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Abstract. Existing distributed stream processing systems generally
guarantee fault tolerance by switching to standby machines and repro-
cessing lost data. In edge computing environments, however, we have
to duplicate each edge for this conventional approach. This duplication
cost increases sharply with expansion in the system scale. To solve this
problem, we propose an approach to support approximate fault toler-
ance without edge duplication. We focus on environmental monitoring
applications and utilize the correlation between sensors. In this paper,
we assume that each edge estimates missing data from the observed data
and aggregates them approximately. We provide a method to estimate
the outputs of failed edges taking care of the uncertainty of the pro-
cessing results at each edge. Our method allows the server to continue
processing without waiting for the recovery of failed edges. We also show
that the validity of our method by experiments using synthetic data.

Keywords: Data stream processing · Edge computing · Fault
tolerance

1 Introduction

Fault tolerance is an essential requirement for distributed data stream processing
systems. Existing systems, such as Flink [2], process dynamically generated data
in real-time by pipeline processing. Each task distributed to multiple servers
receives inputs from the previous one and sends the processing results to the next
one. This processing model enables efficient data processing, but a failure in one
task affects the entire system. Since many applications, such as environmental
monitoring, require high availability and low latency, processing systems need a
mechanism to continue processing even if each server fails.

Existing systems generally guarantee fault tolerance by switching to standby
nodes and reprocessing lost data [2,3,6,12]. When the manager detects a worker
failure, a newly launched worker takes over the processing of the failed one.
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Fig. 1. Overview of the edge computing

Besides, some systems can recover from the failure without error by reprocessing
only the lost data. This approach is suitable for cluster environments where the
system can manage all resources centrally and assign the input data management
task to the message queue.

In edge computing environments, however, we need a different approach to
guarantee fault tolerance. Edge computing is a new processing model for traffic
reduction and load balancing [15]. Each edge performs simple data processing
such as aggregation and filtering, as shown in Fig. 1. For example, consider envi-
ronmental sensing applications in a smart city. Environmental sensors widely
installed in various places send measurements to the nearby edge by radio. Edges
aggregate the inputs at regular intervals and send the result to the server. When
an edge fails, another one at a distance cannot receive the measurements and
therefore cannot take over the processing instead. That is, we have to dupli-
cate each edge for the conventional approach: switching to standby nodes and
reprocessing lost data. This duplication cost increases sharply with expansion in
the system scale, unlike the cloud environment, which can manage all resources
centrally.

To solve this problem, we focus on environmental monitoring applications
and propose an approach to guarantee approximate fault tolerance without edge
duplication. We deal with various failures by estimating missing data using the
correlation between sensors rather than reprocessing. This approach guarantees
the error bounds for a user-specified confidence threshold and allows the server
to continue subsequent processing without waiting for the inputs from failed
edges.

In this paper, we focus on aggregation queries and assume that some mea-
surements are lost due to sensor/communication failures. Edges can handle these
failures by estimating missing data from observed data and aggregating them
approximately [8]. For example, if sensor D fails in Fig. 2, edge 2 estimates miss-
ing data from the measurements of sensor C and continues aggregation without
waiting for the inputs from sensor D.
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We extend this approach to the problem of edge failures. That is, the server
estimates the outputs of failed edges from the others to continue processing. In
Fig. 2, aggregation results for sensors A and B are lost due to the failure of edge
1. The server estimates them from the results for sensors C and D obtained from
edge 2 and continues the subsequent processing without waiting for the recovery
of edge 1.

In our approach, due to the approximate aggregation at each edge, the server
has to take care of the uncertainty of the aggregation results to predict the error
bounds accurately. There are various techniques to estimate missing values, such
as mean imputation [10] and Gaussian process regression [14]. However, these
techniques cannot take care of the uncertainty of the estimation in each edge,
which causes the lack of reliability. On the other hand, our method handles
the uncertainty as a probability distribution and guarantees the error bounds
appropriately.

Fig. 2. Overview of the proposed approach

The rest of this paper is organized as follows. In Sect. 2, we discuss related
work on fault tolerance in data stream processing systems. In Sect. 3, we explain
the approximate aggregation at edges, which is the basis of our approach. In
Sect. 4, we propose an approach to support approximate fault tolerance and
provide a method to estimate the missing aggregation results taking care of the
uncertainty. We evaluate the validity of our approach by experiments in Sect. 5,
and we conclude the paper in Sect. 6.
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2 Related Work

Many systems guarantee at-most-once semantics and at-least-once semantics [3,
13]. A system that guarantees at-most-once semantics only switches processing
to the standby machines to recover from failures, but this approach can result in
data loss. On the other hand, a system that guarantees at-least-once semantics
reprocesses the lost data to recover from failures, but the same data can be
processed multiple times. That is, these systems cannot guarantee the error
bounds caused by failures.

Some stream processing systems, such as Flink [2] and Spark Streaming [6],
guarantee exactly-once semantics. These systems recover from failure without
error by restoring the last checkpoint of the internal states and reprocessing only
lost data. This approach is suitable for cluster environments where the system
can manage all resources centrally and assign the input data management task
to the message queue.

However, for edge computing, there is a problem that the conventional app-
roach needs to duplicate each edge. This duplication cost increases sharply with
expansion in the system scale, unlike the cloud environment, which can manage
all resources centrally. Besides, reprocessing lost data causes a delay because
new inputs are generated one after another even during the reprocessing. We
can suppress the delay by parallelizing failure recovery [16], but this approach
also needs duplication.

AF-Stream supports approximate fault tolerance to address the trade-off
between performance and accuracy [11]. This system mitigates the overhead by
adaptively checkpointing while guarantees that the error upon failure is within
the user-specified threshold. However, this system also requires duplication and
is not suitable for edge computing environments.

3 Preliminaries

In this section, we explain the idea of approximate aggregation at edges [8],
which is the basis of our approach.

In this paper, we assume that all n sensors X = {X1,X2, . . . , Xn} send
measurements periodically and synchronously to the nearby edge. Let xt =
〈xt

1, x
t
2, . . . , x

t
n〉 be the true value of X at time t ∈ N

+ and let Xi ⊆ X be the
sensor set assigned to edge i. If sensor failures or communication failures occur,
edges cannot receive measurements from some sensors. In other word, at time
t, edge i only obtains the measurements ot

i from sensors Ot
i ⊆ Xi. We assume

that each sensor is assigned to only one edge, and the observed values are always
equal to the true ones.

Edges divide the series of observations by time windows and aggregate them
approximately for each time window. In this paper, we deal with two aggregation
queries: sum and average. Let t′ be the start point of a time window and let w be
the window width. Edge i calculates the aggregation result YX for each sensor

X ∈ Xi from the series of observations o
[t′,t′+w)
i = 〈ot′

i ,ot′+1
i , . . . ,ot′+w−1

i 〉.
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However what we really want is the aggregation result for x
[t′,t′+w)
i not for

o
[t′,t′+w)
i . It indicates that simply aggregating o

[t′,t′+w)
i causes errors due to

missing data and has no theoretical guarantee of the error bounds.
To solve this problem, we estimate missing data from observations. We utilize

the correlation between sensors X modeled by a multivariate Gaussian distribu-
tion (hereafter, just Gaussian) N (µ,Σ). Suppose that µ and Σ denote the mean
vector and the covariance matrix of X, respectively. For the measurements ot

i

of sensors Ot
i , edge i calculates the posterior distribution N (µX t

i |ot
i
,ΣX t

i |ot
i
) for

sensors Xt
i = Xi \ Ot

i [7]:

µX t
i |ot

i
= µX t

i
+ ΣX t

iO
t
i
Σ−1

O t
iO

t
i

(
ot
i − µO t

i

)
and (1)

ΣX t
i |ot

i
= ΣX t

iX
t
i
− ΣX t

iO
t
i
Σ−1

O t
iO

t
i
ΣO t

iX
t
i
. (2)

The subscripts of each symbol indicate corresponding rows/columns in µ and Σ.
For instance, ΣX t

iO
t
i

is a sub matrix of Σ formed by rows Xt
i and columns Ot

i ,
which represents the covariance between Xt

i and Ot
i .

Finally, we aggregate the estimated distributions in the window. In the fol-
lowing, we focus on the average query but we can handle the sum query in the
same way. Since Gaussians are in the family of stable distributions, without tem-
poral correlation, a Gaussian N (µYX i

,ΣYX i
) for the average YXi

of sensors Xi

is represented as follows [8]:

µYX i
=

1
w

⎛
⎝ ∑

t∈[t′,t′+w)

µXi|ot
i

⎞
⎠ and (3)

ΣYX i
=

1
w2

⎛
⎝ ∑

t∈[t′,t′+w)

ΣXi|ot
i

⎞
⎠ . (4)

Note that, for sensors Ot
i , the mean vector is its measurements ot

i and all the
elements of the covariance matrix are 0.

This method theoretically guarantees the error bounds. Let f(x | µ,Σ) be the
probability density function for N (µ,Σ). For an error bound e, we can calculate
the probability that the average YX of the sensor X ∈ Xi is within e of the
mean µYX

:

P (YX ∈ [µYX
− e,µYX

+ e]) =
∫ µYX

+e

µYX
−e

f (y | µYX
,ΣYX

) dy. (5)

That is, for a user-specified confidence threshold δ, we can calculate the minimum
error bound e′ that satisfies δ by solving:

P (YX ∈ [μYX
− e′, μYX

+ e′]) = δ. (6)

This guarantees that the true value of YX is within μYX
±e′ with the probability

of δ. Note that ΣYX
= 0 means that all data of X are observed in the time

window and the aggregation result has no error (i.e. e′ = 0).
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4 Proposed Approach

In this section, we propose our approach to support low-latency and high-
availability fault tolerance without edge duplication. First, we explain how to
guarantee approximate fault tolerance in our approach. Next, we provide a
method to estimate the outputs of failed edges taking care of the uncertainty of
the processing results.

4.1 Overview

We assume that we have m edges that send the aggregation results to the
server periodically and synchronously. Note that edge i sends a Gaussian
N (µYX i

,ΣYX i
) as the aggregation result. For example, in Fig. 2, edge 2 cal-

culates a bivariate Gaussian as the aggregation result for sensors C and D and
sends it to the server. Then the server proceeds with the subsequent processing
as soon as the processing results of all edges are available.

If a non-duplicated edge fails, the server cannot obtain the processing results
during that time. In Fig. 2, due to the failure of edge 1, the server cannot obtain
the aggregation result for sensors A and B and cannot proceed with the subse-
quent processing.

We solve this problem by estimating missing results using the correlation
between sensors. Let X ′ ⊆ X be the sensors assigned to failed edges (hereafter,
referred to as missing sensors) and let O = X \ X ′ be the sensors assigned to
remaining edges (hereafter, referred to as observed sensors). The server obtains
a distribution N (µYO

,ΣYO
) as the aggregation results YO for observed sensors

and estimates a distribution N (µYX ′ ,ΣYX ′ ) as the aggregation results YX ′ for
the missing sensors. Then the server continues the subsequent processing without
waiting for the recovery of failed edges.

For example, in Fig. 2, the missing sensors are X ′ = X1 = {XA,XB} and
the observed sensors are O = X2 = {XC ,XD}. The server can filter those
whose aggregation result YX for sensor X ∈ X ′ is less than a threshold θ in two
steps: First, the server calculates the probability P (YX < θ) from the Gaussian
N (µYX

,ΣYX
). Then the server checks whether this is greater than or equal to δ.

In our approach, it is essential to take care of the uncertainty of processing
results to estimate the outputs of failed edges accurately. For example, when esti-
mating the output N (µYX 1

,ΣYX 1
) of edge 1 from the output N (µYX 2

,ΣYX 2
)

of edge 2 in Fig. 2, we can consider a method that uses the posterior probability
distribution given the mean vector µYX 2

as described in Sect. 3. However, this
method does not use the covariance matrix ΣYX 2

, which represents the uncer-
tainty of the output of edge 2, and results in an underestimation of the error
bounds.

4.2 Aggregation Result Estimation

If we can model the correlation between sensors X by a Gaussian N (µ,Σ), we
can also model the correlation between the aggregation results YX by a Gaussian.
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Consider an average query for a time window with the window width w. From
the reproductive property of Gaussian, we can model the correlation between
YX by a Gaussian N (µ′,Σ′), whose mean vector and covariance matrix are:

µ′ =
1
w

⎛
⎝ ∑

t∈[t′,t′+w)

µt

⎞
⎠ = µ and (7)

Σ′ =
1

w2

⎛
⎝ ∑

t∈[t′,t′+w)

Σt

⎞
⎠ =

1
w

Σ. (8)

If the server knows that the aggregation results YO are equal to y, the server
can calculate the posterior probability distribution N (µYX ′ |y ,ΣYX ′ |y ) as the
estimated aggregation results YX ′ :

µYX ′ |y = µ′
X ′ + Σ′

X ′O (Σ′
OO )−1 (y − µ′

O ) and (9)

ΣYX ′ |y = Σ′
X ′X ′ − Σ′

X ′O (Σ′
OO )−1 Σ′

OX ′ . (10)

However, the server cannot know the exact value y because edges aggregate
sensor data approximately.

In our method, the server estimates the aggregation results YX ′ using the
Gaussian N (µYO

,ΣYO
) that represents the uncertainty of YO . That is, the server

calculates the probability that YO is equal to y from N (µYO
,ΣYO

) and marginal-
izes it:

P (YX ′) =
∫

P (YO = y) P (YX ′ | YO = y) dy (11)

=
∫

f (y | µYO
,ΣYO

) f
(
y′ | µYX ′ |y ,ΣYX ′ |y

)
dy. (12)

Note that, some edges aggregate measurements of a part of sensors O separately,
so that the distribution N (µYO

,ΣYO
) of YO is a combination of their outputs.

In this paper, since edge i cannot get the observations of sensors Xj assigned to
another edge j, we consider all of the covariances between YXi

and YXj
in ΣYO

as 0.
Calculating Eq. (12), we get a Gaussian N (µ′

YX ′ ,Σ
′
YX ′ ), whose mean vector

and covariance matrix are:

µ′
YX ′ =µ′

X ′ + Σ′
X ′O (Σ′

OO )−1 (µYO
− µ′

O ) and (13)

Σ′
YX ′ =Σ′

X ′X ′ − Σ′
X ′O (Σ′

OO )−1 Σ′
OX ′ + Σ′

X ′O (Σ′
OO )−1 ΣYO

(Σ′
OO )−1 Σ′

OX ′ .

(14)

Note that these are similar to the posterior probability distribution given the
mean vector µYO

as the aggregation results: the mean vector is equal to Eq. (13)
and the covariance matrix is equal to the first and second terms of Eq. (14).
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The difference is the third term of Eq. (14) which is the correction term of the
covariance matrix based on the uncertainty of processing results. It indicates
that, unlike simply estimating the result of YX ′ from the mean vector µYO

, our
method corrects the covariance matrix Σ′

YX ′ taking care of the uncertainty to
predict the error bounds accurately.

5 Experimental Evaluation

In this section, we demonstrate the validity of the proposed method by experi-
ments. We explain the experimental settings and then describe the experimental
results in detail. Note that we omit the results of the sum query because it has
the same tendency as the average query.

5.1 Experimental Settings

We use the following two datasets to evaluate the validity of our method.

Real. We measure the temperature in our laboratory with 24 environmental
sensors 2JCIE-BL [1]. This dataset has tuples for 24 days at 1-minute inter-
vals. We use the data for the first 16 days for model training and the rest
for the evaluation. Note that pre-test using mvnormtest [4] revealed that this
data does not follow the multivariate Gaussian.

Synthetic. We prepare synthetic data to verify the validity of the theoretical
error guarantee in our method. The dataset has 11520 tuples correspond to
8 days, which follow the Gaussian obtained from the training data. We use
rmvnorm function [5] that generates an n-dimensional random number vector
that follows the n-dimensional Gaussian given as input. Note that each tuple
has no temporal correlation because we generate tuples independently.

In this experiment, we assume a simple failure scenario and prepare test data
in three steps: First, we randomly delete part of the measurements at the drop
rate r as data lost due to temporary communication failures between sensors
and edges. Next, we split this partially deleted data by the window width w and
calculate the multivariate Gaussian for the aggregation results as described in
Sect. 3. Finally, we randomly select m failed edges and delete these aggregation
results as data lost due to edge failures.

5.2 Methodology

We evaluate the validity of our approach from the perspective of theoretical error
guarantee. In our approach, the server estimates the missing aggregation result
YX for sensor X as a Gaussian N (μYX

,ΣYX
) and guarantees its error bounds e′

for a user-specified confidence threshold δ. It indicates that the true value of YX

is theoretically within μYX
± e′ with the probability of δ. Therefore, we consider

the aggregation result for the lossless dataset as the true value and define the
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Fig. 3. Experimental results for synthetic data

reliability as the probability that the true value exists within μYX
± e′. When

the reliability satisfies δ, we can consider the error guarantee of our approach to
be valid.

We evaluate the reliability by varying each parameter: confidence threshold
δ, window width w, drop rate r, and the number of failed edges m′. Note that
these default values are δ = 0.9, w = 10, r = 0.3, and m′ = 1, respectively. We
compare our method with a method that estimates missing results not taking
care of the uncertainty (i.e. calculating Eq. (9) and Eq. (10) with y = µYO

). We
refer to this method as baseline.

5.3 Results

We show the experimental results for the synthetic data in Fig. 3. The dotted
lines in the figures show the confidence threshold δ. The reliability of the baseline
is always below δ, whereas our method satisfies δ for all parameter settings. These
graphs show that the uncertainty of aggregation results affects the estimation
of error bounds and our method can recover missing aggregation results reliably
from partial observations.

Consider the tendency of reliability change for each parameter. We see that
the difference in reliability between the baseline and our method increases as
the error rate r increases. It is considered that an increase in missing tuples
causes an increase in the uncertainty of processing results of each edge, which
results in a lack of reliability of the baseline. The difference also increases as the
number of failed edges m′ decreases. A decrease in failed edges means an increase
in the observed processing results with uncertainty. We find that our method
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Fig. 4. Experimental results for real data

is particularly effective in these scenarios where the impact of the uncertainty
increases.

On the other hand, as shown in Fig. 4, our method does not satisfy the confi-
dence threshold for real data. We found that this is due to temperature changes
over time. To solve this problem, we have to extend our method to handle tempo-
ral correlations. We are currently considering an approach to update the model
by applying the Kalman filter [9]. Also, we should pay attention to the differ-
ence in daily trends due to human activity. For example, the temperature is kept
by the air conditioner when someone is in the room, whereas the temperature
decreases gradually when the room is vacant. We can address this problem by
simply learning a different model for each situation.

6 Conclusions

We proposed an approach to guarantee approximate fault tolerance for edge
computing environments. In our approach, the server estimates missing aggre-
gation results using the correlation between sensors to continue the processing
without waiting for the recovery of failed edges. We also provided a method to
estimate missing aggregation results taking care of the uncertainty of observed
processing results. The experimental results demonstrated that the importance
of handling uncertainty and the validity of our method. However, our method
could not estimate error bounds accurately for real data. To solve this problem,
we are currently considering extending our method to handle temporal correla-
tions.
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