Λαdddα, (19.25)

and where

ttt === (RRRσσσ+++λλλ⊗⊗⊗DDD)ννν on ∂κt and ccc === (RRRμμμ)ννν on ∂κc (19.26)

are surface densities of force and couple, where ∂κt is a part of ∂κ where position is
not assigned and ∂κc is a part where rotation is not assigned. Position is assigned on
∂κ \∂κt (uuu === 000) and rotation is assigned on ∂κ \∂κc (ωωω === 000).

19.2.3 Fiber-matrix Interaction

We assume that Cosserat elasticity is conferred by the mechanical interaction be-
tween an elastomeric matrix and a single family of continuously distributed em-
bedded fibers, regarded as spatial Kirchhoff rods that respond constitutively to a
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bend-twist strain vector. The bend-twist strain of a fiber family initially tangential
to the unit-vector field DDD(XXX) is γγγ = ax(RRRtRRR′) (Shirani and Steigmann, 2020), where
(·)′ is the directional derivative along DDD... This may be expressed in the form

γγγ = γiDDDi with γi =
1
2

ei jkDDDk ·RRRtRRR′DDD j, (19.27)

oriented orthonormal triad with DDD1 = DDD. Using R′iA = RiA,BDB we derive

RRRtRRR′ = RiCRiA,BDBEEEC ⊗EEEA = eACDΓDBDBEEEC ⊗EEEA. (19.28)

The Cosserat rotation field is given simply by

RRR === dddi⊗DDDi, (19.29)

where dddi = RRRDDDi are the images of directors in the deformed body. Thus ddd === ddd1 is the
field of unit tangents to the deformed fibers and dddα (α = 1,2) are embedded in the
fiber cross sections, but not in the matrix material.

It follows from (19.27) and (19.28) that γγγ is determined by ΓΓΓ via ΓΓΓDDD. In fact, we
can show that

γγγ = ΓΓΓDDD. (19.30)

To see this we combine (19.27) and (19.28), reaching

γi = A∗iDΓDBDB, (19.31)

where
A∗iD =

1
2

ei jkeDAC A jAAkC (19.32)

are the cofactors of the matrix with components A jA = DDD j ·EEEA. The latter induce the
tensor AAA = AiADDDi⊗EEEA. Using DDDi = (DDDi ·EEEB)EEEB = AiBEEEB, we have

AAA = AiAAiBEEEB⊗EEEA, (19.33)

with
AiAAiB = (DDDi ·EEEA)(DDDi ·EEEB) = III ·EEEA⊗EEEB = δAB, (19.34)

where III === DDDi ⊗DDDi is the identity for 3-space. It follows that AAA = III... Using the well
known formula AAAtAAA∗ = (det AAA)))III,,, we conclude, from (19.31), that

AiCγi = AiC A∗iDΓDBDB = δCDΓDBDB = ΓCBDB. (19.35)

Equation (19.27)1, expressed in the form γγγ = AiCγiEEEC , then yields (19.30).
Because the Cosserat effect is attributed to the embedded fibers, it is appropriate

to require that the strain energy depend on ΓΓΓ via the combination γγγ ===ΓΓΓDDD,,, and hence
that

W(EEE,,,ΓΓΓ;;; XXX) = w(EEE,γγγ;;; XXX), (19.36)

for some function w. Thus,
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σσσ = wEEE . (19.37)

To obtain the couple stress μμμ we vary (19.30), i.e,

γ̇γγ = Γ̇ΓΓDDD. (19.38)

Varying the energy at fixed EEE, we then have

μμμ ··· Γ̇ΓΓ = Ẇ = ẇ = wγγγ · γ̇γγ = MMM⊗DDD ··· Γ̇ΓΓ,,, (19.39)

where
MMM = wγγγ, (19.40)

yielding
μμμ = MMM⊗DDD and RRRμμμ = mmm⊗DDD,,, where mmm === RRRMMM... (19.41)

The force and couple traction conditions reduce to

ttt === (RRRσσσ)ννν+++ (DDD ··· ννν)λλλ on ∂κt, and ccc === (DDD ··· ννν)mmm on ∂κc, (19.42)

and furnish the interpretation of λλλ and mmm,,, respectively, as shear force and moment
densities acting on fiber ’cross sections’; that is, on surfaces that intersect the fibers
orthogonally (DDD ···ννν = ±1). We observe that no solution exists if a non-zero couple is
specified on a part of ∂κc containing DDD as a tangent vector (DDD ··· ννν = 0).

19.3 Conservative Problems, Energy Minimizers and the
Legendre-Hadamard Conditions

We are concerned with conservative problems characterized by a potential energy.
These are such that there exists a load potential L, say, the variational derivative of
which is identical to the virtual power. Thus,

L̇ = P, (19.43)

and the potential energy is E−L, apart from an unimportant constant. Equilibria are
thus seen to be those states that render the potential energy stationary, i.e.,

(E−L)· = 0, (19.44)

for all admissible uuu andωωω...Moreover, the existence of a load potential renders mean-
ingful the consideration of energy minimizers.

An example of conservative loading is furnished by the dead-load problem with
vanishing volumetric densities of force ggg and couple πππ. The associated load potential
is

L =
∫
∂κt

ttt ·χχχda+
∫
∂κc

TTT ·RRRda (19.45)
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in which ttt and TTT respectively are assigned configuration-independent vector and
tensor fields. Here ttt is as in (19.42)1, and the couple traction in (19.42)2 is

ccc = 2ax[Skw(TTTRRRt)]. (19.46)

Thus the couple traction is configuration dependent in the dead-load problem. In-
deed, it is well known that configuration-independent couples are associated with
non-conservative problems (Ziegler, 1977) for which no potential energy exists.

Our aim is to derive the relevant version of the Legendre-Hadamard necessary
condition for energy minimizers. We shall see that boundary loading does not play
a role in this derivation and thus we suppress the load potential at the outset. The
potential energy then reduces to the strain energy

E =
∫
κ

w(EEE,,,γγγ)dv. (19.47)

The associated first and second variations are

Ė =
∫
κ

(wEEE · ĖEE+wγγγ · γ̇γγ)dv (19.48)

and

Ë =
∫
κ

(wEEE · ËEE+wγγγ · γ̈γγ)dv

+

∫
κ

{ĖEE ·wEEEEEE[ĖEE]+ (wEEEγγγ)γ̇γγ ··· ĖEE+ (wγγγEEE)ĖEE ··· γ̇γγ+ γ̇γγ · (wγγγγγγ)γ̇γγ}dv. (19.49)

The second variation, evaluated at an equilibrium state, is necessarily non-negative
if that state minimizes the energy.

The second variations of EEE and γγγ follow by varying (19.19) and (19.38), respec-
tively. Thus,

ËEE = RRRt(∇vvv−−−ΦΦΦFFF)−−−RRRtΩΩΩ(∇uuu+++RRRĖEE),,, (19.50)

where vvv === χ̈χχ and ΦΦΦ = Ω̇ΩΩ, and

γ̈γγ = RRRtϕϕϕ′+ ṘRRt
ωωω′ = RRRtϕϕϕ′ −RRRtΩΩΩRRRγ̇γγ,,, (19.51)

where
ϕϕϕ = ω̇ωω = axΦΦΦ... (19.52)

Accordingly,
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κ

(wEEE · ËEE+wγγγ · γ̈γγ)dv =
∫
κ

[wEEE ·RRRt(∇vvv−−−ΦΦΦFFF)+wγγγ ·RRRtϕϕϕ′]dv

−
∫
κ

[wEEE ·RRRtΩΩΩ(∇uuu+++RRRĖEE)+wγγγ · (RRRtΩΩΩRRR)))γ̇γγ]dv. (19.53)

Equilibria render the potential energy stationary:

0 = Ė =
∫
κ

[wEEE ·RRRt(∇uuu−−−ΩΩΩFFF)+wγγγ ·RRRtωωω′]dv (19.54)

for all uuu and ωωω such that (cf. (19.16))

0 = DDDα · ĖEEDDD = DDDα ·RRRt(∇uuu−−−ΩΩΩFFF)DDD = dddα · (uuu′ −ωωω×χχχ′). (19.55)

We have explained the consequences of (19.54) in Sect. 19.2 on the basis of an
extension of the energy to unconstrained states combined with the use of Lagrange
multipliers (Berdichevsky, 2009). Here we avoid Lagrange multipliers by operating
directly on the manifold defined by the constraints.

The constraints (19.55) are equivalent to the requirement that uuu′ −ωωω×χχχ′ be par-
allel to ddd,,, and hence, with χχχ′ = λddd,,, that

ddd×(ωωω×ddd) = λ−1ddd×uuu′. (19.56)

The identity ωωω === (ωωω ···ddd)ddd+++ddd×(ωωω×ddd) then delivers the general solution to (19.55) as

ωωω = σddd+λ−1ddd×uuu′ (19.57)

in which σ is an arbitrary scalar.
Varying (19.55), it follows that kinematically admissible second variations must

be such that

0 = DDDα · ËEEDDD = DDDα ·RRRt(∇vvv−−−ΦΦΦFFF)DDD−−−DDDα ···RRRtΩΩΩ(∇uuu+++RRRĖEE)DDD
= dddα · (vvv′ −ϕϕϕ×χχχ′)−dddα ·ωωω×(uuu′+RRRĖEEDDD). (19.58)

We confine attention to second variations satisfying

dddα · (vvv′ −ϕϕϕ×χχχ′) = 0. (19.59)

For these it follows from (19.54) and (19.55) that the first integral on the right-hand
side of (19.53) vanishes, and that the second variation of the energy reduces to

Ë =
∫
κ

{ĖEE ·wEEEEEE[ĖEE]+ (wEEEγγγ)γ̇γγ ··· ĖEE+ (wγγγEEE)ĖEE ··· γ̇γγ+ γ̇γγ · (wγγγγγγ)γ̇γγ}dv

−
∫
κ

[wEEE ·RRRtΩΩΩ(∇uuu+++RRRĖEE)+wγγγ · (RRRtΩΩΩRRR)γ̇γγ]dv, (19.60)
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subject to the residual content of (19.58), namely,

dddα ·ωωω×(uuu′+RRRĖEEDDD) = 0. (19.61)

To solve these latter conditions we first note that

χχχ′ = FFFDDD = λddd, (19.62)

where λ is the fiber stretch, the variation of which is

uuu′ = λ̇ddd+ωωω×χχχ′. (19.63)

We also have
ĖEEDDD === RRRt(uuu′ −ωωω×χχχ′), (19.64)

so that (19.61) reduces to

0 = dddα ·ωωω×(2λ̇ddd+ωωω×χχχ′). (19.65)

Thus there is a scalar c such that

2λ̇ωωω×ddd+λωωω×(ωωω×ddd) = cddd. (19.66)

Taking the inner product with ωωω×ddd gives λ̇ = 0, i.e.,

uuu′ = ωωω×χχχ′, (19.67)

which is compatible with (19.55) and yields ωωω×(ωωω×χχχ′) = cddd...
Let eee === ωωω/ |ωωω| . The identity χχχ′ = (eee ···χχχ′)eee+++ eee×(χχχ′×eee), applied to (19.66), results

in
(c+λ |ωωω|2)ddd = λ |ωωω|2 (eee ···ddd)eee... (19.68)

The possibilities are:

(i) eee ···ddd = ±1 and c = 0, or
(ii) eee ···ddd = 0 and c = −λ |ωωω|2.

We conclude that (19.61) is satisfied at any XXX ∈ κ provided that

ωωω ∈ Span{ddd} or ωωω ∈ (Span{ddd})⊥. (19.69)

The first restriction is satisfied by taking uuu′ = 000 and the second requires that uuu′ � 000.
We are now in a position to prove

Theorem 19.1 (Legendre-Hadamard Theorem). If the second variation is non-
negative then it is necessary that

DDD ···KKKDDD ≥ 0 and DDD×ααα ···KKK(DDD×ααα) ≥ 0 for all vectors ααα, (19.70)

and at every XXX ∈ κ, where DDD(XXX) is the unit tangent to the fiber passing through XXX
and
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KKK(XXX) = wγγγγγγ|||XXX (19.71)

is the symmetric 2nd-order fiber stiffness tensor, evaluated at the energy-minimizing
state {χχχ(XXX),,, RRR(XXX)}...
Remark 19.1. Inequalities (19.70) are identical to restrictions derived in Steigmann
(2015), where they are shown to imply the non-negativity of the torsional and flex-
ural stiffnesses of the embedded fibers. The method of proof discussed here is dif-
ferent, however. It is similar to that employed in Shirani et al (2020) to derive the
Legendre-Hadamard condition for unconstrained Cosserat continua.

Proof. Consider the variations

uuu(XXX) = ε2ξξξ(YYY) and ωωω(XXX) = εηηη(YYY),,, with YYY = ε−1(XXX−−−XXX0), (19.72)

where XXX0 is an interior point of κ, ε is a positive constant, and ξξξ,,,ηηη are differentiable
vector-valued functions compactly supported in a region D - the image of a strictly
interior neighborhood κ′ ⊂ κ of XXX0 under the map YYY(·)... Accordingly uuu and ωωω vanish
on ∂κ, and it is for this reason that the loading terms in (19.45) are not relevant to
our present considerations.

Substituting (19.72) in (19.60), dividing by ε3, passing to the limit ε → 0 and
invoking the Dominated Convergence Theorem, we reduce the inequality Ë ≥ 0 to∫

D

RRRt
0(∇ηηη)DDD0 ·KKK0RRRt

0(∇ηηη)DDD0dv ≥ 0, (19.73)

where the subscript 0 indicates evaluation at XXX0, and, here and henceforth, ∇ is
the gradient with respect to YYY ... This holds for all ηηη(YYY) subject to (cf. (19.69) and
(19.72)2)

ηηη ∈ Span{ddd0} or ηηη ∈ (Span{ddd0})⊥. (19.74)

In the course of deriving (19.73) from (19.60) we have used (19.19) and (19.72) with
|ΩΩΩ| = |ωωω| = O(ε) to infer that

∣∣∣ĖEE∣∣∣ = O(ε) and |γ̇γγ| = O(1) after the change of variable.
We extend ηηη to complex-valued vector fields as

ηηη === ηηη1+ iηηη2, (19.75)

where ηηη1,2 are real-valued and i is the complex unit (i2 = −1). It follows from the
symmetry of KKK0 that

RRRt
0(∇ηηη)DDD0 ·KKK0RRRt

0(∇η̄ηη)DDD0

= RRRt
0(∇ηηη1)DDD0 ·KKK0RRRt

0(∇ηηη1)DDD0+RRRt
0(∇ηηη2)DDD0 ·KKK0RRRt

0(∇ηηη2)DDD0, (19.76)

in which the overbar identifies the complex conjugate, so that if (19.73) holds for
real-valued ηηη subject to (19.74), then∫

D

RRRt
0(∇ηηη)DDD0 ·KKK0RRRt

0(∇η̄ηη)DDD0dv ≥ 0 (19.77)
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for complex-valued ηηη subject to the same restrictions.
Restriction (19.74)1 is satisfied by taking

ηηη = φ(YYY)ddd0 (19.78)

with φ a complex-valued differentiable scalar function compactly supported in D.
Then, ∇ηηη = ddd0⊗∇φ and

RRRt
0(∇ηηη)DDD0 = (DDD0 · ∇φ)DDD0. (19.79)

Consider
φ(YYY) = f (YYY)exp(ikNNN ···YYY), (19.80)

with NNN a fixed real vector, k a non-zero real number and f a real-valued differen-
tiable function compactly supported in D. This gives

RRRt
0(∇ηηη)DDD0 = exp(ikNNN ···YYY)))(ik f DDD0 ·NNN +DDD0 · ∇ f )DDD0 (19.81)

and

RRRt
0(∇ηηη)DDD0 ·KKK0RRRt

0(∇η̄ηη)DDD0 = [k2 f 2(DDD0 ·NNN)2+ (DDD0 · ∇ f )2]DDD0 ·KKK0DDD0, (19.82)

and (19.77) reduces to

DDD0 ·KKK0DDD0[k2(DDD0 ·NNN)2
∫
D

f 2dv+
∫
D

(DDD0 · ∇ f )2dv] ≥ 0, (19.83)

for arbitrary NNN... This is equivalent to

DDD0 ·KKK0DDD0 ≥ 0, (19.84)

which is just (19.70)1 on account of the arbitrariness of XXX0.
It remains to analyze the second possibility (19.74)2. The antecedent of this re-

striction is (19.69)2, which requires that σ = 0 in (19.57) and thus ωωω = λ−1ddd×(∇uuu)DDD
in which ∇uuu(XXX) = ε∇ξξξ(YYY). Accordingly, with reference to (19.72)2 we satisfy
(19.74)2 by taking

ηηη = λ−1
0 ddd0×(∇ξξξ)DDD0. (19.85)

Consider
ξξξ(YYY) = f (YYY)exp(ikNNN ···YYY)aaa, (19.86)

where aaa and NNN are fixed real vectors, k is a real constant and f is a differentiable
real-valued function with f and ∇ f vanishing on ∂D (to ensure that ηηη is compactly
supported in D). With some effort we obtain

ηηη = λ−1
0 exp(ikNNN ···YYY)[DDD0 · (∇ f + ik f NNN)]ddd0×aaa (19.87)

and
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(∇ηηη)DDD0 = λ
−1
0 exp(ikNNN ···YYY)F(YYY)ddd0×aaa, (19.88)

with

F(YYY) = DDD0 · ∇(DDD0 · ∇ f )− k2 f (NNN ···DDD0)2+2ik(NNN ···DDD0)DDD0 · ∇ f . (19.89)

Because RRRt
0 is a rotation we have

RRRt
0(ddd0×aaa) === RRRt

0ddd0×RRRt
0aaa = DDD0×ααα,

where ααα === RRRt
0aaa, and thus reduce (19.77) to

λ−2
0 DDD0×ααα ···KKK0(DDD0×ααα)

∫
D

|F|2 dv ≥ 0 (19.90)

for arbitrary NNN and ααα, where |F|2 = FF̄. This in turn is equivalent to

DDD0×ααα ···KKK0(DDD0×ααα) ≥ 0 for all ααα, (19.91)

and this yields (19.70)2 because of the arbitrariness of XXX0 ∈ κ.
��

Acknowledgements This work was supported by the US National Science Foundation through
grant CMMI-1931064. The work of MS was also supported by the P.M. Naghdi and B. Steidel
Fellowships, administered by the Department of Mechanical Engineering at UC Berkeley

References

Antman SS (2005) Nonlinear Problems of Elasticity. Springer, Berlin
Berdichevsky VL (2009) Variational Principles of Continuum Mechanics, vol I: Fundamentals.

Springer, Berlin
Cosserat E, Cosserat F (1909) Théorie des Corps Déformables. Hermann, Paris
Dill EH (1992) Kirchhoff’s theory of rods. Archive for History of Exact Sciences 44(1):1–23
Landau LD, Lifshitz EM (1986) Theory of Elasticity, 3rd edn. Pergamon, Oxford
Neff P (2006) Existence of minimizers for a finite-strain micromorphic elastic solid. Proceedings

of the Royal Society of Edinburgh: Section A Mathematics 136(5):997–1012
Pietraszkiewicz W, Eremeyev VA (2009) On natural strain measures of the non-linear micropolar

continuum. International Journal of Solids and Structures 46(3):774–787
Reissner E (1975) Note on the equations of finite-strain force and moment stress elasticity. Studies

in Applied Mathematics 54(1):1–8
Reissner E (1987) A further note on finite-strain force and moment stress elasticity. Zeitschrift für

angewandte Mathematik und Physik ZAMP 38(5):665–673
Shirani M, Steigmann DJ (2020) A Cosserat model of elastic solids reinforced by a family of

curved and twisted fibers. Symmetry 12(7):1133
Shirani M, Steigmann DJ, Neff P (2020) The Legendre–Hadamard condition in Cosserat elasticity

theory. The Quarterly Journal of Mechanics and Applied Mathematics 73(4):293–303
Steigmann DJ (2012) Theory of elastic solids reinforced with fibers resistant to extension, flexure

and twist. International Journal of Non-Linear Mechanics 47(7):734–742



266 Milad Shirani and David J. Steigmann

Steigmann DJ (2015) Effects of fiber bending and twisting resistance on the mechanics of fiber-
reinforced elastomers. In: Dorfmann L, Ogden RW (eds) Nonlinear Mechanics of Soft Fibrous
Tissues, Vienna and New York, CISM Courses and Lectures, vol 559, pp 269–305

Truesdell C, Noll W (1965) The non-linear field theories of mechanics. In: Flügge S (ed) Handbuch
der Physik, Springer, Berlin, vol III/3

Ziegler H (1977) Principles of Structural Stability. Springer, Basel



Chapter 20
Vibration Control of a Non-homogeneous
Circular Thin Plate

Andrei L. Smirnov and Grigory P. Vasiliev

Abstract Transverse vibrations of an inhomogeneous circular thin plate are studied.
The plates, which geometric and physical parameters slightly differ from constant
and depend only on the radial coordinate, are analyzed. After separation of variables
the obtained homogeneous ordinary differential equations together with homoge-
neous boundary conditions form a regularly perturbed boundary eigenvalue prob-
lem. For frequencies of free vibrations of a plate, which thickness and/or Young’s
modulus nonlinearly depend on the radial coordinate asymptotic formulas are ob-
tained by means of the perturbation method.
The effect of the small perturbation parameter on behavior of frequencies is ana-
lyzed under special conservation conditions:

i) for a plate, the mass of which is fixed, if the thickness is variable, and
ii) for a plate with the fixed average stiffness, if Young’s modulus is variable.

Asymptotic results for the lower vibration frequencies well agree with the results of
finite element analysis with COMSOL Multiphysics 5.4.

Key words: Free vibrations of plates, Inhomogeneous circular plate, Perturbation
method

20.1 Introduction

Plates of various shapes and of non-uniform thickness are widely used in engineer-
ing structures and study of the vibration of a thin circular plate is basic in struc-
tural mechanics. Many papers have been written on the vibration of plates cover-
ing various shapes, thickness variations according to different laws and different
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boundary conditions, vibrations non-uniform circular plates. The natural frequen-
cies of circular plates have been studied extensively for more than a century and
the results of these studies have been summarized in Leissa (1969). Different meth-
ods have been applied by the authors to analyze circular plate vibrations. Here we
mention just a few research papers those deal with small transverse vibrations of
circular thin shells. Many researchers have used Rayleigh-Ritz method to solve the
problem numerically (Singh and Saxena, 1996). Chakraverty et al (1994) have sur-
veyed the research on vibration of plates using boundary characteristic polynomi-
als in the Rayleigh-Ritz method. Wang et al (1995) used the differential quadra-
ture method to obtain solution for linear variation of thickness. Conway (1958)
analyzed the axisymmetric vibration of thin circular plates with a power function
thickness variation in terms of Bessel functions. Wang (1997) used the power series
method for free vibration analysis of circular thin plates of power varying thick-
ness. Jaroszewicz (2017) examined the circular plate whose thickness decreases
with the distance from the centre of symmetry according to the hyperbolic law
with the index m < 0. Jaroszewicz and Zoryj (2006) studied free vibration of cir-
cular thin plates of variable distribution of parameters using the method of partial
discretization (MPD). Prasad et al (1972) studied the free axisymmetric vibrations
of linearly varying thickness have been studied on the basis of classical theory of
plates using by Frobenius method and the solution has been represented as an in-
finite series of radial coordinate. Eisenberger and Jabareen (2001) have found the
exact axisymmetric vibration frequencies of circular variable thickness plates using
the exact element method that allows for the exact solution of problems with general
polynomial variation in thickness using infinite power series. They obtained the val-
ues for the natural frequencies for linear, parabolic and cubic variations of the plate
thickness. Knowledge about the distribution of variable values of mass and stiff-
ness can allow to affect the behavior of structural elements such us circular plates.
In the current research we concentrate on the question: to which extent the small
radial variation of thickness and/or stiffness parameters may affect the spectrum of
transverse vibration of a circular plate and which type of the perturbation function
affect greatly on the frequencies of vibrations provided that the average values of
the parameters of the inhomogeneous are equal to the values of the parameters of
the uniform plate. For example, if the thickness varies, the plate mass is assumed to
remain constant. The perturbation method described in Bauer et al (2015) is applied
to solve the obtained boundary eigenvalue problem and the results are checked by
means of the finite element method. The current resurch continues the study of vi-
brations of nonuniform circular plates by means of asymptotic methods started in
Vasiliev and Smirnov (2020).

20.2 Statement of the Problem

Here we consider free nonaxisymmetric transverse vibrations of a circular thin plate
of radius R, variable thickness h and/or Young’s modulus E (see Fig. 20.1) The
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variable parameters depend only on the radial coordinate r. The other physical pa-
rameters are assumed to be constant. Non-dimensional equations of transverse vi-

Fig. 20.1 Circular plate with the variable cross-section.

brations based on the Kirchhoff-Love plate model after separation of variables are
the following

L(wm(r))−h (r)λ4
mwm(r) = 0, L(wm(r)) =

4∑
i=0

bi
di

dri wm(r). (20.1)

Here

w(r,ϕ) =
∞∑

m=0

wm(r)cos(mϕ)

is the deflection, m — the circumferential wave number, λm — the eigenvalue. The
coefficients of differential operator L are given by formulas

b0 =
m4−4m2

r4 D− νm2

r2 D′′+
3m2

r3 D′, b2 = −2m2+1
r2 D+

2+ ν
r

D′+D′′,

b1 = −2m2+1
r2 D′+

2m2+1
r3 D+

ν

r
D′′, b3 =

2
r

D+2D′, b4 = D.

Here D = D(r) — the cylindrical stiffness, ν — Poisson ratio and the relations be-
tween dimensional and non-dimensional (with ( ˜. . .)) values are the following

D(r) = D0D̃(r̃), h(r) = h0h̃(r̃), E(r) = E0Ẽ(r̃), w(r) = Rw(r̃),

r = Rr̃, λ4 =
12(1− ν2)R4ω2ρ

E0h2
0

, D0 =
E0h3

0

12(1− ν2)
, 0 ≤ r̃ ≤ 1,

where D0,h0,E0 are unperturbed bending stiffness, thickness and Young’s modulus
respectively and ω is the free frequency. Below the sign ( ˜. . .) and subscript (. . .)m are
omitted. For the plate with constant parameters D(r) = 1 and h(r) = 1.
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20.3 Boundary Eigenvalue Problem

To study the effect of small variability of the plate thickness and stiffness on the
spectrum of free vibrations we apply the perturbation method. Assume the shell
parameters in the form

h(r) = 1+
∞∑

i=1

εihi(r), E(r) = 1+
∞∑

i=1

εiEi(r),

and seek of solution and eigenvalue as

λ(r) =
∞∑

i=0

εiλi(r), w(r) =
∞∑

i=0

εiwi(r), (20.2)

Substituting (20.2) in (20.1) we get the system of equations:

ε0 : Δ2w0(r)−λ4
0w0(r) = 0,

ε1 : Δ2w1(r)−λ4
0w1(r) = F11(λ0,w0(r))+F12(λ0,w0(r)) ·λ1,

ε2 : Δ2w2(r)−λ4
0w2(r) = F21(λ0,w0(r),λ1,w1(r))+F22(λ0,w0(r),λ1,w1(r)) ·λ2,

ε3 : . . . ,
(20.3)

which together with the boundary conditions provide the series of boundary value
problems. Later we consider only homogeneous boundary conditions of two types:
clamped edge and free supported edge. The solvability conditions for system (20.3)
is the orthogonality of the right sides of equations to solution w0(r) (Bauer et al,
2015), i.e.∫ 1

0

(
Fi1(λ j,w j(r))+Fi2(λ j,w j(r)) ·λi

)
w0(r)rdr = 0, j = 0, . . . , i−1; i = 1,2, . . . ,

(20.4)
where the scalar product of functions f (r) and g(r) is defined as

( f (r) ·g(r)) =
∫ 1

0
f (r)g(r)rdr.

As a result we get the formulas for the eigenvalues corrections λi

λi = − Ii1

Ii2
, Iik =

∫ 1

0
Fikw0(r)rdr, k = 1,2 i = 1,2, . . . . (20.5)

Here we show only the structure of operators F1k and F1k in (20.4)

F11 = ((3H1+E1) ·R1+CH01) ·WT
0 , F12 = F12 = 4λ3

0w0(r),

F21 = ((3H2+E2) ·R1+B1+ (H1 · (3R1,R2,R3))T .ET
1 +
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+

5∑
i=1

H1 ·Ai ·HT
1 +CH11) ·WT

0 + ((3H1+E1) ·R1+B2+CH01) ·WT
1 ,

where Hk, Ek — are vectors of the length 3, CH11, CH01, Bk — are vectors of
the length 5, Ri — 3×5 matrices and Ai — 3×3 matrices. Vectors Wk of the length
5 contain the derivatives dlwk/drl for l = 0, . . . ,4. The terms containing letters H
and E depend on the thickness and stiffness variations correspondingly. The explicit
formulas for vectors and matrices are included in the Appendix. The sequence of
the moves to fine the solution w(r) is the following. For given boundary conditions
we find the unperturbed solution w0(r) and eigenvalue λ0. Then find λ1 from for-
mula (20.5) and solution of the equation of the first approximation w1(r) and so on.
Only freely supported plates are considered below in examples. As it was shown in
Vasiliev and Smirnov (2020) there is no big qualitative difference between thickness
or stiffness variation effect for plates with different boundary conditions.

20.4 Results

We are interested in which extent free frequencies of the plate can be controlled by a
small perturbation of its parameter, provided that the average value of the parameter
remains constant.

20.4.1 Plate with the Variable Thickness

Consider the plate with variable thickness h(r). We assume that the thickness varies
monotonously according the linear, quadratic or exponential laws

1. hl = h(r) = 1+ε(1+ar),
2. hq = h(r) = 1+ε(1+ar2),
3. he = h(r) = 1+ε(1+a(exp(r)−1)).

If the plate mass is fixed, then the values of a must satisfy the condition∫ 1

0
h(r)rdr =

∫ 1

0
rdr = 1/2,

from which we get

1. hl = h(r) = 1+ε(1−3/2r),
2. hq = h(r) = 1+ε(1−2r2),
3. he = h(r) = 1+ε(2− exp(r)). Note that in all cases h(0) = 1+ε.

Firstly, we calculate the first terms in the asymptotic expansion for three lower fre-
quencies λ(m,n)

1 , due to Eq. (20.5). The results are listed in Table 20.1. In Fig. 20.2
the dependence of the lower frequencies on small parameter ε is plotted. The dotted
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Table 20.1 Values of the first correction for different types of the thickness variation.

(m,n) Linear Quadratic Exponential

(0,0) 0.1956 0.3087 0.2402

(1,0) 0.1437 0.3087 0.2156

(2,0) 0.1038 0.1839 0.1395

(0,1) 0.4779 0.7805 0.6034

(3,0) -0.0495 -0.0227 -0.0349

line are the values calculated numerically with the COMSOL Multiphysics 5.4, the
straight solid lines are two term approximations due to (20.3). For small values of
|ε| the straight lines corresponding to two term approximations practically coincide
with the curves obtained numerically, the quadratic variation provides slightly larger
change of frequencies compared to the other variations in consideration. The thick-
ness variation greatly effect the axisymmetric frequencies, λ(0,n), whereas the effect
on non-axisymmetric frequencies λ(m,n) (m > 0) is insignificant and it decreases as
wave numbers increase. All frequencies monotonously decrease for large |ε|, except
the fundamental frequency for negative ε.

20.4.2 Plate with the Variable Stiffness

Finally consider the plate with variable Young’s modulus E(r). We assume that
Young’s modulus varies monotonously according the linear, quadratic or exponen-
tial laws, and its average value is fixed. These assumptions yield

1. El = E(r) = 1+ε(1−3/2r),
2. Eq = E(r) = 1+ε(1−2r2),
3. Ee = E(r) = 1+ε(2− exp(r)).

Firstly, we calculate the first terms in the asymptotic expansions for the lower fre-
quencies, λ(m,n)

1 , due to Eq. (20.5). The results are listed in Table 20.2. In Fig. 20.3
the dependence of the lower frequencies on small parameter ε is plotted. The dotted

Table 20.2 Values of the first correction for different types of the thickness variation.

(m,n) Linear Quadratic Exponential

(0,0) 0.1300 0.2041 0.1592

(1,0) 0.0982 0.2041 0.1423

(2,0) 0.0597 0.1331 0.0919

(0,1) 0.2870 0.4331 0.3467

(3,0) -0.0206 0.0251 0.0016
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a)

b)

Fig. 20.2 Lower frequencies vs. small parameter ε for different thickness variation laws: a) three
lower frequencies vs. the thickness perturbation parameter ε for different perturbation functions,
b) effect of different thickness perturbation functions on the lowest frequency.
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a)

b)

Fig. 20.3 Lower frequencies vs. small parameter ε for different stiffness variation laws: a) three
lower frequencies vs. the stiffness perturbation parameter ε for different perturbation functions, b)
effect of different stiffness perturbation functions on the lowest frequency.
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line are the values calculated numerically with the COMSOL Multiphysics 5.4, the
straight solid lines are two term approximations due to (20.5). Similar to the case
of thickness variation the axisymmetric frequencies, λ(0,n), are the most sensitive to
the stiffness variation and the quadratic stiffness variation comparatively is the most
significant, especially for negative values of ε.

20.5 Conclusions

For the plates of equal masses (average stiffness) the spectrum of free transverse
vibration frequencies may be shifted slightly with small variation of the plate thick-
ness (stiffness). For a wide enough range of values of the variation parameter the
frequency change is linear and the corresponding relation may be obtained with the
perturbation method.
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Appendix

Wi =

(
dkwi(r)

drk

)
, Hi =

(
d jhi(r)

dr j

)
, El =

(
d jel(r)

dr j

)
, CHi1 = (Ci.HT

1 ,0,0,0,0),

k = 0, . . . ,4; j = 0,1,2; i = 0,1; l = 1,2,

C0 = (λ4
0,0,0), C1 = (4λ3

0λ1,0,0), B1 = (6λ2
0λ

2
1,0,0,0,0), B2 = (4λ3

0λ1,0,0,0,0),

R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
m2
(
m2−4
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r4 −2m2+1

r3
2m2+1

r2 −2
r
−1

−3m2

r3
2m2+1

r2 −ν+2
r
−2 0

m2ν

r2 −ν
r

−1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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−6 0

6m2ν
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3m2ν

r2 −3ν
r
−3 0 0

0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3m2
(
4−m2

)
r4 −9m2

r3
3m2ν

r2

−9m2

r3
6m2r2ν

r4 0

3m2ν

r2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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3
r3
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3
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−3ν
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0 0
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,
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r
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−3ν
r
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Chapter 21
Modeling of an Inhomogeneous Circular
Timoshenko Plate with an Elastically Supported
Boundary

Alexander O. Vatulyan, Olga A. Potetyunko, and Ivan V. Bogachev

Abstract The deformation of a circular elastic plate of variable stiffness is studied in
the present paper. The problem is considered in the framework of Timoshenko’s hy-
potheses with various conditions of support at the boundary, including the presence
of elastic bonds. One of the applications of this model is the problem of modeling
a lamina cribrosa sclerae (LC) of an eyeball. Timoshenko’s hypotheses are used in
view of the necessity to take into account in modeling shear deformations of a LC.
Elastic constraints in boundary conditions are characterized by two coefficients of
subgrade resistance. An energy functional is presented with the use of the varia-
tional Lagrange principle for an inhomogeneous plate. It also takes into account the
potential energy of bonds at the edge. Deflection of the plate and rotation angle of
the normal are found using the Ritz method, which makes it possible to derive a
solution based on the energy functional. The influence of the number of coordinate
functions on the accuracy of the obtained solution is investigated. A comparison is
made with the results obtained earlier in the framework of Kirchhoff’s plates.

Key words: Lamina cribrosa, Sclera, Heterogeneity, Elastic binding, Ritz method,
Reconstruction

21.1 Introduction

Plates are one of the main structural elements of many engineering structures, such
as bridge decks, turbine disks, base plates, tanks, structural elements for diaphragms,
measuring systems. In addition, various models of plates are used to solve problems
of biomechanics, for example, to optimize orthopedic surgeries of bone osteosyn-
thesis and to model a lamina cribrosa of the sclera in ophthalmology. Over time,
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more and more demanding requirements are imposed on the diagnostics of such
systems. Currently, non-destructive methods for detecting cracks, determining the
shapes and sizes of regions and objects have been developed quite well. Electronic
diagnostics of defects in mechanical systems is actively developing. At the same
time, the problems of diagnostics of the state of fastenings and loading of objects
began to be investigated relatively recently (Akhtyamov, 2006). So, in Vybornov
(1985); Uglov et al (2009), the theoretical foundations of low-frequency acoustic
control methods are presented, which is one of the most common and most accessi-
ble way of monitoring structural elements.

One of the actively developing areas of biomechanics is the biomechanics of the
sclera of an human eye (Iomdina et al, 2015). One of its urgent task is to study
the causes of glaucoma and diagnose its stage. It has been proven that one of such
reasons is the deformation of a lamina cribrosa sclerae (LC) under the influence of
intraocular pressure (IOP), as a result of which the nerve fibers passing through a
LC are squeezed. The factor of significant inhomogeneity of a LC, weakened by
a multitude of holes, which affects its deformation characteristics, must be taken
into account when modeling (Bauer and Voronkova, 2014). It is also important to
take into account the boundary conditions describing the attachment of a LC to the
sclera. This is indicated by Sigal et al (2005), which states that the deformation of
a LC largely depends on the elastic modulus and the thickness of the sclera. It was
previously shown (Vatulyan and Potetyunko, 2017) that modeling the contact of a
LC and a sclera as an elastic fixation characterized by compliance coefficients in
the boundary conditions is more accurate with respect to the condition of a rigidly
embedded edge.

One of the main hypotheses of the occurrence of glaucoma is the hypothesis of
“mechanical damage” of glaucomatous optic neuropathy. It is assumed that IOP-
induced deformation of a LC exposes the nerve fiber bundles to increased stresses,
which lead to axonal damage (Yan et al, 1998). In addition, with glaucoma and
increased IOP, the deflections of a LC are comparable in order. All of the aforemen-
tioned makes it relevant to consider geometrically nonlinear models of plates for
these problems, which make it possible to take into account shear deformation.

A lot of works by A.S. Volmir, K.F. Chernykh, I.I. Vorovich, S.A. Kabrits, E.I.
Grigolyuk and many others are devoted to questions of nonlinear models of shells.
For example, Kabrits et al (2002) gives a systematic presentation of the general non-
linear theory of shells and presents modified nonlinear equations of K.F. Chernykh
taking into account the "kinematic compression". One of the most common non-
classical models is the Timoshenko model (Timoshenko and Woinowsky-Krieger,
1959). Tovstik (2008) compares the Timoshenko-Reissner plate and shell model,
taking into account shear, with the classical Kirchhoff-Love model and with the
three-dimensional theory of elasticity.



21 Modeling of an Inhomogeneous Circular Timoshenko Plate . . . 279

21.2 Statement of the Problem

This paper presents the further development of a study carried out in Vatulyan and
Potetyunko (2017) within the framework of Kirchhoff’s hypotheses for an axisym-
metric inhomogeneous circular plate, to the case of Timoshenko’s hypotheses, tak-
ing into account the shear deformation characteristic of a LC. As in Vatulyan and
Potetyunko (2017), we assume that a uniformly distributed load q acts on a plate
of radius R and thickness h. The edge of the plate is elastically supported, which
is modeled by two elastic constraints with the coefficients C1 and C2. Within the
framework of Timoshenko’s hypotheses, in the case under consideration, the com-
ponents of the displacement vector in a cylindrical coordinate system have the form:

ur = zθ, uz = w, (21.1)

where w is the plate deflection function, θ is the angle of normal’s rotation along
the radial coordinate axis.

A variational approach is used to construct a scheme for calculating the defor-
mation of a plate. The Lagrange functional is derived within the framework of this
approach and it takes into account the hypotheses (21.1). This functional contains an
expression for the potential energy of elastic bonds at the edge; below is its general
dimensionless form:

F∗ =
1
2

1∫
0

[
f (ξ)
(
θ′2+

2ν
ξ
θθ′+

θ2

ξ2

)
+γg(ξ)(θ+w′)2

]
ξdξ

−
1∫

0

qwξdξ+
g1

2
w2(1)+

g2

2
θ2(1) (21.2)

Here we have introduced the dimensionless parameters and variables by the formu-
las:

• ξ = R−1 r – a dimensionless radial coordinate whose derivative in (21.2) is indi-
cated by a stroke;

• f (ξ) = D−1
0 D,g(ξ) = B−1

0 B – dimensionless plate stiffness functions, where D =
Eh3/[12(1− ν2)],B = Eh/[2(1+ ν)],D0 = D(0),B0 = B(0);

• γ = D−1
0 B0 = 6(1− ν)R2h−2 – dimensionless parameter;

• g1 = D−1
0 R2C1,g2 =C2 – stiffness parameters of the elastic support;

• q = q0(ar)a−3 – dimensionless parameter characterizing the level of distributed
loading; it was assumed to be 1 in the calculations.

Note that if we put θ = −w′, which leads to Kirchhoff’s conjectures, then the func-
tional (21.2) takes the form obtained in Vatulyan and Potetyunko (2017).
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21.3 Direct Problem Solving Method

From (21.2) by varying functional and equating to zero the coefficients of the inde-
pendent variations we can obtain the equilibrium equation and boundary conditions.
However, in this study, the Ritz method was used to calculate the deflection func-
tions w(ξ) and the angle of normal’s rotation θ(ξ). It allows constructing a solution
based on the functional (21.2). Within the framework of the Ritz method, we repre-
sent the sought functions in the form:

w(ξ) = a1φ11+

N∑
k=2

akφ1k, θ(ξ) =
N∑

k=1

bkφ2k , (21.3)

where ak and bk are coefficients and φ jk are basis functions satisfying homogeneous
boundary conditions:

φ11 = 1, φ1k = sin
(
π

2
ξk
)
, φ2k = sin(πξk), k = 1..N. (21.4)

Substituting the expressions (21.3) into the functional (21.2) and finding its sta-
tionary value from the conditions

∂F∗

∂a j
= 0,

∂F∗

∂b j
= 0, j = 1..N, (21.5)

we obtain a system of linear algebraic equations for the unknown expansion coeffi-
cients ak and bk. Its matrix has a block form:∣∣∣∣∣∣A1 A2

A3 A4

∣∣∣∣∣∣ ·
∣∣∣∣∣∣X1
X2

∣∣∣∣∣∣ =
∣∣∣∣∣∣F1
F2

∣∣∣∣∣∣ , (21.6)

where X1 = (a1,a2, ...,aN),X2 = (b1,b2, ...,bN),F1 = ( f1, f2, ..., fN),F2 = (0,0, ...,0).
The sought functions w(ξ) and θ(ξ) are determined from the solution of the system
(21.6), according to (21.3).

21.4 Computational Experiments

A series of computational experiments was carried out for various laws of plate
inhomogeneity and embedding parameters. The program was written using Maple
package and tested on the problem of bending a plate with constant stiffness in the
static case, which has an exact analytical solution (Timoshenko and Woinowsky-
Krieger, 1959). Tables 21.1 – 21.2 demonstrate the change in the coefficients of the
expression (21.3) for the deflection w and the angle of rotation θ depending on the
number of coordinate functions for a homogeneous plate at g1 = g2 = 104, which
simulates a rigid restraint. A decrease in the coefficients with an increase in the
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Table 21.1 Deflection coefficients w at f (ξ) = 1.

w N = 3 N = 4 N = 5

a1 0.0200 0.0200 0.0200

a2 0.0356 0.0356 0.0356

a3 0.0156 0.0156 0.0156

a4 −5 ·10−17 −4 ·10−15

a5 2 ·10−15

Table 21.2 Coefficients for the angle of rotation θ at f (ξ) = 1.

θ N = 3 N = 4 N = 5

b1 0.0625 0.0625 0.0625

b2 −0.0625 −0.0625 −0.0625

b3 −2 ·10−16 −3 ·10−16 1.1 ·10−13

b4 −4 ·10−18 −1.3 ·10−12

b5 5 ·10−14

number of functions is observed, which indicates the convergence of the method.
Tables 21.3 – 21.4 show the coefficients of the expression (21.3) for the deflection

w and the angle of rotation θ depending on the number of coordinate functions for
an inhomogeneous plate at g1 = g2 = 104 and the law of distribution of stiffness,
most typical for a LC, i.e. f (ξ) = e−ξ. Here, one ca see a decrease in the coefficients
with an increase in the number of functions, which indicates the convergence of the
method.

Table 21.5 shows the deflection w and the angle of rotation θ for an inhomo-
geneous plate with the stiffness distribution law f (ξ) = e−ξ for 7 coordinate func-
tions depending on the radius plates ξ and for different values of the coefficients
of elastic sealing g1,g2: g1 = g2 = 104 and g1 = g2 = 106, which can simulate rigid
sealing, g1 = g2 = 102, which is closer to the loose edge, g1 = 105,g2 = 10 can sim-

Table 21.3 Deflection coefficients for w at f (ξ) = e−ξ .

w N = 3 N = 4 N = 5 N = 6 N = 7

a1 0.0067 0.0210 0.0352 0.0371 0.0372

a2 0.0027 −0.0160 −0.0361 −0.0406 −0.0424

a3 0.0066 0.0209 0.0411 0.0472 0.0521

a4 −0.0076 −0.0196 −0.0261 −0.0326

a5 0.0058 0.0101 0.0159

a6 −0.0019 −0.0052

a7 0.0011
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Table 21.4 Coefficients of the angle of rotation θ for f (ξ) = e−ξ .

θ N = 3 N = 4 N = 5 N = 6 N = 7

b1 0.0154 0.0253 0.0419 0.0431 0.0434

b2 −0.0151 −0.0165 −0.0105 −0.0107 −0.0105

b3 −0.0017 0.0032 0.0031 0.0026 0.0028

b4 −0.0003 −0.0023 −0.0015 −0.0014

b5 0.0006 0.0008 0.0006

b6 −0.0004 −0.0003

b7 0.0003

Table 21.5 Deflection and angle of rotation at different points of the plate, depending on the pa-
rameters of the embedding.

ξ g1 = g2 = 102 g1 = g2 = 106 g1 = g2 = 104 g1 = 105,g2 = 10 g1 = 102,g2 = 105

w θ w θ w θ w θ w θ

0 0.0353 0 0.0298 0 0.0298 0 0.0343 0 0.0348 0

0.25 0.0325 0.0081 0.0270 0.0067 0.0271 0.0068 0.0313 0.0078 0.0320 0.0080

0.5 0.0241 0.0121 0.0187 0.0094 0.0188 0.0094 0.0223 0.0111 0.0237 0.0119

0.75 0.0125 0.0094 0.0073 0.0055 0.0074 0.0055 0.0095 0.0071 0.0123 0.0092

0.95 0.0056 0.0053 0.0005 0.0005 0.0006 0.0006 0.0010 0.0010 0.0055 0.0053

ulate hinged support along the contour. In addition, the choice of the parameters
g1 = 102, g2 = 105 simulates a floating termination, however, due to the small influ-
ence of the coefficient g2, the results obtained will be qualitatively close to a rigid
termination. In Figs. 21.1 – 21.2 table data 21.5 is shown. If we estimate the influ-

Fig. 21.1 Dependence of the
deflection on the radius of
the plate at different values
of the embedding parameters.
N = 7, f (ξ) = e−ξ .
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Fig. 21.2 Dependence of the
angle of rotation on the radius
of the plate for different values
of the embedding parameters.
N = 7, f (ξ) = e−ξ .

ence of the parameters g1 and g2 on the deformability of the plate, it turns out that
the influence of g1 is much more significant than g2. Table 21.6 shows the deflec-
tion w and the angle of rotation θ for an inhomogeneous plate with elastic sealing
coefficients g1 = g2 = 104 at 7 coordinate functions depending on the radius of the
plate ξ and for different distribution laws of stiffness f (ξ). Figure 21.3 graphically
shows the deflection values w from Table 21.5. Figures 21.4 - 21.7 compare the de-
flection w for plates in the framework of the Timoshenko and Kirchhoff hypotheses.
Kirchhoff’s hypotheses can be obtained from Timoshenko’s hypotheses, as shown
above, if we put θ = −w′ in the functional (21.2). Figures 21.4 - 21.5 present w
for homogeneous ( f (ξ) = 1) and inhomogeneous ( f (ξ) = e−ξ) plates, respectively,
within the framework of the Timoshenko and Kirchhoff hypotheses at different co-
efficients of elastic sealing g1,g2. Figures 21.6 - 21.7 compare w for homogeneous

Fig. 21.3 Comparison of
plate deflection shapes for
different laws of stiffness
distribution. N = 7,g1 = g2 =

10−4.
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Table 21.6 Deflection and angle of rotation at different points of the plate depending on the distri-
bution law of stiffness.

ξ f (ξ) = 1 f (ξ) = 1−0.5ξ2 f (ξ) = e−ξ f (ξ) = cos(ξ) f (ξ) = e−2ξ

w θ w θ w θ w θ w θ

0 0.0259 0 0.0221 0 0.0298 0 0.0216 0 0.0542 0
0.25 0.0228 0.0057 0.0198 0.0049 0.0271 0.0068 0.0193 0.0048 0.0503 0.0126
0.5 0.0148 0.0074 0.0135 0.0067 0.0188 0.0094 0.0131 0.0065 0.0373 0.0186
0.75 0.0053 0.0039 0.0053 0.0039 0.0074 0.0055 0.0050 0.0038 0.0161 0.0120
0.95 0.0004 0.0004 0.0004 0.0004 0.0006 0.0006 0.0004 0.0004 0.0014 0.0013

Fig. 21.4 Comparison of
the deflection w within the
hypotheses of Timoshenko
and Kirchhoff. f (ξ) = 1.

Fig. 21.5 Comparison of
the deflection w within the
hypotheses of Timoshenko
and Kirchhoff. f (ξ) = e−ξ .
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Fig. 21.6 Comparison of
the deflection w within
the hypotheses of Tim-
oshenko and Kirchhoff.
h = 2.5 · 10−4,r = 10−3,
f (ξ) = 1.

Fig. 21.7 Comparison of
the deflection w within the
hypotheses of Timoshenko
and Kirchhoff, f (ξ) = e−ξ .

( f (ξ) = 1) and inhomogeneous ( f (ξ) = e−ξ) plates of thickness h = 2.5 ·10−4 and ra-
dius ξ = 10−3 within the framework of the Timoshenko and Kirchhoff hypotheses at
different coefficients of elastic sealing g1,g2. Note that such parameters of thickness
and radius correspond to the real physiological dimensions of a LC.

21.5 Conclusion

On the basis of the proposed approach, the problems of calculating the deflection
for various laws of plate inhomogeneity were solved within the framework of Tim-
oshenko’s hypotheses and the values of the material parameters of an elastic sup-
port. Calculations have shown that to ensure the required accuracy, it is enough to
take 6-8 coordinate functions. It is also shown that the greatest deflection values
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are achieved with a decreasing exponential law of modulus change. The results of
calculating the deflection function are compared with ones obtained earlier in the
framework of Kirchhoff’s hypotheses, in particular, with the solution in the case of
a rigid sealing. It is shown that in the case of thin plates, the deflection functions
differ insignificantly (less than 1%), and in the case of thick plates, the difference
is more significant (more than 5%), which corresponds to the results obtained by
Tovstik (2008).
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Chapter 22
Effect of Distributed Dislocations on Large
Deformations of Cylindrical Tube made of
Micropolar Elastic Material

Leonid M. Zubov and Evgeniya V. Goloveshkina

Abstract The generalized Lame problem for an elastic hollow circular cylinder at
large deformations is considered. The cylinder is made of micropolar material and
contains continuously distributed dislocations. The dislocation density tensor con-
tains four nonzero components and describes the distribution of both screw and edge
dislocations. Under the assumption that the material is isotropic, the problem is re-
duced to a system of nonlinear ordinary differential equations. For a special material
model and an axisymmetric distribution of edge dislocations, an exact solution in
an explicit analytical form is found.

Key words: Nonlinear elasticity, Micropolar medium, Hollow circular cylinder,
Screw and edge dislocations, Exact solution

22.1 Introduction

The most common mathematical model of elastic bodies is the model of a sim-
ple material (Truesdell and Noll, 1965), for which deformation of a medium is de-
scribed as a smooth mapping of one region of three-dimensional Euclidean space
to another. Within the framework of the simple material model, each particle of the
body has three degrees of freedom, i.e. is considered as a material point. The desire
to take into account a microstructure in a structure of deformable bodies led to the
creation of mathematical models of generalized media. One of these models is the
micropolar medium or the Cosserat continuum. This theory finds application in de-
scribing the properties of composites, nanostructured materials, geophysical media,
metamaterials, liquid crystals, magnetic materials, tissues of living organisms, etc.
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The Cosserat continuum is a material body, each particle of which has six degrees of
freedom of an absolutely rigid body, and besides the particle rotation field is kine-
matically independent of the displacement field. The contact interaction of parts of
a micropolar body is carried out not only by ordinary (force) stresses, but also by
moment stresses. For this reason, the theory of elasticity of a micropolar medium is
often called the moment theory of elasticity.

A large number of publications are devoted to the linear moment theory of elas-
ticity, of which we note Aero and Kuvshinskij (1961); Pal’mov (1964); Nowacki
(1986); Eringen (1999). The nonlinear theory of micropolar elasticity is presented
in Toupin (1964); Shkutin (1988); Zubov (1997); Nikitin and Zubov (1998) and
Pietraszkiewicz and Eremeyev (2009). Experimental methods for identifying mate-
rial parameters of micropolar media are discussed in Lakes (1995).

A two-dimensional analogue of the Cosserat continuum is one of the vari-
ants of the theory of elastic shells (Altenbach et al, 2010; Chróścielewski et al,
2004; Eremeyev and Zubov, 2008; Libai and Simmonds, 1998; Zhilin, 1976). Note
that the theory of elastic shells is an important part of the scientific activity of
prof. P.E. Tovstik (see, for example, Tovstik, 1997; Tovstik et al, 2002).

In this paper, we consider nonlinear deformations of an elastic hollow cylin-
der made of a micropolar material, loaded with external and internal pressures,
taking into account distributed dislocations. The linear theory of continuously
distributed dislocations and disclinations for micropolar media was developed in
De Wit (1977); Zelenina and Zubov (2017); Zubov (2017), and the nonlinear theory
in Zubov (2004, 2011). The nonlinear spherically symmetric problem of the theory
of dislocations for a micropolar elastic medium is solved in Zubov (2020).

22.2 Input Relations

The system of equilibrium equations for a micropolar nonlinear elastic medium con-
sists of Toupin (1964); Shkutin (1988); Zubov (1997); Nikitin and Zubov (1998) the
balance equations for forces and moments

divD+ρf = 0, (22.1)

divG+
(
CT ·D

)
×+ρl = 0, (22.2)

constitutive equations

D = P ·H, G =K ·H,
P =

∂W
∂E

, K =
∂W
∂L

, W =W(E,L),
(22.3)

and geometric relations
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E = C ·HT, (22.4)

L =
1
2

rn⊗
(
∂H
∂qn ·HT

)
×
=

1
2

I tr
[
H · (curlH)T

]
−H · (curlH)T, (22.5)

C = gradR(r) . (22.6)

Here D and G are the stress and couple stress tensors of the first Piola – Kirchhoff
type, respectively, while P and K are these of the second Piola – Kirchhoff type,
C is the deformation gradient, H is the proper orthogonal tensor describing the
rotational degress of freedom of micropolar continua called often the microrota-
tion tensor (Zubov, 1997; Nikitin and Zubov, 1998; Pietraszkiewicz and Eremeyev,
2009), E and L are the strain tensors in the nonlinear micropolar continuum called
stretch and wryness tensors, respectively (Zubov, 1997; Nikitin and Zubov, 1998;
Pietraszkiewicz and Eremeyev, 2009), I is the unit tensor, ρ is the material density
in the reference configuration, f is the external distributed mass force, l is the exter-
nal distributed mass moment, W is the strain energy density, r = xsis, R = Xkik, xs,
and Xk are the position vectors and the Cartesian coordinates in the reference and
actual configurations, respectively, ik are the corresponding constant base vectors,
k, s = 1,2,3. The gradient, curl, and divergence operators in curvilinear coordinates
of the reference configuration qn = qn(x1, x2, x3), n = 1,2,3, are expressed by the
formulas

gradΦ = rn⊗ ∂Φ
∂qn , curlΦ = rn× ∂Φ

∂qn , divΦ = rn · ∂Φ
∂qn , rn = ik

∂qn

∂xk
, (22.7)

where Φ is an arbitrary differentiable tensor field of any order. The symbol T× de-
notes the vector invariant of the second rank tensor T = tmnrm⊗ rn:

T× = tmnrm×rn .

The property of isotropy of a micropolar medium imposes the following restric-
tions on the dependences of the specific energy, stresses, and moment stresses on
the strain tensors E and L (Nikitin and Zubov, 1998)

W
(
ST ·E ·S, (detS)ST ·L ·S

)
=W(E,L),

P
(
ST ·E ·S, (detS)ST ·L ·S

)
= ST ·P(E,L) ·S,

K
(
ST ·E ·S, (detS)ST ·K ·S

)
= (detS)ST ·K(E,L) ·S .

(22.8)

In (22.8), S denotes an arbitrary orthogonal tensor and it is taken into account that
the tensors E and P are true tensors of the second rank, and L and K are pseudoten-
sors of the second rank.

If dislocations with tensor density α are distributed in the body, then the vector
field R(r) does not exist, the tensor C is called the distortion tensor, and the equality
(22.6) is replaced by the incompatibility equation (Zubov, 2004, 2011)

curlC = α, (22.9)
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in which the tensor α must satisfy the solenoidality condition

divα = 0 . (22.10)

The complete system of equilibrium equations for a micropolar elastic body with
distributed dislocations contains, as unknown functions, the tensor fields of distor-
tion C and microrotation H and consists of the balance equations for forces and mo-
ments (22.1) and (22.2), the incompatibility equation (22.9), the constitutive equa-
tions (22.3), and the geometric relations (22.4) and (22.5).

22.3 Cylindrical Tube with Distributed Dislocations

Introduce in the reference configuration of the micropolar medium the cylindrical
coordinates r, ϕ, and z associated with the Cartesian coordinates by the relations
x1 = r cosϕ, x2 = r sinϕ, and x3 = z. Consider an elastic body in the form of a hollow
circular cylinder with an external radius r0, an internal radius r1, and an axis parallel
to the vector i3. As a vector basis, we will use the unit vectors er, eϕ, and i3 that are
directed tangentially to the coordinate lines. The following formulas hold:

er = i1 cosϕ+ i2 sinϕ, eϕ = −i1 sinϕ+ i2 cosϕ.

Let us assume that the dislocation density tensor is given in the following form:

α = α11(r)er ⊗ er +α22(r)eϕ⊗ eϕ+α32(r)i3⊗ eϕ+α33(r)i3⊗ i3 . (22.11)

The functions α11(r), α22(r), and α33(r) are the scalar densities of screw dislocations
in the radial, azimuthal, and axial directions, respectively, and the function α32(r)
is the scalar density of edge dislocations. The solenoidality requirement (22.10)
applied to (22.11) leads to one equation

α22 =
Δ

Δr
(rα11) . (22.12)

It follows from (22.12) that the solenoidality condition for the dislocation density
tensor does not impose any restrictions on the functions α32(r) and α33(r) that can
be arbitrary, including the Dirac delta function.

We will seek the tensor fields of distortion and microrotation in the following
form:

C =C11(r)er ⊗ er +C22(r)eϕ⊗ eϕ+C23(r)eϕ⊗ i3+C32(r)i3⊗ eϕ+λi3⊗ i3, (22.13)
H = er ⊗ er + (eϕ⊗ eϕ+ i3⊗ i3)cosχ(r)+ (eϕ⊗ i3− i3⊗ eϕ) sinχ(r), (22.14)

where λ is a real value. The geometric interpretation of the expression (22.14) is
that the particles of the cylinder rotate around the vector er at the angle χ(r) upon
deformation.
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Due to (22.11) and (22.13), the tensor incompatibility equation (22.9) is reduced
to the system of ordinary differential equations

C32 = −rα11,
ΔC32

Δr
= −α22, (22.15)

Δ

Δr
(rC23) = rα33, (22.16)

ΔC22

Δr
+

C22−C11

r
= α32 . (22.17)

The first equation in (22.15) defines the distortion component C32. The second
equation in (22.15) should be discarded, since it follows from the first one and
the solenoidality condition (22.12). Integrating Eq. (22.16), we find the distortion
component C23:

C23(r) =
1
r

r∫
r1

α33(r′)Δr′+
b

2πr
. (22.18)

Here b is the length of the Burgers vector of an isolated screw dislocation which can
be contained in a hollow cylinder (Zubov, 1997). The function C11(r) is expressed
in terms of C22(r) using (22.17):

C11 =
Δ

Δr
(rC22)− rα32 . (22.19)

Thus, after fulfilling the incompatibility equations, only the distortion component
C22 remains an unknown function. Another unknown function is the microrotation
angle χ(r). To find the functions C22(r) and χ(r), one should refer to the equilibrium
equations (22.1), (22.2). To compose the expressions of the stresses D and G, we
first compute the tensors E and L of strains arising in a cylindrical tube. Based on
(22.4), (22.5), (22.13), (22.14), and (22.15), we get

E =C11er ⊗ er + (C22 cosχ+C23 sinχ)eϕ⊗ eϕ+ (C23 cosχ−C22 sinχ)eϕ⊗ i3
+(λsinχ− rα11 cosχ)i3⊗ eϕ+ (rα11 sinχ+λcosχ)i3⊗ i3, (22.20)

L =
Δχ

Δr
er ⊗ er +

sinχ
r

eϕ⊗ eϕ+
cosχ−1

r
eϕ⊗ i3 . (22.21)

Considering the micropolar material of the cylinder isotropic, we assume

S = S1 = 2er ⊗ er − I, detS1 = 1

in the relations (22.8). From (22.20) and (22.21), the equalities follow:

ST
1 ·E ·S1 = E, ST

1 ·L ·S1 = L,

whence we have
P ·S1 = S1 ·P, K ·S1 = S1 ·K . (22.22)
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A consequence of the relations (22.22) is the equalities

er ·P · eϕ = 0, er ·P · i3 = 0, eϕ ·P · er = 0, i3 ·P · er = 0,
er ·K · eϕ = 0, er ·K · i3 = 0, eϕ ·K · er = 0, i3 ·K · er = 0 .

(22.23)

The equalities (22.23) mean that the stress tensors P and K in the basis of cylin-
drical coordinates have the following expansions:

P = P11er ⊗ er +P22eϕ⊗ eϕ+P23eϕ⊗ i3+P32i3⊗ eϕ+P33i3⊗ i3,
K = K11er ⊗ er +K22eϕ⊗ eϕ+K23eϕ⊗ i3+K32i3⊗ eϕ+K33i3⊗ i3 .

(22.24)

Because the energy density W is an isotropic function of the tensor arguments
E and L, it can be represented as a function of a certain number of polynomial
invariants of these tensors (Zubov and Karyakin, 2006; Eremeyev et al, 2018). Since
these invariants are fully expressed through the components of the tensors E and L
in the orthonormal basis er, eϕ, and i3, by virtue of (22.13), (22.14), (22.20), and
(22.21) they will be functions only of the coordinate r. Hence, based on (22.3), we
conclude that for a homogeneous medium the components of the stress tensors P
and K in (22.24) do not depend on the coordinates ϕ and z. Using the formulas
(22.3), (22.13), (22.14), and (22.24), we get

D = D11(r)er ⊗ er +D22(r)eϕ⊗ eϕ+D23(r)eϕ⊗ i3+D32(r)i3⊗ eϕ+D33(r)i3⊗ i3,
(22.25)

G =G11(r)er ⊗ er +G22(r)eϕ⊗ eϕ+G23(r)eϕ⊗ i3+G32(r)i3⊗ eϕ+G33(r)i3⊗ i3,
(22.26)

D11 = P11, D22 = P22 cosχ−P23 sinχ, D23 = P23 cosχ+P22 sinχ,
D32 = P32 cosχ−P33 sinχ, D33 = P32 sinχ+P33 cosχ, (22.27)

G11 = K11, G22 = K22 cosχ−K23 sinχ, G23 = K23 cosχ+K22 sinχ,
G32 = K32 cosχ−K33 sinχ, G33 = K32 sinχ+K33 cosχ. (22.28)

Thus, for any isotropic micropolar material, it has been proved that for deforma-
tion of a circular cylinder, given by the relations (22.13) and (22.14) the Piola-type
stress and moment stress tensors have the same zero components as the distortion
tensor. The nonzero components of the stress tensors depend only on the radial co-
ordinate.

Based on (22.13), (22.15), (22.25), and (22.26), we have

divD =
(
ΔD11

Δr
+

D11−D22

r

)
er,

divG =
(
ΔG11

Δr
+

G11−G22

r

)
er,

(22.29)

(
CT ·D

)
× = (C22D23−C23D22− rα11D33−λD32)er . (22.30)
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Suppose that the mass force and moment loads are given as f = f (r)er, l = l(r)er.
Then, according to (22.29) and (22.30), the vector equilibrium equations (22.1) and
(22.2) are reduced to two scalar equations

ΔD11

Δr
+

D11−D22

r
+ρ f = 0, (22.31)

ΔG11

Δr
+

G11−G22

r
+C22D23−C23D22− rα11D33−λD32+ρl = 0 . (22.32)

We assume that the cylindrical tube is subjected to external hydrostatic pres-
sure p0 and internal pressure p1. In addition, uniformly distributed tracking moment
loads m0 and m1 can be applied to the cylindrical surfaces. The vectors of these mo-
ments have the direction of the normal vector to the surface of the deformed body.
Then the boundary conditions for the system of equations (22.31) and (22.32) will
be as follows

D11(r0) = −p0 [λC22(r0)+ r0α11(r0)C23(r0)] ,
G11(r0) = m0 [λC22(r0)+ r0α11(r0)C23(r0)] , (22.33)

D11(r1) = −p1 [λC22(r1)+ r1α11(r1)C23(r1)] ,
G11(r1) = m1 [λC22(r1)+ r1α11(r1)C23(r1)] . (22.34)

The constant λ can be determined by specifying the resulting longitudinal force

Q = 2π

r0∫
r1

D33(r)rΔr

applied to the ends of the tube.
So, the problem of large deformations of a cylindrical tube with distributed dis-

locations of the form (22.11) is reduced to a nonlinear boundary value problem
(22.31)–(22.34) for a system of two ordinary differential equations. The unknown
functions in this problem are C22(r) and χ(r).

22.4 Distribution of Straight Edge Dislocations

Consider equilibrium of a cylindrical tube in the case when α11 = α22 = α33 = 0,
b = 0. The dislocation density tensor now has the form α = α32(r)i3 ⊗ eϕ and de-
scribes the distribution of edge dislocations whose axes are parallel to the cylinder
axis i3. The scalar dislocation density α32(r) is an arbitrary function. From (22.15)
and (22.18) it follows that the distortion tensor will be as follows:

C =C11(r)er ⊗ er +C22(r)eϕ⊗ eϕ+λi3⊗ i3 . (22.35)
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As will be shown below, in this case the moment equilibrium equation (22.32)
will be satisfied for l = 0 for any isotropic material if the function χ(r) is chosen
such that sinχ(r) ≡ 0. Then cosχ(r) = η, η = ±1.

Based on (22.14), (22.20), (22.21), and (22.35), for sinχ(r) ≡ 0, we have

H = er ⊗ er +η(eϕ⊗ eϕ+ i3⊗ i3),
E =C11er ⊗ er +ηC22(r)eϕ⊗ eϕ+ηλi3⊗ i3,

L =
η−1

r
eϕ⊗ i3 .

(22.36)

Assume in the isotropy condition (22.8) S = S2 = I−2eϕ ⊗ eϕ. From (22.36) the
equalities follow:

ST
2 ·E ·S2 = E, ST

2 ·L ·S2 = −L . (22.37)

Since detS2 = −1, from (22.8) and (22.37) we have

P ·S2 = S2 ·P, K ·S2 = −S2 ·K . (22.38)

The first equality of (22.38) gives eϕ⊗eϕ ·P=P ·eϕ⊗eϕ. Multiplying the last relation
on the left by eϕ and on the right by i3 we get eϕ ·P · i3 = 0, and multiplying on the left
by i3 and on the right by eϕ we get i3 ·P ·eϕ = 0. Therefore, in (22.26), P23 = P32 = 0,
and the Piola stress tensor D due to (22.27) takes the form

D = D11(r)er ⊗ er +D22(r)eϕ⊗ eϕ+D33(r)i3⊗ i3 . (22.39)

Multiplying the second equality of (22.38) on the left and right by the vector eϕ we
get K22 = 0. Setting in (22.8) S = S3 = I−2i3 ⊗ i3, detS3 = −1, in a similar way we
prove that K33 = 0.

The pseudoscalar quantity Γ = trK = K11 +K22 +K33 in an isotropic body is an
isotropic function of the tensors E and L, that is, it obeys the requirement

Γ
(
ST ·E ·S, (detS)ST ·L ·S

)
= (detS)Γ(E,L) . (22.40)

Setting S = S2 in (22.40) we get Γ(E,L) = −Γ(E,L), i. e. Γ = 0. Therefore,
K11 = 0, and by virtue of (22.28) we have

G =G23(r)eϕ⊗ i3+G32(r)i3⊗ eϕ . (22.41)

Thus, for any isotropic elastic micropolar material, it is proved that if in a cylinder
the distortion tensor C and the microrotation tensor H have the form (22.35) and
(22.36), then the tensor stress and moment stress fields are described by the relations
(22.39) and (22.41).

From (22.35), (22.39), and (22.41), it follows that for l = 0 the moment equi-
librium equation (22.32) is satisfied identically, and the force equilibrium equa-
tion (22.31), taking into account (22.19), serves to determine the function C22(r).
According to (22.33), (22.34), and (22.41), to implement this solution in which
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sinχ(r) ≡ 0, it is not required to apply a moment load to the tube surfaces r = r0
and r = r1.

22.5 Exact Solution

As a specific model of an elastic material, we take an isotropic physically linear
micropolar continuum (Pal’mov, 1964; Zubov, 1997). This model is given by the
quadratic function of the specific strain energy

2W =
2μν

1−2ν
tr2(E− I)+ (μ+τ) tr

[
(E− I) · (ET− I)

]
+ (μ−τ) tr(E− I)2+γ1 tr2 L+γ2 tr(L ·LT)+γ3 trL2,

where μ, ν, τ, γ1, γ2, and γ3 are material constants.
The stress and moment stress tensors P and K for the given material are linear

functions of the strain tensors (E− I) and L:

P =
2μν

1−2ν
I tr(E− I)+ (μ+τ)(E− I)+ (μ−τ)(ET− I), (22.42)

K = γ1I trL+γ2L+γ3LT . (22.43)

For E = ET, the constitutive equation (22.42) coincides with Hooke’s law for an
istropic material with shear modulus μ and Poisson’s ratio ν.

In the equilibrium problem for a tube with straight edge dislocations, based on
(22.3), (22.35), (22.36), (22.42), and (22.43), we obtain the following formulas for
the stress components in the expressions (22.39) and (22.41):

D11 =
2μ

1−2ν
[
(1− ν)C11+ην(C22+λ)−1− ν] ,

D22 =
2μ

1−2ν
[
ηνC11+ (1− ν)C22+ νλ− (1+ ν)η

]
,

D33 =
2μ

1−2ν
[
ηνC11+ νC22+ (1− ν)λ− (1+ ν)η

]
,

(22.44)

G23 =
2(1−η)

r
γ2, G32 =

2(1−η)
r

γ3 .

Using (22.44) we express the distortion components through the stresses D11 and
D22:

C11 =
1− ν
2μ

D11− ην2μ
D22+1+ ν−ηνλ,

C22 = − ην2μ
D11+

1− ν
2μ

D22+ (1+ ν)η− νλ.
(22.45)
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Let us express the stress D22 in terms of D11 using the equilibrium equation
(22.31) and assuming that the mass forces are absent:

D22 =
Δ

Δr
(rD11) . (22.46)

Substituting the relations (22.45) into the incompatibility equation (22.19) and tak-
ing into account (22.46) we arrive at a differential equation for the function D11(r):

r2Δ
2D11

Δr2 +3r
ΔD11

Δr
=

2μ
1− ν

[
(1+ ν+ νλ)(1−η)+ rα32(r)

]
. (22.47)

The solution to the equation (22.47) has the form

D11(r) =
1
2

r∫
r1

ρh(ρ)Δρ− 1
2r2

r∫
r1

ρ3h(ρ)Δρ+A+
B
r2 , (22.48)

where A and B are constants, and h(r) denotes the right-hand side of the equation
(22.47)

h(r) =
2μ

1− ν
[
(1+ ν+ νλ)(1−η)+ rα32(r)

]
.

The constants A and B are found from the boundary conditions (22.33), (22.34) that
are linear. In (22.33) and (22.34) one should set α11 = 0, and the value C22 should
be expressed in terms of D11 using (22.45) and (22.46).

In general, the value η is not necessarily considered to be constant. It can be a
discontinuous piecewise constant function taking the value 1 on some segments of
the region r1 ≤ r ≤ r0 and the value (−1) on other segments. If α32(r) = α0r−1 and
η = const, then the function h(r) will be constant, which we denote by h0. Then the
solution to the equation (22.47) is written as

D11 = A+
B
r2 +

1
2

h0 ln
r
r0
.

For the cylinder r0 = 1, r1 = 0.9 with the scalar dislocation density α32 = β0rκ

(we take β0 = 1) in the case η = 1, ν = 0.3, μ = 1 the eigenstresses and the distortions
are shown in Figs. 22.1–22.3 and Figs. 22.4 and 22.5, respectively. The case η = −1
corresponds to the eigenstresses in Figs. 22.6 and 22.7. Figures 22.8 and 22.9 show
the dependence of the longitudinal force Q on the parameter λ for η = 1 and η = −1.
The dependence is the same for different κ.

In the case of the scalar density α32 =α0r−1, for different values of α0, the stresses
and the distortions are presented in Figs. 22.10 –22.12 and Figs. 22.13 and 22.14,
respectively.
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Fig. 22.1 Eigenstress D11, η = 1, λ = 1.

Fig. 22.2 Eigenstress D22, η = 1, λ = 1.
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Fig. 22.3 Eigenstress D33, η = 1, λ = 1.

Fig. 22.4 Distortion C11, η = 1, λ = 1.
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Fig. 22.5 Distortion C22, η = 1, λ = 1.

Fig. 22.6 Eigenstress D11, η = −1, λ = 1.
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Fig. 22.7 Eigenstress D22, η = −1, λ = 1.

Fig. 22.8 Dependence of longitudinal force Q on parameter λ, η = 1.
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Fig. 22.9 Dependence of longitudinal force Q on parameter λ, η = −1.

Fig. 22.10 Eigenstress D11, η = 1, λ = 1, κ = −1 for different α0.
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Fig. 22.11 Eigenstress D22, η = 1, λ = 1, κ = −1 for different α0.

Fig. 22.12 Eigenstress D33, η = 1, λ = 1, κ = −1 for different α0.
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Fig. 22.13 Distortion C11, η = 1, λ = 1, κ = −1 for different α0.

Fig. 22.14 Distortion C22, η = 1, λ = 1, κ = −1 for different α0.
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22.6 Conclusion

In this work, we have solved the problem of large deformations of an elastic hollow
cylinder made of a micropolar material, taking into account distributed dislocations.
The stress state due to external and internal hydrostatic pressures is investigated,
that is, the generalized Lame problem is considered. The dislocations in the cylin-
der were assumed to be continuously distributed. The dislocation density tensor
described the distribution of screw and edge dislocations, for which it was shown
that the scalar densities of edge dislocations, as well as screw dislocations of the
axial direction, can be arbitrary, including the Dirac delta function.

When solving the problem, we used a property of isotropy of the material. It is
proved that for any isotropic micropolar material at the considered deformation of
the cylinder, the nonzero components of the Piola-type stress tensors depend only
on the radial coordinate, and the zero components are the same as for the distortion
tensor. A system of equations describing equilibrium of a micropolar elastic body
with distributed dislocations consists of balance equations for forces and moments,
an incompatibility equation, constitutive equations, and geometric relations. The un-
known functions are distortion and microrotation tensor fields. Under the assump-
tion that the material is isotropic, the problem is reduced to a system of nonlinear
ordinary differential equations.

An exact solution for a physically linear micropolar continuum and an axisym-
metric distribution of edge dislocations is found.

Acknowledgements The reported study was funded by the Russian Foundation of Basic Re-
search, project number 19-31-90045.
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