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Abstract. Gene expression data classification provides a challenge in classifi-
cation due to it having high dimensionality and a relatively small sample size.
Different feature selection approaches have been used to overcome this issue and
SVM-RCE being one of the more successful approach. This study is a continua-
tion of two previous research studies SVM-RCE and SVM-RCE-R. SVM-RCE-R
suggests a new approach in the scoring function for the clusters, showing that for
some different combination of weights the performance was improved. The aim
of this study is to find the optimal weights for the scoring function suggested in
the study of SVM-RCE-R using optimization approaches. We have discovered
that finding the optimal weights for the scoring function would improve the per-
formance of the SVM-RCE- in most cases. We have shown that in some cases the
performance is increased dramatically by 10% in terms of accuracy and AUC. By
increasing the performance of the algorithm, it is more likely that we can extract
subset genes relating to the class association of a microarray sample.
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1 Introduction

Gene expression research is one of the major research areas in the field of bioinformat-
ics. There is exponential growth in the biological data produced by DNA microarray
technology [1–3]. This approach is high throughput, allowing scientists to measures
multitudes of genes at the same time. Through this method, researchers can study and
analyze numerous genes at the same time. DNA microarray technologies is providing
great insight in genomic data and is changing the field of bioinformatics. Drug dis-
covery, prevention of disease as well as cures, biological interactions, plant and animal
metabolisms are underlying issues addressed by gene expression levels [4]. Additionally,
there is widespread research in cancer studies to find potential biomarkers based on gene
expression levels in order to find potential biomarkers [5–7]. The focus of research is on
a small subset of genes that are relevant to the phenomenon under study among the dif-
ferent genes also known as the feature subset problem. DNA microarray technology are
essentially the measurement of different genes at the stages of translation and transcrip-
tion. There are two major methods of obtaining DNA microarray data: hybridization of
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sample to cDNA and high-density oligonucleotide chips [8]. Nevertheless, the data pro-
duced by these methods suffer from being highly redundant, large scale and the curse of
dimensionality [9]. In order to solve the problems and dispel the curse, feature selection
is the approach widely regarded by the bioinformatics community [10–12].

In general, feature selection can be categorized into three groups: filter approach,
wrapper approach, embedded approach (combination of the previous methods) [13].
Filter methods focuses on the intrinsic characteristics of the genes in terms of their rel-
evance or in their discriminative properties. The genes are ranked according to the filter
method and the highest ranked genes are used are the remaining are eliminated. This
methodology does not rely on any machine learning algorithm therefore the time com-
plexity is quite low and can be used for large datasets.Moreover, the results are simplified
and can be easily be verified in wet labs by biological domain experts. Thus, univariate
filter approaches have widely leveraged to analyze and study gene expression levels
[14]. Among the different filter approaches, Xing et al. [15] reports that IG (Information
Gain) to be the best approach. However, this approach does not perform well for het-
erogeneous datasets whereas Bayesian Networks show their strength in this regard [16].
Therefore, different filter techniques outperform each other depending on the dataset. In
wrapper approach, the genes are searched then judged based on the estimated accuracy
of a classifier. The extracted genes are then used to train the classifier. Zhang et al. [17]
asserted that wrapper methods outperform filter methods in terms of predictive accu-
racy of the classifier. Moreover, this approach also integrates the interaction of the gene
selection with the classification that is independent in the filter approach. Nevertheless,
this approach has cost of being computationally intensive and in some cases cause over-
fitting of the classifier [18]. Finally, we have embedded approaches wherein the search
algorithm is rooted in the classification algorithm. Therefore, it has the advantage of the
interaction of search algorithm with the classifier while being far less computationally
intensive [19]. One of the more successful approaches is to use SVM (Support Vector
Machines) with an embedded feature selection algorithm [20].

SVM-RFE (Recursive feature elimination) [21] was introduced where the authors
achieved very high accuracy with their classifier in comparison to other discriminant
methods using SVM. In this method, the genes are ranked as features and the lowest
ranked features are removed. Yousef et al. [22] introduced SVM-RCE (Recursive cluster
elimination); moreover, it was reported to outperform SVM-RFE. SVM-RCE uses KNN
to cluster the genes and then uses SVM to rank the clusters with their respective scores
while eliminating the lower ranked clusters. Based on its widespread interest, Luo et al.
[23] recently improved the computation time by applying an infinite norm of weight
coefficient vector to each cluster to score them. They removed the lowest performing
genes instead clusters when the number of clusters are small. Additionally, we wanted to
empower SVM-RCE and we introduced SVM-RCE-R (Rank) [24] that extended SVM-
RCE with a user specific ranking function. Here the user can choose which clusters
should be ranked higher based on different metrics (accuracy, sensitivity, f-measure,
area under the curve and precision), thereby allowing scientists to explore the biological
data in depth to their needs.

Based on improving this method on a greater scale, we are now introducing SVM-
RCE-R-OPT which searches for the optimal set of weights resulting in an improvement
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in our classification results. We use Bayesian optimization to find the parameters for our
six different weights. We compare SVM-RCE and SVM-RCE-OPT across 15 datasets
to validate the findings that this approach does improve the classification results.

2 Methods and Implementation

We optimize SVM-RCE-R which is based on an early study SVM-RCE which lead
us to the present approach of SVM-RCE-R-Opt. The methods and approaches used are
described in the upcoming sections for SVM-RCEandSVM-RCE-R.We then describe in
detail howwe optimized SVM-RCE-R algorithm and the platformwe used to implement
SVM-RCE-R-Opt.

2.1 SVM-RCE

SVM-RCE is the first algorithm that suggests clustering genes using K-Means into
clusters arranged according to correlation metric, in order to perform feature selection
procedure by considering each cluster of genes as one unit. Then one needs to score
each cluster of genes in terms of the classification of the training set that consist of two-
classes. For that purpose, the training data was transformed to be represented based on
the genes that belong to a specific cluster with the original class of the training set. Then
an internal cross-validation is performed in order to compute the score. The score is the
average of the accuracy performance of the cross-validation step. This step is applied
for each cluster detected by k-mean. The next step is to rank all the clusters according
to its score. The SVM-RCE removes the cluster with the lowest score or it can set to
remove percentage of the lowest scored clusters. Thus, the results obtained is without
the genes that are associated with the removed clusters as they do not contribute much
to the prediction capabilities of the classifier.

2.2 SVM-RCE-R

Based on the interests of SVM-RCE in biological research, we decided to empower this
algorithm with a user specific ranking function in SVM-RCE-R. In SVM-RCE, clusters
were scored according to their accuracies. However, in data analysis of high dimension-
ality data with small sample size other metrics are preferred in the understanding of the
features that contribute most to classification. This lead to the implementation of a user
specific scoring function, in which researchers can choose the scoring function accord-
ing to their needs. Therefore, we used the commonly used scoring metrics as described
in Eq. 1 as our scoring function.

S(w1,w2,w3,w4,w5,w6) = w1 × acc + w2 × sen + w3 × spe + w4 × fm + w5 × auc + w6 × prec
(1)

where acc, sen, spe, fm, auc and prec refer to accuracy, sensitivity, specificity, f-mean,
precision and area under curve respectively.

The ranking is then computed as a sorted list of clusters based on the score S(). We
noted that we could achieve significant improvements in our results in comparison to
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SVM-RCE.We also did notice that some combinations of clusters with different weights
lead to better accuracy score even when the focus was solely on accuracy (Accuracy had
the highest weight and the remaining metrics are zero). Therefore, the most important
aspect is how one can compute the optimal weights w1,w2,w3,w4,w5,w6 such that it
improves the overall performance of the algorithm. Therefore, we decided to focus on
an optimization approach to find the best combination of weights for our next step in
this approach.

2.3 SVM-RCE-R Optimal

Our new proposed approach SVM-RCE-R-OPT is implemented in KNIME [25] due
to its user friendliness similarly to SVM-RCE-R. We split the gene expression dataset
into train and test sets with a ratio of 30:70 respectively. Moreover, we used stratified
sampling to make sure the training data and test data have the same ratio of negative to
positive samples. The parameter optimization node in KNIME is used to find the optimal
weights for our six different ranks which was used in SVM-RCE-R (acc, sen, spec, etc.).
This node uses Bayesian optimization [26] as the search strategy to find the optimal
weights for our six different ranks. The algorithm that is used for the maximization for
the objective function is illustrated in Eq. 2 based on the original paper.

EIy∗ =
∫ ∞

−∞
max(y ∗ −y, 0) PM (y | x)dy (2)

The search strategyworks in two phases: warm up phase and then the Tree-structured
Parzen Estimation (TPE) phase. During the warm up phase, random combinations of the
weights are used, and then based on the objective values found, the TPE phase starts.
Moreover, users can specify the step size of eachweight aswell as the number of iterations
for each phase. Meanwhile, the search algorithm draws weights with replacement from
the search space.

Our objective function is based on our scoring function which was stated in Eq. 1.
The means the scoring function across all the cluster levels (number of clusters) is used
as our objective function, which was set to be maximized. We specified the step size
to be 1000, since prior testing showed that there was an improvement by using heavier
weights. After the optimal set of weights have been identified in the search space from
the Bayesian optimization, they are then used in a separate node that runs SVM-RCE-R
with those weights with the training split of the data. Similarly, we also ran SVM-RCE-R
with only the weight of accuracy (acc) set to the maximum and the remaining weights
set to zero on the same training set. This provides us a reference to validate whether
the weights found are an improvement over the original SVM-RCE algorithm, since the
algorithm uses accuracy as the ranking function.

2.4 KNIMEWorkflow

There the overview of the workflow that we programmed in KNIME [25] as reflected in
Fig. 1. The user has to set the list file node to the folder that contains the datasets. The
workflow then generates a folder with all the relevant output files.
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Fig. 1. KNIME workflow overview

The first step in the workflow is to split the data into two parts. One to calcu-
late the optimal weights of the scoring function and the other for cross-validation of
the standard approach (SVM_RCE_ACC meta node) and for the optimal approach
(SVM_RCE_OPT_Corr meta node). The data that was used in computing the optimal
weights is not used in the next steps to avoid overfitting.

Fig. 2. Bayesian optimization of weights

The SVM-RCE-R is applied with different weights (Parameter Optimization Loop
start node) on the training set (Fig. 2) where the results are collected at the loop end node.
The maximum iterations used to find the optimum weights was limited to 15 iterations.
The different weights are then computed according to the search algorithm mentioned
in the previous section. When the optimal set of weights are discovered, then it is used
for testing set of the data (Save output node).

3 Data

We have considered the same data used in the study of SVM-RCE-R and we have
included two additional new datasets. The datasets represent a range of different
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diseases, cancers and studies. In terms of diseases: Early-stage Parkinson’s disease
(GDS2519), Ulcerative colitis (GDS3268), celiac disease (GDS3646), diabetes in chil-
dren (GDS3875), effects of tobacco smoke in foetal cells (GDS3929), HIV (GDS4228),
asthma (GDS5037), acute dengue (GDS5093), pulmonary hypertensions (GDS5499),
multi-omic analysis of COVID-19 (GSE157103). In terms of different types of cancer:
glioma (GDS1962), prostate cancer (GDS2547), colorectal cancer, (GDS4516_4718),
fear conditioning studies inmice (GDS3900).All of the datasets have at least 100 samples
except for GDS5093 that has 56 samples. These 14 gene expression datasets are down-
loaded from Gene Expression Omnibus at NCBI (GEO) [27]. The format of datasets
contains sample IDs as the column names and the gene name (gene symbols), according
to their respective platform, as the row names with their relevant gene expression values
(Fig. 3). Since most of the datasets produced are based on different chips or platforms,
the number of genes vary and the exact amount can be found by their GEO accession
numbers.

Fig. 3. Input table (dataset) format in KNIME

4 Results

We have applied 100-fold Monte Carlo cross-validation [27] for the original approach
and for the optimal approach. In each fold, we compute different performance metrics
such as accuracy, specificity and area under curve (AUC). The average of all the 100
folds is computed for each metric. Accuracy and specificity is computed in Eq. 3 where
TP is true positives, TN is true negatives, FP is false positives and FN is false negatives.
Meanwhile AUC is calculated based on the probability that a classifier will rank a
randomly positive instance higher that a negative one.

Specificity = TN / (TN + FP)
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Accuracy = (TP + TN ) / (TP + TN + FP + FN ) (3)

To validate the optimal weights found from the training, we compute the difference
in accuracy between cluster level 90 of the optimal solution and the base accuracy used in
the original study SVM-RCE [22]. Using the optimized weights from the training part of
the algorithm, we observed that we have an improvement for seven of the datasets, while
two of the datasets (GDS3900, GDS4516_4718) showed similar accuracy as shown in
Fig. 4. The figure shows that in some cases the improvement over the standard approach
might even reach to 10%; in most cases, the improvement is around 5%.

Since we are dealing with high dimensional data, we need to look at other metrics
more specifically AUC and specificity. In terms of the specificity, Fig. 5 illustrates that
ten out of twelve datasets outperformed or had similar performance as the original SVM-
RCE algorithm. This could imply that we are not overfitting in this approach and the
robustness of the classifier is still preserved. Additionally, when comparing the AUC in
Fig. 6, we note that the optimal approach generally shows an even greater improvement.
We can see that seven of the datasets shows either similar or better performance. We
can see about a 10% increase in AUC performance for four of the datasets (GDS2519,
GDS3646, GDS3875, GDS5093) which is quite a significant improvement. From these
results, we can conclude that there is an overall increase in the performance of the
datasets. We believe if the number of iterations to search for the optimal set of weights
is increased, we may see improvements across all the datasets. However, this could have
the drawback of being computational expensive as well as time consuming.
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Fig. 4. The difference between the accuracy of the optimal weights to the base accuracy
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Fig. 5. The difference between the AUC of the optimal weights to the base AUC
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Fig. 6. The difference between the sensitivity of the optimal weights to the base sensitivity

5 Conclusions

In this study, we have proposed an optimization approach for computing the weights for
the scoring function that would provide the optimal solution for ranking the clusters. We
perform this by using Bayesian search optimization to find the optimal set of weights,
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then we compare the results with the SVM-RCE. Since SVM-RCE operated using a
different ranking function, we wanted to validate whether this approach provides an
improvement. When comparing the results across 12 datasets the overall performance
is improved in most cases in terms of the accuracy, sensitivity and AUC. However, we
would like to note that this algorithm is time consuming since the optimization procedure
requires a long time in order to find the suitable weights in the search space. Moreover,
approach also allows researchers to understand underlying genes related to biological
research since it is based on the SVM-RCE. Therefore, we can find the genes that most
contribute to the certain disease or specific research topic (e.g. fear factor). This would
help us to find genes that help in identifying diseases in terms of expression levels,
under expressed and overexpressed. This could potentially help in medical diagnosis of
diseases and understanding of the role genes play in biological processes.
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