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Preface

This book aims to bring together leading academic scientists, researchers, and 
research scholars to exchange and share their experiences and research results on all 
aspects of Internet of Things (IoT)-enabled artificial intelligence-based technolo-
gies. It also provides a premier interdisciplinary platform for researchers, practitio-
ners, and educators to present and discuss the most recent innovations, trends, and 
concerns as well as practical challenges encountered and solutions adopted in the 
fields of AI-based IoT. This book aims to attract researchers and practitioners who 
are working in information technology and computer science. This book is about 
basics and high-level concepts regarding artificial intelligence paradigm in the con-
text of Internet of Things. This book covers a wide range of AI-enabled IoT tech-
nologies. This book aims to explore the insight paradigm of the AI-based IoT 
technologies which will bring a smooth platform for the scope of industry- academia. 
The wide-range contents will differentiate this edited book from others. The con-
tents include functional framework and protocols for IoT-based system, intelligent 
object identification, intelligent sensors, learning and analytics in intelligent IoT- 
enabled systems, CRISP-DM frame work, RFID technology, wearable sensors, IoT 
semantics, knowledge extraction, applications of linear regression, classification, 
vector machines and artificial neural networks for IoT devices, Bayesian learning, 
decision trees, deep learning frameworks, computational learning theory, multi- 
agent systems for IoT-based ecosystem, machine learning algorithms, nature- 
inspired algorithms, computational intelligence for cloud-based Internet of Things, 
and trustworthy machine learning for IoT-enabled system in IoT related topics. The 
above topics are likely to be embedded with the AI-enabled IoT technologies for 
future generation automation.

Chapter 1 explores IoT architecture; analyzes IoT network’s technical details; 
and describes communication enabled technologies. Moreover, this chapter deals 
with various AI-based technologies integrated into IoT, edge computing, and trust 
models for IoT appliances. Recent AI-based projects and research challenges con-
cludes this chapter.

Chapter 2 has formulated an overview of the IoT environment which illustrates 
IoT architecture, gateways, nodes, middleware, OSs, framework, protection, 
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storage and computation, communication or networking technologies of IoT, and 
interfaces for the efficient utilization of data in an ecosystem. This chapter moreover 
illustrates the hierarchy of the intelligence of the IoT ecosystem, which describes 
the process of generation of data, derivation of desired information from those raw 
data, processing, and manipulation.

Chapter 3 illustrates a detailed view of ML and DL applicability in WSN and 
IoT. This chapter also describes a complete view of various neural networks (NN) 
and support vector machine (SVM) types that incorporate frequent, deep neural 
networks, quarter and ellipsoidal SVMs, and subspace-SVM forms, which are rel-
evant to wireless and IoT appliances. This chapter provides an in-depth summary of 
various communication issues in IoT that are addressed by neural networks and 
SVM, and application and motivation for using those techniques. Followed by intru-
sion detection in IoT with NN and SVM, a case study on outlier detection WSNs 
data and future research implementations is discussed.

Chapter 4 evaluates the different methods of machine learning that deal with the 
challenges posed in the handling of IoT data. Big data is generated through the com-
munication of Internet of Things/smart devices, and this data stored at cloud. The 
taxonomy of machine learning algorithms is described in this chapter, explaining 
how different techniques are applied to data generated using IoT devices. It will also 
address the future problems of machine learning for IoT data analytics.

Chapter 5 aims to explore DL frameworks for IoT. The chapter begins with a 
discussion on the development and architecture of the DL framework. This chapter 
then discusses about various DL models associated with deep reinforcement learn-
ing approaches for IoT. The potential applications, including smart grid manage-
ment, road traffic management, industrial sector, estimation of crop production, and 
detection of various plant diseases are discussed. Various design issues and chal-
lenges in implementing DL are also discussed. The findings reported in this chapter 
provide some insights into DL frameworks for IoT that can help network research-
ers and engineers to contribute further towards the development of next- 
generation IoT.

Chapter 6 addresses the technique that combines the capability to learn and 
evolve solutions for large-scale dynamic systems. The chapter deals with the 
extended classifier system (XCS) which is an amalgamation of reinforcement learn-
ing (RL) and genetic algorithms (GA). While RL learns the model-free problem 
environment, the nature-inspired GA evolves better decision-making rules and 
improves the existing ones. The motive is to provide intelligent computation for 
fog-cloud-based IoT systems through XCS. The chapter reveals how the XCS algo-
rithm estimates the optimal number of IoT workload that is to be processed in fog, 
the remaining of which is transferred to the cloud. The optimal number of work-
loads estimated by the XCS algorithm balances the energy cost and delay in the 
fog-cloud based resource allocation (RA) system.

Chapter 7 integrates machine learning and IoT in a portable scale to perform 
high-accuracy verification system. This model uses a pre-trained convolutional neu-
ral network (CNN) on a Raspberry Pi. The CNN will analyze pixels from a signa-
ture image taken by the Pi camera to recognize abnormalities and differences and to 
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identify false signature. Other than requiring a secure digital authentication to oper-
ate, it also informs the user immediately on the app execution and image being 
scanned via a cloud-based system. The system is expected to provide on-the-spot 
signature verification and minimize any logistic issue that stems from faulty signa-
ture to an organization.

Chapter 8 illustrates the facilitators of Internet of Things like machine to machine 
(M2M), radio frequency identification (RFID), and software-defined networking 
(SDN). Machine to machine (M2M) is a communication system in IoT that endorses 
the group of devices to communicate with each other. The mobile communication 
system is optimized by M2M and standardized by 3GPP. The motivation of this 
chapter is that the communication system facilitated with IoT has performed their 
actions autonomously without the assistance of a human.

Chapter 9 discusses different types of framework, pros and cons of every frame-
work, architecture, and different criteria to choose the better framework which will 
be useful for Internet of Things–based applications. Moreover, this chapter dis-
cusses architecture, generative models, and deep reinforcement learning for IoT 
applications.

Chapter 10 presents the active ongoing research in optimizing deep learning 
models for inference at the edge using connection-pruning, model quantization, and 
knowledge distillation. This chapter describes the techniques to train/retrain the 
deep learning models at the resource-constrained edge device using new learning 
paradigms such as federated learning, weight imprinting, and training smaller mod-
els on fewer data.

Chapter 11 presents a survey of techniques that have been introduced to exploit 
the pros and mitigate the cons of NVMs when used for designing IoT systems. This 
chapter classifies these techniques along several dimensions to highlight their simi-
larities and differences. Keeping consideration that NVMs are rapidly growing in 
IoT systems, this chapter will encourage and motivate further researcher and scien-
tists in the field of software technology for NVMs-based IoT.

Chapter 12 describes the digital abstraction of the physical aspects of a city using 
digital twin to simulate scenarios to understand behaviors of a particular event. This 
study analyzes the use of artificial intelligence techniques and IoT used in digital 
twin approaches to analyze cyber security risks in the smart city environment.

Chapter 13 discusses Cognitive Internet of Things (CIoT) which inherited 
numerous challenges from artificial intelligence, IoT, and cognitive systems. 
Therefore, the challenges of these fields should be studied to extract the challenges 
in designing CIoT. In the literature, there is no study on extracting the challenges 
considering associated technologies to CIoT. In this chapter, the challenges of the 
associated technologies are summarized. Then, some important challenges in 
designing CIoT are obtained.

Chapter 14 uses reinforcement learning techniques to find patterns of user 
dynamics and to determine the incentive prices. Specifically, the authors adapt the 
state-of-the-art reinforcement learning framework for dock-less BSS rebalancing. 
Different from existing research, the authors make full use of the benefits of destina-
tion incentives. In addition, they further extend the reinforcement learning 
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framework to docked BSSs by adding station capacities to the state space of the 
reinforcement learning agent. They have examined the performance of our schemes 
based on real-world datasets. An experiment result reveals that the hybrid incentive 
scheme outperforms the source-incentive-only scheme.

Chapter 15 discusses vital applications of IoT and Bayesian learning to the moni-
toring, messaging, and accident analysis on highways. The chapter adopts the case 
approach in presenting advances in IoT and cloud technologies and builds a concept 
around a scenario to demonstrate real-life applications and contextual relevance of 
Bayesian learning models.

Chapter 16 discusses the processes, challenges, and solutions concerning design-
ing an airport smart parking system. IoT parking sensors, Open Automatic License 
Plate Recognition (OpenALPR) library, and the IBM cloud-based IoT platform are 
integrated to tackle technical challenges, including the automatic identification of 
plate numbers, models, and colors of vehicles in parking spaces, in both indoor and 
outdoor parking environments. The chapter also addresses several issues related to 
the system, that is, the system architecture design, the selection of sensing technolo-
gies, and hardware and software platforms, while taking into account specific char-
acteristics of IoT and AI technologies.

Chapter 17 presents an overview of research on using end-to-end deep learning 
technologies for computer vision-based autonomous driving systems. It briefly dis-
cusses the ethics of autonomous driving; it also describes autonomous driving para-
digms and the associated deep learning methodologies. Furthermore, it proposes an 
IoAT-compatible low-cost, low-latency, high-accuracy, and high-reliability CNN- 
LSTM based autonomous driving model that incorporates temporal information, 
transfer learning, and navigational command. It also provides a detailed analysis 
against existing models. Finally, the chapter draws its conclusions and discusses 
future research directions to further improve system performance.

In Chap. 18, the Bayesian learning and decision trees are presented in respect of 
their ability to entrench optimum intelligent prediction in IoT-enabled domain. 
Succinct elucidation of the potential application of an intelligent IoT-driven system 
is presented as a possible panacea to address some of the problems in food produc-
tion cycle especially in post-harvest storage and wastage.

We are sincerely thankful to the Almighty for supporting and standing by us at 
all times, through thick and thin, and guiding us. Starting from the call for chapters 
till the finalization of chapters, all the editors have given their contributions amica-
bly, which is a positive sign of significant teamwork. The editors are sincerely 
thankful to the series editors Prof. Giancarlo Fortino and Prof. Antonio Liotta for 
providing constructive inputs and allowing an opportunity to edit this important 
book. We are thankful to reviewers around the world who shared their support and 
stood firm toward quality chapter submission.

Kolkata, West Bengal, India Souvik Pal
Kolkata, West Bengal, India Debasish De
Melbourne, VIC, Australia Rajkumar Buyya
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Key Features

 1. Addresses the complete functional framework workflow in AI-enabled IoT 
ecosystem.

 2. Explores basic and high-level concepts, thus serving as a manual for those in the 
industry while also helping the beginners to understand both basic and advanced 
aspects in AI-enabled IoT ecosystem related technology.

 3. Based on the latest technologies, and covering the major challenges, issues, and 
advances in AI-based IoT environment.

 4. Explores intelligent object identification and object discovery through IoT eco-
system and its implications to the real world.

 5. Explains concepts of IoT communication protocols, intelligent sensors, statistics 
and exploratory data analytics, nature-inspired algorithms, computational intel-
ligence, and machine learning algorithms in IoT environment for betterment of 
the smarter humanity.

 6. Explores intelligent data processing, deep learning frameworks, game theory, 
and multi-agent systems in IoT-enabled ecosystem.

 7. Explores vector machines and artificial neural networks for IoT devices, and big 
data analytics in IoT-based environment.

 8. Explores security and privacy issues and trustworthy machine learning related to 
data-intensive technologies in AI-based IoT ecosystem.



xi

About the Book

The edited book Artificial Intelligence-based Internet of Things Systems is intended 
to discuss the evolution of future generation technologies through Internet of Things 
in the scope of artificial intelligence. The main focus of this volume is to bring all 
the related technologies in a single platform, so that undergraduate and postgraduate 
students, researchers, academicians, and industry people can easily understand the 
AI algorithms, machine learning algorithms, and learning analytics in IoT-enabled 
technologies.

This book uses data and network engineering and intelligent decision support 
system-by-design principles to design a reliable AI-enabled IoT ecosystem and to 
implement cyber-physical pervasive infrastructure solutions. This book will take the 
readers on a journey that begins with understanding the insight paradigm of 
AI-enabled IoT technologies and how it can be applied in various aspects. This 
proposed book will help researchers and practitioners to understand the design 
architecture and AI algorithms through IoT and the state-of-the-art in IoT 
countermeasures.

It provides a comprehensive discussion on functional framework and knowledge 
hierarchy for IoT, object identification, intelligent sensors, learning and analytics in 
intelligent IoT-enabled systems, CRISP-DM frame work, RFID technology, wear-
able sensors, IoT semantics, knowledge extraction, applications of linear regres-
sion, classification, vector machines and artificial neural networks for IoT devices, 
Bayesian learning, decision trees, deep learning frameworks, computational learn-
ing theory, multi-agent systems for IoT-based ecosystem, machine learning algo-
rithms, nature-inspired algorithms, computational intelligence for cloud-based 
Internet of Things, and trustworthy machine learning for IoT-enabled systems. This 
book brings together some of the top IoT-enabled AI experts throughout the world 
who contribute their knowledge regarding different IoT-based technology aspects. 
This edited book aims to provide the concepts of related technologies and novel 
findings of the researchers through its chapter organization. The book explores 
AI-enabled IoT paradigms which will be utilized as a part of betterment of mankind 
in the future era. Specifically, the far-reaching references of various works and exe-
cutions will be observed to be significant accumulations for engineers and 
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organizations. The primary audience for the book incorporates specialists, research-
ers, graduate understudies, designers, experts, and engineers who are occupied with 
research on Internet of Things, artificial intelligence, machine learning, and 
applications.

About the Book
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Artificial Intelligence-based Internet 
of Things for Industry 5.0

Bhanu Chander, Souvik Pal, Debashis De, and Rajkumar Buyya

1  Introduction

Nowadays, wireless communications, IoT devices, intelligent sensors, industrial 
IoT, mobile edge computing, and communication protocol are the buzz words in 
industry-academia. In general, IoT works through implanting short-range moveable 
transceivers into an eclectic arrangement of devices and everyday objects, enabling 
novel communication procedures among people and things and things themselves. 
Therefore, IoT would add a new dimension to information and communication. IoT 
devices are interconnected devices through a piece of inventive communication 
machinery such as RFID, Wi-Fi, GSM, Bluetooth, and many more, which can help 
improve people’s living standards [1–4]. The latest survey reports that the number 
of IoT devices like embedded devices, sensors, game consoles, laptops, and smart 
devices anticipated to reach more than 60 billion in 2025. In general, IoT expertise’s 
evolution is very similar to the current society, where people and devices practically 
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integrated into information systems over wireless sensors technology. IoT integra-
tion’s main intention is information sharing, enabling smart surroundings to identify 
objects then retrieve information. Embedded devices play an essential part in IoT, 
which mainly connect with intelligent sensors for information gathering. In detail, 
embedded devices interact with the physical environment with these sensor nodes 
[3–5]. Nowadays, the IoT platform provides advanced control and monitoring ser-
vices for novel appliances to expand their working efficiency.

The Internet of Things (IoT) is defined and used by a well-known researcher 
Kevin Ashton in the early days of 2000. From Kevin Ashton’s explanations, the IoT 
is a system/structure of material things in the real world to link to the Internet 
through intelligent sensors. Ashton also conceived the RFID technology, which 
heavily applied to transportation tracking services without any human interventions. 
Now there are different definitions available based on their specific idea in the real- 
world scenario. For instance, from IEEE, “IoT is a framework of connected devices 
thru the internet, for new appliances and services enable the interaction in the physi-
cal and virtual world in the form of M2M communication” [3]. From Internet 
Architecture Boards (IAB) definition, “IoT is the networking of smart objects, 
meaning many devices reasonably communicate in the presence of internet protocol 
that not directly operated by human beings but exist as components in buildings, 
vehicles or the environment” [6].

As discussed above, most IoT systems are becoming increasingly dynamic, 
mixed, and multifaceted; thus, the organization of such an IoT system/model is 
challenging. IoT System-oriented services need to enhance efficiency and variabil-
ity to attract more abusers. In recent times, artificial intelligence (AI) reaches tre-
mendous success in numerous domains by employing modifications in computing 
technologies [5]. Machine learning (ML) is another unique technology and a sub-
part in AI applied on IoT for better services. Both AI and ML are recognized as the 
critical parts for IoT to make intelligent network management and operations. Many 
kinds of research work produced better results by applying AI and ML in pattern 
recognition, natural language processing, object detection, and network sharing. 
Hence, the IoT domain can also benefit from leveraging support from AI and 
ML. There are huge chances by employing AI- and ML-based models to IoT to 
make profound analytical and in-depth progress of well-organized smart real-world 
appliances [6, 7].

Before knowing the technical research trends of IoT, everyone needs to take a 
look and understand how an IoT works and impacts our everyday life. Every 
researcher and data scientist tries to import and understand IoT preliminaries 
according to their visualizations and then requirements. After all, there is no univer-
sal definition of IoT and its visualization requirements. Internet of Everything (IoE), 
Internet of Cloud Things (IoT), and Web of Things (WoT) come from the IoT visu-
alizations and have their respective definitions of working protocols. However, IoT 
is designed based on integrating various standards and enabling technologies with 
dissimilar sensing, computational capabilities, connectives, and storage capacities. 
Here in IoT systems, the integration standards in employed devices present high-
rated challenges while authentic connections of everything. The challenges on 
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integration in IoT devices are considered significant IoT issues since those are fun-
damental to the further development of IoT projects [7–9]. Nowadays, numerous 
standardization administrations, associations, researchers, and manufacturing 
industries make an effort on IoT expansions, modernization, and setting things in 
the right way. However, there is still a lack of a broad context with combined ethics 
beneath one IoT.

2  Industry 5.0 Paradigm

When it comes to the twenty-first century, most of the domains turn into digitaliza-
tion. However, we admit that companies struggle to digitalize their business by 
incorporating AI, IoT, and Industry 4.0 technologies. Apart from the mentioned 
technologies, the subsequent step of the Industrial Revolution seems in the upcom-
ing days and is named Industry 5.0 [2–6, 10–14]. The term Industry 5.0 was famil-
iarized in early 2015; however, it was called the Fifth Industrial Revolution, which 
built tremendous influence in different domains, especially day-to-day business, 
because of the velocity of added industrial, technical enhancement and shifting 
human process integration [15–18].

The First Industrial revolution or Industry 1.0 started at the end of the eighteenth 
century; it symbolized industrialized mechanical arrangements consuming coal, 
human, water, and stream power. The Second Industrial Revolution or Industry 2.0 
commenced in the last quarter of the nineteenth century, and it represented mass 
manufacture through the use of electrical energy [19–22]. The discovery of the tele-
phone, mass production, telegraph, introduction of assembly lines, and mechaniza-
tion are few features of Industry 2.0. The Third Industrial Revolution or Industry 3.0 
started in the early twentieth century. It established computerization and then micro-
electronic skills into the industrialized field. A higher level of automation is accom-
plished using robots, information technology, and microprocessors – most of these 
twentieth-century initiatives are closely related to information and communication 
technology (ICT). Computer-integrated manufacturing, computer-aided processing 
planning, computer-aided design, and flexible manufacturing systems are some of 
the fields taking advantage of the third revolution. In recent times at the start of the 
twenty-first century, Fourth Industrial Revolution or Industry 4.0 started with the 
inclusion of cyber-physical systems (CPS), which makes revolutionary changes in 
manufacturing. Industry 4.0 was predominantly characterized by CPS, cloud com-
puting, big data analytics, augmented reality, IoT, simulation, and intelligent 
devices. This means it entirely focuses on end-to-end digitalization and incorporat-
ing digital industrial ecosystems by seeking completely integrated solutions [20–
24]. Besides, it highly focused on IoT objects that connect with the industrial plant.

Industry 5.0 emphasizes collaboration among humans and machinery types, 
which means the Fifth Industrial Revolution is more captivated by forward-thinking 
human-machine interfaces through human-machine interaction. Industry 5.0 main 
intention is to progress Industry 4.0 to an advanced level. For this, it brings the 
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concept of collaborative robots which are also known as cobots. With the successful 
integration, cobots will fulfil today’s need for enterprises that produce personalized 
products [20–24]. Hence, with improved manufacturing, software tools, the Internet 
of Everything, and robotics using technical progressions, Industry 5.0 is familiar-
ized in manufacturing and medicine than other allied areas.

It provides chances for a customer to experience mass customization in different 
groups’ collaboration across the world. Technology innovations do not consider the 
foundation of revolution for the organization, and there is a need for customer goals. 
To fulfil the customer goals, Industry 5.0 follows some set of principles:

Mass customization – suggest actual price and comfortability of various product or 
service customization to customers.

Customer-centric – concentrate on customer goals and try to resolve hurdles in busi-
ness expansion through reengineering

Green computing – also an emphasis on environmental conditions.
Cyber-physical systems – prepare an intelligent system from the human serving the 

customers by gaining maximum benefits from the human with machine intelli-
gence [16–18, 20–24] (Table 1).

Reasons for Adopting Industry 5.0 in Manufacturing
Industry 5.0 will advise or solve the issues associated with removing human work-
ers from dissimilar manufacturer procedures from the discussions mentioned above. 
However, there is a need for advanced technologies to boost the Industry 5.0 manu-
facturer [16–18, 20–24]:

Multiscale modeling and simulation  – advances of digital twin with intelligent 
autonomous schemes arise difficulties in valuation monitoring of manufacturing 
sites. In this context, visualization tools play a crucial role in constructing the 

Table 1 From Industry 1.0 to Industry 5.0

Phase Period Description Identification by Key point

Industry 
1.0

1780 Industrial manufacture based on 
stream and water machines

Mechanization
Water and stream

First mechanical 
loom

Industry 
2.0

1870 Mass production with electrical 
energy

Electrification
Division of labor
Mass production

First assembly line

Industry 
3.0

1970 Automation with electronic and 
IT system

Automation
Electronics
IT systems

The first 
programmable 
logic controller

Industry 
4.0

2011 The connected device, data 
analytics, computerized 
machinery programs to automate 
the industry production

Globalization
Digitalization
IoT, robotics, big 
data, cloud 
computing

Cyber-physical 
systems

Industry 
5.0

Future Cooperation among human 
intelligence with a machine to 
improve products and services

Personalization
Robotics and AI
Sustainability

Human-robot 
co-working
Bio-economy

B. Chander et al.



7

policies for managing and personalizing genuine products and then product 
outlines.

Miniature sensor data interoperability  – usage of sensor nodes highly increased 
from smart homes to autonomous manufacture cobots and distributed intelligent 
systems. These intelligent sensor nodes sense and collect real-world raw data, 
which is an unavoidable asset to the next Industrial Revolution. However, with 
the progress of energy optimization, fast and effective customization process, 
selection of a local agent for pre-processing data, and creating high modeled 
distributed intelligence in IoT, Industry 4.0 is still an open research issue.

Virtual reality with digital twin – with the result of continuous growth in big data 
and AI-based cobots, it is even more feasible to create more realistic digital 
twins. It properly allows industry experts to allow reduced wastage in the process 
flow and system design. Hence, the digital twin with advanced visualization 
techniques will tremendously increase the throughput of all the sectors.

Real-time trackers – will boost real-time production tracking, facilitating the cus-
tomers’ sales orders with manufacture orders and supplementary material. 
Virtual training will assist in some cases: when trainee or trainer on different 
locations but learns a specific job in a virtual/simulated atmosphere. This type of 
training pointedly decreases the costs than time for both parties.

Intelligent autonomous systems – artificial intelligence models have great deals in 
autonomously controlling production lines in the manufacturing industry. Up-to- 
date AI-related ML and DL models effectively make changes in intelligent sys-
tems and solutions that assist in decision-making scenarios.

Transfer learning – transfer learning policies guide the schemes mentioned earlier, 
securely and progressively in Industry 5.0.

Computer vision with DL and RL and GPU-based computation has shown great 
potential in reproducing primitive vision besides sensory abilities. However, for 
advanced performances of Industry 5.0, cobots proficiencies must be improved 
suggestively.

Problems and Limitations in Industry 5.0
Industry 5.0 resolves most of the manufacturing issues associated with removing 
human workers from different procedures. However, it must incorporate additional 
forward-thinking skills since humans may add innovative manufacturing skills in 
the coming days. There are numerous skills in the developing stage, some of them 
pointed in this section.

 1. Before incorporating advanced skills into industrial management, there is a need 
for how an autonomous system can incorporate ethical principles.

 2. There is a need for proper verification and validation of ethical behavior inside 
the autonomous system model.

 3. Implementation operation transparencies and fast and competent manufacturing 
might have significance in an overproduction phenomenon.
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 4. The outcome results must be understandable ethical behavior solutions in an 
autonomous scheme. In particular, industrial experts are facing adapting and 
implementation issues.

 5. Tuning and validation will avert somewhat serious problems among technology, 
experts, stockholders, society, and businesses.

3  Elements of IoT

As we mentioned in the introduction, understanding IoT building blocks will give 
some visualization and a better perception of the IoT’s actual meaning than func-
tionality [23]. We listed six fundamental elements of IoT, which are noted in Fig. 1.

Identification
In any communication or data transmission network, the term identification plays a 
considerable role. The precise identification is key to the IoT structure to name and 
match services with their claim. However, it is tricky to addressing object ID and its 
corresponding IP address in the IoT system. An ID indicates a particular object or 
device’s name, and an address indicates its present address inside the network terri-
tory. Differentiation among object identification then addresses authoritative since 
identification models are not inimitable; moreover, objects might practice with pub-
lic IP addresses inside the network. Hence the designed models must overcome the 
hurdles mentioned above and identify every object inside the network correctly.

Sensing
IoT setup intends to gather information from a particular region/area, organized 
through sensing devices. Sensing devices/objects collect real-world data from the 
surrounding atmosphere and send it back to the database or cloud for additional 

Fig. 1 Internet of Things elements
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processing: sensors, wearable devices/sensors, and actuators utilized mainly for 
sensing purposes. For example, single-board computers (SBCs) like Arduino Yun 
and Raspberry PI combined with sensors and integral TCP/IP and safety function-
alities are naturally used to grasp IoT products. Such devices characteristically 
attach to a central managing portal to deliver the essential data by clients.

Communication
In general, most IoT objects contain adequate resources; with these limited 
resources, objects connect with heterogeneous devices/objects in the company of 
lossy, noisy connotations. Wi-Fi, Bluetooth, NFC, RFID, and IEEE standards some 
IoT communications; in the next section, a brief description provided a better 
understanding.

Computing
The computing power of hardware devices is also an essential concern in IoT. The 
computation components like microprocessors, microcontrollers, and software- 
oriented appliances represent the brain to a particular appliance. Arduino, Raspberry 
PI, UDOO, MULLE, and Gadgeteer are hardware platforms designed for IoT appli-
ances. Some other platforms are real-time-software operating systems (RTSOS), for 
real-time IoT functions; TinyOS, for lightweight operations; and cloud platforms, 
for too big data processing in real time. Still, some of the computing components 
have drawbacks, and research community is working on them to perform well.

Services
IoT offers a wide variety of services. Most of them are divided into identity-based 
services, in which most of the real-time appliances come in this category; 
information- aggregative services, which accumulate real-world raw sensor data 
connected with appropriate IoT applications; collaborative-aware services, which 
use the collected data to data analytics for decision-making; and ubiquitous-based 
services, aimed to represent collaborative systems to work anytime, anywhere when 
they are required by clients. Still, the above mentioned services are not reached or 
achievable to a comfortable stage; many complications besides challenges have to 
be answered.

Semantics
Semantic operation in IoT performs to useful abstract information smartly from dif-
ferent objects. It is similar to knowledge extraction, like finding resources that 
improve the model performances. Resource Description Framework (RDF), World 
Wide Web Consortium (W3C), Efficient XML Interchange (EXI), and Web 
Ontology Language (OWL) are some of the well-known semantic technologies 
adopted in IoT systems.
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4  IoT Architecture

IoT and its variant inclusion into various domains and organizations will enhance 
the product or working performances. However, these proposals are severe and 
complicated to implement when it comes to real life since the number of devices, 
protocols, and working conditions is entirely dissimilar from one device to another. 
In other words, the problem of creating a consistent architecture of IoT unavoidably 
arrives in this phase. Before designing IoT architecture, it is better to understand the 
factors that affect IoT behavior, making it easier to find reliable IoT solutions. 
Moreover, it will reduce the various resources spent on IoT design. Before revealing 
the enigmas and providing an explicit construction of this creativity, it is vital to 
recognize what this idea means [23–28]. In essence, IoT architecture is the combi-
nation of great fundamentals network tools. It is measured as a global network setup 
collected of several allied devices that rely on communication, networking, sensory, 
and then information processing types of machinery. See Fig. 2.

4.1  Perception Layer

IoT is a kind of worldwide physical interrelated system in which things can couple 
and then be measured remotely. The perception layer is considered an initial stage 
for IoT schemes, and it is like a bridge between real and digital worlds. In some 
cases it is acknowledged as a sensing layer. Most of the perception layer deals with 
intelligent wireless devices like intelligent sensors, tags, and actuators. These wire-
less schemes with tags or sensors are now talented to inevitably sense and then 
exchange info among different devices. Devices may diverge in procedure and size 

Fig. 2 Internet of Things architecture
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from miniature to ad hoc vehicles. Sensors accumulate environmental conditions, 
transform them into electrical signals, and then forward them to IoT schemes. 
Actuators transform electrical signals collected from IoT scheme toward physical 
activities. It must note that IoT architecture does not make any limitations on ele-
ments and their deployed locations. It means objects/devices can lace in a small 
place to corners of the world.

4.2  Connectivity Layer

The connectivity layer is considered the second phase of the IoT scheme since it 
takes care of complete communications across devices, systems, and then cloud 
centers that made the perfect IoT scheme. The communication connectivity among 
physical layers to cloud centers can be achieved thru TCP/UDP or software/hard-
ware modules. Ethernet connects fixed IoT devices; Wi-Fi are widespread wireless 
connectivity applied on home IoT setups; NFC is data transmission among two 
devices; Bluetooth is used to transfer small-size data, not applicable for large data 
files. In some unique scenarios, IoT uses message-oriented protocols depending on 
the application requirement for data connectivity. Advanced Message Queuing 
Protocol (AMQP), Constrained Application Protocol (CoAP), Data Distribution 
Service (DDS), and Message Queue Telemetry Transport (MQTT) are some of them.

4.3  Edge or Fog Computing Layer

Edge/fog computing is vital for IoT systems to satisfy the increasing volume of con-
nected devices and real-world services. The intention of designing edge/fog com-
puting is to store and pre-process the sensed data as fast as it sensed and adjacent to 
its sources as possible. So it can save time and resources for IoT devices; also, it will 
decrease the scheme latency time, which can improve performance accuracy. 
Usually, edge/fog computing takes place on gateways and local servers distributed 
over the network.

4.4  Processing Layer

The processing layer collects all the data across the IoT schemes. It applies pre- 
processing models to use abstract information for decision-making or make data 
available for any further operations. Real-time data is observed with API and used 
for non-real purposes, and it stands like a hub among event-based and query-based 
data ingesting. After collecting multidimensional data from various devices and 
applying data abstraction methods, at that moment, only other connected devices 
can understand the data.
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4.5  Application Layer

Data analysis is done through software applications to bound with appropriate 
answers for main business questions/requirements in the application layer. In IoT, 
hundreds of IoT requests diverge in intricacy and function, using different expertise 
stacks than functioning schemes. In present days, various applications are con-
structed right on top of IoT stages that can suggest software-related advance setups 
through ready-to-use utensils for data mining, pattern, and forward-thinking ana-
lytical skills.

Business Layer
The information collected and pre-processed in IoT schemes can only help problem- 
solving/decision-making systems achieve excellent results. The business layer is 
well-defined as a distinct stage, advanced, and challenging to describe in a single 
application layer for this motive.

4.6  Security Layer

In any network-related application, the word security has its place. In IoT, the secu-
rity layer plays a crucial part, covering all the services mentioned above/layers. It is 
tough to discuss the security topics of IoT in one single paragraph or a section. 
There are different security levels in IoT schemes: in device security, IoT-related 
devices need low-resourced authentication services, physical metal shields, and 
chips that can boost procedures to avoid unauthorized code. Connection security is 
mostly data transfer in IoT done through wireless channels, which is easy for attack-
ers to steal or alter the data. Hence, when the data sent over a device or network, it 
must be in an encrypted format. In cloud security, sensed information kept in the 
cloud must be encoded to mitigate hazards of revealing delicate info to trespassers. 
Hence, always pay attention to security protocols to certify that security is high at 
all stages, from the smallest devices to multifaceted analytical schemes.

5  Enabling Technologies

5.1  Radiofrequency Identification (RFID)

RFID communication technology is specially designed for transportation tracking 
made of tags and readers. RFID is considered an automatic identification mecha-
nism that involuntarily identifies the target tag signal with suitable data. Hence, it 
was employed extensively in various hazardous and impassive atmospheres. As we 
mentioned above, the RFID structure completes with tags and readers. The tag 
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consists of address bars attached to objects as a small microchip handled by the 
antenna. The electromagnetic pitch is applied to send and collect data records from 
an entity over a tag. The data records stored on a tag can only be read or abstracted 
by readers only when both tags and readers are placed at a specific angle or range. 
The reader forwards a signal to read the tag’s information, and the antenna on the 
patch receives it, acknowledging the signal by sending appropriate data. In record, 
three tags are available in RFID communication: passive tag, which obtains signals 
from tags working on batteries; active tag, in which tags abstract energy from read-
ers’ signals, which means those do not have batteries; and, finally, active reader 
active tag, which works on both low and high frequencies. RFID tags are profes-
sionally applied on real-world appliances since they automatically monitor pay-
ments, goods or baggage tracking, inventory management, tracking of products, and 
product lifecycle supervision and then update the information without any third-
party or human interference. RFID technologies can fit into different domains to 
design and enhance model/systems accessibility and then efficiency. However, there 
are some drawbacks for implementation of RFID because most IoT WSNs appli-
ances are built in harsh environments, where the signals are disturbed and inter-
cepted and there is a chance for the entire device to collapse.

5.2  Power-Line Communication (PLC)

In PLC, data records are forwarded through the attached cables. It means a sender 
modulates the data records into the transfer medium; when it reaches, receivers 
demodulate the data records and then read them. By doing this, data transfer with 
power cables, where one can both power it up and then at a similar time control/
retrieve data from it in a half-duplex style. Hence, PLC attracts a communications 
model in intelligent meters (AMI), HEMS, BEMS, and solar panel-intensive care 
schemes that understand smart society. There are low-speed and then high-speed 
kinds of PLC, each of which uses a different communication procedure.

5.3  Electronic Product Code (EPC)

EPC was utilized to recognize RFID tags; it is in string type 96-bit long and placed 
on tag/patch. Out of these 96-bits, 8 bits represent header which aimed to identify 
the version of the protocol, 28 bits refer to the unique address of the system that 
manages the data on tags, 24 bits hold the type of product to be recognized, 36 bits 
mention the serial number of the tag. Finally, the last 2 bits are being hold the by the 
organization that created the tag.
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5.4  Wireless Sensor Network

Wireless sensor networks collect small tiny sensor nodes employed to gather sensed 
data from surrounding atmospheres. Computer networks, micro-electro-devices, 
and wireless technology combinations made the formation of WSNs. In the past, 
wired sensor networks/nodes used for communication, which places very local 
amenities, overcome WSN technology developed and produce possible results with 
various appliances. It is a known fact that WSNs drive IoT systems and enhance 
performance precision. Due to the node’s resource constraints, deployment topol-
ogy, connection, detection of neighbors, and transmission paths are the essential 
tasks in WSN formation. WSN is a vital element of IoT as it combines mixed sensor 
data, systems, and appliances. Researchers designed various inclusion techniques 
for IoT, the Internet, and WSNs, but still face many challenges that need optimal 
solutions and research under study.

5.5  Near-Field Communication

NFC technology is applied for data transmission and small communication setup 
when two objects are near to each other. It is similar to radio communication but 
works by touching or two objects closer to the exact location. The communication 
range of the NFC depends on the scale of the object’s antenna. Hence, NFC technol-
ogy is mostly not recommended to isolated locations, and it also not safer due to its 
limitations easily vulnerable to attackers.

5.6  Actuator

Actuators apply to specialized appliances, and they work significantly when the 
objects are in motion. It creates various motions like rotary, spherical, linear, and 
oscillator; then, it creates power from using them into kinetic energy. Actuators 
consider three types: electrical-based, employed on motors; hydraulic-based, 
hydraulic fluids; and pneumatically based, which use compressed air.

5.7  Machine to Machine (M2M)

M2M communication is similar to LAN and WAN networks; devices gather data 
from various sources and sent it back to other devices within the network. In M2M, 
stored data records are monitored and automatically take some assigned tasks 
depending on the applications. Moreover, the performance of M2M depends on 
software-controlled communications among machines and devices.
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5.8  ZigBee

The main intention of ZigBee’s innovation is to expand the application regions of 
WSN and IoT. It is a special kind of flexible wireless networking technology, better 
performance for short communicated appliances like intelligent home automation, 
healthcare, and industrial appliances. ZigBee is designed with MAC and IEEE pro-
tocols; besides, it has four-layer architecture, namely, physical, MAC, network, and 
application layer.

5.9  Wireless Fidelity (Wi-Fi)

Wi-Fi is a famous wireless network ability and an excellent fit for data-intensive 
IoT-based solutions. It has high wireless access for a small area with an intelligent 
transportation system. It has collective versions, and some of them are as follows: 
IEEE 802.11a delivers a data rate of 54 Mbps, and IEEE 802.11a data rates up to 
2.4 GHz.

5.10  IEEE 802.15.4

IEEE 802.15.4 (low-rate wireless personal area networks  – LRWPANs) act as a 
sublayer for the MAC layer. It provides effectual communication for low-power 
consumption data rate, high security, and low cost and supports a vast number of 
sensor nodes at a time. Based on these specifications, IEEE 802.15.4 is considered 
a basis for various communication technologies like ZigBee, Z-Wave, Bluetooth, 
etc. However, it does not provide QoS; also, this is a fascinating topic to research.

5.11  Z-Wave

Z-Wave communication technology initially designed smart home automation 
appliances like door switches to a central controller. The working procedure of 
Z-Wave is quite similar to ZigBee, both employed with mesh topology and low 
wireless standards to improve the low-resource devices. Z-Wave functions in the 
868 MHz frequency band, while ZigBee functions in 2.4 GHz. Besides, Z-Wave left 
the software-side encoding, but ZigBee practices the 128bit AES on the hard-
ware side.
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5.12  Bluetooth LE

Bluetooth or IEEE 802.15.1 stands for the information exchange among fixed and 
mobile devices over a short distance using industrial, scientific, and medical (ISM) 
bands. It heavily applied to smart home, smart city, healthcare, security, military 
appliances, fitness, and industries. Bluetooth SIG, Bluetooth BLE, Bluetooth 4.0, 
and Bluetooth 5.0 are the latest versions of collecting and aggregating sensed data 
from IoT-based sensor nodes. Bluetooth technology was very much suitable for 
short-range monitoring appliances.

6  Artificial Intelligence (AI) in the Internet of Things (IoT)

The operative functions of the Internet are insistently from the “Internet of 
Computers (IoC)” to the “Internet of Things (IoT).” There is a need to deliberate the 
importance of AI techniques to allow intelligent Internet communications. In pres-
ent days, wireless sensor networks are becoming hot research topics because of 
their reality applications, incredible remote monitoring of events in fields like 
healthcare, weather report, seawater levels, event predictions, etc. Besides, intelli-
gent sensors were employed heavily in electronic-based home appliances, smart 
cities, and gadgets to mobiles [22–25, 29–36].

The idea of IoT is “the pervasive presence around us of a variety of things or 
objects – such as Radio-Frequency Identification (RFID) tags, sensors, actuators, 
mobile phones, Etc. Through unique addressing schemes, they can interact with 
each other and cooperate with their neighbors” [36]. Hence, the changes in IoT 
protocols and services will surely have a good impact throghout the world. AI 
approaches also help IoT build robots whose situatedness evolves roles that avoid 
persistent human command [37–40].

Figure 3 deals with the IoT data flow diagram. Data initially comes from the IoT- 
enabled devices and IoT appliances, and then through IoT gateway, it goes to a 
cloud-based server. Here data has been analyzed via different analytic tools and 
learning and training methods. Then recommendation systems come into the picture 
for optimal actions; actuators are there for transferring the flow toward IoT appli-
ances for further processing. However, we can say that innovative IoT standards are 
vital for shuffling from today’s sensor networks into systems of intelligent sensors 
permitted with actuation types of machinery. These kinds of upcoming schemes will 
involve the “Internet of Intelligent Things (IoIT).” These are the successive evolu-
tions of networking to create the experienced ubiquitous, living, intelligent Internet 
connections. It seems necessary to give familiar objects the capability to understand 
their backgrounds and make conclusions freely [36–45]. At present, decisions or 
conclusions no need to forward to central decision-making nodes. Through great 
intellect of sensors and giving them the skill to turn by affording to the incentive 
professed by sensors, empowering the IoIT to reply improved time-critical condi-
tions, since the conclusions complete in a noncentralized manner.
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The Internet of Things helps us collect data, which is one of the most valuable 
resources today due to its role as a catalyst. When paired with another catalyst, arti-
ficial intelligence, as shown in Fig. 4, vast volumes of unstructured data can be eas-
ily shifted through, resulting in industry insights and well-informed decisions.

6.1  Artificial Intelligence for Intelligent Sensing

AI for intelligent sensing talks about the ML models to recognize valuable patterns 
or forecasts from the information collected by the intelligent sensors. For example, 
active sensor learning dynamically increases class volumes identified by the model. 
As the data is composed in a real-time environment, a predefined approach for data 
acquisition must follow episodic retraining or careful querying [32–36]. 

Fig. 3 IoT Data workflow diagram
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Unsupervised models are best suited for active learning schemes, aiming to catego-
rize events with no prior knowledge with numerous dissimilar ambient sounds.

6.2  Decision Tree in IoT

DT solves classification problems by applying sorting techniques based on respec-
tive features. In DT, numerous procedures are used to find the most attractive feature 
that best splits the training examples; some are information gain and Gini index. 
The complete process of a DT is as follows: first, pre- and post-pruning applied to 
reduce the tree size; second, searched space among the objects adjusted; third, opti-
mized search model employed to eliminate the redundant features; and fourth, a 
structure of resultant tree transformed into an appropriate data structure like set of 
rules. DT effectively applied IoT-based real-time applications such as pattern recog-
nition, decision-making, environment monitoring, detection of security parameters, 
healthcare management, etc.

6.3  Random Forest in IoT

Random forest (RF) comes under the category of supervised learning models. RF 
consists of numerous trees built randomly and then skilled to make a vote for a good 
class. At last, the most voted class is elected as the final classification result. In 

Fig. 4 Artificial intelligence classification
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general, RF utilizes decision trees to build subset rules for voting, so the result clas-
sification is the average of the DT results. Besides, RF computational accuracy 
overcomes the feature selection where it requires the fewest input parameters, but it 
cannot be applicable in real-world applications. RF models were highly applicable 
to IoT devices in various domains. For instance, RF models skilled with features 
obtained from the network traffic correctly recognize IoT device categories because 
RF precisely holds real-world implications for correctly categorizing unauthorized 
IoT devices.

6.4  Clustering

K-means – the main goal of k-means is to cluster the unlabeled data features into K 
number of clusters or sets; here, data points fitting to the identical cluster must have 
some likenesses. Typically, k-means is a fast and highly scalable ML technique. In 
some cases, employed MapReduce to analyze the several minor datasets then offers 
a cluster approach for a high dimensional of small data based on the K-means pro-
cedure [39–41]. Researchers designed the K-means cluster and then categorize 
travel pattern consistencies.

Density-based spatial clustering of applications with noise (DBSCAN) clusters 
the unlabeled datasets based on the data point density (data point with the highest 
count of close neighbors) values. It is a widely used clustering system with several 
real-world requests like anomaly exposure in temperature data, traffic control, emo-
tions recognition, and X-ray crystallography.

6.5  One-Class Support Vector Machine (OC-SVM)

OC-SVM comes under a semi-supervised technique, and it is an extension for 
SVMs. It generates a boundary line among the trained data when the new data after 
some operations lie outside the boundary line commented as an outlier or anomaly. 
Because of its nature of work, OC-SVMs are useful in anomaly detection in WSN, 
network intrusion detection, and IoT-based machine performance evaluations.

6.6  Ensemble Learning Models in IoT

Ensemble learning (EL) combines various basic classification practices and pro-
duces a collective, effectual output. Research work on EL experiments shows that 
learning models vary by precise application. So, the research community starts 
combining various dissimilar classifiers to expand precision. Moreover, EL models 
use numerous learning techniques which lessen the variance, robust in contradiction 
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of overfitting. EL has been effectively used for online intrusion and anomaly detec-
tion in IoT-based environmental datasets and evaluating real-time datasets for accu-
rate IoT devices’ decision-making.

6.7  Neural Networks

Neural networks (NNs) with the condensed representations are the quickest models 
to process the new data instances. From the innovations, NN has diverse NNs with 
a distinct structure and appliances. The feed-forward neural network (FFNN), also 
called multilayer perceptron, is considered the most common type of neural net-
work in functional appliances. In FFNN, every layer’s activity is determined through 
the nonlinear function or active function. An FFNN with a minimum of two hidden 
layers can estimate a random mapping from a finite input space to a finite output 
space with sufficient hidden units. Nevertheless, the issue is detecting the optimal 
weights for an FFNN comes under the NP-complete problem. The model has vari-
ous learning approaches, like adaptive moment estimation, stochastic gradient 
descent, adaptive slope, Nesterov’s accelerated gradient, adaptive delta, and 
RMSProp. FFNN in IoT applies as a solution for energy efficiency, decision- 
making, feature selection, energy management, reducing computation complexi-
ties, etc.

6.8  Support Vector Machine (SVM) in UIoT

SVMs perform classification by forming the splitting hyperplane among two dis-
tinct classes by calculating the distance’s data attributes. SVMs are chosen for large 
datasets with many feature attributes but contain tiny sample points. The main 
advantage of SVMs can perform in real-time intrusion exposure and then inform the 
training patterns energetically. SVM variants like QS-SVM, CE-SVM, and SVDD 
are widely used in numerous security applications like an outlier and intrusion 
detection; moreover, they are effective in memory storage with less time complexity.

6.9  Internet of Intelligent Things (IoIT) for Social Networks

Social media plays a crucial role in a current digital world, where millions of people 
regularly participate, connect, and express their ideas, views, and suggestions. With 
this connection and sharing of ideas, many people can answer complex issues more 
efficiently than single individuals. Nowadays, intelligent sensors are automatically 
categorizing the actions of crowded people in real time. IoT turns out to be an 
enabled model for other networking forms than computation like IoIT and robotics 
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as a service in another side of the networking world. These novel models efficiently 
add cleverness to the things linked to the Internet or consider things as robots, 
cobots, services, and users. Employing principles studied in social networking to 
the IoT might bring tremendous changes as well as advantages.

Usually, humans and robots, or a mixture of them, form web communities  – 
however, such groups are shaped by intelligent avatars in the virtual world of the 
IoT. Continuous research links other biological creatures, automated to be proficient 
in intelligent processing, into social networks. Co-location object relationship, 
social object relationship, and ownership object relationship are examples of SIoT.

6.10  Principal Component Analysis

Principal component analysis (PCA) orthogonally plans data facts onto an 
L-dimensional linear subspace, termed the principal subspace. PCA deals with 
high-dimensional datasets based on reiterative expectation expansion practice and 
data compression; data visualization comes under PCA applications. Hence, PCA is 
considered the most crucial pre-processing procedure in ML.

Canonical correlation analysis (CCA) variant of PCA deals with two or more 
variables. Here the main goal is to recognize a consistent pair of extremely cross- 
correlated linear subspaces. Hence, inside one of the subspaces, there is a relation-
ship among each factor along with a solitary component from the other subspace.

6.11  Bagging

The bagging objective is to enhance the precision and stability of ML-based tech-
niques and then diminish the overfitting. In this method, training datasets are engen-
dered by arbitrarily selecting data points from the unique training set with substitutes. 
So, on each originally produced training set, an ML practice is trained. In ML, there 
are numerous approaches like DT, RF, and neural networks, for which the bagging 
method advances the outcomes.

6.12  Artificial Intelligence in Analytical Skills (IoT)

Various business organizations have hired analytical skills for quite a few decades; 
nowadays, numerous organizations attract to planning their AI abilities. From the 
past few decades, organizations/companies synthesize their skills for efficient utili-
zation of data and their statistical analytics and quantitative procedures to progress 
decision-making. However, currently, those companies are mainly engrossed in dis-
covering and operating AI to strengthen each other. AI is not statistical, like ML and 
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DL, which quickly increases supremacy besides demand [29–34]. Analytics- 
oriented clusters inside the administrations may want to concentrate their care 
mainly on these machineries or obtain novel skills in nonstatistical portions. The 
innovation analytics has transformed into various versions, some of them men-
tioned below.

Analytics 1.0 – it is an age of artisanal expressive talent and the initiation of 
scrutiny and writing utensils. In this stage, it conquered the commercial analytics 
for years, and the price stayed mainly determined by the objective of interior deci-
sion provision rather than progressive analytical abilities. Analytics 2.0 – this stage 
big data analytics stands like Hadoop, and then information-based innovations such 
as Google and Facebook led to data experts’ advent. The main intention is to shift 
from “internally designed decision support” to “data products” designed for the data 
and then analytics for use by clients. Analytics 3.0 – large-scale corporations make 
data, then analytics-based productions, and then analytical events with numerous 
ML models. Analytics 4.0 – AI and cognitive-based models are heavily applied in 
analytical sophistication by various organizations. It adopts various model accuracy 
levels and applies with AI models and superior use of self-rule in the performance 
of approaches as automated ML. Some reasons for adopting AI into analytics are a 
mixture of skills and internal partnerships needs AI [34–42]. For instance, computer 
knowledge requires understanding the embedded learning data models. Another 
reason is that accurate data analytics with immense data processing and cutting- 
edge statistical models are required. ML is the central part of many approaches to 
AI and analytical techniques. The usage of ML in analytical procedures is started 
several years back and may be more aware of predictive analytics. ML uses super-
vised learning where both the creation and results from values are known.

AI is steadfast on the rise and will play a considerable role in analytics 4.0 
because of its potential in transforming business models; hence, the influence of 
analytics 4.0 will possibly be greater and also higher unsettling than preceding auto-
mation evolutions. Moreover, organizations that shift to analytics 4.0 more fast- 
track than those that do not apply any AI model. The procedure toward understanding 
AI achievement starts with the primitive consideration of AI, how AI will influence 
creativity, the new abilities, and what a workable act policy should be applied. 
Businesses that control their present analytical abilities can have a much quicker 
and more active start with AI.

6.13  Deep Learning for Analytics (IoT)

Due to the development of various networks and miniature technologies, IoT-based 
devices collect massive sensed data from surrounding environments where they 
deploy. Moreover, depending on the applications, these IoT devices/objects will 
result in fast and real-time data streams. Here, deploying analytical models on such 
substantial data streams for finding original information, forecasting forthcoming 
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structures, and then taking control of results is vital. It makes IoT applications a 
well-intentioned standard for business and a quality-of-life enlightening skill.

From the past few years, most of the IoT appliances are designed with dissimilar 
research fields such as military, smart city, healthcare, and agriculture. The success 
of these applications is because of intelligent learning mechanisms for prediction or 
data analytical outlines. DL has been aggressively employed in many IoT appli-
ances in present times with consideration of various ML tactics. The combination of 
DL-IoT is considered a top strategic technology in future applications. The main 
reason for implementing DL in traditional ML is that it quickly addresses the emer-
gent analytical services needed in real-time IoT appliances [40–44]. Besides its 
variant’s derivatives big data, the expansion of IoT needs stakeholders to identify 
their meaning, building blocks, abilities, and challenges. There is a strong collab-
orative relationship between IoT and big data: IoT is a significant information pro-
ducer for big data. Similarly, it is a significant mark for extensive data analytical 
skills to expand the methods and then services of IoT applications.

To better understand IoT-based data analytics requirements, it needed to deter-
mine the features of IoT data and how they dissimilar from those of big standard 
data [40–44]. Some of them are mentioned below:

 1. Large-Scale Streaming Data: IoT deployed with vast numbers of devices placed 
in distributed manner collects enormous data from IoT applications, leading to a 
high volume of continual streaming data.

 2. Heterogeneity: IoT is a heterogeneous connected network, so numerous IoT data 
acquisition device assembles dissimilar result in data heterogeneousness.

 3. Time and Space Relationship: At present, a maximum of IoT appliances real- 
world based, here sensor devices involved to a definite position, then have a 
position and timestamp for every single data substance.

 4. High-Noise Data: Due to dynamic environment changes, miniature error bits, 
and noisy data produced in IoT requests, before applying them to any decision- 
making systems, it needs to eliminate them; otherwise, it will affect the outcome 
results.

While obtaining confidential information from big data is a talented technique to 
improve our lives’ excellence, it is not a simple, straightforward job. There is a need 
to go outside the outdated inference learning models’ abilities, innovative skills, 
practices, and infrastructures to deal with such composite and thought-provoking 
tasks. Fortunately, due to the contemporary developments in ML and DL variants, it 
is easy for big data analytics and information abstraction appropriate for IoT appli-
ances. IoT appliances like fire detection and vehicular identification need fast and 
continuous streaming data for quick movements to accomplish their targets.

Numerous researchers have projected methods and outlines for fast real-time 
streaming data analytics that influence cloud setups’ abilities than its services. As 
mentioned earlier, appliances need fast analytics in slighter-scale platforms such as 
fog/edge computing for the IoT. For example, healthcare-related applications must 
make quick decisions on a particular time instance; otherwise, it may cause a 
patient’s loss. These kinds of decisions should be maintained thru quick analytics 
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with multivariate datasets. Hence, accurate identification must be performed in IoT 
quickly and in real time to prevent fatal mistakes.

6.14  Edge Computing in IoT

In general, the connected objects in IoT generate vast amounts of data, collecting 
and processing that much of data at one of the appropriate/suitable objects to turn 
data into useful information. Hence, nowadays, the entire IoT setups apply signifi-
cant data operations; big data support IoT applications since the tribunals of gigan-
tic sensing then stimulate information maintained in IoT.  Also, IoT collects 
unstructured, multivariate data that needs additional analysis to be abstract the valu-
able information [38–44] because of the heterogeneous connections. With the rapid 
development of various technologies, IoT becomes the next technology revolution; 
however, it will confuse ample data storage, processing, and systematic analytical 
skills. IoT employs real-time applications to work with continuous streaming, dis-
turbing the data storage dimensions in numerous establishments. Hence there is a 
need for additional data centers for handling collected data from IoT appliances. 
One probable answer is to transfer the information to the cloud via leveraging the 
application platform as a service. Nowadays, cloud computing is one of the well- 
established technologies, and it offers computing facilities or data storing on the 
Internet.

IT companies like Google Cloud, Amazon Web Services, and IBM Cloud analyt-
ics present cloud services. Cloud computing offers various advantages like profi-
ciency, capability, and flexibility to store and then use sensed data information. 
However, data from vast quantities of objects spanning a vast geographical region 
must be stored, managed, and analyzed proficiently in IoT-related appliances. 
However, when cloud computing is employed in IoT, new encounters will come into 
action. Fog or edge computing is talented enough to outspread cloud computing 
faster than it assists in overcoming mentioned issues. In brief, as a replacement for 
performing entire computational processes at the center of the cloud, fog/edge com-
puting offers computing and then storage facilities to devices at the edge of the 
system. The node/object with fog computing capability of any network can effi-
ciently perform the data storage, computation, and heterogeneous network connec-
tivity. These devices/objects are employed at any place of the network and assemble 
the IoT things with connected applications [38–45]. Usually, different kinds of data 
are collected from IoT objects and transferred to suitable object/place for additional 
analysis based on the application necessities. Here, the priority-based information 
that is required to be forwarded instantly can be managed on fog/edge computing 
nodes, which are nearer to the IoT campaigns that create significant evidence. The 
low- priority data records can then be forwarded to some collective nodes/objects for 
additional processing and then scrutiny. Besides the advantages of fog/edge com-
puting, it has limitations and tribunals while integrating IoT with fog/edge comput-
ing. Establishing fog/edge computation and assigning adequate resources to IoT 
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things is the most significant task. In IoT, every time, a minor number of services are 
demanded by IoT devices; hence each fog/edge service node contains inadequate 
communication, computation, and storage capabilities. In this context, every fog/
edge computing node should be optimally accomplished and composed for IoT 
devices to deliver demanded service resourcefully. How to adjust the allocated 
resources of a fog/edge node is also a tricky task. It means focusing on the resource 
managing between the fog and edge nodes is the hot research topic in IoT fog/edge 
computing. Hence, when applying fog/edge computing nodes to a particular ser-
vice, there is a need to verify the different requirements like energy consumption, 
node cost, and service availability. Also, safety and confidentiality problems in fog/
edge computing structure are also vital problems.

6.15  Federated Learning

Federated learning (FL) [46–48] is a machine learning methodology in which an 
algorithm trains across numerous decentralized edge devices or servers that keep 
local data samples without exchanging them.

As shown in Fig. 5, users use local data to train local models to update the global 
model at the base station. The global model aggregates and sends to the local mod-
els for training. These processes carry out again and again until the global model 
converges.

Fig. 5 Fundamental FL architecture
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Federated learning allows devices to learn from a shared model collectively. 
With proxy data, the shared model first trains on a server. The model is then down-
loaded and improved by each device utilizing data – federated data. The device uses 
locally available data to train the model. The model’s modifications compile into an 
update, which delivers to the cloud. The device retains the training data and indi-
vidual updates [48, 49]. The model compresses via random rotations and quantiza-
tion to ensure faster downloads of these updates. When the devices communicate 
their models to the server, the models integrate to form a single model. It is repeated 
for multiple cycles until the model is of good quality.

The following is the technique for federated learning as shown in Fig. 6:

 1. A training model will send to the devices.
 2. The devices are programmed to learn from local data.
 3. The devices give the server encrypted updates on the parameters.
 4. The devices are grouped by the server. The server aggregates the updates it 

receives from each set of devices to conduct a single update to the current model 
for each group.

 5. The new updated model is delivered to the devices for on-device testing (again, 
the notion of decentralization is at play here), and a fresh round of training 
follows.

Fig. 6 Process of FL
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Advantages of Federated Learning
Here we are discussing some of the FL benefits [47]. Firstly, FL allows smartphones 
to learn a shared prediction model cooperatively while keeping the training data on 
the device rather than uploading and storing it on a central server. Secondly, it brings 
model training to the edge, to devices like smartphones, tablets, IoT, and even 
“organizations” like hospitals that must adhere to tight privacy regulations. It is a 
significant security benefit to keep personal data local. Thirdly, it allows for real- 
time prediction because prediction takes place on the device itself. FL eliminates the 
time lag caused by sending raw data to a central server and then shipping the find-
ings back to the device. Fourthly, because the model stores on the device, the predic-
tion process can continue even if there is no Internet connection.

7  AI-Based Trustworthiness in IoT Systems

From the inclusion of IoT, many of us thought IoT turns human living more com-
fortable and stress-free. However, some researchers stated that IoT means “Internet 
of Garbage” because it consists of malware, copyrights, spam, etc. However, it 
builds with improved communications, better address, strict moderation, and effec-
tive community administrations. After collecting the information from the garbage- 
liked network, finding appropriate value is the most significant task. It is a known 
fact that IoT is rapidly growing and makes novel demands. From the above discus-
sion, big data analytics, real-time monitoring with streamed data, and another criti-
cal discussion are efficient communication capabilities and ensuring security 
requirements in such a large-scale network. The deployed software applications 
with appropriate network connections should also be secure.

Clients and operative workers of smart IoT objects will be highly susceptible 
since their data is accessible on a network. IoT devices and services have three key 
issues – data confidentiality, privacy, and trust. The IoT object/device must autho-
rize with an entity or person before starting data sharing and access to service. The 
model of securing IoT systems and their related components is called cybersecurity. 
Cybersecurity protocols have the most important in dealing with miniature devices, 
where IoT-based cybersecurity systems mostly avoid attackers stealing sensitive 
data. There are countless cybersecurity approaches like cryptographic protocols, 
firewalls, antivirus, intrusion detection systems, and scanners, which secure socket 
layers. ML, DL, blockchain, and quantum-resistant crypto-techniques profoundly 
apply to IoT schemes for better security. Also, some issues have happened recently, 
like small IoT wearable devices collect user’s data, which are transformed to device 
providers since it connects with their respective databases [43–45]. Then these 
device providers sell the collected user data to other business companies without the 
user’s permission. Business companies make continuous notifications based on the 
information and advertisements via social networks to that particular user. How to 
avert these kinds of data ethics in IoT-based schemes is also the most significant 
challenge apart from security requirements.
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8  AI Tools for IoT

Sl. 
no. AI tools Features

1

SensiML Analysis 
Toolkit [50]

1. Build small algorithms that run on IoT endpoints rather than in the 
cloud
2. Acquire datasets that are reliable, traceable, and version-managed 
systems
3. To quickly generate autonomous working computer code, this tool 
can be used for advanced AutoML code generation
4. Option to select our desired interface and AI knowledge level, keep 
complete control over our algorithm, and design edge tuning models

2

Vertica Analytics 
Platform [51]

1. Analysis of communication and network
2. Analysis of embedded systems and customer behavior
3. Analysis of IoT systems and scalable, SQL-compliant time series 
analysis

3 DewSim [52] 1. SCE resource management – computing capabilities of intelligent 
devices fluctuate due to owner contact computing capabilities
2. Computing and networking practices use many resources on 
intelligent devices
3. Data is uploaded/downloaded from/to nodes via WLAN

4 iFogSim [53] 1. Network communication can be done
2. Mobility and edge processing can be simulated
3. Some parameters like energy efficiency, network protocols, and 
heterogeneity cannot be exhibited

5 IoTSim [53] 1. In IoTSim, IoT devices are modeled, and performance analysis 
realized
2. But, edge devices, energy efficiency, mobility, communication 
protocols cannot be modeled

6 IoTSim-Edge [54] 1. It allows researchers to model mobile IoT devices
2. It allows researchers to model a variety of IoT protocols
3. It is in favor of a high-energy-consumption profile
4. It allows for the abstraction of graph modeling

9  Applications of the Internet of Things

From the introduction, Internet of Things (IoT) applications convey incredible value 
into our daily life. With the new-fangled innovations in wireless networks, intelli-
gent sensors, and revolutionary computing capabilities every day, a new IoT-enabled 
product proclaims. IoT applications project to train billions of everyday things/
objects with connectivity as well as intelligence. This section attempts to overview 
and discuss numerous domains like intelligent homes, structural health monitoring, 
environment, logistics, agriculture, health, lifestyle, and industry domains with IoT 
applications.
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9.1  Agriculture

As the world’s population increases, the demand for a food source tremendously 
raised. Developed governments and research institutions are helping agriculturalists 
to use cutting-edge methods to raise food production. Smart farming is one of the 
fastest-growing fields in IoT. Here farmers are using expressive visions from the 
data to yield a healthier return on investment. Smart irrigation determines the quan-
tity of moisture in the soil, releases the water with irrigation pipes for controlling 
water-usage, and regulate traditional peats with the help of IoT sensors. In green-
house control, the weather-related information of a greenhouse could monitor and 
control to harvest the most delicate situations for growing plants. The stored sensi-
ble facts from various sensors in a centralized server where they analyze then 
improve different control strategies.

9.2  Augmented Reality

Augmented reality (AR) enhances how persons require, realize, and display infor-
mation without disturbing the real world. Mobile augmented reality (MAR) with 
superimposing virtual elements over fundamental substances on the screen gives 
added value and enhances the interface with reality. It can increase efficiency and 
manufacture services by allowing staff to see the most relevant sensor data in the 
control panel like the view option. US-based DAQRI designed a helmet that can 
protect workers from falling objects and assist them in avoiding mistakes. Besides, 
the DAQRI device is also proficient in diagnostics besides sensing risks with ther-
mal vision. Caterpillar, the heavy machinery company, uses AR technology to look 
at the machine and also instantly see a visual overlay that states when several mech-
anisms need to replace filter operations and how much fuel is needed. User booklets 
and technical papers are infamously tedious, so Bosch company incorporated AR to 
create overlay text, videos, and augmented 3D simulations over a piece of equipment.

9.3  Virtual Reality

With the continuous growth of virtualization, the number of connected devices with 
the Internet is increasing significantly. Since virtual reality (VR) shows great poten-
tial to revolutionize the market, compared with traditional video systems, VR has 
ultrahigh definition with apparent, dynamic changes that possess significant chal-
lenges for realizing such potential. Smart cities are highly involved with virtual 
reality technologies, and China has previously established VR-based smart cities 
with virtual and real-world guidelines for emergency department fire monitoring. 
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Simultaneously, Japan implemented the Tokyo virtual lab, which simulates traffic 
situations by integrating street and traffic information; moreover, it also assists the 
vehicle driver in critical situations.

9.4  Mixed Reality

Mixed reality (MR) combines VR and AR services to build physical, virtual objects 
that exist and intermingle in real time. Recent surveys concluded that companies’ 
investment in MR would reach more than 4.4 billion dollars by the end of 2020. 
MR-based Microsoft HoloLens and wearable holographic computers are used in the 
education and training phases. With 3D modeling with MR, professionals can 
effortlessly shape their projects up in a shared virtual atmosphere. In healthcare, 
MR has numerous training and education applications like surgeries taught remotely 
by professionals as they do them in real time.

9.5  Smart Locks

IoT in smart home security has empowered operators to do away with traditional 
locks and make interest in smart locks. Since smart locks do not require any physi-
cal key to open, an alternative operator can open the doors with biometric info like 
iris scans, fingerprints, and face mappings.

9.6  Smart Factories

Smart factories involve enterprise asset management  – IoT-based power-driven 
asset management increases operational efficiency, optimizes resources, and better 
controls the sales lifecycle, compliance procedures, and receptive bright atmo-
spheres. WebNMS is an example of an IoT smart factory platform that affords 
energy managing to improve businesses’ energy ingesting.

9.7  Intelligent Road Toll and Traffic Monitoring

With the accumulated data from the implanted sensors, cameras, traffic regulators, 
and IoT devices, we can effortlessly automate the timings of road traffic lights on 
busy roads and highways. IoT devices enable collecting road toll when a car enters 
into its zone and automatically lift the barrier after successful toll collection like 
fasting.
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9.8  Smart Intelligent Grid

In electric power generation, IoT is used resourcefully to monitor the power genera-
tion of various power plants. Moreover, IoT-based schemes are effectively applied 
to observe substations, towers, electricity consumption, and dispatch lines. IoT 
devices also assist clients with intelligent meters by measuring different parameters 
and networks. High processing-capable IoT devices can enhance the intelligent grid 
performance in processing, disaster recovery, reliability, and warnings.

9.9  Intelligent Robotics

The Internet of Robotic Things (IoRT) has numerous applications and can analyze 
and optimize machine performances in real time from the data facts collected from 
intelligent sensors. Service and humanoid robots use logistics delivery, rescue, agri-
culture, security, health and defense, and entertainment. However, the recent pan-
demic crisis has shown that much more advances are needed in IoRT technologies.

9.10  Waste Management

Most metropolitan cities face waste management issues, one of the most inefficient 
actions in a city. The techniques used in waste management are not identical; IoT 
strategies can support municipal waste hoarders in monitoring their trucks’ sched-
ules, the volume of waste dumps, and the course’s overall proficiency.

9.11  Near-Field Communication (NFC) Payment

Nowadays, every retail payment is made over NFC, since in NFC-based payments, 
the client/customer can use his/her NFC-enabled intelligent devices to make con-
tactless payments. It reduces the time required to make the payment and increases 
the security and indemnity of payment.

9.12  AI-Enabled Internet of Underwater Things

IoUT (Internet of Underwater Things)  with intelligent sensors and autonomous 
underwater vehicles are relevant to detect underwater treasure and enemy subma-
rines. IoUT also assists in the detection of minerals, corals, reefs, and metals. In 
general, finding underwater resources requires sensors with video capturing devices 
that are fulfilled by IoT schemes.
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9.13  Intelligent UAV

Because of the UAVs’ high-range agilities and autonomy, they can offer a wide range 
of amenities to IoTs. UAV-based IoT schemes efficiently apply for crowded surveil-
lances with face recognition and mobile edge computing with inadequate energy 
power and dimensions. Moreover, in auto spacing, UAVs with theory-based game 
platforms are highly applied for locating terrestrial stations. UAVs with AR/VR/MR 
technologies allow isolated operators to navigate in explicit scenes of interest. UAVs 
are also helpful in optimal clustering of IoT devices and reduces transmission power.

9.14  IoT-Based Forensic Applications

There are countless models implanted for IoT security and privacy with available 
resources; however, it is still an open research issue. Nowadays, a little focus shifted 
toward digital forensics in IoT. Since IoT security is still developing, there are high 
probabilities of breaches in IoT. Active digital forensics procedures must be estab-
lished in equivalent with security explanations to track attacks and find reliable digi-
tal evidence to expose perpetrators. Inspecting the VitalPatch will disclose associated 
forensics objects of individuals like ECG trends, heart rate, activity monitoring, port 
scans, timeline logs, etc.

9.15  Intelligent Healthcare Systems Using IoT Systems

Wearable IoT devices allow constant monitoring of physiological constraints, which 
assist in ongoing health than fitness monitoring. Moodable is a mood-enhancing 
device to monitor and improve our mood in a day. In detail, moodable is a head- 
mounted wearable that sends low-intensity current to the brain, elevating our mood. 
Ingestible sensors – miniature-sized sensors – monitor the medicine inside our body 
and advise us if it notices any anomalies, which helps diagnostic patients with early 
warnings. Moreover, it is applicable in reducing emergency room wait time, enhanc-
ing drug management, tracking patients, and ensuring critical hardware staff 
availability.

9.16  Intelligent Disaster Management

Intelligent disaster management helps in minimizing potential damage from upcom-
ing disasters. Besides, it confirms instant and suitable recommendations to the vic-
tims for fast regaining. Nowadays, the IoT skill has reached its advanced level and 
has probability to be very beneficial in disaster conditions. IoT system with satellite 
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communication and geographic information arrangements helps in risk minimiza-
tion. It suggests prevention, makes early warning, and utilizes social media to avoid 
awareness creation, relief and response measures, and missing person search.

9.17  Music

Up to date, most of the IoT applications are designed for environmental monitoring, 
industrial manufacturing, energy optimization, intelligent home automation, intel-
ligent healthcare, and transportation. But in present day, it is gradually valuable for 
the music technology industry also. Google’s Universal Orchestra and MIT’s patch-
work are some notable examples of IoT-based music innovations. SoundWire and 
JackTrip are some of the remote performances designed by well-known multina-
tional companies, enabling instrumentalists in different locations to accomplish as 
if they were in a similar room. In rhythmic vibration, actuators collect data and then 
start to tremble with a rhythm and then intensity relative to that of the music play-
ing, and this aids wearer to sense the rhythm of the music. With auto-tune instru-
ments, instrumentalists can play tools over the allied device. The device is implanted 
with sensors that sense the traces on the screen of the devices. It then auto-initiates 
the similar movement on essential musical tools, letting instrumentalists play tools 
remotely over the device.

Different applications have been described in Fig. 7.

Fig. 7 Internet of Things application domain
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10  Consumer Electronic Products for IoT

Product 
name Product picture Features Applications Limitations

Bit 
Defender 
Box

Source: http://iotlineup.com/

Provides high-security 
solutions for scan and 
efficiently blocks 
incoming threats. It 
protects all our IoT 
devices, even when we go 
out! Acts as an intelligent 
wireless router

Smart home 
safety, smart 
automation 
network safety

Battery 
optimization
Bugs, 
overreliance 
on technology

SmartMat 
intelligent 
yoga mat

Source: http://iotlineup.com/
category/
iot_health_and_fitness

SmartMat notices when 
we are out of position and 
then gives us immediate 
advice on precisely our 
position

Health and 
fitness, exercise 
equipment, smart 
healthcare

Compatibility 
and 
complexity, 
cost, security

Lockitron 
Bolt – 
smart lock

Source: http://iotlineup.com/
category/
iot_consumer_security_cameras

Provides home security 
with intelligent lock 
options when far away 
from our home 
environment

Home security 
and safety, home 
smart healthcare, 
consumer smart 
locks

Cost, 
integration, 
lack of 
connectivity 
standards

Philips 
Hue Hue 
Go

Source: http://iotlineup.com/

It comes under an 
intelligent lighting 
scheme. It continuously 
changes the way we 
experience light with 
intelligent controls

Home energy 
management, 
home 
computerization, 
indoor lighting

Data breach, 
overreliance 
on technology, 
security

Airfy 
iBeacon 
for home 
automation

Source: http://iotlineup.com/

It permits us to make our 
home smart using one or 
more Wi-Fi routers with 
optimal WLAN 
connections

Home 
automation, home 
appliances, 
robotics

Battery 
optimization
Bugs, cost

Smart door 
locks

Source: http://iotlineup.com/
category/
iot_smart_locks

It allows a console to 
open the door, 
wireless-based custom 
access codes for explicit 
members

Home 
automation, 
security, smart 
city

Compatibility 
and longevity

B. Chander et al.

http://iotlineup.com/
http://iotlineup.com/category/
http://iotlineup.com/category/
http://iotlineup.com/category/
http://iotlineup.com/category/
http://iotlineup.com/
http://iotlineup.com/
http://iotlineup.com/category/
http://iotlineup.com/category/


35

Product 
name Product picture Features Applications Limitations

Smart 
Bluetooth 
Trackers

Source: http://iotlineup.com/
category/
iot_smart_locks

Smart Bluetooth-based 
devices, with the help of 
short-range indications, 
digitally tie necessary 
items to our smartphones. 
We will get an immediate 
alert (chirp, beep, bleat, 
or make noise) if you 
start to leave somewhat 
behind, and a moveable 
app will direct you back 
to the unstable object

Health and 
fitness, smart city, 
consumer smart 
locks

Lack of 
standards for 
authentication, 
data breach, 
connectivity 
issues

Smart bike 
tracker

Source: http://iotlineup.com/
category/
iot_smart_locks

These devices track a 
bike’s place and then 
send alarms if the bike 
leaves a nominated zone. 
In addition, smart locks 
also allow multiple riders 
to share a single bike

Home security 
and safety, home 
computerization, 
consumer smart 
locks

Need efficient 
results on ride 
analytics and 
crash alerts

Amazon 
Dash 
Button

Source: http://iotlineup.com/
IoT_home_applinaces

It is one of the finest 
inventions of IoT, which 
makes life simple and 
relaxed. It helps us make 
our orders quickly and 
correctly without missing 
and reorder from a high 
brand

Home security 
and safety, health 
and fitness

Overreliance 
on technology, 
security, cost

Ring 
Alarm 
Smoke and 
CO 
Listener

Source: http://iotlineup.com/

It is a device that allows 
manufacturing companies 
to accomplish their 
carbon monoxide 
indicators with more 
comfort. It offers a 
warning when our smoke 
indicator alarms

Home security 
and safety, 
consumer 
appliances, home 
automation, 
consumer smart 
locks

Overreliance 
on technology, 
connectivity

WeMo 
Insight 
Smart Plug

Source: http://iotlineup.com/
IoT_home_applinaces

It is an IoT-based 
invention that aids us in 
regulating our lights and 
applications by revolving 
them on or off. It also 
creates guidelines, 
timetables, and energy 
consumed by our devices 
and helps us protect our 
home through providing 
the required information

Home security 
and safety, home 
automation

Data breach, 
compatibility, 
and 
complexity, 
cost, security
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Product 
name Product picture Features Applications Limitations

YI 
Security 
Home 
Camera 
Baby 
Monitor

Source: http://iotlineup.com/
category/
iot_home_security_and_safety

This device allows us to 
access our camera with a 
PC and alerts based on 
gesture or sensitivity. 
Moreover, increases the 
night vision and provides 
the storage option on the 
cloud

Home security 
and safety, home 
automation

Battery 
optimization, 
cost, 
connectivity

Foobot Air 
Quality 
Monitor

Source: http://iotlineup.com/
IoT_home_applinaces

It is an IoT-based air 
quality monitor device 
designed primarily for 
pollution sensitivity and 
calculates the humidity 
and temperatures
It continuously monitors 
made changes to improve 
the air quality and is 
easily implanted into 
homes or workplaces

Home security 
and safety, home 
automation

Overreliance 
on technology, 
unstructured 
data

Google 
Home 
Voice 
Controller

Source: http://iotlineup.com/
IoT_home_applinaces

It is a voice-based 
intelligent IoT device that 
allows us to control 
alarms, media (TV and 
speaker) volumes, and 
light

Home security 
and safety, garden 
equipment, home 
automation

Cost, 
complexity

Kuri 
Mobile 
Robot

Source: http://iotlineup.com/
IoT_home_applinaces

Kuri is known as the first 
home robot explicitly 
programmed for 
entertaining purposes. In 
addition, it intermingles 
with specific abusers to 
capture daily movements

Home security 
and safety, garden 
equipment, home 
automation

Overreliance 
on technology
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Product 
name Product picture Features Applications Limitations

Logitech 
Harmony 
Universal 
Remote

Source: http://iotlineup.com/
IoT_home_applinaces

This IoT-based smart 
device allows us to 
remotely control every 
media device, lighting 
device, and other 
intelligent devices. It 
contains nearly eight 
innovative remotes 
capabilities, which 
efficiently reduce 
complexities inside the 
house

Home 
automation, 
consumer smart 
locks

Overreliance 
on technology, 
cost

Particle 
Photon 
Wi-Fi with 
Headers

Source: http://iotlineup.com/
IoT_home_safety

It provides resources for 
an abuser to design 
accessible and build 
connection projects like 
easy plugins

Home security 
and safety, home 
automation

Overreliance 
on technology, 
cost, 
complexity

Logitech 
Pop – 
smart 
button 
controller

Source: http://iotlineup.com/
IoT_home_applinaces

POP allows users to 
control bright lighting, 
music, and speakers 
inside the house with 
push buttons

Home 
automation, home 
appliances, home 
energy 
management, 
remote controls, 
indoor light

Dara breach, 
security, and 
privacy
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Product 
name Product picture Features Applications Limitations

Ninja 
Sphere

Source: http://iotlineup.com/
IoT_home_applinaces

It is a miniature-type IoT 
device that produces 
intelligent home 
connections without any 
wired arrangements

Home 
automation, home 
appliances
Other smart 
household 
appliances

Overreliance 
on technology, 
security

Hydrawise

Source: http://iotlineup.com/

It allows users to arrange 
schedulers for irrigation 
control and water saving 
with a connected mobile 
device

Home appliances, 
home automation
Garden 
equipment

Connectivity, 
security, and 
privacy

Singlecue
Gesture 
Controller

Source: http://iotlineup.com/

It is used to manage TV, 
media, and smart home 
devices via touch-free 
motions

Home 
automation, home 
appliances
Remote controls

Overreliance 
on technology

Skydrop

Source: http://iotlineup.com/
IoT_home_applinaces

Skydrop is a fascinating, 
intelligent IoT device that 
automatically adjusts to 
local weather and 
controls sprinkler 
watering with perfect 
lawn season

Home 
automation, home 
appliances
Garden 
equipment

Overreliance 
on technology, 
data breach

Mr. Coffee 
smart 
coffee 
maker

Source: http://iotlineup.com/
IoT_home_applinaces

It is an intelligent kitchen 
applicant who takes 
control from anywhere, 
makes schedules, 
monitors, and modifies 
the coffee-making 
procedure

Home appliances, 
home automation
Kitchen 
appliances

Overreliance 
on technology, 
connectivity, 
complexity

Edyn 
Garden 
sensor

Source: http://iotlineup.com/
IoT_home_applinaces

Edyn virtually connects 
peoples with the garden 
with intelligent sensors, 
and it tracks humidity, 
temperature, moisture, 
and lighting and then 
sends notices to our 
mobile

Home 
automation, home 
appliances
Indoor plants, 
garden equipment

Connectivity, 
cost

Prodigio – 
connected 
espresso 
machine

Source: http://iotlineup.com/
IoT_kitchen_appliances

It takes guidelines from 
the mobile phone to brew 
rapidly, list brews, 
receive preservation 
warnings, and then track 
the capsule stock

Home appliances, 
home automation
Kitchen 
appliances

Cost, complex 
connections

B. Chander et al.

http://iotlineup.com/
http://iotlineup.com/
http://iotlineup.com/
http://iotlineup.com/
http://iotlineup.com/
http://iotlineup.com/
http://iotlineup.com/


39

Product 
name Product picture Features Applications Limitations

Anova – 
precision 
cooker

Source: http://iotlineup.com/
IoT_home_applinaces

It cooks our food based 
on a schedule timer and 
stops; no overcooking 
entertained

Home appliances, 
home automation
Kitchen 
appliances

Overreliance 
on technology, 
cost

Withings – 
blood 
pressure 
monitor

Source: http://iotlineup.com/

It is an IoT-based 
wireless blood and heart 
rate checker anytime 
from anywhere

Health and fitness
Healthcare

Data breach, 
security, and 
privacy, cost

Mimo – 
smart baby 
monitoring

Source: http://iotlineup.com/

Mimo is an IoT-based 
baby monitor that uses a 
wise washable crib sheet, 
and parents can follow 
baby activity and 
movements from their 
connected, intelligent 
mobiles and tabs

Health and fitness
Baby monitors

Cost

11  Open Research Challenges for AI-Based IoT Systems

Challenge 1: How Computing Power Is Handled in AI-Based Industry 5.0?
Technical as well as industrial companies are suffering from computing power chal-
lenges. IoT devices collect a vast volume of data to build AI models to examine 
these massive data with ML and DL; there is a need for consistent power consump-
tion. It is a big trouble for product manufacturing and start-up companies. In most 
cases, the quantity of power need for a learning algorithm makes the developer 
away. However, ML and DL are outstanding AI components with high precision but 
efficient but require increasing cores than GPUs. The researcher has implemented 
numerous ideas and schemes to progress ML and DL models in a wide variety of 
appliances. Besides, cloud computing with AI and parallel system processing with 
AI is also used for efficient power ingesting.

Challenge 2: How AI Overcomes the Technical Challenges in IoT?
Up-to-date many research-oriented models are planned for IoT. However, it still has 
many practical tasks like a heterogeneous network – IoT consists of numerous con-
nections to contact/communicate with different networks. Presently, there are profi-
cient, recognized platforms to hide the network arrays, but they suffer from 
complexity and power consumption. In SOA (Service Oriented Architecture), IoT 
faces enormous challenges from both performances and then cost restrictions. 
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Depending on the applications, the number of connected devices increases, and 
scalability, data pre- processing, service provisioning, and networking are complex. 
In particular, the transmission of sensed data across heterogeneous networks also 
causes recurrent delays and communication problems. There is a need for high auto-
mated standards that easily allow data collected from different devices and trans-
form proficiently inside IoT systems. More importantly, connected device 
collaboration among different entities needs proper addressing; identification and 
optimization are still an open research issue. An IoT is slightly affected by newly 
implanted objects; hence it needs suitable integrated mechanisms like unified data 
structure. AI-based approaches employ meaningful IoT data features, but they suf-
fered from complexity and power ingestings.

Challenge 3: How Will Industry 5.0 Handle Dissimilar Implementation 
Strategies?
Based on the recent progression in various network technologies, AI can transform 
any industry and business field to digitalization. However, one main issue of AI is 
the lack of ideas for implementation. A strategic approach is needed to succeed in a 
business environment like detecting progressive areas, objects with benefits, con-
tinuous failures, etc. To get the knowledge of over-mentioned issues, company man-
agers, supervisors, and technical teams must have a broad knowledge of AI skills, 
advances, and limitations and keep an eye on present issues faced by AI. If compa-
nies follow these updates of AI-related information working styles, organizations 
effortlessly know the zones that AI can enhance.

Challenge 4: What Are the Challenges IoT Data Analytics Faced in 
Implementation, and How They Overcome?
In the above section, we discussed IoT analytics with ML and DL approaches. In 
some cases, the implementation of IoT analytics faces difficulties while handling 
time series-based data structures. IoT-based intelligent sensor nodes continuously 
gather massive static data samples for a long time, making it tough to find reasons 
for extrapolative analysis. Moreover, sighting proper storage space and then rapidly 
analyzing the stored data is difficult. It is a known fact that data is sensitive, with 
proper and exact approaches, and can provide helpful information of any company’s 
product. Hence, data scientists are required to be very expert in data analysis, and 
DBA-oriented skills.

Challenge 5: How AI Solves the System Complexity and Security Challenges 
of Wireless Networks and IoT?
In any network, complexity plays a huge role, with the implementation of AI in 
communication architectures driving more upsurges of the intricacy of schemes. In 
industrial network case-specific ML and DL approaches employed to achieve the 
solitary goal ignore the remained objectivities. Moreover, with adequate resources, 
IoT devices transmit the data to higher levels without computing pre-processing 
operations. So, the implanted AI approaches in WSNs and IoTs must optimize soli-
tary objectives while superintending other limits like storage, link, processing, and 
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latency. The employed AI approach in one layer could also benefit or help in opti-
mization in another layer.

The main intention of utilizing AI for IoT is to examine network flow, finding 
security breaches like intrusion and anomaly detection before decision-making. AI 
helps to generate high-quality datasets which contain information of attack catego-
ries and then outlines. So, AI approaches based on first-rate datasets to secure IoT 
are highly infeasible. It should be renowned that obtaining a dataset for IoT safety 
training is more complicated, tough other domains.

Data Privacy concerns the proper handling of sensitive data, which is expected to 
be exposed in the era of AI-capable systems. There are numerous ways for informa-
tion leakage; in some cases, AI itself leaks data samples while performing different 
tasks at a time. So, maintaining privacy in AI is a risky task from both algorithmic 
and human perspectives. Encoding, decoding, blockchain, quantum models, and 
shuffling algorithms will undoubtedly handle privacy issues in IoT and WSNs.

Challenge 6: How Will AI Produce High-Speed Intelligent Communication 
in UIoT?
UIoT is a complex heterogeneous network that includes dynamic AUVs, underwa-
ter magnetic inductions, and acoustic networks. The volatile atmosphere of the 
ocean is an unforeseen issue for the UIoT system: the topology and localization 
accuracy underwater affected by the actions of tides, wind power, and temperature. 
By employing AI-based approaches in UIoT, every network element of the UIoT is 
optimized and coordinated for communication and then makes the best use of 
deployed network.

Challenge 7: How AI-Based Industry 5.0 Changes in Product Management?
Radiofrequency identification (RFID) tags employ many industrial sectors for sup-
ply chain, product tracking, and delivery management. RFID tags are implanted on 
delivery products, and readers placed on the entire way to monitor. IoT pieces of 
machinery can afford improved flexibility in reader’s locations while permitting 
continuous interoperability among RFID-based appliances used by dissimilar per-
formers. These IoT appliances are primarily applied to retail companies to display 
product availability and then accurate stock records. More importantly, an amalga-
mation of sensors and biosensor with RFID technology may permit control produc-
tion methods and final product value in the food industry.

Challenge 8: Man Power
No matter how big a company it is, it matters how well a particular company 
employs AI in its zones where development is needed. AI is developing technology, 
so there is a need for specialists capable of handling and implementing the AI mod-
els. Hence, the companies make an additional budget for the training and hiring of 
a specialist in AI.

Challenge 9: Training AI
If the installed AI system collects sufficient information, it is ready for the training 
phase. It is dissimilar for every AI-based approach like model type, data structure, 
outcomes, and decision-making. In AI, there is no perfect model that is suitable in 
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all cases, and we must try every model; based on the outcome result, we determine 
which works better among all. Hence, if we push machines to learn more, we must 
first analyze more from the natural environment by implanting intelligent sensors 
with new features. Also, make reruns on proposed models repeatedly with every 
new choice, so AI models will learn automatically to improve performance.

Challenge 10: Connected Devices
Almost every field in the world transformed into digitalization with connected 
devices. However, simple IoT devices like intelligent sensors communicate with 
other sources with Bluetooth/ZigBee, and it still stands as a challenge to connect 
them with the Internet. Since connecting every device to the Internet is not an easy 
task, which needs reinstallation, replacement with new equipment, and advanced 
hardware machines. AI-based MQTT is a simple example for connecting devices 
with the Internet, not a simple procedure.

Challenge 11: Efficient Sensing
The urban environment consists of numerous factor combinations; for efficient 
monitoring of those factors, there is a need for heterogeneous multiple sensing mod-
els. In detail, they need a generalized framework for sensed data collection and 
display them in spatial and temporal characteristics from fixed and mobile sensing 
infrastructure and constant, arbitrary sampling. For instance, urban noise and air 
pollution zone detection need constant noise and air quality data samples from fixed 
intelligent sensor nodes. Compressive wireless sensing (CWS) exploits synchronic 
messages to diminish the broadcast power of each and convey noisily. Quality of air 
measurement forecasted data samples to a central node for data aggregation.

12  Conclusions

This chapter introduced a journey that started with understanding the vision pattern 
of AI-enabled IoT skills and then how it can be helpful in many parts. It also sup-
ports researchers and experts that recognize the design construction and AI algo-
rithms through IoT and state-of-the-art IoT countermeasures. It offers a complete 
discussion on a functional framework, then knowledge hierarchy for IoT, object 
identification, intelligent sensors, learning, and analytics in intelligent IoT-enabled 
systems. This chapter explores AI-enabled IoT paradigms that will be utilized to 
better humankind in the future era. Specifically, the far-reaching references of 
numerous works and then implementations will be observed to be essential accumu-
lations for engineers and administrations.
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IoT Ecosystem: Functioning Framework, 
Hierarchy of Knowledge, and Intelligence

Mobasshir Mahbub

1  Introduction

Via technical advancement, people around the world want to interact more through 
the Internet. IoT is now one of the most impressive applications as technology 
develops. This technology efficiently connects trillions of devices like sensors, actu-
ators, gateways, and controllers and provides countless applications for every 
domain. IoT is a technology that connects the real world via the Internet to the vir-
tual world. In all trades around the globe, IoT has a wide variety spanning from 
electronics, pharmacy, banking, fuel, electricity, and agriculture. With the progress 
of IoT, several new problems such as broad accessibility, availability, protection, 
and scalability emerge as well. The interconnection of items now seems simple to 
achieve this purpose, which causes challenges a few years ago. Development and 
obstacles are becoming increasingly relevant as also. Every day, IoT introduces a 
new feature to its description. It takes time for IoT to stabilize its boundary. IoT 
paradigms may be commonly categorized as business, manufacturing, and network 
applications. Any market technologies include household-device control, cars, 
smart wearables, integrated medical treatment, intelligent buildings, etc. Smart 
manufacturing and distribution systems, smart market and supply chain, factory 
automation, etc. are the major industrial technologies. Smart community, ecosystem 
security, smart climate, smart grid, etc. are the infrastructure-based technologies [1].

IoT environment or ecosystem is such a network that efficiently integrates all IoT 
equipment. It includes system integration, apps, controlling features, gateway, mid-
dleware, and server. All those components are connected to the IPv6 (6LoWPAN, 
NFC), Bluetooth low-energy (BLE), etc. via the protocol and interfaces of commu-
nications, including ZigBee, low-energy Wi-Fi, and MQTT.  A large number of 
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physical instruments are connected to a single system through the IoT ecosystem. 
These interconnected devices are rapidly growing. According to numerous ICT esti-
mates, by 2020 the number is projected to increase to 50–100 billion. Various con-
nectivity protocols connect the sensors and actuators with the gateway. The sensors 
also known as the preceptors collect all the data as environmental parameters and 
provide the gateway with all the detail. The actuator works on the environment and 
is directed by the gateway. Hundreds or even thousands of sensors and actuators can 
be managed through the gateway. The data flow between devices is often controlled. 
The controller manages several gateways and handles rich data processing such as 
classification, data measurement, and data conversion. The device then contacts 
middleware. The middling program carries out the task as to transfer all of your data 
to the storage server, evaluating your data, producing graphs and notes, maintaining 
protection and safety, monitoring and handling the whole network, and assisting the 
processing of all data at the middleware cloud. All implementations require middle-
ware resources and research information, such as smart cities and intelligent houses. 
The application API requires such facilities to be used. The program provides the 
customer with a complete IoT view [2].

This work aims to define IoT as an ecosystem by describing the diverse work on 
IoT and all elements such as apps, OS, middleware, IoT communication, and net-
work gateways. This analysis merged efforts in various sectors and provided an 
overview of relations between all sectors. This work, after acknowledging advances 
in IoT, discusses the elements that render IoT infrastructure and enable it to be 
effective. Several works regarding IoT were previously done. The work includes a 
comprehensive description of all elements that are integrated to create the IoT envi-
ronment and the knowledge hierarchy of IoT which includes data generation, puri-
fication, processing, storing, and analytics, relative to other IoT-related articles. This 
will assist new analysts and enthusiasts to obtain a simple understanding of how the 
various modules work altogether with features without diving through RFCs and 
standards. It offers a description of different innovations, integrated as an IoT trend, 
thereby revolutionizing the environment of real-life implementations such as smart 
cities and towns, e-healthcare, etc.

2  Related Works and Motivation

IoT was examined from different perspectives in this study. IoT’s developers dem-
onstrate how layers can be decoupled and the architecture can be tailored to struc-
tures, networks, protocols, and technologies. The design also allows IoT structures 
to calculate and work more modularly with abstraction. A comprehensive overview 
of various IoT equipment, operating systems, networks, and networking interfaces 
is performed which allows the best option to suit the need. The significant unan-
swered problems in the IoT have been answered after all the latest researches and 
experiments have been reviewed. The priorities of privacy concerns have been 
explained for IoT applications. For real-time data utilization, maintaining efficiency, 
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quality, and usability, there has been a discussion of the value and need of data ana-
lytics, the fog-edge-cloud computing in IoT. At last, the research shows how certain 
components are selected and how they all work together to provide an efficient IoT 
ecosystem.

The work of this paper varies from other works in terms of applications, gate-
ways, software, middleware, networks, and networking technologies because it 
gives an understanding of IoT as a full ecosystem. The IoT framework is generated 
together by all these components. A recent study [3] highlights IoT developments 
and diverse IoT implementations. The article [4] addresses various conception 
dimensions and problems of the operating system. There is an IoT development 
promoting survey that also discusses IoT testing questions [5]. The paper [6] intro-
duces an IoT design, protocols, and software literature review. Documents address 
the report on information technologies and protocols [7, 8]. Recent studies describe 
a detailed analysis of IoT middleware and application components [9]. However, no 
study or review or survey illustrated a detailed overview of the IoT ecosystem 
including almost all technical components of IoT with knowledge hierarchy. The 
work performed on this analysis is described below in comparison to current litera-
ture on the IoT study:

• This work first discussed the layered IoT architecture for a better understanding 
of the IoT ecosystem.

• This work also reveals the applications, middleware, gateways, and different 
communication solutions accessible at different layers of an IoT ecosystem.

• The work aims to research the role of privacy mechanisms in IoT and explains 
the relation between IoT and emerging technology, such as data analytics 
(depending on the machine learning as a term of IoT knowledge hierarchy), 
cloud storage, fog, and edge computing.

The chapter is elaborated as follows: Section 3 introduces layered IoT architec-
ture. In Sect. 4, the document describes the taxonomy of IoT. In Sect. 5, the core 
concepts for the IoT ecosystem are discussed in depth in which IoT devices, gate-
ways, computation, and operating systems, communication, middleware, data stor-
age, and IoT platforms are clarified. Section 6 simply explained the knowledge 
hierarchy of an IoT ecosystem. In Sect. 7, the paradigms of intelligent IoT ecosys-
tem are illustrated including fog-edge-cloud-centric IoT for intelligent storage and 
computing and incorporation of machine learning algorithms for IoT data analytics 
and security of IoT ecosystem. Section 8 contains the applications of IoT ecosys-
tems. The work concluded with Sect. 9.

3  IoT Architecture

The architecture is a contour that stipulates essential physical elements, their func-
tionality, and the values underlined. Various researchers have various IoT 
application- based architectures. IoT’s primary or basic design is the architecture 
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with three layers. It consists essentially of perception or sensing, network, and 
application layer. The layer of sensing is primarily based on sensors and actuators. 
The layer of the network is responsible for data transfer and delivery. The applica-
tion layer provides the customer with a particular program. There are two further 
levels in the five-layer design to provide the IoT design a more abstraction. The 
layers are sensing or perception, processing, middleware, transport, and application.

In fog-based architecture, there are four levels of control, tracking, pre- 
processing, storage, and privacy between the physical and transport layers. The 
monitoring or tracking layer tracks and reviews the sensor details. The layer of pre- 
processing analyzes the sensed details. All of the analyzed data is then handled by 
the storage layer. Data confidentiality and protection are ensured by the secu-
rity layer.

This segment illustrated the four-layer SoA-based IoT architecture [10] in which 
the applicable allowable technologies are introduced.

3.1  Sensing or Perception Layer

The key role of the perception is to recognize and trace artifacts. The following 
technology may be applied to accomplish this purpose.

RFID RFID is commonly used to recognize and monitor artifacts without touch as 
noncontact communication equipment. It facilitates the exchange of data via short- 
distance radio signals. The RFID program contains RFID identifiers, antennas, and 
RFID readers. The RFID tag could be an antenna-fixed microchip. Each RFID tag 
has its identification number and is inserted in an item. An RFID reader will identify 
an item and get the details by asking for the correct signals from the attached RFID 
tag. An antenna module is utilized between the RFID tag or card and an RFID 
reader for signal transmission. RFID has the following advantages compared with 
other technologies (fast search, robustness, reusability, broad volume, contactless 
reading, safety, small size, low cost, etc.). Due to all of these advantages, RFID may 
be useful for recognizing, monitoring, and sharing knowledge in the IoT aware-
ness layer.

Wireless Sensor Networks (WSN) The function of WSN in IoT may be quite 
significant. WSN can observe and track the system state and transfer state data 
through multiple hops to the control center or sink nodes. WSN should then be used 
as the next link between the physical and cyberspace realms. WSN has many ben-
efits, in contrast to other systems, including scalability, automatic reconfiguration, 
durability, low costs, lower consumption of energy, etc. All of this allows it to be 
aligned for diverse criteria in multiple fields. WSN and RFID both may be utilized 
in IoT to acquire the details, while RFID is mainly used for the recognition of 
objects, whereas WSN is primarily employed to perceive real-world surrounding 
physical parameters.
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Others The one-dimensional encryption barcode holds the details in many black 
points and white intervals. These lines and spacing are structured with various 
widths, linearly or one-dimensionally, and unique encoding rules. An infra-beam 
scanning system will interpret the details found in the barcode. A double- dimensional 
code tracks the details by the use of black and white interface pixels, of which the 
binary “1” is a black pixel and the binary “0” is a white pixel. The white and black 
pixels will hold a notable amount of details using different encoding procedures. 
Two-dimensional coding provides strong information quality, good durability, 
excellent robustness, etc., relative to barcode. Therefore, an application between an 
RFID device and a sensor network is the RFID sensor network (RSN). In the RSN, 
the RFID device may be used to define and track the objects’ positions. In an RSN, 
tiny RFID-based sensing tools and RFID readers are used to produce data and con-
trol network functions as a sink node.

3.2  Network Layer

The layer of networking is used for routing determinations and facilitates data trans-
fer across heterogeneous interconnected networks. Some protocols are provided 
below which will enable safe and efficient IoT communication.

IEEE 802.15.4 This is a physical layer protocol and is also designated as a MAC 
protocol WPAN. The goal of this protocol is to concentrate on low-cost LRWPANs, 
which include low-cost, low-energy, low-rate connectivity and low-cost connec-
tions in the individual market. The Open System Interconnection (OSI) concept is 
the basis for the IEEE 802.15.4 protocol stack, where each layer is confined only to 
portions of the communication functions, and low layers will support the higher 
layers. The bands 868 or 915  MHz and 2.4  GHz can be assisted by the IEEE 
802.15.4, and the peak rate of communication of those bands can be 20, 40, and 
250  kbps, respectively. IEEE 802.15.4 is a base for other innovations, such as 
ZigBee, WirelessHART, and several other WLAN innovations and protocols.

6LoWPAN The LoWPAN (Low-Power Wireless Personal Area Network) is coor-
dinated by a vast variety of inexpensive, wireless communications-connected 
devices. LoWPAN provides a vast range of advantages (small packet sizes, reduced 
strength, low latency, etc.) when opposed to other forms of networks. The upgrade 
was the mixture of IPv6 and LoWPAN by way of the 6LoWPAN protocol. Through 
IEEE 802.15.3 networks, the 6LoWPAN framework is capable of transmitting IPv6 
packets. 6LoWPAN is adaptable to the IoT, which integrates a vast range of low- 
cost technologies, due to its low prices and small energy usage. 6LoWPAN provides 
many benefits such as fast accessibility and traditional architecture continuity, low 
energy usage, self-organization, and so on.
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ZigBee ZigBee is a networked wireless system intended to be connected for the 
short term with low energy usage. Five layers have been used in the ZigBee proto-
col: physical, MAC, transmission, network, and application layer. Low energy 
usage, low expense, low data speeds, low latency, stability, and protection are the 
benefits of ZigBee networks. The ZigBee network will accommodate several topol-
ogies, such as the star, mesh, and tree topologies.

Z-Wave This is a short-range, low-cost, low-energy, and high-efficiency wireless 
networking technology. Z-Wave’s key purpose is to ensure stable communication 
between a driver and one or more terminal computers, whereas Z-Wave is ideal for 
a low-bandwidth network. Notice that only the 232 nodes (slaves) in a Z-Wave net-
work can be used and the controls of all the nodes (slaves) and routing functions are 
available. The dynamic routing system is assisted by the Z-Wave network, and every 
slave stores a memory list of routes maintained by a controller. While both ZigBee 
and Z-Wave promote short-range, low-cost wireless contact and low energy usage, 
certain variations remain. The major distinction between ZigBee and Z-Wave is the 
variation in physical layer operational frequency. In ZigBee, the physical layer’s 
frequency spectrum is typically 2.4 GHz, while in Z-Wave the operational spectrum 
is less than 1 GHz. ZigBee can accommodate 65,000 terminals, and the Z-Wave 
infrastructure can accommodate only 232 terminals. Z-Wave is an easier to deploy 
network relative to the ZigBee architecture.

Message Queue Telemetry Transport (MQTT) MQTT protocol is utilized to 
gather calculated data from wireless or remote sensing gadgets and relay it through 
servers by utilizing publish-subscribe methodology. MQTT is a lightweight and 
simple protocol that facilitates a lower-bandwidth network. This protocol can be 
deployed on many platforms to link items of IoT to the network or Internet, thereby 
making MQTT an essential function in IoT as a communications protocol among 
sensors or actuators and servers.

Constrained-Application Protocol (CoAP) It is a messaging mechanism based 
on REST (REpresentational State Transfer) architecture. As the majority of IoT 
devices are resource-constrained (i.e., limited computation and storage capacity), 
issues regarding HTTP protocol, CoAP introduced certain modifications on HTTP 
functions to satisfy the IoT specifications. Generally speaking, CoAP is an applica-
tion layer protocol of the 6LoWPAN framework aimed at enabling resources- 
restricted devices to achieve RESTful interactions. CoAP facilitates group-based 
communication and push notification, but not eligible to support broadcasting. 
Many of the essential features supported by the CoAP are resource monitoring, 
resource identification, association with HTTP, and protection.

Extensible Messaging and Presence Protocol (XMPP) XMPP is an instant mes-
saging system focused on XML streaming protocols. XMPP has XML protocol 
features that allow XMPP to be used for multiparty chatting, speech, video sharing, 
and telepresence, with great scalability, addressing, and protection capability. The 
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following three functions are used in XMPP, client, server, and gateway; among 
these three two members (client and server) enable bidirectional contact. The server 
can accomplish the connection management and routing features, the gateway facil-
itates secure connectivity between the heterogeneous networks, and the users can 
bind to the network server through a TCP/IP interface and relay context-aware 
XML streaming interface. It (XMPP) will also be utilized in IoT to enable object- 
to- object-aware text messaging correspondence in XML.

Data Distribution Service (DDS) DDS is a publish-and-subscribe-based protocol 
that supports device-to-device communication with a high level of performance. 
DDS is a data-centered protocol that supports a multicast network to provide a high 
QoS and robustness and has been created by Object Management Group. DDS is 
ideal for real-time limited-resource IoT and device-to-device communication with 
the broker-less publish-and-subscribe technique. DDS may also reach a strong 
degree of scalability.

Advanced Message Queuing Protocol (AMQP) AMQP is an open-source mes-
sage queuing protocol used to include message resources (queuing, routing, safe 
and confident), in the device. AMQP concentrates on message-aware applications 
and might be viewed as a protocol designated for middleware. Using AMQP, even 
when the customers and middlewares are developed using different programming 
architectures, stable communication can be secured. AMQP also provides various 
forms of interfaces for message sharing, such as saving, sending, publishing, and 
uploading, message delivery, queuing, context-aware, and point-to-point routing.

Others Certain protocols can also perform essential roles in IoT, in addition to 
transmitting protocols, collaboration protocols, and messaging protocols. The name 
resolution can be supported for IoT applications by the multicast DNS (mDNS). 
Clients may use DNS Service Discovery (DNS-SD) to discover requested resources 
using mDNS over a specific network. The low-power and lossy network routing 
mechanism is an independent routing protocol, which can be used in resource-aware 
frameworks to define routes via low-power and lossy channels. While IoT may 
implement these protocols, enhanced IoT protocols are needed for the promotion of 
IoT production with more stability, reliability, and interoperability capabilities.

3.3  Service Layer

This layer is designated within the application, and the network layer offers secure 
and protected support for artifacts or programs, as mentioned above. The following 
habilitating technologies shall be used in the application layer to ensure the reliabil-
ity of service delivery: interfacing technologies, process management, middleware 
and inventory management, and sharing technology.
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Interface For effective and secure sharing of data between communicating devices 
and applications, the system technologies must be built in the service layer. 
Moreover, interconnected systems, including user attachment, system disconnec-
tion, user connectivity, and computer service, can be easily handled by the interface. 
An Inter-Face Profile (IFP) can be used as an interface model to help IoT applica-
tions and can be used to allow connections between services delivered by specific 
devices and applications. UPnP should be added to obtain a secure IFP. A variety of 
attempts have been made in the creation of the IoT interface. To achieve successful 
interaction among apps and services, SOCRADES Integrating Architecture (SIA) 
can, for example, be used. As the SoA-IoT method is being created, the service 
provisioning mechanism provides experiences with applications and services. 
While IoT has established a range of interface technologies, it still poses a signifi-
cant challenge in IoT research to introduce more reliable, stable, and scalable low- 
cost interface technology.

Service Management Service management can identify devices and systems eas-
ily and schedule secure and effective facilities for the fulfillment of demands. In 
order to accomplish a particular purpose, the program can be perceived as a behav-
ior, like information gathering, sharing, and storage. For IoT, only a single provider 
is required to meet those requirements, and several systems must be combined with 
certain services. The services may therefore be categorized as primary services and 
secondary services in terms of IoT. The primary services will show key functional-
ities on applications or devices, often called simple services. In comparison, the 
auxiliary feature may be accomplished by secondary operations as a supplementary 
basis. SoA is used to incorporate infrastructure to protect specifics of the deploy-
ment of the systems and to render such infrastructure compliant with heterogeneous 
applications and devices. This allows for the continuity and uniformity of services. 
OSGi, for instance, was built by a dynamic SoA architecture as a modular platform 
for resourcing. The service configuration structures should be built first, and the 
functionality and communication features of devices should be eliminated to incor-
porate a SoA-based infrastructure. Finally, it is important to include a growing col-
lection of services. Service delivered by a system or application in SoA-based 
services is regarded as a common task that can be utilized in specific appliances and 
applications reliably and effectively without modification. This makes for quicker 
and more effective fulfillment of specifications in SoA-based IoT.

Middleware It is a program or utility that can ensure the integration of technology 
and applications interposed within IoT. The middleware disguises the specifics of 
different technologies and provides standard interfaces that enable developers to 
concentrate on application creation without contemplating device-infrastructure 
compatibility. This allows for the sharing of knowledge and services with the usage 
of middleware, equipment, and applications with various interfaces. The benefits of 
middleware are as follows: (i) middleware can be used to assist different applica-
tions; (ii) middleware may be used in multiple operating systems and services; (iii) 
centralized code assists communications across heterogeneous networks,  equipment, 
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and applications; (iv) basic protocols may be enabled by middleware; (v) basic 
interfaces may be given through middleware. Such characteristics allow middle-
ware ideal for IoT since many heterogeneous systems and networks have been 
incorporated, frequently modified, or upgraded. A variety of research activities have 
been introduced into middleware that can be categorized into five groups; these are 
(i) message-aware middleware, (ii) location-aware middleware, (iii) semantic web- 
dependent middleware, (iv) transmission middleware, and (v) pervasive middle-
ware. The efficient sharing of knowledge across the different channels and 
communication protocols (e.g., AMQP, DDS, MQTT, and the XMPP) can espe-
cially be accomplished by message-based middleware. Semantic web-based inter-
connection between the different sensor networks can be given. SoA-based 
middleware, computing-aware middleware, etc. are examples. Location-based mid-
dleware support and tracking combine system positions and other details with auto-
mated utility services. Transmission middleware can provide efficient 
communications between heterogeneous equipment and applications. Typical 
instances of this layer are RFID-aware middleware (Fosstrak and so on), sensor 
network-aware middleware (TinyREST [11]), and SCADA. Pervasive (ubiquitous) 
middleware is developed for the processing and computing world in general and 
enables applications on various services.

Resource Management Different heterogeneous network infrastructures are built 
to distribute data of all IoT applications (intelligent mobility, smart grid, etc.). To 
cut costs, some applications may share network resources to maximize their usage. 
In this situation, it is a problem in IoT to make sure that the information needed by 
specific users is provided on time. To effectively organize several networks with the 
same frequency to optimize the utilization of the network assets, current resource- 
sharing systems concentrate mainstream on spectrum-sharing. The distribution of 
the spectrum is separated into three different dimensions: time, volume, and fre-
quency. Almost all of the existing frameworks have been built for machine-to- 
machine connectivity; IoT is based on networks where “things” not only describes 
machines but also the actions of humans and objects. Therefore it’s a big challenge 
for potential growth to build an effective resource sharing system through heteroge-
neous networks suited to the IoT ecosystem.

3.4  Application Layer

This layer is at the peak of this design and provides total system-based assistance 
for end users. The application layer is not recognized as a subclass of middleware as 
compared to the conventional three-layer design but instead orchestrates the mid-
dleware layer. This layer offers integrated interfacing across heterogeneously dis-
tributed networks and frameworks via regular web interface protocols and platform 
structure for software applications. Smart housing, intelligent transportation, smart 
business, smart treatment, etc. are instances of such applications.
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4  Taxonomy of IoT

The taxonomy of IoT is a mechanism that defines the impact and affiliation of tools 
or sectors by grouping them. This taxonomy will describe the most common layers 
in the IoT setting. In the diagram focused on the elements and design, taxonomy for 
study into IoT was suggested. Effective IoT devices (sensors and actuators) may be 
categorized as lower-end, intermediary, and higher-end devices at the perception 
layer. Data is gathered by the sensors and necessary actions are performed by actua-
tors. Different sensors are used for position, orientation, video and audio detection, 
flux detection, environmental sensing, chemical recognition, etc. Sensors and actua-
tors are lower-end equipment with simple memory, OS, and battery limitation. The 
layer of pre-processing includes programs for filtering and capturing data with min-
imal storage space, a compact processing system, and other protection measures 
before submitting it to the middleware. The pre-processors are designed with micro-
controllers and microprocessors which have scalable OS, higher RAM, and higher 
processing capacity. The different operating systems and their computing specifica-
tions are categorized as lower-end and higher-end based on various resources. 
Diverse accessible networking systems, such as NFC, low-power technology, WSN, 
etc., have been classified for IoT, beginning with restricted to unrestricted functions. 
Gadgets are interconnected with each other via a complex protocol across the wire-
less network. RFID, Bluetooth, NFC, ZigBee, and Wi-Fi which are known as short- 
range communication technologies are only briefed on this work. A vital aspect of 
middleware is that the programmer uses several dynamic interrelationship struc-
tures as an abstraction layer, which illustrates the features of the framework. 
Middleware may be split into service-aware, actor-based, and cloud-based services. 
The integrated middleware components are IoT platforms, storage, and privacy 
mechanisms.

The key functions of the middleware layer include storage (cloud) and analytics 
which manage data and require complex computations to improve scalability, 
robustness, usability, and functionality. The core factors for IoT’s progress and at 
the same time a big obstacle for IoT services are protection and privacy issues. To 
maintain consistency, the entire IoT architecture is configured to function with mid-
dleware. Applications can be classified in terms of client-level applications, web or 
cloud applications, and APIs that permit the transition of information. Such IoT 
technologies have proven useful in intelligent infrastructure, intelligent safety, 
smart roads, smart agriculture, intelligent towns, intelligent grids, etc. Thus, devel-
opers have studied various algorithms and deployed them to enhance the IoT 
ecosystem.

5  Core Elements

This section highlights the core components of an IoT ecosystem. The whole eco-
system is divided into five parts which are (i) devices, (ii) gateways, (iii) computa-
tion, (iv) communication, and (v) middleware.
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5.1  IoT Devices

IoT devices are the IoT system’s basic building block. All the levels of IoT architec-
ture conceive all these devices. IoT devices can be categorized as proprietary or 
open-source. The freely accessible open-source IoT devices are one of them. All of 
the devices related to open-source services can be reviewed, updated, and repeated 
as needed, while proprietary IoT devices are required to be licensed, and no infor-
mation on such devices is publicly accessible. Because of poor bandwidth, storage, 
and computing resources and limited power, IoT devices have restricted functional-
ity. IoT systems utilize different memory types, based on the device’s restricted 
capacity, expense, and service. Dynamic RAM (DRAM), static RAM (SRAM), 
synchronous DRAM, DDR RAM, and embedded multimedia card (eMMC) are the 
significant kinds of RAM (random access memory).

Unless power is given, SRAM keeps the data in static form. The pace of process-
ing is relatively high and costly. This sort of memory is integrated into microcon-
trollers and is often found in a microprocessor as an L1/L2 cache. A kind of dynamic 
memory is SDRAM.  It holds the binary data as electrical charges. This RAM is 
coordinated with the microprocessor and microcontroller clock directly. This sort of 
memory is used in applications where high processing speed is required as more 
instructions are to be processed per second. DDR is an advanced SDRAM, almost 
having twice the capacity of SDRAM. In contrast with SDRAM, the data of a DDR 
RAM is processed in both cycles of the clock. The cost of DDR is high and is used 
in devices where clock synchronization with a higher data transmission rate is 
needed. eMMC is a special kind of internal storage that operates in combination 
with embedded controllers integrated with the eMMC cards. It is usually used in 
mobile phones, tabs, etc.

The IoT ecosystem provides a variety of utilities, protocols, and network archi-
tectures to handle multimillions of IoT data sharing tools. IoT will embrace hetero-
geneous architectures with a broad range of services available. IoT devices are 
classified into three classes: Class 0, Class 1, and Class 2 [12].

Class 0 or low-end IoT devices or gadgets are such kinds of gadgets having mini-
mal resources such as memory, electricity, processing, etc. Most of these gadgets 
are accessible in the first layer or stage of the IoT ecosystem or environment. They 
are capable of perception or sensing and required actuating. They utilize lightweight 
protocols for correspondence. They consist of very simple computing mechanisms. 
The memory of RAM is between 1 and 50 kilobytes, and the memory of the flash 
drive is between 10 and 50 kilobytes. These systems are very susceptible to attacks, 
and in these lower-end devices, privacy is the main concern. They are closely ori-
ented with the nearby environmental parameters such as temperature, moisture, 
strain, and so on.

Class 1 or mid-end IoT gadgets are more resourceful than low-end gadgets. They 
deliver more flexibility than lower-level IoT gadgets, but they are not adequate to 
meet highly complex demands with computational power. Such microcontrollers 
are important. These gadgets are mounted on low-end IoT gadgets to control and 

IoT Ecosystem: Functioning Framework, Hierarchy of Knowledge, and Intelligence



58

improvise low-end IoT system functionality. These gadgets can process images, 
filter data, etc. Different networking technologies may be mounted on these devices 
[13]. The performance of such gadgets is greater than that of low-end machines with 
clock frequencies between 100 MHz and 1.5 GHz. The size of RAM ranges between 
100 kilobytes and 10 megabytes, and the memory of flash drive varies from 10 kilo-
bytes to 100 megabytes. Such gadgets may be protected partly through data encryp-
tion because of extra features. Arduino and Netduino are some of the mid-end IoT 
gadgets. These gadgets are available either at the first or second layer of the IoT 
ecosystem. Such gadgets are having peripheral interfaces such as USB or micro- 
USB, which may be known to be the simple gateways of the IoT ecosystem.

Single-board computers with a high-end CPU, RAM, and flash memory are tier 
2 or high-end IoT machines. These gadgets are compliant with standard OS such as 
LINUX and UNIX. Such gadgets help the advancement of technology such as AI, 
machine learning, analysis of natural languages, etc. Such gadgets also have a pro-
duction interactive user interface. Up to 64-bit architectures are available in these 
sorts of gadgets. Such systems have everything on-board and almost every network-
ing protocol is enabled. These gadgets provide a wide range of communication 
interfaces including HDMI, Wi-Fi, USB, LAN, Bluetooth, etc. Such gadgets are 
capable of multimedia and graphical processing and analysis of data. These highly 
sophisticated gadgets are deployed in the IoT ecosystem as specific gateways and 
controllers. Owing to the vast amount of resources, they have comparatively fewer 
privacy issues.

5.2  IoT Gateways

IoT gateway is an interface for various sensor networks and higher-end IoT applica-
tions or the storage (cloud) server. The key function is the handling of the variability 
attributable to different types of data gathered from sensors and the transfer of data 
to the higher-level controller or server. The data needed to be processed and ana-
lyzed which are obtained by the gateway. High-level data analysis is performed 
based on the requirements, categories of commands, and data. The gateway or gate-
ways serve as a bridge across various layers of IoT in various networks. To boost 
efficiency and form a stable layer in the IoT framework, the gateway and its end 
point nodes are required to be operated efficiently. As regards, data transmission 
gateways, data centers, or the cloud database serves as a proxy for lower-end IoT 
gadgets such as sensors. Gateways can work as high-end equipment, but where a 
large IoT network is present mostly perform as a mid-end gadget while a limited 
number of low-end gadgets are in the IoT ecosystem. Gates are designed to be resil-
ient in terms of hardware to environmental factors. They will also solve weaknesses 
and seek to resolve the networking gaps between lower-end systems and orchestra-
tors or controllers. There is also a minimal OS with restricted memory, processing 
ability, and power usage features and services. The gateway then carries out smaller 
operations, such as filtering content, translating data from various formats to a 
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single format, and managing the power failure. The gateway will provide a limited 
power buffer to store the system state in nonvolatile memory and lead the system to 
hibernation. And the gateway will restart from the same state when the power is 
returned. Gateways must have the capability to solve problems and, if an issue is not 
resolved, be able to relay user-vision knowledge to the IoT network. Gateways 
should be able to reboot as well. Gateways provide a high-performance control 
framework in the broad IoT ecosystem. It allows the system to manage several gate-
ways. Therefore, a gateway should support the following sorts of communication: 
(i) lower-end IoT gadgets to gateway or gateways, (ii) gateway or gateways to IoT 
platforms, (iii) gateway or gateways to orchestrator or controller, and (iv) gateway- 
to- gateway communication.

Gateways typically establish networking via GPS, WLAN, Ethernet protocols, 
and Bluetooth. Moreover, local Internet on the gateway and controller level is acces-
sible in a broad IoT ecosystem or network. Finally, the data obtained on this limited 
intranet level is transmitted through the Internet to the high-end gadgets or comput-
ers, networks, or cloud. Throughout certain gateways, the tracking of devices such 
as auto-detection, insertion, and elimination of IoT devices is enabled. It often 
tracks data and integrates minimal data such that accurate knowledge may be dis-
tributed to the ecosystem. This ensures that the operating system, the servers, and 
other IoT gadgets collect sufficient data to enhance their real-time efficiency. 
Throughout the restricted IoT network, the CoAP protocol-dependent correspon-
dence between IoT devices may be facilitated. IoT-relevant gateways operate in 
three diverse modes: (i) passive, (ii) semiautomated, and (iii) automated [14].

Passive The new gadgets must be inserted or removed by manual approaches. The 
customer permits the gateway to connect and remove hardware. Network activity 
can be controlled and configured. Every node or sensor can be reached by the gate. 
Moreover, it accesses any network without altering the protocols for communica-
tion. Hence, these are not versatile and not reconfigurable according to the require-
ment of an IoT ecosystem.

Semiautomated In such an operational mode of gateways, there is an interconnec-
tion between the included gadgets and the communication gateways. It increases the 
efficiency of the network in terms of real-time performance, the stability of data 
processing, and management. This is based on an interface with a plug-in configura-
tion to demonstrate that devices can be linked with a network requirement. Due to 
the external interface, it is versatile than passive gateways.

Automated The gadgets in this mode can reconfigure themselves. No authoriza-
tion is required. IoT gateways may connect or delete gadgets themselves. These 
gateways may be linked to different networking protocols and interfaces such as 
ZigBee, Bluetooth, CoAP, and Wi-Fi. These kinds of gateways can interact with 
multi-variety networks easily. They also facilitate the tracking of real-time sensors 
so that systems can be modified and reviewed with ease by attaching or removing 
equipment.
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5.3  Computation and OS

OS is a combination of operations or programs serving as an interface between the 
consumer and the applications. Various programs are built and operate on the so- 
called OS. OS is mounted on IoT devices to operate and control the programs on the 
IoT ecosystem. OS may therefore be specified as a part, leading hardware to be a 
complete IoT gadget. Thus, OS is responsible for handling and controlling power 
usage, guiding operations, programming IoT gadgets for different attributes, and 
providing connectivity with different machines. In introducing a robust and secure 
IoT environment, OS plays a key function.

Owing to the heterogeneous existence of IoT systems, OS should be modified to 
suit each sub-IoT system’s requirements. The computing, storage, energy consump-
tion, and memory capacity of IoT gadgets are significant characteristics. In the 
future, all these properties exist with all IoT gadgets. OS is better adapted when it 
embraces the control and communication functionality that shifts when IoT gadgets 
adjust their properties [15]. Additionally, basic programming tools are expected that 
can facilitate applications’ portability across diverse platforms and that can be eas-
ily recreated and maintained. IoT OS are categorized as:

 (a) High-level OS – Most of which are based on Linux. These operating systems 
operate on high-end or mid-end IoT machines; they are high-power, storage-, 
and capacity-based single-board computers. For instance, RPi (Raspberry).

 (b) Low-level OS – That may be based on Linux OS or non-Linux. These operating 
systems run on low- and mid-end IoT gadgets, which have minimal computa-
tional resources, energy requirements, and processing capacity, for example, a 
tiny board machine, such as Arduino.

To build an effective, secure, scalable, and interoperable code, OS plays an impor-
tant role in IoT.  The IoT devices need both high-level and low-level OS.  OS is 
defined in the following terms: architecture, operating model, kernel, scheduling, 
management of storage, protocols for networking, stability, energy consumption, 
and multimedia support. For developing an efficient operating system, the following 
aspects must be taken into consideration.

Architecture The operating system architecture comprises the kernel and stipu-
lates software facilities. Architecture may be graded according to the following 
parameters:

 (a) Monolithic – Designed for multitier application ecosystems. These can perform 
dynamic computations of higher order and hence provide a great processing 
speed. The kernel space performs all operations.

 (b) Microkernel  – This design presents only main features such as scheduling, 
process- to-process communication, and kernel space synchronization. Many 
other functions of the operating system operate via multiple threads. The kernel 
system and user system both perform processing tasks here. Due to the acces-
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sible plug-in, they provide high processing versatility and allow the operating 
system to be installed upon the base environment.

 (c) VM-based architecture – This kind of device is a virtualized device that oper-
ates with the existing framework. This design is slower because of its virtualiza-
tion, but it provides a higher degree of portability, versatility, and extension.

 (d) Modular architecture  – It requires components to be inserted and removed 
dynamically in the kernel during runtime. The configuration of each module is 
different. The modules may then be linked in and out as needed.

 (e) Layered architecture – Multitier architecture is built for a specific purpose, and 
implementation of such architecture is not much flexible. But running and 
maintaining this form of the operating system is simple.

Development Model This specifies the requirements for the simulation of an 
application or system. Multi-threading and event-driven, efficient managers and 
memory architecture are influences that affect. It depends on the IoT system in 
which the operating system will be utilized and leads the OS to be versatile and 
extendable, and the requirement of the system is achieved. The operating system is 
needed to be configured in such a way that it can be updated and revamped. A soft-
ware or program development kit in the operating system deals with library model-
ing, OS design improvisation, memory layout, and configuration of control.

Scheduling
The preparation approach is proportional directly to the capacity of the operating system. 
Priority and non-priority algorithms are kinds of scheduling mechanisms collaborated by 
preemptive architecture and non-preemptive architecture. Preemptive executes the highest- 
priority function to interrupt all activities, whereas non-preemptive begins a new job after 
the existing functionality has been completed.

Memory Management This applies to the consolidation and decommissioning of 
information. The memory is classified according to the need for versatility. Static 
memory is a kind of memory that is fixed, and another one is called dynamic mem-
ory which is required for dynamic frameworks. A separate processing degree depen-
dent on processing speed and efficiency is a significant consideration. Efficiency 
and memory are critical concerns when an operating system is built. Furthermore, 
another essential OS memory is cache memory, which is relevant for operations at 
the OS level. This memory contains OS-required details and metadata.

Interfaces and Communication Protocols For IoT, the operating systems are 
designed to ensure system interfacing with devices. Various hardware interfaces and 
different networking protocols allow interfacing. The form of IoT unit, deployment 
site, environment needs, speed, and data transmission protection now depend on 
which helps to finalize the OS protocols. Various protocols for connectivity include 
CoAP, MQTT, ZigBee, WLAN, Bluetooth, and other interfaces such as micro-USB, 
USB, etc., which not only help to interact with interfaces but also help to establish 
a link with other devices that are contained in the IoT ecosystem or Internet. The 
heterogeneous complexity of the large IoT environment is often taken into account.
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Power Management This is another major concern of the IoT ecosystem. IoT 
gadgets are constrained machines. Such gadgets are deployed in areas commencing 
from the surrounding ecosystem to the servers (Internet). Power orchestration has to 
be reliable for energy efficiency, recycling, and prolonging battery life, and physical 
assaults also should be mitigated. This will also be able to conserve electricity and 
push the control in a different direction if a failure occurs. To maintain a stable state 
of operation, OS is required to be powerful enough to withstand power loss.

The “brain” and computing capabilities of the IoT are defined by processing, 
communication, and computation systems (such as microprocessors, SOCs, micro-
controllers, and FPGAs) and software applications. Various IoT hardware plat-
forms, including Arduino, FriendlyARM, UDOO, Intel Galileo, Gadgeteer, 
Raspberry Pi, CubieBoard, BeagleBone, WiSense, Z1, T-Mote Sky, and Mulle, have 
been developed for the service of IoT applications.

Moreover, several software frameworks provide IoT features. Operating systems 
are important to such platforms because they work during a device’s initialization 
period. There are many real-time operating systems (RTOS) that are strong candi-
dates for designing IoT software focused on RTOS. Contiki RTOS, for example, has 
been commonly used for IoT scenarios. Contiki has a Cooja emulator, which simu-
lates IoT frameworks for researchers and developers [16]. Lightweight OSs for IoT 
environments are also supported by TinyOS [17], LiteOS [18], and RIOT OS [19]. 
Google is part of the Open Auto Alliance (OAA) where several members of the 
automotive industry are preparing to include additional technologies to the Android 
applications to enhance the features of the Internet of Vehicles (IoV).

5.4  IoT Communication

Heterogeneous artifacts are linked to different intelligence resources via IoT com-
munication technologies. In the case of noisy and lossy contact connections, usu-
ally, IoT nodes will work utilizing low power. For example, WLAN, Bluetooth, 
Z-Wave, IEEE 802.15.4, and LTE Advanced are the sources for IoT networking 
protocols. Some unique networking systems are also being employed, such as 
RFID, NFC, and UWB. A basic M2M system can be utilized with RFID. The RFID 
tag is a simple chip attached to the item. RFID readers transmit the request signal to 
the tag and receive a mirrored signal from the tag which is transmitted to a nearby 
database. The database is connected to a processing center to recognize items based 
on the mirrored signals within proximity of 10 cm to 200 m. RFID tags are classi-
fied as active, passive, and semi-active or passive tags. Active tags are battery- 
powered and the passive tags are not equipped with battery power. Semi-active or 
passive tags use on-board power during the time of need.

The NFC protocol operates at the 13.56  MHz frequency and allows the data 
exchange rate up to 424 kbps. The range of NFC is up to 10 cm between passive tags 
and active readers or between two active readers during the communication. To 
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facilitate shorter coverage and larger bandwidth, UWB connectivity is recently 
evolved which can ensure communication among sensors. Wi-Fi, which uses radio 
waves to exchange data between objects within 100 meters radius, is another net-
working technology. Wi-Fi permits shrewd gadgets to impart and trade data without 
utilizing a router in ad hoc architectures. Bluetooth represents a communication 
innovation that is utilized to trade information between gadgets over short separa-
tions utilizing short-length waves to limit power utilization. As of late, the special 
interest group (SIG) working for Bluetooth technology created Bluetooth 4.1 that 
ensures Bluetooth Low Energy for faster connectivity and IP availability to help 
IoT. The specifications of IEEE 802.15.4 include both physical layer and access 
control mechanisms for low-performance wireless networks that achieve stability 
and scalability.

LTE (Long-Term Evolution) is a cellular communication framework for rapid 
data exchange between cell phones dependent on GSM/UMTS network innova-
tions. It supports quick voyaging gadgets and gives broadcasting and multicasting 
facilities. LTE-A (LTE Advanced) is introduced as an improved rendition of LTE 
including data transfer capacity expansion (up to 100 MHz), uplink and downlink 
spatial multiplexing, broadened coverage, lower latencies, and higher through-
put [20].

5.5  IoT Middleware

IoT middleware is an IoT ecosystem feature that provides the consumer with raw 
data in a web application format. The data generated on IoT gadgets must be con-
figured in such a way that it suits all forms of IoT applications. The IoT middleware 
features address the above challenges. Nevertheless, it has minimal interpretation 
and data incorporation capabilities. It poses a great challenge to connect, capture, 
and view inter-device data and merge the data gathered from many devices into a 
scalable framework. The IoT middleware must be built to be scalable, adaptable, 
modular, safe, and open-source. This form of middleware will enable researchers 
and specialists to customize and compile improvised applications and also to incor-
porate new IoT gadgets into the ecosystem. The usage, functionality, and versatile 
design of IoT middleware may be commonly classified into three kinds [21].

Service-Oriented Middleware End users and developers may use this form of 
middleware to connect and adjust IoT devices as utilities in the IoT ecosystem. It 
provides resources such as control of entry, storage, and event management system. 
Security models are costly and most of them have minimal protection, privacy, and 
trust service. User data processing is constrained in such a program. Protection 
strategies are not meant to help restricted resources in the SOA architecture.

Cloud-Oriented Middleware This middleware makes it simple to capture and 
process information. But in terms of different types of IoT gadget-based systems, it 
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limits the productivity of the whole ecosystem. The cloud-based protection model is 
described in a cloud-based architecture. Therefore the cloud structure determines 
anonymity and protection and cannot be controlled by consumers. Sensitive data are 
the key problems in such kind of system and are not structured to meet resource 
constraints.

Actor-Oriented Middleware This form of middleware is open-source and has a 
plug-and-play architecture. IoT devices can be introduced as a plug-in to the IoT 
ecosystem and can easily be disabled without disrupting the IoT environment when 
an IoT device is not required. The safety model here can be configured through the 
plug-and-play system by users. The actor-oriented middleware is designed to assist 
restricted resource services.

IoT Platforms One of the vital components of IoT middleware is IoT platforms. 
IoT platforms are sophisticated applications developed primarily to control the 
whole IoT network. It’s the foundation of the IoT. IoT architecture connects gad-
gets, gateways, cloud networks, servers, and applications. The interface allows all 
the gadgets to be recognized. They supply all the IoT devices with a software devel-
opment kit. In the form of IoT administration, architecture, and deployment, these 
programs allow the visualization of IoT products. They handle privacy as well. This 
is where the IoT ecosystem’s rules are mentioned for evaluation. Such platforms 
describe the IoT ecosystem’s purpose. It’s regarded as a bridge connecting the gad-
gets of an IoT ecosystem to the cloud. The whole environment management is con-
trolled here concerning complexity, cost, market, and data flow. IoT systems require 
the connectivity of cross-device and the automation of linked equipment. IoT plat-
form will serve as middleware in IoT architecture, to render an IoT (ecosystem) 
environment robust, stable, secure, and scalable. The IoT middleware framework 
may also be viewed as a bridge from software to hardware. The main activities of 
IoT platforms include the detection, configuration recognition, and modification of 
sensors and heterogeneous inputs for specific applications. It promotes the inte-
grated use of artificial intelligence among completely different instruments for com-
munication and for taking very complex measures. With the form of layers, the 
platform might be identified. It is focused on the IoT platform’s characteristics that 
provide a foundation for the IoT ecosystem. To define, connect, compute, and react, 
the IoT platforms are responsible for an IoT ecosystem.

Storage One of the middleware functions is to preserve the data in multiple ways. 
The amount of IoT data traffic is high and therefore requires enhanced measurement 
and evaluation techniques to accommodate big data. Techniques of data mining 
such as machine learning and decision-making algorithms are required to be 
deployed, which provide valuable knowledge to improve raw IoT data. The diverse 
specifications may be managed and fulfilled through cloud technologies. Cloud 
facilitates heterogeneous programming mechanisms, such as disk and dynamic 
computation. However, several blockers of such techniques also have to be identi-
fied. Transition of edge devices’ (e.g., sensors, client gadgets like phones) data to 
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the fog or cloud servers can generate issues regarding network efficiency (in terms 
of latency, capacity, congestion, trustworthiness, quality, etc.), Internet prices, 
server protection, storage costs, secure data transfer and secrecy, cloud interopera-
bility, and cloud-gadget security and stability.

Big Data – The interconnection of sensors and a wide number of artifacts helps 
in the collection of bulk data. IoT gadget-generated data is growing quickly. This 
large amount of data is referred to as “big data” reflecting the scale of the data col-
lected. It is a mechanism in which data is checked and analyzed, and eventually the 
trends and relationships are created. Big data’s four fundamentals include safety, 
data protection issues, broad data processing, and everyday life impacts of data. 
Such kinds of data include numerical data, documents, video, audio, statistical data, 
etc. These data can be classified as unstructured, structured, or semi-structured. The 
best way to process such enormous data is to adopt “big data analytics.” Big data 
methodology is capable of processing multiple details and providing them to the 
analytical platforms. This detail is then passed to the data center. Massive data infra-
structure is prone to multiple protection challenges, such as protected transfers, safe 
data processing, safe retrieval, and computing. Big data research is split into three 
specific factors: velocity, variety, and volume. The size of the data stream is defined 
by the volume. Big data versatility includes varieties of data audio, picture, text, etc. 
Velocity reflects the processing speed of data. There are a vast variety of big data 
and IoT apps that have a significant effect on our everyday lives, such as intelligent 
watches, which constantly monitor a person’s well-being by gathering data and 
sending the alert to the doctor whether an individual becomes ill or has any issues. 
Large data research evaluates a vast amount of data to allow choices that are valid 
and effective. To boost decision-making, IoT and big data mix are used. There is a 
great deal of data gathered from the “linked gadgets.” Big data engineering that 
handles data utilizing query, report, training and test data set, and analytical soft-
ware is therefore important. The data must be processed intelligently and efficiently 
to execute theoretical and logical operations. A single processor and minimal stor-
age cannot execute a big data operation. The massive data generated by the IoT 
ecosystems sometimes cannot be supported by data analytics platforms such as 
Apache Hadoop. Performance often includes the analysis of real-time data in 
IoT. IoT requires a broad, universal computational interface for all IoT applications. 
The total IoT environment will not be an overhead of such an empirical machine. An 
IoT big data approach is to monitor just the appropriate and required data.

Cloud Computing – Cloud infrastructure is an emerging platform for addressing 
the on-demand virtual network which is capable of configuring tools including net-
work gateways, servers, software, and services. Cloud storage provides efficient and 
expense controlled distributed utilization and control of services. Cloud storage and 
computing resources allow IoT to handle this huge data with archiving and process-
ing capabilities. OpenIoT, ThingWorx, Google Cloud, GENI, and Amazon are sig-
nificant cloud services used by IoT. Cloud storage handles large data that enables 
data to be stored and useful knowledge to be retrieved. It is a daunting job to imple-
ment cloud infrastructure in IoT.
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6  IoT Knowledge Hierarchy

A primary purpose of communicating and gathering data from inter-connected gad-
gets (e.g., sensors) is to increase knowledge of the condition and to allow gadgets, 
computers, or humans to be more conscious of the climate. Knowing the scenario or 
context may enable wise choices and adapt to the complexities of their environ-
ments by delivering resources and applications. Data obtained by various sensors 
and instruments typically are multimodal (temperature, flux, voice, video, etc.) and 
diversified in nature (data quality may be time-dependent on multiple devices). The 
complexity, uncertainty, and omnipresence are major difficulties in the collection, 
application, and analysis of real-world data. The amount of data on the web and the 
cloud has also grown at an impressive rate: around 2500 trillion kilobytes of data are 
produced per day, and 90% of today’s data is reported to have been created in the 
last 2 years (IBM, 2012). Tactile data (including the sensors) identified with various 
occasions and events can be examined and transformed into significant information 
to provide better comprehension about the real world and to make more value- 
added services, for instance, information from meters might be utilized to all the 
more likely anticipate and balance power utilization in intelligent grids; analyzing 
traffic, climate, and congestion tangible information records can ensure better city 
and traffic management; checking and handling sensory gadgets appended to 
patients can ensure enhanced healthcare. These processes of transformation of data 
can be wisely elaborated using the “knowledge hierarchy” concept.

The lower tier implies that IoT gadgets and equipment generate a significant 
amount of data. To improve interoperability, the layer above allows organized and 
machine-readable information from different sorts of raw data. However, the infor-
mation and services often demanded by people and high-level applications are not 
able to ensure high-level abstractions and expectations which offer the underlying 
data meanings and insights to the individual and the system. The high-level abstrac-
tions and assumptions will then be turned into actionable insights with sector and 
context information to take maximum advantage of the IoT ecosystem’s ability and 
build end-to-end solutions.

Cloud systems and “big data” applications will include the technology and 
resources required to process, manage, and interpret the IoT data. However, we do 
need effective tools and technologies that can organize, register, exchange, and 
interpret IoT data in diverse applications and promote the transition into actionable 
information and intelligence. As several IoT equipment and infrastructure (e.g., 
battery-powered computers, small processing nodes, and memories) are widely dis-
persed, heterogeneous, and infrastructure restricted, requirements for developing 
IoT ecosystems and applications are very different from those commonly used the 
Internet and network framework (in particular, for interoperability, scalability, effi-
ciency). The latest architecture and design initiatives for the future Internet and web 
are reflected by this. Figure  1 illustrates the knowledge hierarchy of an IoT 
ecosystem.
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7  Paradigms of Intelligent IoT

7.1  Generalized Fog-Edge-Cloud-Enabled IoT

The cloud-IoT framework generally consists of five phases: data capturing, pre- 
processing, analysis, storage, and retrieval. IoT sensors or tracking systems are used 
to capture data. Data sharing among devices typically takes place via Bluetooth, 
NFC, Wi-Fi, etc., as the primary communication between gadgets. Depending on 
the program, the wearable systems interpret data periodically and send them to the 
respective processing units. Sensing frequency bands are set, and energy-aware 
methods are not used while a load of data is less than typical. The second step of 
pre-processing is needed to filter sensor details. The details would need to be struc-
tured to match client requirements. Pre-processing includes the detection of outliers 
and data noise, the exclusion of pieces of knowledge of low value, etc. Every task 
requires significant time and computing resources because the detection of outliers 
or interest points is a task having high complexity. The analytical processes are the 
most critical among phases in the cloud framework. In general, a standard IoT 
application is intended to be smart. The analytical process, to integrate the informa-
tion into the underlying IoT framework, which is appropriately named as an IoT 
knowledge layer, will use the data to learn effectively. Specific learning algorithms 
play a key function in data processing. Using the IoT framework, the evaluated data 
will be sent to the application layer, where it is expected to provide the customer 
with the required activity. The data storage framework is expected to include several 
servers in cloud-aware architecture. A resource manager performs as a broker 
between the servers and the end gadgets. Resource management maintains track of 

Fig. 1 Knowledge hierarchy of an IoT ecosystem
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resource scheduling, supply, and dependence. Multiple software instances or virtual 
machines (VMs) are utilized to make the servers. The VM has access to cloud ser-
vices and also preserves settings for device setup, memory, processing power, and 
storage space.

Fog-Enabled IoT The fog-dependent computing applications consist of several 
networking devices named fog servers or nodes or hubs [22]. These fog nodes can 
be seen in the cloud-based system as a small duplicate of the virtual machines (VM). 
Therefore the fog will execute the tasks of measurement, storage, and analytics. 
Unlike cloud VMs, these fog servers or hubs are not positioned much near to the 
core data storage. These are positioned near the edge machines that ultimately allow 
data from the core data storage to be computed and analyzed. Because VMs operate 
as server instances in cloud computing, the fog hubs are known as local application 
compatible micro-instances. These micro-instances incorporate requisite memory, 
power of processing, and resources to measure the data collected from specific edge 
devices or related devices.

In the fog computing framework, where computation is done near the edge gad-
gets, the fog devices are not often rendered operational. They’re activated as per 
request to conduct service. That is, the fog servers can be switched off when a load 
of data is smaller, thereby saving resources. This is not the case where the VMs are 
eligible for requests from edge users. This is important to ensure the required func-
tionalities are secure and accessible. With a fog-based distributed ecosystem, cen-
tralized control can be eliminated. Thus, instead of a core cloud server for performing 
all the processing and storage functions, fog nodes deployed near the edge gadgets 
conduct the computational functions.

The data generated by the edge gadgets are grouped according to the computa-
tional requirements in this distributed framework. Fog servers should be deployed 
in appropriate numbers and may be clustered to ensure the required bandwidth. 
Several fog nodes are meant to execute application-aware processes in every cluster, 
and others are designated to conduct the management of databases, complex com-
putations, and interchange of information with other fog clusters. Every cluster or 
group consists of one fog server serving as the head of the cluster or group. The 
head of the cluster serves as the orchestrator and scheduler of the resources. The 
head of the cluster distributes the computational tasks among its subordinates. Such 
computational parallelization results in an enhanced rate of response. The head of 
the cluster turns off the nodes that aren’t allocated with tasks, for saving resources. 
If any node of the cluster has stopped its activity, its responsibilities will be spread 
to other nodes to sustain the application’s regular services. If the head of the cluster 
stops operation due to the failure of the system, then another inactive node from the 
cluster might be given the charge. It reflects that the fog-based computational sys-
tem is secure.

Edge-Centric IoT As IoT technologies are quickly expanding, by 2025 it is 
expected to have 77.44 billion IoT gadgets. Various IoT frameworks are being 
developed from various viewpoints by different organizations for the enormous 
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amount of IoT applications, and the edge computing paradigm has been recognized 
as significant support for IoT ecosystems [22]. But a recognized and efficient edge- 
centric architecture for the IoT ecosystem does not exist.

There are four main components of the edge-computing-aware IoT architecture: 
cloud, IoT end gadgets, edge servers, and clients. The architectural design takes into 
account both the necessary tools and the specific characteristics of each group. 
Users utilize smart IoT apps to lead their livelihood comfortably, although they con-
nect more IoT end gadgets via integrated edge-cloud interfaces rather than commu-
nicating directly with end IoT gadgets. The end IoT gadgets are rooted profoundly 
in the real universe. They experience the physical environment and behave to regu-
late the physical world, but in practice, their capabilities are not much advanced. 
The cloud has virtually infinite space but is generally located far from the end ter-
minals. Therefore, the cloud-dependent IoT ecosystem is not much efficient, espe-
cially during the need for real-time processing. As the edge server is a key component 
of the whole system, it will integrate and support the other parties for optimum 
performance in the cloud and IoT applications.

IoT users send queries to get access to IoT data or services to monitor IoT gad-
gets inside the edge-aware IoT architecture. These queries will ultimately arrive at 
the edge server from a web server, edge gadgets like sensors, smartphones, etc. 
They are then managed into the edge node, which then transfers them to end IoT 
gadgets or manages the queries in exchange for end IoT gadgets at the edge tier. The 
edge tier communicates with end IoT gadgets that not only connects them with 
consumers and the web but is also capable to preserve data gathered and transmitted 
from end IoT gadgets and offload heavy computing tasks, such as massive data and 
robust IoT ecosystem protection algorithms. Additionally, many current services of 
end IoT gadgets can be moved from the core cloud to the edge nodes or servers, 
which can be configured as per client needs. The edge nodes may operate indepen-
dently without the intervene of the cloud server, or the edge nodes may work in 
tandem with the core cloud, in terms of the interaction between the core cloud 
server and edge node. The edge nodes are capable enough to satisfy IoT application 
requirements according to the first framework. It will, for instance, provide storage 
and processing resources to satisfy all IoT gadgets’ demands. In the second frame-
work, the edge provides cloud supports for controlling the edge tier or for address-
ing IoT application requirements.

A sophisticated engineered configuration leads the edge-aware IoT ecosystem. 
The edge tier is a highly optimized zone for the IoT ecosystem dedicated for pur-
poses, such as meeting many of the real-time needs and discharge of heavy comput-
ing tasks for end users. First, the edge layer has more capability than IoT gadgets, 
which allows a range of computational protection mechanisms, such as homomor-
phous encryption and access control dependent on attributes, to be implemented on 
the edge tier. Second, the edge layer is directly connected to the end-level IoT gad-
gets. It can fulfill the criteria of protection for real-time security frameworks. Third, 
the layer at the edge gathers and stores data from several IoT terminals. Therefore, 
the edge is best at making security decisions relative to end users, meaning that an 
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optimal protection judgment relies on both the performance of the algorithm and the 
accessibility of adequate details. For instance, the edge tier can more effectively 
perform the detection of intrusion with such additional data. Many security mecha-
nisms are transformed into routing policies with the rise of software-defined net-
works (SDN) and network functions virtualization (NFV), but these technologies 
might conflict with one another. If the whole network is linked at the edge, such 
problems may be overcome through the edge tier. Fourth, despite the resource limi-
tations, the expense of service, and the vast range of end gadgets, installing and 
maintaining firewalls on each IoT end gadget are typically not feasible. The usage 
of firewalls on the outside of the network makes more efficient filtering and block-
ing of incoming threats. Fifth, the edge layer can track and provide a simultaneous 
secure connection to these gadgets because of the mobility of such terminal gadgets. 
The fairly secure relationship between the edge tier and the end gadgets often helps 
to create a deep trust among the gadgets. This alleviates the problems of building 
trust within these gadgets. Moreover, the edge is normally associated with the cloud 
through a high-bandwidth connection. The edge tier is capable of requesting 
extended security from the cloud whenever appropriate. The cloud will, for exam-
ple, provide position and activity control for the edge, and the cloud will establish 
effective edge-aware security mechanisms.

7.2  Machine Learning-Enabled IoT Intelligence

Taxonomy of Machine Learning Algorithms Machine learning (ML) is a field of 
computer engineering and a kind of AI that allows devices the opportunity to per-
form operations without specific programming. Machine learning appeared from 
the recognition of patterns and the theory of computational learning. Principles of 
machine learning and the widely utilized ML algorithms for intelligent and efficient 
data processing are addressed here.

An algorithm for learning takes a variety of instances as an input called a training 
collection. There are three major learning categories: supervised learning, unsuper-
vised learning, and reinforcement learning. Informally, in the case of supervised 
learning, a training data set consists of specimens of input vectors and their respec-
tive target vectors, also called labels. In terms of unsupervised learning algorithms, 
the training package (set) needs no labels. Reinforcement learning algorithms deal 
with the queries of discovering the correct action or series of actions that might be 
done to optimize reward within a specific scenario. This work focuses on unsuper-
vised and supervised learning algorithms as such learning algorithms are commonly 
used in IoT intelligent data analytics. Supervised learning algorithms are designed 
to perceive how to determine the correct output in terms of a specific input vector. 
Applications under which the target labels comprise of a confined number of dis-
tinct groups are considered as classification. Cases under which the target labels 
consist of one or multiple successive variables are considered as regression.
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It is quite difficult to identify the exact goal of unsupervised learning. One of the 
key goals is to recognize responsive clusters of related samples beneath the input 
data, called clustering. To move the input value into a latter variable space, the goal 
can also be the creation of a suitable internal representation through the preprocess-
ing of the initial input variables. The output of a corresponding machine learning 
algorithm is substantially enhanced by this preprocessing and commonly known as 
feature extraction.

To make the required decisions to interpret the intelligent data, it is important to 
define which activity needs to be performed from systemic exploration, locate odd 
data points, predict values, forecast categories, or extract features. Clustering algo-
rithms might be able to yield the most suitable tools to identify the structure of 
unlabeled data. K-means algorithm is the popular and widely used algorithm for 
clustering which can accommodate a huge amount of data assuring support for 
broad categories of data. Reference [23] suggested the K-means algorithm to handle 
intelligent data in smart cities and intelligent house. DBSCAN is another unlabeled 
data clustering method that can be used for sophisticated clustering 
of citizen-behavior.

Two significant ML algorithms can be used to determine unusual data points and 
incongruities in intelligent data. The support vector machine (SVM) and principal 
component analysis (PCA)-based incongruity detection techniques are effec-
tive detection methods, allowing the training of incongruities and vexatious data 
with higher efficiency. Single-class SVM was used by [24] to track and identify 
incongruities in human activities. The SVM discussed is another common classifi-
cation algorithm that can handle massive data and identify their different forms. 
SVM is typically used with the most intelligent data analytics algorithms since it 
can accommodate a large volume of data and varieties of data. For instance, SVM 
can be used to categorize traffic info.

The support vector regression (SVR) and linear regression-based techniques are 
the two frequently used algorithms for forecasting values and classifying sequenced 
data. The models used in these algorithms are intended to process and train high- 
velocity data. For instance, the research [25] performed real-time prediction by 
applying linear regression. The regression tree-based classification mentioned is a 
rapid training algorithm, which was implemented for the classification of citizen 
behavior in a smart city.

Neural networks are adequate learning models for feature approximation prob-
lems to predict classifications of data. In comparison, a multigrade neural network 
should offer an appropriate solution as intelligent data will have to be reliable and 
needs lengthy training time. For example, the feedforward neural network (FFNN) 
[26] has been used to minimize the potential energy needs, forecast the generation 
of the data, and remove their redundancy.

The two most widely used algorithms for extracting data characteristics are PCA 
and canonical-correlation analysis (CCA).

To make the right decisions, the selected algorithms should be applied and 
optimized.
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Machine Learning-Aided IoT Security In recent years, there has been growing 
curiosity in the research and study of machine learning (ML). For the enhancement 
of several domains, ML is highly utilized and also deploying ML-aided techniques 
for IoT protection. ML is a viable solution for shielding IoT systems from cyber 
threats, as opposed to more conventional approaches, by defending them from 
cyberattacks or assaults. The followings are the approaches ML provides for coping 
with such security risks.

DoS Attack – One of the severe security issues of IoT gadgets is DoS assaults 
(attack). One solution to avoid these attacks is utilizing a protocol focused on 
multilayer- based perceptron (MLP), which secures IoT networks against threats of 
DoS. The authors of [27] suggested an expansion of particle swarm and algorithm 
of backpropagation to lead an MLP that will assist to improve the protection of 
wireless networks. ML strategies assist to improve the precision of deductions and 
stable IoT devices resistant to DoS attacks.

Eavesdropping – Attackers can eavesdrop on messages at the time of transmis-
sion. ML strategies like Q-learning-dependent offloading technique or Bayesian 
nonparametric methods may be used to secure the IoT ecosystem from attacks of 
this type. ML techniques like Dyna-Q and Q-learning might be used to secure gad-
gets from eavesdropping. Reinforcement learning-aided techniques for the evalua-
tion of these schemes can also be deployed.

Spoofing  – Spoofing attacks can be prevented utilizing Dyna-Q, Q-learning, 
SVM, DNN model, distributed Frank-Wolfe (dFW), and incremental aggregated 
gradient (IAG) techniques. These methods not only improve the efficiency of iden-
tification and diagnosis but also minimized the false alarm and average error rate.

Privacy Leakage – Personal details such as health records, location, or photo-
graphs are gathered that jeopardize the user’s privacy. Scientific Calculations for 
Privacy Preservation (PPSC) might be used to prevent issues of privacy. Another 
technique for improving the trust for IoT applications is an integrity detection algo-
rithm for the commodity (CIDA) focused on the Chinese Remainder Theory (CRT).

Digital Fingerprinting  – Digital fingerprinting is an emerging approach for 
secure IoT ecosystems to allow clients to avail of adequate trust in IoT applications. 
Fingerprints nowadays are widely deployed to unlock mobile phones, allow pay-
ments, unlock home doors and the car, etc. Digital fingerprinting is arising as a 
dominant form of biometric detection because of its low expense, precision, high 
security, and acceptability [28]. Besides the beneficiary features of digital or com-
puterized fingerprinting, the effective usage of this methodology in IoT, including 
fingerprint recognition, enhancement of image, matching of features, etc., are cer-
tain problems yet to be solved. Different machine learning algorithms are designed 
to offer nontraditional approaches to solve these problems. Some of them are dis-
cussed below.

Support vector machine is a training algorithm for linear and nonlinear classifi-
cations, text categorization, PCA, regression, and speaker identification. It has max-
imized the disparity between the training patterns and decision boundaries. Details 
of SVM-based automated fingerprinting method were addressed by the authors. The 
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work has also contrasted it with other conventional fingerprint detection models. A 
feature vector is constructed using fingerprint pixel values and is used for SVM 
training. Different fingerprint patterns are analyzed, which are then matched based 
on identified patterns.

Artificial neural network is a widely deployed machine learning algorithm. It has 
a variety of advantages such as fault tolerance, integrated learning, and widespread 
use. A system for automated recognition of fingerprints based on ANN was intro-
duced in [27]. The computerized values of some characteristics such as the ridge, 
minutiae, and bifurcation in the fingerprint are employed to the neural network- 
aided backpropagation algorithm for training purposes. The fingerprint is verified 
based on the previously captured values preserved in a database.

The basic requirement of an IoT ecosystem is to secure the entire system and 
gadgets that will engage in communication with the network. ML has to train algo-
rithms to find out security breaches in IoT gadgets or to discover unauthorized activ-
ities in the IoT ecosystem to avoid data loss or other difficulties. ML is therefore an 
efficient technique for solving the problems in securing IoT gadgets. To accelerate 
the enhancement of the IoT ecosystem, additional contributions are needed.

8  Applications of IoT Ecosystems

IoT technologies are expanding rapidly and reaching the majority of established 
industries. Specific applications of IoT ecosystems are addressed in this segment.

Smart Cities The usage of modern computing and networking technologies to 
boost the overall efficiency of people’s lives in intelligent cities is extensive. It 
requires smart houses, intelligent traffic control, intelligent disaster prevention, 
intelligent services, etc. Cities are being made smarter and governments are being 
encouraged by various incentives.

Smart Home Home automation is one of the evolving services of IoT technology. 
In most of the markets meanwhile, different intelligent home apps are developed on 
the hypothesis of the IoT. They provide basic thermostat controls and many more 
sophisticated control technologies including intelligent metering, maintenance, and 
home business services involving automatic heating and lighting. It is estimated that 
the amount of data produced on a standard IoT network such as the intelligent home 
would be enormous.

Smart Grid IoT is known as the basis for knowledge in intelligent grid networks. 
IoT integrates networking technologies into all sorts of grid components such as 
transformers, switches, circuit breakers, meters, relays, smart electronic gadgets, 
voltage regulators, capacitor banks, and much more. Such IoT gadgets gather the 
data necessary for automation. Smart grids powered by IoT deliver many advan-
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tages, including reduced capital spending, increased renewable power, reduced 
maintenance expenditure, and increased consumer loyalty.

Smart Healthcare The consequences of chronic illnesses and improving wellness 
are mitigated by intelligent healthcare. This can be achieved by the integration of 
sensors in patients to better track clinical problems and offer guidance to the pro-
vider of healthcare. Several researches assessed the overall appropriateness of wear-
able IoT gadgets in systems of healthcare. Present statuses of patients become much 
simpler to reach with sensors. A perfect instance of intelligent healthcare is the 
prompt intervention whereby suggestions should be provided to the treatment facili-
ties once a patient’s blood pressure crosses the predefined level.

Mechanized Agriculture Mechanized agriculture includes soil moisture analysis, 
microclimate management, dry-area selective irrigation, and temperature regula-
tion. The use of these advanced characteristics in agriculture can contribute to high 
returns and save ranchers from financial losses. Temperature and moisture controls 
in various processing of grains or vegetables may help to avoid fungal and other 
microbial pollutants. Climate management will also help improve the production 
and quality of vegetables and crops. Much like crop surveillance, IoT ecosystems 
are capable to track farm animals’ movements and safety through fastening animal 
sensors.

Industry 4.0 The Industrial IoT (IIoT), also named Industry 4.0, is a manufactur-
ing IoT program. To enhance information and collaboration, IIoT combines several 
innovative automation and communication technologies, such as M2M, machine 
learning, and data analytics. For example, IIoT networks will link and forward data 
of employees to the administrative offices from the production plant. Decision- 
makers or workers may therefore build a complete and detailed description of their 
production cycle by utilizing the IIoT network, thus enhancing their capacity for 
decision-making that is better known.

9  Conclusion

The concept of the IoT makes its way rapidly into everyday life and seeks to improve 
the standard of life by integrating many intelligent gadgets, applications, and uses. 
The IoT would enable everything around us to be automated. This chapter provides 
an overview of the basis of this concept including the prime enablers of IoT ecosys-
tem, protocols, applications, intelligent technologies such as cloud computing and 
machine learning (AI) that ensures an actual knowledge-based IoT ecosystem, and 
the ongoing researches and developments that address various characteristics of 
IoT. However, several issues and problems related to IoT systems architecture and 
delivery have been highlighted. Moreover, there were discussions of the interplay 
between IoT, data analytics, and cloud-fog-edge computing. In turn, that should 
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provide a good basis of insights on the IoT technologies and standards for research-
ers, developers, and enthusiasts who wish to realize the architecture and role of the 
various IoT protocols and components.
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Artificial Neural Networks and Support 
Vector Machine for IoT

Bhanu Chander

1  Introduction

Wireless communication technology is one of the major revolutions of this century, 
and it is continuously expanding. In the past, wired connections produce small con-
nections with limited benefits; however, it is now possible to develop massive net-
works with enormous benefits with wireless technology. Wireless technology is the 
result of recent improvements like microelectromechanical devices, protocols, com-
puter networks, and network frequencies. The smartphone-centric set of connec-
tions from the olden days is steadily changing into an IoT environment. IoT connects 
integrated, heterogeneous wireless-enabled devices like smart mobiles, computers, 
special wearable sensors, connected vehicles, virtual reality devices, agricultural 
machines, etc. These transformations improve the expansion of wireless traffic con-
trollers and show how to materialize modern and untried wireless service use cases, 
which significantly fluctuate from standard services [1–3]. The high data rate and 
traffic analysis play a huge role in the past decade’s wireless revolution; in preset 
days, adaptive and instantaneous appliances of IoTs work efficiently with reliable, 
low-latency communications. In the coming days, wireless sensor nodes will con-
tinuously gather vast quantities of data in a real-time method with the numerous 
sensing plus wearable accessories that supervise the physical atmosphere.

Such enormous short-packet broadcasting resolves direct extensive travel over 
the wireless uplink, which is usually fewer overcrowded than the downlink. 
Naturally, wireless technology was extensively applied to cloud computing, real- 
time video streaming in multimedia services, virtual reality, useful healthcare 
reports, etc. This eventually generates a dissimilar networking atmosphere whose 
original claims moreover their various quality of service (QoS) along with 
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consistency necessities consent a deep-seated revolution in how wireless sets of 
connections are replicated, intended, optimized, as well as explored [1–6].

The need to manage and handle this new and continuous progression of wireless 
technology services and devices has shown the way to extensive research areas to 
explore the optimal wireless, mobile networks within the circumstance of the tal-
ented next-generation wireless-based 5G and 6G setups. To date, there are signifi-
cant factors of 5G networks like millimeter-wave and device-to-device 
communications, miniature cell employment techniques designed and implemented. 
But mixing them within a tuneful wireless scheme that can light up the IoT contests, 
requirements and implanting intelligent roles through the margin/boundary and the 
center of the network is tricky [3–5].

These intellectual models and roles should be talented to intelligently operate the 
wireless scheme resources plus the engendered data, to enhance the scheme actions 
in real time and the QoS desires of good wireless as well as IoT services. These 
kinds of computing and intellect can be potentially comprehended by incorporating 
machine learning- and deep learning-based techniques across wireless transporta-
tion and abuser devices.

2  Preliminaries

2.1  History of Neural Networks

Neural networks’ innovation started in the early days of 1943 with a single neuron 
by two well-known researchers McCulloch and Pitts. The designed model describes 
the neuron as a linear threshold with multiple inputs but produces a single output 
either 0 (inactive) or 1 (active) if the cell exceeds the specified threshold value. After 
some years, Hebb states the existing rules to support the links among neurons; in the 
year 1958, Rosenblatt designed a matured neural network with a perception unit 
based on McCulloch and Pitt’s model, and the designed model produces output 
ranges from 1 or  −  1 depending upon the weighted linear arrangement of 
inputs [6–10].

Rosenblatt, Widrom, and Hoff discover different perception-based artificial neu-
ral networks in the early 1960s; however, it takes rapid encouragement between 
1970 and 1980 among various contemporary scientists and researchers. Moreover, 
these innovations’ primary reason is the difficulties the world faces during their 
period; it stated that perception was incompetent to represent simple functions that 
are linearly undividable. The era of ANNs started when Hopfield stated new limita-
tions into the neuron field; he introduces major concepts like nonlinearity between 
total inputs received through a single neuron and the output it generated; another 
concept was the feedback possibilities coupling of outputs with the appropriate 
inputs [4–8]. In present days, mostly ANN is used for solving real-life problems 
than in improvising accurate representations of the neurons; ANNs are extensively 
applied in chemistry, physics, security, finance, geology, medicine, and engineering.
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Initially, ANNs are very complicated nonlinear computational tools which are 
proficient of modeling hardcore complex function. Notably, the relation among 
input neurons and corresponding output neurons can be visualized with appropri-
ately selected ANN architecture. Within these structures, neural networks also 
maintain a continuous check on the curse of dimensionality issues. Also, neural 
networks will learn by data records, which means the model is automatically trained 
from representative data points. However, the designers or abusers must have some 
basic knowledge of how to select and prepare data and choose a suitable neural 
network and what basis detailed data successfully applied for neural networks to 
produce effective results.

2.2  Role of ANNs in Wireless Sensor Networks

From the invention, machine learning (ML)-based models are undeniably one of the 
central mechanisms for wireless networks in finding optimal solutions. However, in 
the circumstances of WSNs and IoTs, ML algorithms will allow every wireless 
device to dynamically and wisely observe its surroundings through learning, pre-
dicting the progression. With the development of a mixture of ecological features 
such as abuser context, traffic patterns, content requests, dynamic wireless channels 
adoptions, etc. and based on these proactive procedures that make the best use of 
predefined objectives [1–4, 8–13, 60–64]. ML allows the network communications 
to become skilled at wireless networking background and take adaptive system opti-
mization procedures. As a result, ML is likely to show many parts in the coming 
production of wireless networks 5G and 6G setups.

There are some extreme reasons for applying machine learning models to WSNs 
and IoTs; those are:

 1. It is a known fact that applying ML to wireless technology is to develop the 
device or nodes intelligence and improve predictive data analytics to boost up 
the situational consciousness besides overall network actions. In perspective, 
ML endow with the particular WSN and make the capability to parse through an 
enormous volume of data accumulated from several grounds. Sensor interpreta-
tions to buzz with surveillance imageries toward building an overall outfitted 
plan to optimize the enormous number of devices contained by the network.

 2. ML will also provide a primary driver of intellectual data-motivated techniques 
for system optimization. This can report a wide range of glitches equivocating 
from cell connotation and then radio access expertise collection for power man-
agement, frequency sharing, intellectual beamforming, and efficient spectrum 
management. In the past, traditional optimization models were applied in offline 
and semi-offline approaches, which produced limited benefits. In contrast, ML 
showed that resource management devices would be talented in an entirely 
online style by learning the wireless system’s real-time conditions.

 3. ML models discover the best features by online learning, which continuously 
improves their performances, allowing cleverer and self-motivated decision- 
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making. Such kind of self-learning is essential for IoT, 5G, and 6G services, 
which require real-time, low-latency operations in drone and industrial device 
controls. Accurately designed ML and DL techniques will produce effective 
automated and intelligent optimization solutions for a wide-ranging range of 
glitches within the background of sensor plus IoT resources.

 4. An ML algorithm effectively enhances wireless communication’s physical layer 
appliances like levels of receiver and transmitter, coding, and modulation within 
the network circumstances. This will improve delivering lower bit error rates 
along with efficient robustness in frequency channels.

 5. Finally, the rapid development of well-designed client-based central wireless 
services like virtual reality, robotic, and drones where the incorporation among 
clients with associated network roles is roughly nominal tremendously encour-
ages the prerequisite for WSNs to be adapted to the human user behavior.

 6. Moreover, intellectual as well as predictive data analytics improve the wireless 
network capacity to smartly practice with the tremendous amount of data records, 
collected from heterogeneous devices, to explore and foretell the situation of the 
wireless abusers and then the wireless grid’s ecological circumstances, as a 
result empowering data-motivated network-wide equipped decisions.

 7. The wireless system’s capacity to energetically study the wireless surroundings 
moreover wisely directs the wireless system and improves its properties afford-
ing to data learned regarding the wireless atmosphere to end-users situations.

Based on the above rules, it is visible that ML is the first mechanism that stands 
proficient to gain knowledge and imitate humankind’s actions; this increases or 
assists wireless schemes to adapt various real-life functions toward creating a right 
immersive situation for its abusers as well as maximize the overall quality of ser-
vices. ML kind algorithms designed for wireless technology will recommend to an 
inexpressibly high standard set of novel system tasks along with wireless services. 
In the future, 5G and 6G networks will incorporate significant theories and tech-
niques from ML, DL, and nature-inspired approaches. The significance of ML-driven 
wireless setups has already been provoked through many current wireless network-
ing examples like mobile edge computing, fog computing, and context-aware net-
working. Nevertheless, a higher percentage of ML techniques is applied for a variety 
of operations like customer performance analysis along with estimations to deter-
mine which contents to assign computing resources [18–23]. On the other hand, 
regardless of their consequence, these workings have a contracted spotlight and 
shed light on the confronts moreover prospects connected with ML’s utilization for 
designing an intellectual wireless set of connections.

2.3  ML Models in IoT

Machine learning prepares computer models to learn or educate on their own with-
out providing any explicit code. ML-based approaches examine historical data to 
execute the desired operations or assignments. For this, ML needs two kinds of data 
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records. The first is called training data, to train the learning algorithm offline or 
online; another one is test data – this is for evaluating the model’s performance on an
unseen dataset. From the year 1959 of initiation, ML has been effectively utilized 
and made tremendous changes in finance, social media, healthcare, education, and 
smart devices. It is also employed in the manufacture of chatbots plus automated 
smart devices – software for facial identification, natural language processing, etc. 
In recent times, ML models have also originated as a well-accepted appliance in the 
IoT systems [1–6, 14–18].

Internet of Things (IoT) is a connection of mixed devices that are capable of stor-
ing and sharing data, and the word Internet of Things (IoT) is first coming from the 
famous researcher Kevin Ashton in 1999. From the day of introduction, IoT boosted 
growth rate in diverse fields like healthcare, agriculture, smart-wearable devices, 
pollution monitoring, and whatnot. An optimal IoT system works with three phases: 
first sensors, actuators, and smart devices employed to determine physical parame-
ters which then transformed into electrical signals for transmission; second acknowl-
edged signals uploaded on the system with wireless communication arrangements; 
and third uploaded data – data processed in the course of specific methods for pre-
ferred précised results [2–8, 16–24, 60–64]. Sensible devices respond with altera-
tions in their physical environment, which plays the primary role of storing and 
sharing data records and outfits with ML approaches for more rapid and uncon-
strained processing. ML methods are used globally to boost the processing of the 
data gathered by these devices. ML techniques are faster, consistent, and more 
protected.

The main intention to bring or insert ML techniques in IoT is to diminish errors 
and simultaneously enlarge the processing speed. Bayesian networks are used for 
reducing error and noise when data are transmitted from device to device, neural 
networks to extract the high-level features, then random forest, and clustering for 
classification of data records and recovering lost data from IoT-based devices.

2.4  Artificial Neural Network Preliminaries and Types of ANN

Artificial neural networks (ANNs) are motivated by the formation of human brain 
functional features of biological neural networks and discover high rated features 
from the complex raw data. ANNs are highly suitable for WSNs to investigate, fore-
cast network and abuser actions to produce the decision-making information, and 
solve diverse wireless networking problems like spectrum management, cache 
information analysis, adopting frequency modulations and computational resource 
allocations, etc. In recent days, smart IoT devices and mobile appliances have 
mostly increased users’ concentration with mobile Schemes [16–26]. A well- 
designed and skilled ANN can contemplate as a professional in dealing human- 
related information. Thus, exhausting ANNs to extort data from the abuser’s 
surroundings can offer a wireless system with the capability to forecast the abuser’s 
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potential activities and, therefore, to plan the most acceptable approach to progress 
the resulting QoS and consistency which is still a tricky task.

Modular Neural Networks (MNN) A MNN is a mix of more than a few autono-
mous ANNs and conciliators. In MNN, every ANN exploits to solve a solitary sub- 
task of the complete mission an MNN desires to execute. Here, conciliators utilized 
for practice the output of every autonomous ANN and then produce the productivity 
of an MNN.

Recurrent Neural Networks (RNNs) RNNs make possible links between neu-
rons in one layer toward neurons in preceding layers. Depending on the various 
models, activation functions, and theories for the neuron, RNNs are defined in mul-
tiple architectures. Stochastic neural networks, long short-term memories (LSTMs), 
bidirectional neural networks (BNNs), echo state networks (ESNs), fully recurrent 
neural network (FRNN), gated recurrent units (GRUs), neural Turing machines 
(NTMs), etc. are some of them.

Generative Adversarial Networks (GANs) Generally, GANs are built with two-
fold neural nets, one neural system utilized to acquire a record from a hidden space 
to specific data distribution, whereas an additional neural grid employed to distin-
guish among the right data distribution and then the dandling plotted via a neu-
ral system.

Deep Neural Networks (DNNs) All the artificial neural networks based on mul-
tiple hidden layers are acknowledged as DNNs.

Spiking Neural Networks The spiking neural nets contain spike-type neurons that 
imitate or copy the genetic neural systems.

Feedforward Neural Networks (FFNN) In FFNN, every neuron contains incom-
ing links from the previous layer and, in the same way, makes outgoing links with 
the successive layer. Convolution neural networks (CNNs), radial basis functions 
(RBF), and auto-encoders are some of the advanced architectures that come 
under FFNN.

Physical Neural Networks (PNNs) In PNNs, the primary function of neural acti-
vation is design with a fully adaptable, electrically resistant substance. Here both 
RNN and SNN are utilized for different suitable learning jobs. For example, RNNs 
are effectual in dealing with time-reliant data records, whereas SNNs successful in 
trade with invariable data. It should be renowned that utmost of the records com-
posed of wireless nets is time-dependent and continuous data. However, RNNs or 
SNNs can witness only a partial chronological data size; they may not be talented to 
resolve every wireless transmission trouble. To resolve composite wireless malfunc-
tions, one can utilize DNNs with a high memory volume for data analytics and then 
disconnect the composite crisis that desires to be learned into an arrangement of 
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numerous more straightforward difficulties, hence constructing the learning 
procedure valuable.

2.5  Modifications of ANN

Neural Networks Artificial neural network (ANN) or else neural network (NN) is 
a supervised-based knowledge model that follows the human brain’s structure to 
derive multipart, nonlinear decision limitations for effective classification models.

A simple ANN model contains one input, several hidden layers, as well as one 
output layer. Here, the input layer corresponds to the input data variables. The hid-
den layer corresponds to process essentials called neurons that develop their inputs 
using activations (linear, sigmoid, and hyperbolic tangent functions) deciphers the 
input signals to output signals. Links excessively link the elements among every 
layer with numeric weights that are well-read by the model. The output layer shows 
the predictions for the given inputs based on the interconnection weights described 
during the hidden layer. Neural networks gain more and more attention from 
researchers because they can estimate any attention when tuned sound. The ANNs 
train to recognize how ecological dimensions and the setup condition change the 
performance knowledge on different channels. Based on this data record, it is fea-
sible to energetically decide on the control channels, which is likely to yield the 
most excellent concert for mobile abusers.

Deep Learning The neural network which holds numerous hidden layers with the 
same complexity as a single hidden layer network is called deep neural networks 
(DNNs), and the procedure of learning acknowledged as deep learning (DL). DNNs 
hold the latent to restore the progression of manually obtaining important structures 
that depends on previous domain data with unsupervised or else semi-supervised 
feature knowledge approaches. CNN, RNN, and DBN are some of the models in DL 
that have shown success in numerous domains.

DL use cases in wireless technology as follows: RNN has been practical to 
WSNs; the authors planned a distributed learning form by sharing the neural net-
work into different layers and then positioning them on numerous sensor nodes. 
This will effectively reduce the number of data records for training. Software- 
defined networks (SDN) and unsupervised optimization techniques, flexible net-
work connections, error recognition, and many more are dramatically included DL 
as a good part.

Radial Basis Function (RBF) RBF has tremendous influence in ANNs but is not 
expressively utilized in modern appliances. Since the mentioned systems/nets are 
not powerfully built, they logically utilized two layers. The top layer is fabricated in 
an unsupervised mode, and the subsequent layer proficient with supervised models. 
RBF, a completely different working procedure from feedforward systems, argues 
that the former advances its power by increasing the range of the feature’s tempo 
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moderately than intensity. RBF models are closely related to the Cover’s theorem on 
the separability of prototypes, and here pattern categorization issues are mostly 
related to linearly independent when transmitting toward vast amounts with a non-
linear alteration. The former layer consists of activation with the comparison of the 
input data to the archetype. These initiations are then pooled with trained weights of 
the subsequent layer to generate an ultimate forecast. This advance is very alike to 
the nearest-neighbor classifier; apart from the second layer’s influences, it offers a 
supplementary administration level. RBF networks are efficient in building 
simulation- based kernel techniques like support vector machines, especially prob-
lems like classification and clustering models. RBF networks’ unlimited possibili-
ties remained new since this style has been largely beyond the enlarged concentration 
on vanilla feedforward approaches.

Restricted Boltzmann Machines Restricted Boltzmann machines (RBMs) con-
struct networks for indicating data info in an unsupervised mode with limited power. 
These networks closely related or follow probabilistic graphic models, slightly ori-
gin from Hopfield networks for storing recalls/memories. Stochastic modifications 
of these nets were unsystematic to Boltzmann types of machinery, in which hidden 
layers exhibited multiplicative characteristics of the data. RBMs are effectively uti-
lized for unsupervised modeling and reduction of dimensionality; however, they are 
also applied for supervised modeling. RBMs are the first approaches used to deep 
learning and afterward adopted to other models since they have a historical impact 
in inspiring several training models in-depth.

Recurrent Neural Networks RNNs are specially intended for successive data 
records like text, time series, plus biological categorizations. For instance, the input 
is in the form of x1 . . . xn, where xt is a d-dimensional data point acknowledged at 
the time-stamp t. Here the vector xt encloses the d standards at the tth mark of a 
multivariate time series. The vector xt contains a one-hot encoded term at the time- 
stamp. Here a course of distance equivalent to the lexicon scope, besides the ingre-
dient for the appropriate term has a cost of 1, further apparatuses 0. A central point 
around categorizations is that consecutive words are reliant on each other. So, it is 
obliging to obtain an input xt only afterward the former inputs take previously 
established and renewed toward a hidden state. Thus, RNN permits the input xt to 
interrelate straightforwardly via the hidden state formed from the previously recre-
ated inputs at preceding time-stamps. Consider an example; the question is to solve 
or try to categorize a sentence’s viewpoint as positive or else negative; the produc-
tivity only happens at the last time-stamp. The hidden state-run at time t is specified 
by the input vector’s role at time t along with the hidden vector at the time (t − 1): 
ht. = f(ht − 1, xt). A separate function yt = g(ht) is pragmatic to expose the output 
prospects since the hidden states, here both roles f(·) and g(·), are similar at every 
time-stamp.

An essential property of RNN was that they are tuned well and complete means 
for the appropriate data and resources they can execute or learn any model. The 
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quantity of data plus the scope of the hidden circumstances mandatory for longer 
categorizations enhances in a move that is not sensible. Additionally, there are real- 
world questions in sighting the most favorable limitations since the vanishing and 
the explosion of gradient troubles. So, dedicated modifications of the RNNs have 
been featured, such as the employment of LSTM.

Convolution Neural Networks CNNs are proficiently applied for image process-
ing and pattern recognition tasks. The fundamental aspects of CNN are attained 
from Hubel and Wiesel’s work of understanding the cat’s visual cortex, where 
explicit parts of the visual field appeared to stimulate finicky neurons. In CNN 
architecture, every layer of the setup is three-dimensional and has a three- 
dimensional degree along a depth equivalent to the sum of features. The perception 
of depth in a CNN single layer is dissimilar from the perception of deepness in 
terms of the numeral layers. For example, in the input layer, structures match the 
color frequencies as red, green, and blue, and in the hidden frequencies, these struc-
tures symbolize to hidden feature maps that translate a variety of outlines in image. 
For layers, a convolution procedure is definite as a filter to plot the stimulations 
from layer to layer as it moves deeper. A convolution process utilizes a three- 
dimensional filter of weightiness with a similar deepness as the existing layer 
though a slighter spatial range. The dot product among every weight in the filter 
with any first rate of a spatial section describes the hidden state’s value in the next 
layer. The filter plus the spatial sections in a layer is achieved at every probable 
place to define the next layer. The CNN associations are very meager since any 
initiation in a meticulous layer is only a small spatial section in the preceding layer.

However, the weights in previous layers are still functional since they discover 
several forms in the imageries that can be valuable for almost each kind of catalog-
ing appliance. Besides, the feature initiations in the last layer can still be utilized for 
unsupervised appliances. Consider an instance, by building multidimensional dem-
onstrations on uninformed image datasets via forwarding through the CNN, and try 
to extort high features. These operations will produce fantastic results in image 
recovery due to the semantic nature of the features learned through the setup.

Generative Adversarial Networks GAN is archetypal for data-generation, gener-
ating a generative model on the dataset by employing adversarial among two play-
ers like generator along with discriminator. The generator takes Gaussian noise-based 
data as input and then harvests the corresponding output. They are coming to dis-
criminator, which characteristically works like classifier-based logistic regression to 
discriminate actual samples from the dataset and then the generated sample. Here 
the purpose or the role of the generator is to build data samples as realistic; it means 
trying to bamboozle or fool the discriminator; on the other end, the discriminator 
recognizes the forged or false samples regardless of how good the generator attempts 
to jester it. These models could help create sensible fantasy samples by using a 
dataset, which is utilized regularly in the image area.

Consider a sample, the model trained with the royal house’s images; model 
builds realistic-looking royal homes that are indeed a part of the base data. So the 
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model was effectively employed to generate artistic, creative samples. These tech-
niques are also applied to a definite type of context, which might be labels, text 
captions, or images with missing facts.

Echo State Networks Echo state network (ESN) is an explanation of RNN mod-
els, which measure professionally with the measure of sequential elements but not 
with dimension of the input. This kind of network helps a small quantity of real- 
esteemed time successions over a long-time vision. ESN approaches are also 
acknowledged as liquid state-run machines; apart from that, it next utilizes spiking 
neurons with binary outputs, while ESNs use old-fashioned activations such as the 
sigmoid and the tanh.

ESN applies arbitrary weights in hidden-to-hidden layer and the input-to-hidden 
layer, even though the size of hidden shapes is nearly superior to the size of input 
states. It is a reminder that the output layer’s preparation combines the faults at dif-
ferent output nodes, even though the weights at other output nodes are fixed 
communal.

Long Short-Term Memory RNNs work proficiently with time-series data but suf-
fered from vanishing gradients. One best solution for this is for neural networks that 
utilize only multiplicative updates to be better only at learning over the short 
sequences; moreover, it is intrinsically capable of high-quality rapid-term memory 
although underprivileged long-term memory. There is a need to modify the recur-
rence calculation for the hidden vector by utilizing the LSTM’s long-term memory 
to solve the mentioned issues. Here, the LSTM was developed to hold a well-defined 
switch on the data records transcribed toward long-term memory. These vectors are 
mostly abstractly utilized, for example, Boolean gates designed for determining 
whether to affix to a cell state or not recall a cell state or else whether to tolerate leak 
within a hidden state against a cell state.

In layer-wise neural network background, it is vital to effort through constant 
operations to ensure the dissimilarity requisite aimed at gradient modernization. 
The vector encloses with the recently planned substances of the cell status, even 
though the input plus forget gates normalizes how it is allowable to transform the 
initial cell state.

Gated Recurrent Units (GRUs) The GRUs slightly looks like the implication 
model of LSTMs, where it does not utilize any clear cell conditions. LSTM straight-
forwardly controls information changes in hidden states with its forget plus output 
gates. Besides, a GRU employs a solitary retune gate to accomplish a similar goal. 
Here, the simple difference between RU and LSTM was partially resetting the hid-
den states of the network.

Deep Reinforcement Learning (DRL) The DRL is a reward-driven procedure, 
where a scheme studies to interrelate with a composite surrounding to attain the best 
conclusions. It is like a gateway to producing accurate intellectual agents like gam-
ing models, automated cars, devices cooperating with different atmospheric condi-

B. Chander



87

tions, etc. DL has made a tremendous contribution in various fields, which makes 
humans live their lives comfortably. Some of them are like DL that has a huge role 
in video games’ background, including raw pixels in videos as feedback. Atari 2600 
is a famous video console that comes from DRL; the Atari’s deep learner’s input 
demonstrates pixels from the game’s current condition. Here, the RL technique 
forecasts the acts constructed on the demonstration and inputs into the Atari.

Naturally, the system makes many errors, those replicated in the computer- 
generated rewards through the console. If learners achieve the best things from the 
faults, it makes superior conclusions. Which precisely in what way do humans 
absorb to perform in video games? The appearance of the latest model on the Atari 
plinth was exposed to exceed human-level concerts for an excessive quantity of 
games. Video games are the best example for viewing the excellencies of DRL algo-
rithms since they observe as extremely edited versions of choices one must formu-
late in numerous decision-centric backgrounds. DeepMind has trained with 
DL-based AlphaGo, for the video game Go via using reward outcomes in the 
changes of games drained from human as well as computer self-play. Generally, Go 
is a challenging game that needs tremendous humanoid perception and an incredi-
ble ability to build a gaming model. One more innovation that got attention in DRL 
is self-driving cars utilizing different sensors’ reaction to make conclusions. These 
cars now continuously build less faults during driving than do human beings, which 
will learn and make appropriate actions. Now DRL chases for creating automated 
robotics; training a robot to walk can be implied as an RL mission; in the DRL, we 
only incentivize the automaton to acquire from point A to point B as proficiently as 
achievable by its accessible members along with motors. It concluded as reward-
guided, trial-and-error appliances trained to rotate, move slowly, and then 
finally walk.

In other words, DRL is appropriate for easy-to-estimate tasks but tough to indi-
cate their functionalities. For instance, it was simple to guesstimate the player’s act 
after the game, but it is tough to estimate the player’s behavior at every game move-
ment. DRL affords a simplified path for problematic activities by defining the 
reward and then allowing it study reward-maximizing performances. The complica-
tion of these performances or actions is robotically inborn from the surrounding 
atmosphere.

3  Applications of ANN in WSNs and IoT

Recent innovations confirmed that ANNs have started to draw attention from vari-
ous real-life appliances in wireless communications and IoT schemes. Moreover, 
smart device appliances’ expansion has drastically amplified wireless systems’ 
independence and abuser’s interaction with a wireless-based IoT system. 
Additionally, the advance of the IoT inspires employment of ANNs to advance how 
wireless data is practiced, composed, and used for a variety of sense and 
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self- determination reasons. Given wireless communication fields, ANN is applied 
on wireless nodes or IoT devices based on the two primary purposes: Initially ANN 
is best for forecast, inference, and intellectual data analytical abilities. This is very 
needed in WSNs since nodes from the deployment continuously accumulate real-
world data from abusers and environments and connected network devices. 
Moreover, ANNs are also employed to study or estimate the wireless user’s mobility 
prototypes and content requirements. In IoT-based smart cities, inside a smart-city 
environment, deployed sensors observe the huge amount of data used with the wire-
less network to enhance its resource practice, realize its system process, observe 
letdowns, or just distribute smart-services smart transportation and goods tracking. 
Additionally, ANNs can quickly discover sensitive features from huge sensor data 
cross-correlations, resulting in more truthful estimated wireless network circum-
stances and a proficient distribution of the existing resources (see Table  1). The 
second reason for applying ANNs to WSNs is to enable automated network opera-
tions at the edge of base station and IoT devices. These kinds of automated edge 
computing and data offloading are best suited for resource-constrained WSNs. An 

Table 1 Advantages and challenges of ANN models

Model
Input data/
sensed records Advantages Challenges Drawbacks

Recurrent 
neural 
networks 
(RNNs)

Time-series/
time- 
dependent 
data

Efficiency in 
processing time- 
related correlation 
data like wireless 
traffic and channel 
allocation

Limited power 
and computation 
for training ANN

Difficulty in training 
due to the loose 
connections among 
dissimilar neurons

Proficiently catches 
self-motivated 
activities and ability 
use

Errors in training 
data limited 
computational 
resources

Information from 
sequential data

Real-time 
training for ANNs

Stacked 
neural 
networks

Continuous 
data

Ability to perform 
multiple learning 
tasks

Data cleaning/
content sorting

Individual training 
model needed for 
every SNN training 
task is complicatedEffectiveness in 

performing 
continuous data

Partial sorting of 
ANNs for 
recording every 
form of insidesLarge memory offered 

for data gathering
Deep neural 
networks

High- 
dimensional 
data/large 
datasets

Better learning 
capability in 
comparison to 
shallow ANNs

Channel selection Massive data required/
Computationally 
intensive to train

Load balancing
Mobility 
prediction,
Real-time 
training of ANNs

Discover low- 
dimensional data for 
huge datasets
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ANN-based reinforcement learning (RL) approaches can be employed to gain 
knowledge of the abusers or client information like locations, the flow of data rate, 
and the learned information that discovers the UAV’s pathway. As a result, ANN- 
based RL approaches can efficiently discover complex associations among wireless 
abusers plus their networking situations to explain demanding problems optimiza-
tion and resource management.

3.1  UAVs for Wireless Networking Communications with ANN

Possible connection or coverage from the sky to earth-based wireless devices or 
abusers is an emerging technique in WSNs. In comparison with earth or ground- 
based transportations, a wireless skill thru low-altitude UAVs is easy to employ. In 
addition, a resilient reconfiguration is possible to a great practice, and enhanced 
transmission frequencies suitable to the existence of short-range and line-of-sight 
links. There are few challenges compared to benefits while using highly developed, 
energy-constrained UAVs like optimal employment, energy efficiency, security, 
limitations of UAV-to-UAV communications, and path selection. Thus, it is requir-
ing investigating the most favorable employment of UAVs for coverage expansion 
plus capacity progression. At present, high parts of UAVs are utilized for data col-
lection, transportation of telemetric, and goods. Therefore, there is a high prerequi-
site to progress intellectual and automated controller procedures to augment UAVs’ 
airborne paths.

UAVs are broadly utilized in urban areas to collect user’s behaviors and collect 
information associated with the abusers, plus the UAVs inside any distance, anytime 
or else anyplace, which helps an idyllic setting for the accomplishment of ANN 
procedures. In UAVs, ANN has two most significant use cases: the first is the ANN-
based RL model for automated scheme decisions, path choosing, user’s dynamic 
environment, and resource allocation decisions. In the second, UAVs can plot the 
ground surroundings and the wireless atmosphere itself to gather information, take 
gain from ANN-centric methods to triumph the composed sensed information, and 
execute data scrutiny to forecast the ground abusers’ activities. By analyzing behav-
ioral examples of abusers or devices, power management-based UAVs can effi-
ciently regulate their respective ideal positions and plan an ideal flying route to 
service ground operators. In the meantime, ANNs allow more highly developed 
UAV appliances in atmosphere documentation.

ANNs can efficiently contract with time-dependent records that formulate them 
a realistic option for UAV-based wireless communication appliances. However, 
UAVs face various issues while deploying and designing with inadequate flight time 
to accumulate data records and authority to perform computation operations. UAV 
models do not hold enough data to train ANN models, and UAVs are considerably 
affected by weather conditions and movement. Thus, the composed data contains 
contaminated data records, faults that might distress the accurateness of the out-
come of the ANNs.
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Future Works It is a known fact that ANN is an essential tool for tackling critical 
tasks in UAV-based communication systems. In detail, ANN-centric models and 
tools efficiently work with various proper UAV appliances like dealing with time- 
dependent data and user behavior analysis, etc. This permits UAVs to enhance their 
position based on the changing aspects of the set of connections. Based on this 
information and predictions, the UAVs can uncover their most favorable route and 
decide which region to serve at any given time.

3.2  Wireless Virtual Reality Over Wireless Networks with ANN

In recent days, wireless-based technology-based industries are heavily attracted by 
virtual reality, which is very important in the appliance in 5G and next-generation 
networks. As a result of various networks, developments inspire industries to inves-
tigate wireless VR with ANNs in upcoming wireless systems. If a VR stratagem is 
performed through a wireless linkage, customers or clients forward the tracking 
records like the client’s localization and dynamic movements to the BS. Then, BS 
analyzing the collected data to build the 30-degree pictures is forwarding them to 
abusers and clients. For this reason, both uplinks and downlinks transmissions are 
considered equal. So while designing proper and efficient VR over wireless net-
works, challenges like high data rate, tracking accuracy, effective image compres-
sions, user experience modeling must be considered.

The inclusion of ANN-based ML techniques resolves the numerous issues related 
to wireless virtual reality. Compared to other appliances, VR appliances require 
clients surrounding and environmental behavior. ANNs are valuable at classifying 
and predicting the abusers’ activities. Based on the estimates of the abusers’ atmo-
sphere, procedures, and activities, the BSs can progress the making. As we men-
tioned in the above sections, ANNs can be intelligent into progress self- organizing 
models to control and then accomplish wireless VR net, hence discussion troubles 
like self-motivated resource managing. But it is challenging to apply ANNs to VR: 
in wireless networks, information or data records collected from abusers might con-
tain many errors; in detail, BS might prerequisite to benefit inaccurate data to train 
the ANN, then guess the accurateness of ANN considered unnatural. Moreover, VR 
holds 360-degree images that may be large, so BS must use a significant number of 
computing properties to practice VR imageries. Therefore, efficiently allotting the 
computing properties for handling VR imageries and then exercising ANNs is a 
crucial dispute.

Future Works The above section clarifies that ANNs tools are promising equip-
ment to address various challenges in wireless-based VR appliances. Wireless spec-
trum allocation can proficiently handle ANN approaches, and then, the system can 
decrease data volume of all broadcasted VR audiovisual. RNNs can expect and 
sense the VR abuser’s progression like eye and head movement and their connections 
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with the atmosphere. Typically, user and VR scheme interrelate with time- dependent 
data records, so RNN-based approaches are good choices. Presumption of the abus-
er’s association will straightforwardly shape the VR images sent to the abusers at 
every time slot, consequently employing RNNs that are calm to training for the 
calculation of the users’ measurements.

3.3  Coexistence of Manifold Radio Access Machineries 
with ANN

The imagined 5G and 6G network services are the multiple choices for every user 
throughout the network to handle increased deices and data traffic. This kind of 
augmentation can be achieved over innovative PHY/MAC technologies and profes-
sional spectrum organization. The critical advantage of 5G and 6G was integrating 
multiple dissimilar radiofrequency techniques like cognitive radio schemes and 
LTE-U setups. So, incorporating different radiofrequencies will improve the exploi-
tation of the existing radio resources and the scheme’s abilities. It similarly assures 
a reliable service practice for particular operators regardless of the assisted radio 
technologies; furthermore, it assists the system administration. Spectrum supervi-
sion is also considered an additional critical section of multi-radio access technology- 
based networks, unlike initial age group cellular systems that function entirely on 
the sub-6 GHz (microwave) certified tape. Multi-RAT founded systems predictable 
to broadcast over the usual sub-6 GHz tape, the unrestricted range, and then the 
60 GHz mm-wave frequency tape. Hence, a multi-mode BS working on certified, 
unlicensed, plus mm-wave frequency ranges can develop special uniqueness and 
accessibility of the frequency ranges, thus affording healthy and consistent com-
munication associations for the operators.

Neural Systems for Spectrum Administration and Multi-RAT Multi-radio 
technologies resolved various issues with the inclusion of Artificial neural networks 
(ANNs). ANNs can consent to the smart employment of particular RATs where a 
BS could train when to broadcast on individual kind of rate of recurrence collection 
built on the fundamental system circumstances. Furthermore, ANNs can offer 
multi-mode BSs with the capability to discover the suitable source managing pro-
cess over particular RATs or spectrum tapes in an online mode. Most mobile data 
traffic demonstrates statistically changeable and episodic demand designs, particu-
larly for appliances like file transference, video flooding, and browse styles.

To handle dynamic changes in traffic consequences, ANN deals with RL-based 
ML models through appropriately retraining the weights at the learning mechanism. 
With suitable network proposals, ANNs can permit the operator to advance their 
network’s concerts by tumbling the possibilities of congestion and degree of fair-
ness to the other equivalent expertise in the setup.
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Future Works Appliances of ANNs to LTE-U schemes can be effortlessly com-
pleted with a multi-mode set of connections, where the BSs broadcast on the certi-
fied, the unlicensed, plus the mm-Wave range. RNNs can improve mobility in 
highly dynamic mobile wireless locations via learning the flexibility prototypes of 
abusers. Antenna design modeling and learning are the most prominent futures in 
ANN with radio access technology. Since various learning structures of the system 
state, and the best possible position on obtainability of LoS bonds, can be effec-
tively handled with DNN models. Besides, LSTMs are best suitable for learning 
long time series; this will permit BSs to forecast the link structure for the mm- 
Wave system.

3.4  Internet of Things with ANN

IoT is a heterogeneous network with numerous machine-kind devices like sensors, 
wearable devices, vehicles, and other objects connected with the Internet. Most of 
these devices connect in wireless connectivity to operate various activities in an 
automated manner. IoT-based devices collect real-world information to provide 
appropriate user services in the domain like smart home, smart city, h-healthcare, 
transportation, etc. However, IoT devices’ suitable employment faces many chal-
lenges like security, invaluable data transmission, data analytics, connectivity, and 
computation capacity. The up-to-date central base communication models are not 
enough to handle such massive connectivity, so there is a requirement for good and 
intelligent computing replicas for IoT devices connectivity. Moreover, how to adjust 
or allocate computational and energy resources to all available IoT devices is an 
additional test.

Neural Networks for the Internet of Things From the past decade, ANN effec-
tively addresses several critical disputes in WSNs and IoT. ANN makes the IoT 
devices intelligently extort the key patterns and associations from the data collected 
from different devices, improving the data compression and data retrieval capacity. 
Moreover, ANN approaches improvise the quality of human life by reducing the 
interface between humans and IoT machines; by doing this, ANNs effectively pre-
dict or guesstimate abuser’s actions, which will help IoT devices. By employing 
various ANNs tools in IoT schemes, we can limit both energy and computational 
IoT devices to collect dissimilar data types, which may be in different data struc-
tures and several various errors. So, in the context of IoT, when data are used on 
ANN models training, one should believe how to categorize the data then compact 
with the faults and missing values in the data. In IoT schemes, ANNs take advantage 
of dissimilar forms of data aimed at forecast along with the automatic controllers. 
In some cases, for a given job, the data records composed from the IoT strategies 
might not be correlated to the job; here ANNs pick relevant data for the mission or 
job. While every IoT device’s computational resources because of their manufacture 
or design or industrial background, these IoT devices with different resources are 
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mapped with different neurons. For instance, an IoT stratagem that has different 
computing properties will plot to various neurons. There are numerous ways to plot 
the IoT networks for optimal connections designed based on detached functions and 
diffuse power.

Future Works ANNs are a useful tool to handle IoT problems like intelligent data 
analytics and execute smart actions. Additionally, ANNs effectively utilized data 
compression and the recovery process to forward the bulk of information to the 
 end- user devices. For data compression, ANN-based CNNs are employed to extract 
the valuable features which are very useful for data firmness and data retrieval 
besides RNNs appropriate aimed at obtaining the associations from time-supported 
sequence data. DNNs are accurate for human-device integrations because they have 
numerous hidden layers to hoard more data records associated with an abuser and 
evaluate with other ANNs.

4  Support Vector Machine for WSNs and IoTs

SVM is a well-designed, modern, and famous classification approach designed by 
Boser, Guyon, and Vapnik in 1992. It is extensively applied in big data analytics and 
gene expression, where it deals with different data structures. SVMs effectively deal 
with a broad type of kernel approach; usually, a kernel is a model depending on the 
dot products in high-dimensional feature space. SVM gains two benefits: The first 
benefit is the power to produce nonlinear decision limitations with the linear classi-
fier models. A second benefit, exploiting kernel functions allows the abuser to affect 
a classifier to data records with no apparent fixed-dimensional vector space 
depiction.

When preparing an SVM, the practitioner desires to create several conclusions, 
like how to process data proficiently, which kernel model is appropriate, and how to 
fix the SVM model parameters. If any of these conclusions are unsuited, then the 
results will be diverse.

Authors of [23] designed an SVM-based approach for simple communication in 
WSNs. The simulation results of the designed model improve the efficiency between 
the communications among sensor nodes with short message exchange between 
neighbor nodes. In [24], the authors improve the link quality among nodes by 
employing an SVM-based decision tree model. Here based on the received signal 
strength and link quality indicators, SVM determines the communication superior-
ity. In [25], an SVM-based sliding window with PCA is implemented to detect 
WSNs and IoT outliers. Here authors utilized a modified RBF kernel with least- 
squares SVM for anomaly detection in nonstationary time series. Authors of [26] 
extend the SVM to SVDD to better categorize outliers from sensed data and reduce 
the computational complexity compared to other SVM-based models. Authors 
designed two-order base sequential minimal optimization (SMO) to lessen the train-
ing period’s complication in testing a fast-decision-making approach employed 
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[27]. explains the detailed study of various event or outlier detection approaches 
based on SVM-based variants and found that quarter sphere model has low com-
plexity and better performances. In [28], a novel DBSCAN model is designed to 
detect outliers in WSNs accurately; moreover, the authors employed modified SVM 
for accuracy boost in low-density regions [29]. An essential advantage of SVM clas-
sifying with kernel functions utilized for decision-making with incorrect or error 
included sensor data. Authors of [30] proposed an error prediction model in dynamic 
situations with an SVM-based cuckoo search approach. In this model, the cuckoo 
search is implemented to avoid local minima. Routing plays a significant role in 
data communications, so authors of [31] projected an SVM-based routing protocol 
for optimal energy consumption. Experimental marks display that the archetypal 
achieved a high lifetime compared to other existing models. In [32], the authors 
improve the congestion control in WSNs; in [33], the authors designed a multi- 
agent- based data collection model to efficiently utilize data traffic models.

4.1  Support Vector Machine in Radio Access Frequency

Radiofrequency-based energy or power harvesting is quite a simple process that 
transforms the wireless RF energy toward collectible DC power. This will be a 
cutting- edge technology like deployed sensor nodes; Internet-connected devices 
will profit from this expertise to influence their respective operations or activities 
and awaken from sleep mode. However, harvesting wireless devices and sensors 
facing various limitations like device configurations, locations, and the number of 
abusers are connected. Hence, based on these issues, there is a need for an advanced 
technique that assists in resolving device issues for the maximum input power. An 
appropriate ML approach must be vigorous to noise, precise, and computing 
resourceful in categorization approach. The decision, random forest trees, and linear 
regression tree models performed well in real-time energy management in the radio 
band. Metaheuristic optimization practices like swarm intelligence models and 
genetic algorithms are employed to discover the best possible ways for energy- 
harvesting models. One more major confrontation for RF harvesting is enhancing 
the active rectifier’s modification effects to enlarge the harvested power.

4.2  SVM for Energy Harvesting

Power management is one of the vital constraints for sensor nodes and IoT strate-
gies. The life of the network or the device depends on how well it utilizes its energy 
resources, most of the WSNs nodes require a long range of active status (from 
months to years), but these nodes lose half of the energy due to unwanted events. To 
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enhance the network lifetime, numerous authors present various energy-efficient 
protocols like mobile chargers, routing paths, sleep schedules, etc. Still, the energy 
obligations are not crammed since of high computational resources and inaccessible 
sensor nodes. Energy gathering provides continuous energy for sensor nodes from 
nearby entities like mechanical, wind, thermal, and radiofrequency energy. Some 
ML-based copies have been utilized to follow successful energy gathering models 
for WSNs.

In [34], the authors developed solar irradiance prediction models with ML-centric 
approaches. Authors perform several actions on historical sensed data and then find 
out the relationship coefficients. Authors of [35] designed photovoltaic cell-based 
moralities for solar-powered WSNs. The proposed model is verified with central 
and scattered WSNs structures, and results are quite comforting for distributed 
design. In [36] authors move to learning base solar energy prediction (Q-SEP) to 
calculate the past sensor node observations within a time. In [37] authors come with 
location-based range-free SVM (RFSVM); moreover, a transmit matrix announced 
toward display the association among hops along with distances, which helps find 
unidentified nodes in WSNs. Authors of [38] extend [37] the work by adding the 
polar coordinate system, which is separated into polar grids moreover labeled with 
SVM. In [39], the authors proposed a fast-SVM-based localization model for local-
ization issues. The fast-SVM split the feature space obsessed by SVM clusters cre-
ated on the highest comparisons. Since the split clusters simple to concern, the SVM 
then progresses the show. Fast-SVM similarly conquers coverage-hole trouble and 
then boundary issues.

5  Smart Transportation with SVM, ANN, and DL

With the improvement of dissimilar fields on the IoT, the appliances of allied strate-
gies have got a tremendous rise in their utilization in every part of a modern city. For 
continuous data generation from IoT devices, ML techniques are superbly useful to 
improve the cleverness and proficiencies of an appliance. The outlook of smart 
transport has engrossed numerous scholars, besides it advanced within the coopera-
tion of ML, DL, and IoT practices. Every entity that allied in the IoT scheme is 
acknowledged as a thing, and these things consist of sensors, embedded systems, 
and actuators. Things require being in touch with different entities through short- 
range communications like Bluetooth, radio, Zigbee, LoRa, GSM, WiMAX, 4G, 
5G, LTE VoLTE, etc. Smart transportation is one of the hot research issues because 
it deals with most everyday human problems and the massive footprint in a contem-
porary smart city.
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5.1  Artificial Neural Networks

ANN developed the structure of the human neural system with intelligent learning 
models. In ANN, an input layer deals with variable input quantity injected into the 
system; here, the individual neuron epitomizes a variable besides the output layer. 
Then each neuron represents a label, and also, one or more hidden layers include 
among input and output layers. If there is no looping in the neuron’s construction, 
the system was acknowledged as feedforward neural network (FF-NN), also known 
as a simple form of an ANN. In [40], the authors designed the BN-SARIMA model 
to predict short-range traffic in huge urban-based transportation and relate with 
other existing ANN-based models.

The prophecies of [40] complete for 5, 10, and then 15 min, and the applied 
FF-NN specified a minor benefit at the 10- and then 15-min prophecy over the addi-
tional NN process; however, it looks to be fewer active than BN-SARIMA method. 
In addition to the work of [40], authors of [41] use multilayer FF-NN, where it 
contains some hidden layer and the input and output layers. Outcome results showed 
that the FF-NN model has the lowest error metrics after the RF model. In [42], a 
modified FF-NN employ to predict travel time variations and various traffic data 
records like travel history, number of rounds, and speed accumulated from roadside 
sensors. The unsupervised learning approach applied to traffic outlines and then 
employed ANN for training on clustered data. FF-NN trained with backpropagation 
models, which minimizes prediction errors. The proposed model’s analysis is com-
pleted with the root-mean-square error (RMSE), and then the results are quite com-
fortable. The model FF-NN with backpropagation, also utilized in [43], is also 
employed to detect and predict road coincidences in real-time. Moreover, the K-NN 
model and simulation outcomes illustrate that the projected model improved profi-
cient precision. Authors [44] fabricated a novel technology that detects potholes; 
here, accelerometer data is composed of automaton phones, feeding an FF-NN that 
turns in the automaton phones in real-time. The simulation outcome indicates 93.58 
percentage detection accuracy.

5.2  Deep Learning

Deep learning (DL) is considered a subpart of ML; it enfolds powerful models for 
the progression of a massive volume of unstructured data. DL efficiently works with 
big data and also computing procedures such as natural language processing, pat-
tern recognition, space analysis, etc. To acquire the best results, DL needs powerful 
CPUs and GPUs. Here the term deep discusses to the amount of hidden layers that 
constitute the neural network. The model features are robotically predictable in 
deep structure, and there is no need for feature scheming and abstraction before 
applying any technique. Furthermore, a wide variety of network constructions pre-
sented with the improvement of DL.
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In [45], the authors employed DL-based CNN applied to healthcare image pat-
tern recognition. An essential innate of CNN is that various neurons practice on 
similar filters. CNN layers are tailed by nonlinear layers, adapting the entire unde-
sirable standards to zeros. Then, size drop is functional with subsampling layers. 
Authors of [46] build a blind-spot exposure classification for smart automobiles 
with the help of fully connected networks and equate with CNN. In [47], DBNs 
assist digital map conception through programmed highway parts recognition like 
traffic decorations, crossroads, etc. The model takes input from the GPS; first, outli-
ers are determined to make some primary estimations on the street parts. Moreover, 
the authors included RBM; for every single class, the DBNs abstract a set of struc-
tures that correctly define the input statistics. Then DBNs finally diverge input sta-
tistics to different classes. The joint research outcomes with a recall of 0.89, then the 
accuracy of 0.88. In [48], writers designed a DL-based deep recurrent attention 
model (DRAM) for successive sorting of numerous substances from an image input. 
Experimental results show that model triumphs over CNN on several digits indebt-
edness when experienced on Google Street View and house imageries. Also, DRAM 
has fewer computation than CNN models. In [49], the authors modeled a stacked 
auto-encoder (SAE) to forecast the traffic movement based on big data. Logistic 
regression is also included on SAE and fine-tuned with backpropagation in the end. 
Moreover, the designed model has been tested with the Caltrans Performance 
Measurement System (PeMS) dataset; then evolution is done with MRSE, MAE, 
and MRE. The proposed model is compared with other existing AE-based models, 
and the results are promising. In [50], the authors projected an inception neural 
network for traffic accident hotpots plus their automatic recognition and classifica-
tions. In [52] a systematic comparison of nonlinear autoregressive exogenous model 
(NAEM), BN-SARIMA, and FF-NN on short-term-traffic forecasts on massive 
urban stream of traffic is made. The valuation is executed with the MAE, MAPE, 
and MRSE directories and results better with NAEM. Moreover, in [41], the authors 
use CNN on smart cameras on car parks for free parking spaces. Parking lot imager-
ies are also processed in [51], with a mixture of SVM along with MRF process. 
Finally, the PKLot dataset is shaped in [53], which is afterward established by con-
suming an SVM algorithm.

6  Anomaly Detection Analysis and Prediction

Sensor nodes or IoT devices installed in the real world to compute the valuable 
uncooked facts will make appropriate decisions by evolution on these data experts. 
However, due to some events, data may contain errors or miss values. ML and DL 
models are improved to detect anomalies, errors, or outliers. Support vector machine 
(SVM) is a widespread model for anomaly or outlier exposure. One-class SVM 
could categorize the positive data instances from contaminated data instances in 
feature space. SVM classifiers’ models in [54–59] are highly modeled for estimating 
the outlier behaviors on the real-life data collected from smart environments. In [55], 
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support vector description and regularization techniques are designed to identify 
outliers for old-age people living home alone. In [56] multi-class SVMs implied for 
the representation of human actions. In [57], a feature reduction plus the PCA model 
with fuzzy logic applied for outlier behavior detection checks the inputs and detects 
the assurance limits. In the subsequent phase, rules are fired, rendering the assur-
ance limits of inputs. Authors of [58] fabricated an SVM based on nonlinear kernel 
regression for detection and diminished false-positive rates. Authors of [59]  
designed a CNNA-based RNN with SVM to improve the detect anomalous behav-
ior. They train the CNN archetypal over the fresh signs with motion class plus pre-
pare forecast with SVM. They too malformed the fresh info stream to spectrogram 
and apply the RNN. They informed mutual representations in their projected system 
adequate to notice anomalous performance.

7  Challenges and Future Directions

Massive Scale of IoT Data The amount of data collected by IoT-based devices 
turns to significant disputes because of time and structure complexities. Numerous 
input samples containing a huge count of choice features and high-degree classifica-
tion precision requirements produce an enormously complex DL model with huge 
source requirements. To conquer these disputes, the proposed models must build on 
the distributed structure through parallel processing.

Automated NN Models In general, IoT systems are applied on real-time situations 
where data changes dynamically so the future models of ANN and SVM-based 
models must be automated techniques to avoid the unnecessary implications.

Data Pre-processing Basically, IoT devices collect data records from different 
devices or resources which may hold noise, errors, or missing values, and this makes 
data pre-processing turn to be a tricky task.

High Velocity In real-life appliances, the rate or high-speed production is another 
challenge since real-life IoT appliances must work with fast processing and data 
analytical tricks on such data. To deal with these kinds of problems, deep learning 
models must follow online learning capabilities.

Online Mode The decision-making with real-time data is very important for ana-
lyzing the upcoming conquests. Thus, the designed models must work in online 
mode with limited resources.

Adaptableness It is important that designed model must be adaptable mode so that 
it can change operation according to particular situational data records.

Heterogeneity Optimal DL models can deal with various device-based source 
data, but marinating the inconsistencies among those data points is another level 
challenge.
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Deep Learning for IoT Devices The known fact that DL models’ inclusion into 
resource-constrained IoT devices is the central dispute in most IoT systems imple-
mentations (Fig. 1).

8  Conclusion

The word IoT is turned to central model that connects entrenched devices, objects, 
and sensor nodes to the Internet. The technology enhanced the usage of mentioned 
devices incorporated into our daily life not like ever before. Most of IoT appliances 
employed in real world which collect huge amount of data and extracting significant 
features cannot be done effectively by traditional procedures. However, by applying 
SVM and ANN models, a vast quantity of data is analyzed effectively; moreover, 
the performance of IoT schemes is also boosted. So, in this chapter we described 
importance of role of SVM and ANN model in IoT policies, how SVM and ANN 
provide security in data transmission, and energy-harvesting models for IoT based 
on SVM and ANN. In addition, applications, future challenges, and research prob-
lems are discussed.
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The Role of Machine Learning Techniques 
in Internet of Things-Based Cloud 
Applications
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1  Introduction

In recent years, new technologies and dramatic changes to Internet protocols and 
computing systems have made it easier than ever before to communicate between 
different devices. Around 25–50 billion devices are expected to be connected to the 
Internet by 2020 [1], according to various estimates. As IoT will be among the most 
important sources of new data, data science will make a major contribution to mak-
ing IoT applications more intelligent. Data science is the fusion of numerous scien-
tific fields which use data mining, machine learning, and other techniques to identify 
trends and new ideas from data.

1.1  Machine Learning

In the recent decade, machine learning has witnessed great recognition across the 
globe in multiple fields and has proved to be a rising innovative trend. In order to 
witness maximum value from big data, both idea and technology must go hand in 
hand. Much attention should be given on how to exactly pair up the algorithms and 
tools/processes to create a ML model purely based on iterative learning. Here are 
listed a few key machine learning algorithms:

• Neural networks
• Random forests
• Decision trees

S. Mishra · A. K. Tyagi (*) 
School of Computer Science and Engineering, Vellore Institute of Technology,  
Chennai, Tamilnadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87059-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-87059-1_4#DOI


106

• SEO
• Discovery of sequence and associations
• SOM (self-organizing maps)
• Nearest neighbour
• SVM (support vector machines)
• Multivariate adaptive regression (linear, logistic, multiple, etc.)
• Boosting and bagging gradients
• Analysis of principal components

Here below are the tools or processes listed with which the machine learning 
algorithms are to be paired to generate efficient results:

• Data exploration → visualization of model predictions
• Complete data quality and management
• Efficient and easy model deployment to easily generate repeated and reli-

able outputs
• Formation of graphical user interface for developing process flows and build-

ing models
• Comparison of multiple ML models and choosing the best fitting model
• Identification of the best performers with the help of automated ensemble model 

evaluation
• Automation of data to decision process

1.1.1  Importance of Machine Learning in Present Business Scenario

Machine learning has growing importance in most of the industries dealing with 
enormous amounts of data. Business can earn a competitive edge and can prove to 
be more efficient by obtaining the hidden patterns and insights from this quality data 
[2]. Huge chunks of data with higher level of complexity can be analysed through 
the machine learning model with the help of affordable and easy computational 
processing in addition to the cost-effective data storage options so that the models 
provide higher accuracy and efficiency. Delivery of personalized services and 
differentiated products in accordance with the varying needs of the customers can 
be achieved in organizations through ML [3]. In addition to this, companies can be 
exposed to ample of opportunities that can prove to be profitable in long run through 
machine learning. Here are a few things to keep in mind, if one really wishes to 
develop effective machine learning systems in order to augment one’s business:

• Superior data preparation capabilities
• Basic and advanced algorithm’s knowledge
• Scalability
• Automation and iterations
• Ensemble modelling knowledge
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1.1.2  Applications of Machine Learning

Every industry that deals with huge chunks of data has recognized the value of 
machine learning technology. By leveraging all the hidden trends and insights of the 
data, it is possible for companies to work efficiently to control costs and obtain a 
competitive edge in the market [4]. Below are the ways how machine learning is 
exceling in certain fields:

 (a) Financial Services: Machine learning technology in this department may help 
companies under financial sector to analyse the hidden insights of financial data 
and identify the occurrences of financial frauds. Machine learning can also be 
useful in determining opportunities for trades and investments. Cyber surveil-
lance, one of the technologies under machine learning, has sky rocketed in the 
financial grounds as it helps in identification of the individuals or institutions 
which are in the range of hitting financial risk, so that necessary preventive 
actions could be taken in order to prevent fraud.

 (b) Marketing and Sales: Departments of utmost importance to be analysed in this 
sector are purchase history of customers, and where machine learning comes 
into existence is after the analysis, to produce customized and personalized 
product recommendations for the next purchase. The capturing technique, 
proper analysis and implementation of customer data to create a personalized 
shopping experience is the new level of sales and marketing.

 (c) Government: Major areas of interest are utilities and public safety. They are 
exposed to multiple data sources for mining, in order to observe the useful 
trends and insights, like analysis of sensor data for identifying ways to mini-
mize cost and enhance efficiency. Similarly, machine learning can be used to 
detect frauds and thefts and reduce their occurrences.

 (d) Healthcare: ML can come up with wearable sensors and devices which intend 
to use the data to access health of a person in real time and has thus has turned 
out to be the rapidly growing trend in healthcare. Wearable sensors provide real- 
time information regarding the patient, some of them being overall health con-
dition, blood pressure, heartbeat, pulse rate and many other more vital 
parameters. Proper analysis of such information can help medical specialists to 
extract repeated trends from the patient’s past and come up with ailments, cures 
and preventive measures in the future. Machine learning technology also 
empowers medical experts and helps them to determine insights from the medi-
cal data and produce efficient outcomes and diagnosis techniques and improved 
treatments.

 (e) Transportation: Proper route analysis can be done using machine learning algo-
rithm that is predictions regarding the potential problems on a particular route 
based on the travel history and pattern of travelling through routes and thus 
throwing advisory outcomes regarding which route to choose for convenience. 
Transportation firms and delivery organizations use this analysing machine 
learning technique to create a smarter city and provide their customers with 
optimum decisions for travel.
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 (f) Oil and Gas: Indeed, the neediest industry for machine learning. ML has vast 
and expanding application in this industry, starting from analysis of under-
ground minerals to extraction of new energy sources and to streaming oil 
distribution.

1.2  Internet of Things (IoTs) Technology and Infrastructure

To understand more about an advanced technology, we need to learn first its basics, 
its subparts and their internal components (including their working structure). 
Generally, Internet of Things work based on wireless sensor networks (WSNs), 
used in almost all applications in today’s era. On a larger scale, many IoTs make a 
huge network in connection with the Internet, which can be considered a combina-
tion of physical space and cyber space, called cyber-physical systems (CPSs). Today 
in this post-COVID-19 scenario, wireless sensor network and cyber-physical sys-
tem use have been increased. Each term is discussed below.

Wireless Sensor Networks (WSNs) in the Post-COVID-19 Era
Digital tools are being used by countries all over the world to tackle this global 
crisis. In one way or another, these emerging developments strongly depend on the 
availability of wireless communication systems. Wireless networking systems, 
including virus spread control, health automation and interactive education and con-
ferencing, are helping to fight this pandemic:

 (a) IoT platforms: During this global emergency, emerging technology applica-
tions are various, including tactile robots to assist hospital medical doctors and 
nurses, crowd-monitoring aircraft, artificial intelligence and deep learning to 
recognize healthcare patterns, supply chain automation of the Internet of Things 
(IoT) and virtual learning to continue education. IoT is everywhere, considering 
the rise of smart watches that allow individuals to monitor their health, track 
their sleeping habits and measure their heart rate. IoT is everywhere to smart 
sensors that go beyond human control in industrial maintenance operations.

 (b) IoT infrastructure: In order to cope with the effects of COVID-19 and future 
public health emergencies, our digital infrastructure needs strengthening. Better 
incorporation of artificial intelligence into the public health response could be a 
priority; support for preventive programs could be used to evaluate big data 
relating to citizen movement, disease transmission trends and health moni-
toring [5].

 (c) IoT architecture: There is no single, widely accepted consensus on IoT architec-
ture. Different architectures have been proposed by different investigators:

• Three-layer architecture: The three-layer architecture describes the primary 
concept of the Internet of Things, but it is not appropriate for IoT research 
because research also focuses on finer aspects of the Internet of Things. It 
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was introduced in the early stages of research in this field. It has three layers, 
namely, the layers of perception, network and application.

• Five-layer architecture: In addition, the processing and business layers are 
included in the five-layer architecture. The five layers are understanding, 
transport, production, implementation and business layers. The function of 
the perception and application layers is the same as the architecture of the 
three layers.

 (d) IoT data processing and intelligence: In order to make sense of the vast amount 
of data our IoT sensors collect, we need to process it. In other words, the pur-
pose of data processing is to transform raw data into something useful. 
“Wikipedia explains data processing as” the compilation and manipulation of 
information objects to generate meaningful information.

Cyber-Physical Systems (CPSs) in the Post-COVID-19 Era
Computational, networking and physical process integrations are cyber-physical 
systems (CPSs). Embedded computers and networks track and track physical pro-
cesses with feedback loops in which physical processes influence computations and 
vice versa. Machine learning and the attendant biosensors, big data and digital 
health approaches can be conceptualized within the overarching cyber-physical sys-
tem (CPS) paradigm. CPS brings greater proximity to the virtual and physi-
cal worlds:

 (a) IoT data management: Management of IoT data helps organizations understand 
how the performance of their products can be affected by environmental condi-
tions and user behaviour. It is also possible to use IoT sensors to measure prod-
uct performance metrics. Data collected by these sensors can be used to enhance 
future product versions.

 (b) IoT testing: A form of testing to check IoT devices is IoT testing. The need to 
deliver better and faster services is increasing today. Accessing, creating, using 
and sharing data from any device is a huge demand. The goal is to provide 
greater insight and control over different IoT devices that are interconnected.

 (c) IoT data analytics: Simply put, the analysis of enormous data volumes gener-
ated by connected devices is IoT data analytics. Organizations can derive a 
number of advantages from it, i.e. optimize activities, automatically control 
processes, engage more clients and empower employees. In retail, healthcare, 
telematics, manufacturing and smart cities, the combination of IoT and data 
analytics has already proved to be beneficial.

1.3  Cloud Technology and Infrastructure

Cloud infrastructure refers to the hardware and software components required, such 
as servers, storage, network and virtualization software, to meet the computing 
requirements of a cloud computing model. Cloud infrastructure refers to the 
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backend components in a cloud computing architecture – the hardware elements 
found within most enterprise data centres. These include multi-socket, multicore 
servers, permanent storage and local area network equipment, such as switches and 
routers, but on a much larger scale:

 (a) Edge computing: Edge computing is transforming the way data from millions 
of devices around the world is handled, processed and delivered. Edge- 
computing systems continue to drive the explosive growth of Internet-connected 
devices – the IoT – along with new applications that require real-time comput-
ing power. Gartner defines edge computing as “a component of a distributed 
computing topology in which the processing of information is located close to 
the edge where information is produced or consumed by things and people”.

 (b) Fog computing: Fog computing extends the cloud computing concept to the 
edge of the network, making it ideal for real-time interactions required for the 
Internet of Things (IoTs) and other applications. Fog computing is the idea of a 
network fabric that extends from the outer edges of where data is generated to 
where it will ultimately be stored, whether in the cloud or in the data centre of 
a customer.

 (c) Resource pooling: Resource pooling is an IT term used to describe a situation 
in cloud computing environments in which providers serve provisional and 
scalable services to multiple customers, customers or tenants. Without any 
changes being apparent to the client or end user, these services can be adjusted 
to suit the needs of each client.

 (d) Service deployment: Cloud implementation refers to enabling solutions for 
SaaS (software as a service), PaaS (platform as a service) or IaaS (infrastructure 
as a service) which can be accessed by end users or customers on demand. A 
model for cloud implementation refers to the kind of cloud infrastructure frame-
work on which a cloud solution would be deployed. The implementation of the 
cloud requires all the installation and configuration measures needed to be car-
ried out before user provisioning can occur.

 (e) Cloud resource management: A central feature of any man-made system is the 
control of resources. A cloud is a dynamic structure, subject to unexpected 
demands and influenced by external events that it cannot manage, with a very 
large number of shared resources. For multi-objective optimization, cloud 
resource management requires complicated policies and decisions. A cloud is a 
dynamic system subject to unexpected requests with a very large number of 
shared resources and influenced by external events that it cannot monitor. For 
multi-objective optimization, cloud resource management involves complicated 
policies and decisions.

 (f) Virtual desktop infrastructure: Virtual desktop infrastructure, or VDI, is a tech-
nology that refers to the provision and management of virtual desktops using 
virtual machines. On a centralized server, virtual desktop infrastructure (VDI) 
hosts virtual environments and deploys them on request to end users. In VDI, a 
hypervisor segments servers into virtual machines which, in turn, host virtual 
desktops accessed remotely by users from their devices. Users from any device 
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or location can access these virtual desktops and all processing is done on the 
host server. Users relate to their desktop instances through a link broker, which 
is a software-based portal that acts as an intermediary between the user and 
the server.

 (g) Server virtualization: Virtualization of servers is used to hide server resources 
from users of the server. This could include the number of operating systems, 
processors and individual physical servers and their identity. It is the method of 
separating a physical server by means of a software application into several 
specific and separate virtual servers. Each virtual server is able to independently 
operate its own operating systems.

 (h) Storage virtualization: Virtualization of storage is the physical data storage ser-
vices abstracting technology to make them look as though they were a central-
ized resource. Virtualization hides the memory, networks, servers and storage 
complexities of managing resources. Virtualization of data runs on different 
storage devices, making them look as if they were a single pool of information. 
It is likely that pooled storage devices come from various manufacturers and 
networks.

 (i) Network virtualization: Network virtualization (NV) refers to the abstraction of 
network services typically distributed to software in hardware. NV may com-
bine several physical networks into a single virtual network based on software 
or split a single physical network into different virtual networks that are inde-
pendent. Network virtualization software allows network managers, without 
reconfiguring the network, to transfer virtual machines around various domains.

Now the remaining structure of this chapter is organized as follows: Sect. 2 describes 
about the evolution of machine learning techniques. Further, Sect. 3 tells about the 
motivation behind this chapter. Section 4 describes about the various IoT and cloud 
applications. Then, Sect. 5 briefly describes about the comparison of scope of 
machine learning pre-COVID-19 and post-COVID-19 era. Section 6 describes dif-
ferent machine learning techniques for IoT-based cloud applications. Section 7 tells 
about the IoTs and cloud computing in post-COVID-19 era, i.e. it applications and 
challenges. Further Sect. 8 gives short view about future research directions for 
machine learning towards IoT-based cloud applications. In the end, Sect. 9 con-
cludes this work in brief with including several interesting remarks for the future. 
Section 10 gives the information about acknowledgements, Sect. 11 talks about 
conflicts of interest, Sect. 12 discusses about disclosures and Sect. 13 briefs about 
the scope of this work. Note that in this work IoT-based applications or cloud-based 
IoT networking or cloud-based smart applications have been used interchangeably.
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2  Evolution of Machine Learning Techniques

As computerized social information have gotten progressively universal, many have 
directed their concentration towards bridling these monstrous informational indexes 
so as to create purportedly increasingly precise and complete understandings of 
social procedures and have given it a term of “big data” [6]. Information volumes 
will proceed to increment and relocate to the cloud. Later, this information is com-
piled or analysed for making many sectors profitable, for example, in retail compa-
nies can target required customers based on their habits, interests, etc. But, refining 
this vast amount of data via traditional techniques (in current machine or deep learn-
ing), we face several serious concerns. Several issues and challenges during imple-
mentation of machine learning in big data have been discussed in [7–9]. There are 
billions of smart devices/gadgets connected together, which make, gather, and offer 
an abundance of IoT information examination consistently throghout the world 
[10, 11].

As ventures gain the chance to store and dissect colossal volumes of information, 
they will get the chance to make and oversee 60% of enormous information sooner 
rather than later. Specialists accept that the capacity of computers using their cloud 
and various ways to gain information will improve extensively because of further 
developed unaided calculations, more profound personalization and subjective 
administrations. We see noteworthy potential in large information as they have a 
multifaceted nature of social and spatial procedures. In the current world, large 
information implies working with immense datasets that are regularly unstructured. 
The datasets being worked with will be a blend of restrictive in-house information 
and freely accessible information. Working with these datasets will require devices 
that permit the unstructured information to be worked with and can likewise deal 
with the huge volumes. Information security and protection have consistently been 
squeezing issues, demonstrating an enormous snowballing potential. Ever- 
developing information volumes make extra difficulties in shielding it from inter-
ruptions and cyberattacks, as the degrees of information insurance can’t stay aware 
of the information development rates.

Figure 1 shows the evolution of machine learning (year-wise) in detail. Only a 
couple of months before NASA has uncovered the image of the dark opening, how-
ever there is an enormous play of information science behind the disclosure of black 
hole. Data sciences and information preparing are the key variables in the creation 
of streamlined self-governing vehicles, that is, self-driving vehicles. To supplement 
this innovation further, dark data will advance and imprint the eventual fate of enor-
mous information in the coming years or even months. Security gap which was 
brought about by an absence of instruction and preparing openings and the advance-
ment of cyberattacks where the dangers are utilized by programmers are advancing 
and turn out to be progressively improving too. Note the serious issues with IoT or 
smart gadgets like breaching privacy, security of data protection, lack of standard-
ization, etc. in [10, 12].
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3  Motivation

Today we can feel or see major development in field of technology. Technology has 
changed the way of living life and been used almost in every sector like media and 
entertainment, healthcare, agriculture, defence, education, manufacturing, etc. 
Machines are performing several functions in parallel, IoT devices are creating a 
smartest environment (which save nature, e.g. IoTs are used for generating energy 
smartly), and also these IoTs are making a network of billions of devices and func-
tion together and generate a large amount of data (called big data) in motion/data in 
flight and data at rest via communicating with other devices. Note that nowadays 
this large amount of big data is stored at a cloud (automatically by IoTs) and can be 
accessed by user/consumer at any time, from anywhere. This big data is accessible 
from a remote location also. Later, this data is analysed by data scientist or a team 
of experts for generating valuable information of data, for example, for weather 
forecasting, experts refer data for the last 50–100  years and provide nearby (or 
approximate) information for the future weather. Many things are depending on 
such predictions in many sectors, for example, prediction of demand at early stages 
provides high profits to the industries. These predictions come with a day of analy-
sis and high cost (huge investment in IoT and energy), also with several serious 
concerns like breaching of privacy, security of data protection, mistrust among ser-
vice provider, lack of standardization of IoT, etc. Together this, cloud is also facing 
security, privacy, fault tolerance, etc. issue in it.

Hence, we need to provide such serious concerns and required/existing solutions 
for the same issues. We need to write a work which can provide information to read-
ers about role of emerging machine learning techniques for IoT-based cloud appli-
cations. We want an environment where users can access any services from anywhere 
without hassle or breaches and delay. Also, user’s data need to be protected in 
decentralized manner and must follow the CIA (confidentiality, integrity and 
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availability) property. Hence, this section discusses about the motivation to work in 
the field of machine learning and its importance for IoT-based cloud applications. 
Now, the next section will discuss IoT applications and cloud applications in detail.

4  Internet of Things and Cloud Applications

Transformation is an ever-present trend which in today’s fast-paced world is becom-
ing an absolute necessity of the hour. There is a great deal of space for storing and 
manipulating the data with technology churning every bit of information in a refined 
new format. When the roost continues to be governed by cell phones and social 
media, a lot of discussion takes place about what is to come next [13]. The obvious 
response for the hour is the Internet of Things, or IoT. There has been a big change 
towards using it as a computing platform for both individuals and enterprises with 
the advent of the cloud. The use of cloud computing to make data available remotely 
puts a lot of stress on this, considering the scalability and data complexity. The basic 
idea behind IoT and cloud storage is to make day-to-day operations more efficient 
without compromising the quality of the stored or transmitted data. Since the rela-
tion is mutual, both services complement one another effectively. Although the 
cloud becomes the ultimate destination for storing it, the IoT becomes the database.

The question remains, however, how are the devices going to stay connected all 
the way through? The solution lies in the Internet of Things networking of cloud 
providers. The increased use of IoT in the cloud has served as a catalyst for the 
creation and implementation of scalable Internet of Things applications and busi-
ness models. Two very closely related future Internet innovations have been cloud 
computing and IoT, with one providing a platform for success with the other [2]. 
There are many benefits derived from the convergence of IoT and cloud computing, 
for example:

• Increased scalability
• Increased performance
• Pay as you go

Now, we will discuss IoT and cloud applications in current era in the next 
subsections.

4.1  IoT Applications

IoT apps aim to add tremendous value to our lives. With newer wireless networks, 
superior sensors and innovative computing capabilities, the Internet of Things for its 
wallet share could be the next frontier in the race [13]. IoT technologies are sup-
posed to provide the communication and knowledge for billions of everyday objects. 
It is already widely deployed, in different domains, namely:
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• Internet of Medical Things (IoMT): The Internet of Medical Things (IoMT) is an 
amalgamation of medical devices and applications that can connect to healthcare 
information technology networks using networking technologies. By connecting 
patients to their physicians and enabling medical data to be transmitted over a 
secure network, this will reduce unnecessary hospital visits and the pressure on 
healthcare facilities. The IoMT market consists of smart devices for use only on 
the body, at home or in community, clinic or hospital environments, such as 
wearables and medical/vital monitors, and related real-time location, telehealth 
and other services.

• Internet of Everything (IoE): The Internet of Everything (IoE) “is putting people, 
systems, data, and items together to make networked interactions more impor-
tant and meaningful than ever before, turning information into actions that gener-
ate new capacities, richer experiences, and unparalleled economic opportunities 
for companies, individuals, and countries”.

• IoT applications in healthcare: IoT technologies are capable of converting reac-
tive medical systems into positive wellness-focused systems. Essential real- 
world knowledge is missing in the tools which current medical research uses. It 
uses for medical examination mostly leftover info, managed environments and 
volunteers. IoT opens avenues to a sea of useful data through research, real-time 
field data and testing.

The Internet of Things also enhances the capacity, precision and functionality of 
existing devices. IoT focuses on designing structures rather than just equipment.

• IoT applications in the supply chain: IoT systems have revolutionized supply 
chain administration (SCM). Comprehending where items are, how they are 
handled and when they can be expected at a particular location is much simpler.

Internet of Things applications, in the supply chain, are an important way of 
monitoring and authenticating goods and shipments using GPS and other technolo-
gies. They can also track product storage conditions which improve quality control 
across the supply chain.

• IoT applications in the automotive industry: The Internet of Things, or comput-
ers that are linked over a network, is no longer a sophisticated technology. It is 
here and the way we live is evolving rapidly. IoT has allowed greater transporta-
tion efficiency and management capabilities in the automotive sector and leads 
us to a future of smart, autonomous vehicles.

• IoT applications in smart retail: Smart home technologies are commonly used, 
and more and more smart devices are being introduced daily. In this field, the 
Internet of Things technology has gone up to the top. A lot of people choose 
smart home systems because of their high-security measures.

With the Internet of Things technology, smart retail technology has established 
several technologies. Many companies have been reorganized, thanks to those 
inventions. As the job in many business fields is linked in a clustered manner, the 
rate of labour and error decreases.
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• IoT applications smart cities: The thing about the idea of a smart city is that it’s 
really city specific. The problems Mumbai faces are very different from those 
Delhi faces. Hong Kong’s issues vary from those in New York. Also global prob-
lems, such as scarce safe drinking water, declining air quality and growing urban 
density, emerge through cities at various intensities. Therefore, each city is 
affected differently.

Government and engineers may use IoT to evaluate the often complex city- 
specific variables of urban planning. The use of IoT technologies will help in areas 
such as water control, waste management and emergency situations.

• IoT applications in smart grids: One of the most important IoT implementations 
is the smart grid (SG). SG is a data exchange network that is integrated with the 
power grid to gather and analyse data collected from transmission lines, distribu-
tion substations and customers. It addresses some IoT architectures in SG, speci-
fications for using IoT in SG, IoT applications and SG services and challenges 
and potential work.

• IoT wearables: Wearable technology is a staple of IoT applications and is 
undoubtedly one of the first industries to use the IoT. Everywhere we see these 
days, we see appropriate pieces, heart rate monitors and smartwatches. One of 
the lesser-known wearables is part of the guardian glucose monitoring system. 
The technology is being created to assist sufferers with diabetes. Using a tiny 
electrode called a glucose sensor mounted under the skin, it measures glucose 
levels in the body and relays the information through radio frequency to a moni-
toring device. The readers can know more about wearable devices in [11, 14].

4.2  Cloud Applications

A cloud application is an Internet-based software that performs some, or all, of the 
computing logic and data storage in the cloud. The user interacts with the applica-
tion through a web browser or mobile application, and a combination of the local 
computer and a cloud storage system handles the data processing:

• IoT as a Service (IoTaaS): The Internet of Things and Services allows the cre-
ation of networks that incorporate the entire manufacturing process, converting 
factories into a smart environment. The cloud allows for the creation of new 
services by a global infrastructure, allowing anyone to create content and appli-
cations for global users [3]. IoTaaS will provide a better cost-to-value compari-
son for existing assets with companies as it will reduce all upfront costs including 
hardware costs. For stakeholders, it will be easier, less expensive and far more 
practical to get all IoT services bundled from a single player.

• Sensing as a Service: Sensing as a Service (SaS) is an advanced type of distrib-
uted computing that takes advantage of IoT’s worldwide resources and facilitates 
the creation of a shared sensor network that is available as a consumer service. 
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The organizations and developers leverage these services, thus providing users 
with an opportunity to monetize the data using existing infrastructure [4].

• Anything as a Service (XaaS): XaaS is a common, collective concept that refers 
to the delivery of something as a service. It acknowledges the large number of 
goods, software and technology that vendors are now providing to customers as 
a network service, generally the Internet, rather than local or on-site distribution 
within a company. There are countless XaaS examples, but the three general 
cloud computing models are the most common, Data as a Service (DaaS), SaaS, 
PaaS and IaaS infrastructure:

• Data as a Service (DaaS): Data as a Service (DaaS) is a data management 
approach that utilizes the cloud via a network link to provide data storage, 
integration, processing and/or analytics services. DaaS is a cloud computing 
technique similar to software as a service, or SaaS, which includes distribut-
ing end-user applications over the network, rather than making them run 
applications on their computers locally.

• Software as a Service (SaaS): SaaS is a form of software distribution that 
enables data to be accessed by any user with an Internet connection and a web 
browser. Software vendors host and manage the servers, databases and code 
that make up an application in this web-based model. Now that more than 
60% of information seekers calling Software Advice want only web-based 
products, i.e. less than 2% directly request on-premise software, the cloud- 
based model is so popular.

• Platform as a Service (PaaS): In the Platform-as-a-Service (PaaS) model, 
developers basically rent everything they need to create an application, 
depending on a cloud supplier for development resources, infrastructure, and 
operating systems. That’s one of three models for cloud computing services. 
The creation of web applications is greatly simplified by PaaS; all backend 
management takes place behind the scenes from the perspective of the devel-
oper. PaaS can be accessed through any Internet connection, allowing a web 
browser to be integrated into the entire application. Since the development 
environment is not hosted locally, developers can work on the application 
from anywhere in the world.

• Infrastructure as a Service (IaaS): IaaS (Infrastructure as a Service) is a type 
of cloud computing that provides virtualized computing services online. In an 
IaaS model, a cloud provider, including servers, storage and networking hard-
ware and the virtualization or hypervisor layer, handles the infrastructure ele-
ments that are normally present in an on-site data centre. The IaaS provider 
also offers a variety of services to support those infrastructure components. 
This may include comprehensive billing, tracking, log access, protection, load 
balancing and clustering as well as resilience to storage, such as backup, rep-
lication and recovery.

• Network as a Service (NaaS): Network as a Service (NaaS) is the selling of third- 
party network services to clients who don’t want to create their own networking 
infrastructure.
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NaaS offers networking tools, software and applications as a commodity that can 
be bought by a number of customers, usually for a period of time contracted. It may 
include services such as wide area networking (WAN) connectivity, connectivity to 
the data centre, on-demand bandwidth (bandwidth on demand), security services 
and others.

• Health Cloud: Health Cloud allows for a seamless experience across the entire 
participant process, from recruiting and onboarding to dedication and retention. 
Deliver the form of personalized service that creates lasting relationships with 
customers. First, Health Cloud tests the leads to verify that the values in the fields 
System Name, Source Code and Medical Record Number have no duplicates and 
are not correlated with an existing account record. If there are duplicate values, 
the records can be fused by selecting a Lead record as master and choosing the 
fields you want to hold. After Health Cloud verifies that no duplicate values exist, 
you can delegate the patient to a care coordinator. That is facultative. You may 
also opt to appoint a care planner within the Care Plan case record portion of the 
case management department.

Hence, this section discusses about Internet applications and cloud applications 
used in this smart era. Now, the next section will present a comparison of scope or 
importance of machine learning techniques in detail with respect to pre-COVID-19 
and post-COVID-19.

5  Comparison of Scope of Machine Learning Techniques 
Pre-COVID-19 and Post-COVID-19 Era

The artificial intelligence’s sub-field is machine learning. It helps develop auto-
mated systems that can learn on their own. The machine then improves its efficiency 
by learning from experience without any interference by humans. This lets the 
machines make decisions which are data-driven. Whatever the machines learn from 
past experience, they use it to make predictions. In fostering global initiatives to 
solve COVID-19, developments in data science and artificial intelligence/machine 
learning (AI/ML) play a crucial role. The versatility of AI/ML technology helps 
scientists and technologists overcome an impressively large range of technological, 
epidemiological and socio-economic challenges. Before the COVID, i.e. pre- 
COVID- 19 era, we have numerous scopes of machine learning, such as:

• Automotive Industry: One of the fields where machine learning excels by chang-
ing the definition of “healthy” driving is the automotive industry. There are a few 
big companies like Google, Tesla, Mercedes Benz, Nissan and so on that have 
invested heavily in machine learning to come up with new technologies. Yet 
Tesla’s self-driving car is the industry’s best. These self-driving cars are con-
structed using machine learning, IoT sensors, HD cameras, voice recognition 
systems, etc.
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• Robotics: Robotics is one of the areas that often attract both the attention of 
researchers and the general interest. George Devol invented the first program-
mable robot in 1954, which was called Unimate. After this, Hanson Robotics 
developed the first AI robot, Sophia, in the twenty-first century. With the aid of 
machine learning and artificial intelligence, such inventions became possible.

• Quantum Computing: In the field of machine learning, we are still at an infant 
level. There are several advances to accomplish in this region. Quantum comput-
ing is one of the ones that can push machine learning to the next level. It is a 
method of computing that uses quantum mechanical phenomena like entangle-
ment and superposition. By using the superposition quantic principle, we can 
construct systems (quantum systems) that can simultaneously exhibit multiple 
states. On the other hand, the theory of entanglement is when two distinct states 
can be related one to another. It helps to explain the connection between a quan-
tum system’s proprieties.

• Computer Vision: Computer vision, as the name implies, provides a view of a 
computer or machine. Here comes to mind what Google’s Head of AI, Jeff Dean, 
once said, “The improvement we made from an error of 26% in 2011 to an error 
of 3% in 2016 is incredibly impactful. The way I like to think is now computers 
have evolved working eyes”. The aim of computer vision is to give a machine the 
capacity to recognize and analyse images, videos, graphics, etc. Progress in the 
field of artificial intelligence and machine learning has allowed faster achieve-
ment of the computer vision target.

Now, we will discuss about scope of machine learning post-COVID-19 in brief.
Officials around the world are using different outbreak prediction models for 

COVID-19 to make informed decisions and implement appropriate control mea-
sures. Among the traditional COVID-19 global pandemic prediction models, simple 
epidemiological and statistical models have drawn more attention from authorities 
and are popular in the media [15]. In the face of the global public health crisis, data 
scientists and AI/ML innovators may be inclined to ask: Are we ready for this? Can 
we find a responsible path to ethically and safely exercise our technological effec-
tiveness? In what follows, I argue that these crossroads do not need to cause confu-
sion as to how we should go, and in fact, to find the right way forward, they give us 
straightforward signage [15]. In the fields of diagnostics, prognostics, genomics, 
drug creation, epidemiology and mobile health monitoring, biomedical AI/ML 
innovations have also made major strides in assisting physicians and researchers 
when pressed into action for the public good. And although the great promise of 
helping healthcare professionals to solve COVID-19 is held by each of these growth 
areas, they also present substantial ethical hazards. Actionable ways of coping with 
these are what we need now. In order to advance higher-performance models for 
long-term prediction, future research should be devoted to comparative studies on 
various ML models for individual countries. Due to the fundamental differences 
between the outbreaks in different countries, the creation of global models with 
generalization potential would not be feasible.
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In summary, in post-COVID-19 era, we have shifted more towards IoT-based 
cloud applications and preferring things which can work automatically, i.e. we rely 
on programmed machines. But, as discussed above, these machines or gadgets or 
solutions come with several negative impacts also, which have been discussed in 
[10, 11].

6  Machine Learning Techniques for IoT-Based 
Cloud Applications

In Fig. 1, we can see the evolution of machine learning techniques since 1950. In the 
past few decades, machine learning use was limited, and due to having fewer 
amounts of data, we were unable to use machine learning techniques with its full 
capability. Slowly, we moved into this smart era, and then we started using machine 
learning in various applications like media and entertainment, education, baking 
finance, aerospace, retails, logistics, etc. Now, each and every application is dis-
cussed (in detail) below as:

 (a) For Agriculture: IoT-based smart agriculture has intrigued many researchers 
among the vast array of IoT applications and has used machine learning (ML) 
and IoT technologies to perform groundbreaking research. By preparing pro-
duction costs, minimizing losses and using resources more effectively, IoT- 
based data-driven farm management techniques can help increase agricultural 
yields. In the form of voltage values for images and actuator states for robot 
positions, IoT-based agriculture has resulted in a variety of data generated from 
various sources on and around agricultural farms. Quality data contributes to 
knowledge that is quality and correct. You won’t be able to build predictive 
models using ML algorithms without having quality data. It allows for better 
analysis and precise predictions to apply ML algorithms to these improved 
datasets. Several research papers have implemented systems for IoT-based agri-
culture [16, 17]. Each sensor mote typically includes a microcontroller, multi-
ple sensor types (from basic temperature sensors to cameras), actuators and 
wireless interfaces in an IoT solution. The IoT is capable of efficiently storing 
and handling vast volumes of sensor data and incorporating cloud computing 
resources such as agricultural maps and cloud storage. Real-time access to data 
from anywhere at any time provides real-time tracking and end-to-end com-
munication across all parties.

 (b) For Healthcare: The triumphant use of information mining in incredibly appar-
ent zones like exchange, trade and e-business has coordinated to its application 
in another industry. The ailments are still information rich yet data low. There is 
a plenitude of data doable inside the clinical practices. All things considered, 
there is a deficiency of basic examination instruments to perceive concealed 
patterns and connections in information. Numerous analysts have applied data 
mining techniques for the forecast and determination of a few sicknesses. AI 
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techniques have been extensively used in the visualization of various illnesses 
towards the early phases. The ebb and flow decade has watched an anomalous 
improvement in the assortment and volume of electronic information related 
with the turn of events and examination, tolerant self-following and wellbeing 
records together proposed to as big data [18]. One of the most basic intermina-
ble social insurance issues is diabetes. In the near future, this issue may harm 
eyes, heart, kidneys and nerves of diabetes understanding if ill-advised pre-
scription is done which additionally prompts demise. An extensive report is 
done on diabetes dataset with random forest (RF), SVM, KNN, CART and 
LDA calculations. The accomplished outcomes show that RF is giving progres-
sively exact expectations which contrasted with different calculations [19]. 
Feelings assume a critical job by the way we settle on a choice, arranging, 
thinking and other human mental states.

The acknowledgement of these feelings is turning into an essential assignment for 
e-medicinal services frameworks. Utilizing biosensors, for example, electroenceph-
alogram (EEG), to perceive the psychological condition of patients that could 
require an uncommon consideration offers a significant criticism for Ambient 
Assisted Living (AAL) [20].

More recently, the COVID pandemic has been making the rounds. The discovery 
procedure was actualized on stomach computed tomography (CT) pictures. The 
master radiologists recognized from CT pictures that COVID-19 shows various 
practices from other viral pneumonia. Along these lines, the clinical specialists indi-
cate that COVİD-19 infection should be analysed in beginning stage. For recogni-
tion of the COVID-19, 4 diverse datasets were shaped by taking patches estimated 
as 16 × 16, 32 × 32, 48 × 48 and 64 × 64 from 150 CT pictures. The component 
extraction process was applied to patches to expand the characterization execution. 
We can use machine learning to detect how coronavirus spreads in different bodies 
and how DNA strands get changed and can make comparisons from how it started 
to when it leaves the body. For example, IBM’s Watson research group cooperated 
with the US Veterans Administration to build up a clinical thinking model known as 
the Electronic Medical Record Analyzer (EMRA). This primer innovation is 
intended to utilize AI methods to process patients’ electronic clinical records and 
consequently distinguish and rank their most basic medical issues.

 (c) For Education: Education is crucial to helping a person to become a good 
human being. Several research initiatives are underway in developing countries 
to strengthen their education policies and techniques in the education field. 
Therefore, there is a need for a great deal of effort to upgrade individual learn-
ing materials for teachers and students in developing countries. An integral 
aspect of educational evaluation is assessing student focus. New instruments 
and evaluation methods are also needed as new learning styles evolve. By log-
ging their behaviour and analysing the resulting multimedia data using machine 
learning algorithms, the learning habits of learners attending remote video lec-
tures are assessed. For the smart assessment of student learning experience, an 
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attention-scoring algorithm, its workflow and the mathematical formulation are 
created.

 (d) For Entertainment/Multimedia: “Data demand remains vast, says Friederike 
Schüür, Fast Forward Labs Senior Data Scientist and Researcher”. Organizations 
are seeking to make their data work for them across sectors. Machine learning 
and data science provide them with the means to do so. Inside media and enter-
tainment, the majority of today’s data work is devoted to knowing the audience: 
who reads, listens and watches the material of our media and entertainment? 
From corporate strategies to marketing and content development, consumer 
observations help industries in making them profitable. Recommendation sys-
tems provide readers, listeners and watchers with relevant content. Embedding-
based recommender systems can autosuggest image assets for posts, for 
example, as creators create new content, or help surface image assets without 
copyright limitations provided a target image. Sequence-to-sequence learning 
can not only be translated from German to English but also from one writing 
style to another, making it easier for the material to reach separate audiences.

 (e) For Banking and Finance: There are many businesses claiming to provide banks 
and financial institutions with AI solutions. Artificial intelligence helps banks 
grant credit to those who pass machine tests more comfortably. For this func-
tion, systems and algorithms evaluate all available information about a potential 
borrower, research their credit background, adjust their salary levels and assess 
the client’s efficiency and the security of the loan on this basis. In addition, 
Chinese banks have already gone further and have chosen not to restrict them-
selves solely to analysing the results. We have found that these strategies are 
structured to assist banking and finance companies with at least one of the fol-
lowing market issues:

• Detecting fraud
• Developing products
• The processes

Diebold Nixdorf, probably best known for its ATM technology, offers ATM mainte-
nance software, allegedly enabling banks to be alerted when an ATM is due for 
maintenance before it fails. C3.AI supports similar applications [21]. Arimo 
offers fraud detection applications, a common application of machine learning in 
finance. Arimo says, for example, that its retail solution makes predictions based 
partly on eCommerce activity data from users, which can see a record of each 
time a customer clicks on a product link or other feature of the web. Their indus-
trial and manufacturing approach enables the tuning process to be automated on 
machinery products, and Arimo says that this is achieved with a refrigerator by 
one of its clients.

 (f) For Supply Chain Management/Logistics: For mass-scale laundry services, the 
authors propose a creative Internet of Things (IoT)-based cloud laundry 
e- commerce business model. Big data analytics, intelligent management of 
logistics and machine learning techniques are used in the model. It determines 
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the best transport path using GPS and real-time update of big data and easily 
and simultaneously updates and reroutes the logistic terminals. Intelligently and 
dynamically, cloud laundry provides the best laundry solutions based on the 
current state of the laundry terminal spaces through user requirements and thus 
offers simple, reliable and clear laundry services to local hotel customers. Cloud 
laundry uses mobile terminal control and big data models to preserve the secu-
rity needs of consumers, taking advantage of the exponential growth of the big 
data industry, consumer interest modelling and information security and pri-
vacy considerations. Cloud laundry companies have higher capital turnover, 
more liquidity and greater profitability, unlike the conventional laundry indus-
try. Therefore, not only academic researchers but also e-commerce entrepre-
neurs could be interested in this new generation of smart laundry business model.

 (g) For Other Sectors: The blossoming time of large information is affecting the 
procedure businesses enormously, giving remarkable chances to accomplish 
shrewd assembling. This sort of assembling expects machines to not exclu-
sively be fit for mitigating people from serious physical work, yet in addition be 
powerful in taking on scholarly work and in any event, creating advancements 
all alone. To accomplish this objective, information examination and AI are key. 
Advanced analytics is used to identify the failure in the industries and is used to 
reduce the possibilities of error and make it error-free. The data from the past is 
collected and examined in a broad sense giving the creators an early idea of the 
possibilities of problem and how to rectify the same. We have the potential to 
modify the current worldview significantly. The traffic designs, endorser gear 
and supporters’ profiles are another sector where machine learning helps in 
controlling traffic types, remote gadgets and endorsers differently dependent on 
the systems. Besides, the remote traffic load is becoming quicker than the limit, 
and the system administrators are confronting extreme difficulties to build 
arrange limit cost-successfully. While we consider the application of VANET 
(Vehicular Adhoc Network), the vehicle can be controlled without the presence 
of a driver being physically present, to make sense of the most equipped 
approach to cut the system and traffic, i.e. the quantity of cuts, parting traffic 
across cuts and so forth, which rely upon the kind of traffic and how it changes 
after some time and space [15]. Utilizing standards of cutting-edge large infor-
mation examination and AI ideas, producing organizations can catch sensor 
information from shop floor instruments and hardware to take an undeniably 
granular and venture wide way to deal with quality control. What’s more, pro-
ducers will likewise have the option to recognize abandons, reveal the main 
driver of issues, lessen the danger of transportation non- adjusting parts, 
empower designing upgrades and figure out which components, procedures and 
work processes sway quality.
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7  Internet of Things and Cloud Computing 
in Post- COVID-19 Era: Applications and Challenges

In the past decade, we have seen major developments in technology and price fall of 
smart gadgets. Smart devices are generally called as Internet of Things, i.e. the 
things which run through Internet or access services through Internet. These smart 
objects are also called Internet-connected things. Similarly, cloud uses have emerged 
in the past decade, and at a very high rate, its demand has also increased. Storage 
and energy are two major problems of computing. Storage problem is solved by 
cloud computing, by storing data at edge or at cloud’s edge, and this data is acces-
sible from anywhere, at any time. Hence, these two important technologies have 
been used at a rapid rate in post-COVID-19 era. This section will discuss various 
challenges faced during implementation of IoT and IoT-based cloud applications in 
solving real-world problems.

7.1  Challenges in Internet of Things (IoT)-Based 
Cloud Applications

As of late, Internet of Things (IoT) and distributed computing have been generally 
contemplated and applied in numerous fields, as they can give another strategy to 
savvy observation and association from M2M (counting man-to-man, man-to- 
machine and machine-to-machine), and on-request use and proficient sharing of 
assets, individually. Specifically, the accessibility of information at up to this point 
unheard of scales and worldly longitudes combined with another age of wise pre-
paring calculations is posing as a challenge for the Internet of Things-based cloud 
applications. Information put away in the cloud is similarly delicate as different 
pieces of the IoT biological system. The foundation ought to have the option to 
secure information put away in the cloud. Insurance measures incorporate proper 
encryption, get to control, etc. Security vulnerabilities consistently exist regardless 
of how much endeavours you pay to upgrade your item code and equipment. For 
this situation, we should initially have an arrangement to fix mistakes and rapidly 
discharge patches, rather than leaving the blunders unfixed for an extensive stretch. 
Next is the necessity of furnishing clients with an immediate and secure technique 
to fix blunders. Right now, it is well known to refresh online gadgets over the air, yet 
you should guarantee that the above strategy itself would not become security vul-
nerability. IoT gadgets are frequently situated in open fields and are unattended and 
not genuinely ensured. We should guarantee that they would not be malevolently 
messed with by horrible association, penetrated by programmers or worked utiliz-
ing a level head screwdriver. Likewise, we should ensure information that gets put 
away on the gadgets in any structure. Despite the fact that it is expensive to insert a 
security assurance part on each IoT gadget, it is as yet critical to scramble informa-
tion on these gadgets:
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 (a) Privacy: In light of the previously mentioned security defects, numerous other 
security and protection issues present themselves in Internet of Things. IoT 
utilizes Internet as a major framework used in interconnecting various topo-
graphically expanded IoT hubs, and hence cloud is utilized as a key backend 
supporting foundation. In the writing, the assortment of the IoT hubs and the 
cloud is all in all called as an IoT cloud. Tragically, the IoT cloud experiences 
different disadvantages, for example, colossal system inactivity as the volume 
of information which is being prepared inside the framework increments. To 
lighten this issue, the idea of haze registering is presented, in which fog com-
puting is situated between the IoT hubs and the cloud framework to locally 
process a lot of local information. Contrasted with the first IoT cloud, the cor-
respondence inertness just as the overhead at the backend cloud foundation 
could be essentially decreased in the haze figuring upheld IoT cloud, which we 
will allude as IoT mist. Hence, a few significant attempts were hard to be con-
veyed by the conventional IoT-based cloud. A couple of them are listed below as:

• Burglary of delicate data like bank secret phrase.
• Simple openness to individual subtleties like contact address, contact num-

ber and so on.
• It might prompt open access to classified data like money-related status of an 

establishment.
• An assault on any one gadget may bargain the respectability of the various 

associated gadgets. In this manner the interconnectivity has an immense dis-
advantage as a solitary security disappointment can disturb a whole system 
of gadgets.

• The dependence on the Internet makes the whole IoT engineering powerless 
to infection assault.

A noteworthy forward jump in beating any boundary among virtual and 
physical universes began from the vision of the Web of Things (WoT), which 
uses open web quantities in achieving information sharing and articles 
interoperability. Social Web of Things (SWoT) further loosens up WoT to 
join sharp articles with casual associations and supposedly connects among 
physical and virtual universes just as support continued with participation 
between physical devices and human.

 (b) Security: The security issues of the Internet of Things (IoT) are straightfor-
wardly identified with the wide utilization of its framework. Starting with pre-
senting the engineering and highlights of IoT security, among these wellbeing 
estimates concerned, the ones about recognition layer are especially expounded, 
including key administration and calculation, security steering convention, 
information combination innovation, just as validation and access control and 
so forth. A huge segment of the executed information between IoT gadgets is 
private data, which must not at all be listened stealthily on or altered. Security 
in IoT gadgets is in this manner of principal significance for additional advance-
ment of the innovation. Such gadgets ordinarily have constrained region and 
vitality assets, which utilize great cryptography restrictively costly. Physically 
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unclonable functions (PUFs) are a class of novel equipment security natives 
that guarantee a change in outlook in numerous security applications; their gen-
erally straightforward engineering can answer a large number of the security 
difficulties of vitality compelled IoT gadgets. RFID is one of the empowering 
innovations of the Internet of Things. RFID can possibly empower machines to 
recognize objects, comprehend their status and convey and make a move if 
vital, to make “ongoing mindfulness”. The inescapability of RFID innovation 
has offered ascend to various significant issues including security and protec-
tion concerns.

 (c) Trust: Trust the executives assume a significant job in IoT for dependable infor-
mation combination and mining, qualified administrations with setting mind-
fulness and upgraded client protection and data security. It assists individuals 
with conquering impression of vulnerability and chance and participates in cli-
ent acknowledgement and utilization on IoT administrations and applications. 
In any case, not many explorations about trust system for Internet of Things 
(IoT) could be found in the writing; however we contend that impressive need 
is held for applying trust component to IoT. We decay the IoT into three layers, 
which are sensor layer, focus layer and application layer, from parts of frame-
work synthesis of IoT.  Each layer is obliged by trust the board for specific 
explanation: self-created, loaded with feeling coordinating and multi- 
organization independently. Likewise, an official decision creation is performed 
by organization requester as shown by the assembled trust information simi-
larly as requester’s system. Finally, we use an ordinary semantics-based and 
fluffy set speculation to see all above trust part, the result of which gives a 
general framework to the headway of trust models of IoT. The assets ought to 
be doled out to gadgets as per the framework strategy, which relies upon the 
data given by Industrial Internet of Things (IIoT) gadgets. In the event that there 
are any asset requesting gadgets, they can report controlled vindictive data for 
their own enthusiasm to get more assets. That is, the brilliant assembling frame-
work might be defenceless because of narrow-minded shrewd assembling gad-
gets’ practices. This lessens the effectiveness of the whole framework and 
besides stops the plant-wide procedure. Many issues have been identified 
towards trust (inlcuding commitments) for targeting a large number of audi-
ence/researchers in this smart era.

Hence, we can say that privacy, security and trust are major issues in IoT-based 
cloud environments/applications. Industries are investing billions of dollars for pro-
viding users a hassle-free/secure environment to access their service. In other words, 
industries are spending a lot of money in avoiding any kind of cyberattacks on their 
databases or businesses; any breaching on data reflect trust of consumer directly.

S. Mishra and A. K. Tyagi



127

7.2  Internet of Things Challenges and Solutions

Protection of IoTs in the post-COVID-19 era: In the fight against COVID-19, tech-
nological advancements are continuously making a difference to healthcare sys-
tems. The speed of progress in the Internet of Things (IoT) systems, in particular 
disease tracking, human movement, the identification of potential carriers and the 
remote monitoring of health conditions, is now being used and developed world-
wide. According to Forrester Research Analyst Chris Sherman [21], two US hospi-
tals have already been targeted via virtual care systems, after a hacker exploited a 
loophole in a medical IoT device (specifically, a remote patient monitoring sensor) 
and obtained access to hospital patient databases. And in another type of attack, the 
Fresenius Group, a maker of medical devices and the largest private hospital opera-
tor in Europe, has been hit by ransomware:

 (a) IoTs privacy in the post-COVID-19 era: Most workers worked from offices in 
the pre-COVID-19 era, where the local area network (LAN) as well as the desk-
tops/laptops were adequately protected. Sophisticated technologies could 
defend against cyberattacks that mainly originated from the Internet and tar-
geted the network of enterprises. Only support staff or those who need direct 
system/hardware access, e.g. testing laboratories, direct consoles, unique print-
ing machines in the banking environment, etc., operate from the office in the 
post-COVID-19 period. In contrast to those at the workplace, the majority of 
the workforce is working from home and exposed to more insecure networks.

 (b) Performance of IoT applications: Elasticity, which refers to the ability to add or 
subtract resources according to the needs of the application or service, is one of 
the most essential cloud computing services. The use of this facility is espe-
cially applicable to the Internet of Things (IoTs) scope, as IoT requires a mid-
dleware that should be capable of handling high data volumes in real time.

 (c) Ethical issues in IoT applications: The underlying information security issue is 
that there are communicator-coupled sensors in several IoT modules. For exam-
ple, a camera, microphone or other sensor collects environmental data and is a 
connected communicator that transmits the data to a remote location, such as a 
cloud or other proprietary server. Although many of the components have some 
security features, such as passwords that limit user access, a large part of the 
IoT security problem is that those passwords are typically set to a factory default 
and have never been changed [22]. However, the default passwords are widely 
accessible online [23]. The responsibility of the consumer is another problem. 
For starters, if changing passwords was simple enough, we might think that this 
is a core user duty [24]. It would be similar to seat belts in vehicles in this 
regard; it is the obligation of the driver to put them on. But that assumes that the 
modifications are simple; in other words, users have the time and cyber-literacy 
needed to handle safe passwords.

 (d) Sustainability of IoT infrastructure: The Internet of Things is regarded by busi-
ness and organizations as an opportunity for the present and the future that will 
digitize many operations and offer enormous benefits. Yet it also has the 
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 potential to help battle and protect the world from climate change. This is how 
the Internet of Things in various fields, such as water use and energy efficiency, 
will affect the planet’s sustainability. There’s a long way to go for IoT technol-
ogy compatible with the SDGs. The World Economic Forum is currently esti-
mating that 75% of IoT ventures are small- and medium-sized, focusing on 
business, urban energy conservation, renewable energy, health and responsible 
consumption. Public-private investments are crucial for projects to expand, 
Guerrero says. This will generalize IoT use, minimize costs and extend its use. 
“Training, raising awareness in society of the importance of sustainability and 
demystifying technology are important for the large-scale implementation of 
IoT sustainable development projects”, he says.

 (e) Scalability in IoT: The fundamental property of an IoT system is that it will 
provide exclusive recognition for the advancement and creation of usefulness 
and applications of each “thing” and its virtual personification. Scalability is a 
very critical component of the modern and revolutionary developments in tech-
nology that occur every day [25]. As more and more devices or “things” are 
linked to the Internet, the various problems that occur as a result of this are a 
matter of utmost concern. For scalability in the IoT, there are countless things 
that need to be held in mind.

 (f) IoT applications maintenance: In the coming years, the IoT will be instrumental 
in improving productivity and performance everywhere. This can lead to more 
efficient power management at plants and factories by automatically adjusting 
environmental control systems to reduce energy use when it is not necessary. 
The IoT will then change the way assets are handled in seven respects, but there 
are certainly several more:

• Greater adoption of predictive maintenance
• Real-time data analysis
• Accurate performance metrics
• Automatic software upgrades
• Recommended repair actions
• Tighter parts and inventory control
• Remote assets

7.3  Cloud Computing Challenges and Solutions

Cloud reflects the concept of a distributed infrastructure consisting of a series of 
virtual machines that can be dynamically provisioned to meet the varying resource 
requirements of a client [1], and the entire basis of this cloud-customer relationship 
is governed by the service-level agreement (SLA). The National Institute of 
Standards and Technology (NIST) defines the cloud as a model that allows conve-
nient on-demand network access to a common configurable resource pool of com-
puters, such as network, storage, etc. Cloud relieves the user of the overhead of the 
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physical installation and maintenance of their device, which automatically reduces 
the overall cost and enhances the system’s reliability. The use of cloud-based ser-
vices results in an abstract layer being added between the physical storage or servers 
and the users whose data or services are stored in the cloud. The current situation is 
such that the cloud user’s data or service owner must rely entirely on the cloud ser-
vice provider (CSP) for their privacy and information security. The concept of 
mutual trust is reached to some degree by negotiating the SLA, but a good number 
of cloud-specific security issues are still going to need to be addressed by either the 
CSP or the user itself.

When it comes to IT security concerns, data occupies the top spot, regardless of 
the infrastructure being used. Cloud computing is no exception to this, and it focuses 
on extra security problems because of its distributed nature and multi-tenant archi-
tecture. Its generation, storage, use, delivery and destruction constitute the data life 
cycle. All these stages in the data life cycle should be assisted by each CSP with 
sufficient protection mechanisms:

 (a) Cloud computing security: One of the main driving factors behind a user’s deci-
sion to switch into a cloud system or stick with the legacy system that trusts on 
the cloud service provider (CSP) and their services. Confidence is focused on 
the evaluation of whether all threats have been addressed by a supplier, includ-
ing data protection areas, VM protection as well as other government and regu-
latory issues. Confidentiality, honesty and availability (CIA) are the three 
factors that have been considered here for the cloud system security assessment. 
And the domain is a convention commonly used by the CIA to assess the secu-
rity issues of a traditional information system.

 (b) Cloud computing privacy issues: Distributed computing is a growing innova-
tion that encourages the sharing of resources, such as software and hardware 
and Internet servers. But there are some problems in data cloud protection and 
privacy that are not as reliable as opposed to conventional IT operations, protec-
tion patching in the cloud is much easier, enforcement is more difficult to show 
in the cloud, data loss is less in clouds, and more control power would boost 
security. There is a profound need to securely store, supervise, exchange and 
analyse enormous complex knowledge steps, to establish examples and trends 
that take into account the ultimate aim of enhancing the quality of human ser-
vices, better protecting the country and investigating elective vitality. It is 
important that fogs are safe as a result of the unpredictable technique for the 
applications.

 (c) Reliability in cloud computing: Reliability is defined as the ability of a system 
or component to perform its necessary functions for a specified period of time 
under stated conditions. There are different types of disappointments that can 
place pressure on a cloud administration’s unwavering dominance, including 
excess, timeout, missing data asset, missing asset calculation, programming 
dissatisfaction, database annoyance, discontent with hardware and network 
failure.
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 (d) Quality of service in cloud computing: One of the issues posed by cloud com-
puting is the quality of service. In making cloud services appropriate to con-
sumers, this problem plays an important role in denoting the standards of 
performance, reliability and availability provided by cloud services. Many 
recent implementations have been mentioned/discussed in the literature in order 
to achieve better performance and meet the needs of producers and customers 
and calculate and ensure QoS in cloud computing systems.

 (e) Cloud performance management: Applications for data management imple-
mented in IaaS cloud environments must aim to reduce costs and provide good 
performance at the same time. Balancing these two priorities involves difficult 
decision-making on a variety of axes: resource provisioning, location of queries 
and scheduling of queries.

 (f) Scalability in cloud computing: Measuring and testing the performance of 
cloud-based software services is critically important in the context of rapid 
cloud computing growth. Scalability, elasticity and coherence are interrelated 
aspects of the performance of cloud-based computing services. The perfor-
mance evaluation and testing of cloud-based computing services is critically 
essential in order to support the service-level agreement (SLA) compliant qual-
ity of delivery of these services, particularly in the context of the rapid expan-
sion of the amount of service delivery. Scalability is the ability of the cloud 
layer to increase the delivery potential of the information service by expanding 
the amount of information service offered. This concept focuses on the techno-
logical side of cloud-based computing services, but we note that the literature 
frequently uses alternate, utility-oriented (i.e. economic cost/benefit focused) 
approaches.

 (g) Cloud interoperability and portability: An underlying evolution of cloud com-
puting is interconnected cloud computing. The academic and industry sectors 
have been attracted by various advantages offered by connecting clouds. Just 
like everyone else does, interconnected clouds have their own set of challenges, 
such as protection, control, authorization and identity management, vendor 
lock-in and so on. The latest evolution faces challenges. Since it is difficult to 
find a cloud provider that can satisfy all customer criteria, customers attempt to 
merge services or switch from one provider to another. But one provider’s cus-
tomization of services does not allow it to be done easily. It takes a great deal of 
effort and cost, even though it is finished. This scenario is often referred to as 
vendor lock-in.

 (h) Cloud compliance: There is an ever rising need for businesses to comply with a 
variety of laws, regulations and standards in the current market environment. 
Companies will need to be consistent in showing that they are in compliance, 
and this will demonstrate because of the existence of such cloud vulnerabilities. 
There is a strong incentive for businesses to be able to clearly show complete 
compliance, considering the possible severity of penalties for noncompliance.

Hence, this section discusses IoT challenges and its solutions, as well as cloud 
challenges and solutions for the same. Now, the next section will discuss several 
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future research gaps or possibility in (with) the respective technology in the 
next decade.

8  Future Research Directions for Machine Learning 
Towards IoT-Based Cloud Applications

Currently, a large amount of picture, audio and video and metadata created by users, 
such as network and user activity information, is being transferred to the cloud. This 
is due to the availability of comparatively inexpensive storage of information and 
cloud backup. Continuous research is underway to apply machine learning to appli-
cations for speech/audio recognition; text, image and video processing; and lan-
guage translation. In view of the broad computational requirements, conventional 
machine learning algorithms were limited to execution on large clusters. 
Furthermore, in order to perform complex learning tasks without incurring large 
monetary costs, APIs and software libraries are now available, for example, 
TensorFlow and Nervana Cloud from Google. The availability in cloud environ-
ments of hardware accelerators, such as GPUs, has reduced the computation time on 
large quantities of data for machine learning algorithms. The industry’s interest in 
this field is due to the ability of predictive analytics to include deep learning.

The availability in cloud environments of hardware accelerators, such as GPUs, 
has reduced the computation time on large quantities of data for machine learning 
algorithms. The industry’s interest in this field is due to the potential for deep learn-
ing in predictive analytics. Cognitive computing is a closely related avenue in the 
sense of future clouds. Cognitive systems in this visionary model would rely on 
machine learning algorithms and data generated to continuously generate knowl-
edge. The obvious advantages of using fog computing include reducing device 
latency and enhancing users’ quality of service (QoS) and experience (QoE) while 
exploiting hierarchical networking and tapping into tools that are not typically used 
for general computing purposes. Fog computing is therefore anticipated to allow the 
Internet of Things (IoT) vision to be realized.

8.1  Advanced Analytics with Machine Leaning: A Way 
to Forward

Our main focus is to be at the front line of giving customized arrangements depen-
dent on joining of machine learning strategy, programming equipment elite process-
ing and preparing for a wide scope of information concentrated registering, 
information handling and progressed examination for logical and business applica-
tions, utilizing both open-source and in-house R&D. With AI we can move towards:
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• Artificial Intelligence (AI) for Cybersecurity: Intrusion detection automatically 
by machine and artificial intelligence: In the near future, AI-based solutions may 
find vulnerabilities over web and reduce the load of cybersecurity professional. 
Note that hackers may use AI-based solutions to perform a serious attack on 
cyber-physical systems or any other computing systems or networking.

• AI for Industry 4.0: AI will provide full automation in the near future to industry 
and intelligence too. AI-based manufacturing or logistics are few examples in the 
near future, i.e. timely and error-free delivery, increased productivity, etc. 
Machine intelligence in medical imaging, machine learning and AI for penetra-
tion testing and machine learning in chemical sciences are also other examples 
of AI for Industry 4.0.

• AI for Data Science: AI-based data science will be helpful (in trend in the near 
future) in retail, banking, finance, weather forecasting or stock market prediction.

• AI-IoTs Integration for Other Sectors: AI can be used in many other sectors like 
software development and cloud computing/fog computing. Hence, few more 
possibilities of AI-IoT are:

• IoT is higher education systems.
• Impact of IoT is education now and in the future.
• A learning management system enhanced with Internet of Things.

Hence, this section lists various future research directions for machine learning- 
based IoTs – cloud applications. The readers/researchers are suggested to read work 
[9, 10, 12, 14] for knowing more machine learning, deep learning and their impor-
tance in the next decade. Further in [26], authors provide various future research 
gaps and opportunities in the future towards Internet of Things and Internet of 
Everything. Also, readers can find out several issues in various computing platforms 
in [26]. Now, the next section will conclude this work in brief with including several 
interesting future remarks for researchers/scientists.

9  Conclusion

Cloud and Internet of Things are two developed concepts and both are made for 
each other. Cloud is something which stores information which can be accessed by 
users/consumer remotely anytime. This requirement is completed by IoT devices 
and their communication via completing everyday task. The large amount of data is 
generating every day by these IoT devices, especially post-COVID-19. This work 
has discussed IoT-based cloud applications based on pre-COVID-19 and post- 
COVID- 19. In summary, we get to know that in post-COVID-19 era, we have 
shifted more towards IoT-based cloud applications and preferring doing the tasks 
with machines/things which can work automatically, i.e. we depend on programmed 
machines. But, as discussed above, these machines or gadgets or solutions come 
with several negative impacts like security, privacy, trust, standardization, etc. For 
which, solutions are yet to provide. Today, many other technologies, like artificial 
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intelligence, blockchain technology, deep learning and their integration like integra-
tion of IoT blockchain, etc., will be more useful for making IoT-based cloud appli-
cations successful.

This work provides maximum information to its readers (from academia and 
industry) and to learn more and more about machine learning and IoT-based cloud 
field. IoT-based cloud applications are in trend nowadays and will be the more 
adaptable by all industries (and sectors) in the near future. Success of an application 
depends on its trust for its user/consumer; if we provide sufficient level of security 
using innovative techniques, then we can build a higher trust among user and ser-
vice provider. As discussed previously, dependency on these applications or on 
technology comes with several negative impacts (or serious concerns), which we 
need to solve yet. We require (expect) innovative solutions or mechanisms from 
academia/industry researchers (from around the globe) for raised concerns in IoT 
and IoT-based cloud environment.
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Deep Learning Frameworks for Internet 
of Things

Dristi Datta and Nurul I. Sarkar

1  Introduction

In recent times, deep learning (DL) is receiving a lot of consideration today. The 
idea of artificial intelligence (AI) came into existence and the term AI was first 
coined in 1956 [1]. The concept is very old; however, it gains its popularity recently. 
Prior we had an exceptionally limited quantity of data and it is not enough to predict 
accurate results. However, in recent years, there is a remarkable growth in the num-
ber of record volumes. “Statistics suggest that by 2020 the accumulated volume of 
data will increase from 4.4 ZB to around 44 ZB or 44 trillion GBs of data” [2]. To 
keep pace with the increasing amount of data, improved algorithms and higher com-
puter storage are required.

Computer-based intelligence is a procedure that empowers the machine to mirror 
human conduct. AI is cultivated by concentrating on how the human cerebrum 
thinks and how the human mind learns, chooses, and works while attempting to take 
care of the issue. The results of this investigation are utilized as a reason for creating 
keen programming and frameworks. With AI innovation, it is conceivable to train 
models from the past and present experience. The machines alter their reactions 
dependent on new data and in this manner performing human-like errands. Simulated 
intelligence can be prepared to achieve explicit assignments by handling a lot of 
information and perceiving designs on them. Man-made intelligence framework 
includes structuring various segments, parts, and learning calculation, never know 
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the conclusive outcome. In this way, the principal target of AI is to have frameworks 
or programming that can reflect human conduct. To accomplish AI, some innova-
tion thinks of each other. Both ML and DL are a subset of AI that appeared in 
Fig. 1 [3].

ML came into existence in the early 1990s [4]. The ML is adopted in statistics 
fields to proficiently prepare enormous complex models. In software engineering, 
ML is utilized to prepare a more vigorous variant of the AI framework and further-
more in neuroscience. This ML approach is utilized to plan operational models of 
the cerebrum. Due to these issues, the interest in ML is increasing day by day. ML 
is acquired from AI and moved toward the strategies and models obtained from 
statistic and probability theory. Thus, ML is a subset of AI that utilizes factual tech-
niques to empower machines to improve understanding. These algorithms and cal-
culations are structured such that they can learn and improve our time when 
presented with new information.

The main impediment of ML is the high dimensionality of the information that 
is produced is immense in size; subsequently we have countless data sources and 
outputs. Due to that ML algorithms fail. In this manner, the ML cannot manage the 
high dimensionality of information. Another issue of ML is it cannot take care of the 
essential AI issues, for example, regular language handling and picture recogniza-
tion. Another huge problem with conventional ML is characteristic extraction. For 
instance, object recognition as well as handwriting recognition turns into enormous 
problems for ML calculations to settle. On the other hand, DL models are proficient 
to concentrate on the correct features without anyone else with a little direction 

Artificial Intellegent

Machine Learning

Deep Learning

Fig. 1 Illustrating the concept of AI, ML, and DL
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from the software engineer. Hence the machine can also generate the features that 
are needed for the right output. These models also partially solve the dimensionality 
problem. If we have a large number of data, then the DL will be the best choice [5].

In the lower number of data, both ML and DL perform similarly; however, when 
the volume of the data is increased, DL performs significantly better than ML as 
shown in Fig. 2. In terms of hardware dependency, the DL calculation is exception-
ally subject to machines, while the ML calculation can chip away at low machines 
also. This is on the grounds that the prerequisite of the DL calculation incorporates 
GPUs which is a necessary piece of work. DL calculation includes countless frame-
work augmentation activities, and this must be improved by utilizing GPU [6].

Highlight designing is a procedure of putting the area information to decrease the 
complicated nature of information and make the example more noticeable to learn-
ing algorithms. This procedure is troublesome and costly regarding time and apti-
tude. On account of ML, the vast majority of the highlights are expected to be 
recognized by a specialist and afterward hand-coded according to the area and data 
type. For instance, highlights can be pixel esteems, shapes, surfaces, positions, 
direction, or anything. Figure 3 shows the spectrum of the different data types. Data 
can be categorized into three types: image data, text data, and sequential data. Video 
data involves the image data and must be maintained in sequential frames as each of 
the video frame is correlated with one another. Additionally, for natural language 
processing (NLP), it combines the feature of text recognization and sequential data. 
Similarly, to detect the optical character recognization (OCR), it combines the fea-
ture of image and text. Finally, human-computer interaction (HCI) for building a 
cognitive system requires a combination of all three types of data.

The execution of the greater part of the ML algorithm relies upon how precisely 
the features are recognized and extricated. Though on account of DL algorithms, it 
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Fig. 2 Performance vs the amount of data [5]
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attempts to take in elevated levels features from the data. This is the important fea-
ture of DL that makes it ahead of traditional ML.  DL minimizes the errand of 
another element extractor for each issue. Like on account of the CNN calculation, it 
first attempts to learn low-level features of the picture, for example, ages and lines, 
and afterward, it continues the pieces of appearances of individuals and lastly the 
significant-level description of the face.

To solve a problem using the ML algorithm, it is mostly suggested that we first 
separate the issue into various subparts and unravel them independently and lastly 
consolidate them to get the ideal outcomes. This is the manner by which the ML 
algorithm handles the problems. Then again, the DL algorithm tackles the issue 
from start to finish. In the case of multiple object detection, if we pass an image with 
objects, it will detect the object and also the type of an object at the same time. 
Hence, DL performs faster than the ML algorithm [7]. In contrast, DL methods 
require longer training time as it requires a huge number of parameters and data to 
train, whereas for ML it takes relatively less time to train. However, the execution 
time is converse with regard to testing data [7].

DL is the ML technique; more precisely it is the subsequent evaluation of 
ML. DL understands features and errands straightforwardly from data. The utiliza-
tion of DL has risen throughout the most recent years essentially because of three 
elements. Firstly, DL strategies are currently more precise than individuals catego-
rizing pictures. Secondly, with the update of the technology, now it is possible to 
train a deep network in a reduced amount of time. Lastly, a lot of leveled data 
required for DL has grown significantly in recent years.

Image Text

Sequential

Object

Recognition
Auto

Complete

NLP

HCI

OCR

Video

Sensors, Finance, 

Speech

Fig. 3 The spectrum of data types
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The integration of the IoT platform with the DL algorithm provides a wider 
range of facilities to control and handle the system more effectively by the interac-
tion of humans with the physical objects. It also allows the remote wireless control 
of all the IoT devices and sensors and updates data continuously. By getting experi-
ence from the past and by evaluating the present value, the prediction of the future 
is also possible with the analysis of big data.

IoT consists of multiple sensor systems, and data is collected throughout the IoT 
devices in real-time series. It can wirelessly communicate in the cloud and can do it 
continuously and automatically. Therefore, the IoT platform requires a new struc-
ture to communicate multiple sensor data. To learn and provide decisions from the 
sensor data, many authors proposed DeepSense with the DL framework [8]. The 
implementation of DNN with IoT devices requires high resources demand to train 
this neural network. It also requires a long training time. In paper [9], the author 
proposed DeepIoT that can significantly compress the structure of DNN; hence, 
execution time, device storage, and energy consumption are noticeably reduced. 
Additionally, reliability and prediction are considered one of the major issues for 
cyber-physical IoT devices. For accurate and well-structured prediction, RDeepSense 
is proposed in [10].

The rest of the chapter is organized as follows. The architecture for DL is 
described in Sect. 2. Section 3 presents the working frameworks for the deep neural 
network. The deep reinforcement learning approaches are discussed in Sect. 4. The 
applications of DL in IoT environments are highlighted in Sect. 5. The challenges 
and future research directions are discussed in Sect. 6, and a brief conclusion in 
Sect. 7 ends the chapter.

2  Architecture for Deep Neural Network

The fundamental structure of DNN comprises of an input layer, some hidden layers, 
and output layers. There are some basic ways of implementing DNN that are dis-
cussed below.

2.1  Convolution Neural Networks

The convolution neural networks (CNN) mainly carried out two operations: one is 
a convolution operation and another is a pooling operation. The fundamental layout 
of CNN is shown in Fig. 4. It consists of an input image that is fed throughout a 
convolution layer supported by a pooling layer and again repetition of a convolution 
and pool layer. After that data is fed into multiple fully connected layers, and finally 
the image is classified through the softmax unit [11].

In convolution, we require three inputs and they are filter size, stride, and pad-
ding. Let us consider that we have taken as an input image of size 6/6 and a filter 
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kernel of 3/3. Now multiplication is performed with the corresponding input values 
with the filter values, and finally, the value of three separate equations is added to 
obtain a final corresponding value −12 (Fig. 5a). In this problem, we have consid-
ered the kernel size f = 3; it means that it is a 3/3 kernel. As the stride value is s = 1, 
it will shift by one unit on the right side to calculate the result of the second position 
(Fig. 5b). Similarly, when the results of the first row are completed, then the red box 
is shifted down to one unit to calculate the value of −6 (Fig. 5c). The process will 
continue until we obtained the final resultant matrix that is shown in Fig.  5d. 
Therefore, we obtained our final resultant matrix of 4/4 order.

The height of the resultant matrix is calculated from Eq. 1.

 
n n fH H
� � � �� �1  (1)

where
nH
′

 is the height of the resultant matrix
nH is the height of the input matrix
f is the kernel size.

In this type of convolution, if we consider the padding, p = 0 (Fig. 5), then the 
output matrix is reduced to 4/4 from the given input of the 6/6 matrix. It is seen that 
by applying more stages of convolution, then the size of the image becomes too 
small to use. However, if we add padding (p = 1) with 0, then the output matrix 
remains the same size as the input matrix as shown in Fig. 6, and the height of the 
final matrix can also be justified from Eq. 2.

 
n n f pH H
� � � � �� �2 1

 (2)

Now if we consider the stride, s = 2, it means the red box will shift by two units and 
significantly reduce the height of the resulting image (Fig. 7). The effect of stride is 
given in Eq. 3.

6

Input Convolution Pool Convolution Pool
Fully 

Connected Layer

Softmax

Fig. 4 Typical structure of CNN
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Fig. 5 Various algorithms of convolution neural networks
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Modern IoT devices such as drones, electric vehicles, and mobile phones contain 
digital cameras used to analyze CNN methods. The amount of crop production is 
predicted easily. Additionally, drone images are also used to detect plant diseases. 
The cameras of an electric vehicle can detect the traffic sign and provide notification 
to the driver.

2.2  Recurrent Neural Network

The CNN suffers mainly from two limitations. The first one is CNN works with the 
fixed grids (images) where the inputs and outputs are fixed and can only work with 
images with the fixed size. It cannot work with images of varying lengths. Another 

Fig. 6 The convolution neural networks with padding effect

Fig. 7 The convolution neural networks with stride effect

D. Datta and N. I. Sarkar



145

problem of CNN is it cannot handle the sequential data, i.e., its output values do not 
depend on past values. Therefore it fails to correlate the output value with the past 
value (e.g., text or speech). To solve these problems, recurrent neural networks 
(RNN) may be a promising solution [12].

The RNN structure is designed in a way that its present input directly depends on 
the past input. In the hidden neuron layer, it has memory feedback as shown in 
Fig.  8a. The input of this network depends on direct current input with a past 
observed sample. Therefore, the output of y(t) directly depends on the input of x(t) 
and the feedback input of past hidden layer output h(t − 1) that is given in Fig. 8b.

The network can be divided into four types (Fig. 9). One-to-one network (Fig. 9a) 
is a basic type of RNN used for regular ML problems. One-to-many network 
(Fig. 9b) generates the sequence of outputs and is highly used in image captioning. 
Numerous-to-one system (Fig. 9c) takes in an arrangement of sources of data, for 
instance, an opinion investigation where a given sentence can be delegated com-
municating positive or negative feelings. For language translation, many-to-many 
networks are used as it takes in a succession of sources of data and produces a series 
of outputs (Fig. 9d).

2.3  Autoencoders (AEs)

Autoencoders are mostly used in data compression which has a wide scope of utili-
zation in computer vision and computer networks. AEs are unsupervised neural 
networks that use ML to do this compression. AEs mean to get familiar with a 
packed dispersed portrayal for given information, ordinarily with the end goal of 
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dimensionality decrease. Additionally, AEs are also used to reduce noise from 
the images.

AEs are a simple learning network that aims to transform inputs into outputs 
with the minimum possible error that applies backpropagation, setting the objective 
qualities to be equivalent to the sources of info. In industrial IoT applications, AEs 
are mostly used in anomaly detection and to trace the location of fault [13].

AEs are consisting of three components that are encoder, code, and decoder as 
shown in Fig. 10. In the part of the encoder, the data is compressed into a latent 
space representation or typically a code interpretation. The encoder layer encodes 
the input picture as a compacted portrayal in a diminished measurement. The next 
component represents the latent space. The code is the piece of the system that 
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signifies to the packed input that is taken care of to the decoder. The decoder inter-
prets the compacted picture back to the first position.

2.4  Generative Adversarial Networks (GANs)

The GANs are DL-based reproductive versions that are utilized for unsupervised 
learning. It is generally a system where two competing neuron networks are com-
peting with each other to create or generate a variation in the data. It was first pro-
posed by Goodfellow in 2014 [14]. The GANs architecture consists of mainly two 
sub-models known as the generator model and discriminator model. The generator 
system takes an example and produces an example of information. On the other 
hand, the discriminator system chooses whether the information is created or taken 
from the genuine example utilizing a binary characterization issue with the assis-
tance of a sigmoid function that gives the output from 0 to 1.

The working procedure of GANs is given in Fig.  11. The generator system 
receipts the example and produces the example information, and after this, the dis-
criminator network chooses whether the information is created or taken from the 
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Fig. 11 (a) Working principle and (b) architecture of GANs
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genuine example utilizing a binary grouping issue with an assistance of a sigmoid 
function that gives the output 0 to 1. The generative model analyzed the distribution 
of data in such a way that after the tanning phase, the probability of the discrimina-
tor committing an error amplifies. On the other hand, the discriminator network 
guesses the probability that the sample is coming from genuine data or the generator.

There is a wide scope of utilization of GNNs in the field of IoT. Sensors can cre-
ate something new decision by analyzing the present data and can also classify real 
and fake characters. This architecture is also useful to convert images or text to 
sound. Additionally, it can detect the anomaly from different images and also iden-
tify the fake images.

3  Framework for Deep Neural Network

The growing interest to use DL in a wide field of applications including IoT influ-
ences a lot to invent and develop different DL frameworks in recent days. Each DL 
framework consists of its architecture, programming language, and algorithms. 
These different frameworks are used for research purposes to train DNN. Among 
them, some of the popular working frameworks for DNN are discussed below, and 
a comparison study is given in Table 1.

TensorFlow TensorFlow is created by Google Brain team. This platform is widely 
used for Google translate, NLP, text order, speech recognition, picture acknowledg-
ment, gauging, and labeling. TensorFlow is accessible for both mobile and comput-
ers version. This is supported by the programming language of C++, Python, and 
R. It generally utilizes a dataflow graph to manage data; therefore, users can closely 
observe how data is flowing through the deep neural network. This platform is com-
paratively easy to build ML models. Additionally, TensorFlow is also used for pow-
erful experimentation for research. TensorFlow comes up with two useful tools: 
TensorBoard and TensorFlow Serving. The TensorBoard is utilized for effective 
data vision of system modeling and execution, whereas the TensorFlow Serving is 
utilized for the quick development of new algorithms or experiments [15].

PyTorch PyTorch is a scientific computation package developed by the people of 
Facebook’s AI Research lab. This platform is founded on Lua programming which 
is a processing framework for ML and DL algorithm. It utilized CUDA alongside C 
and C++ libraries for preparing was intended to scale the creation of building mod-
els and adaptability. It is lower powered and works with Python. This platform is 
mostly used on Facebook, Twitter, and Google to some extent. This platform allows 
automatic differentiation by the autograd module and dynamic computation graphs 
which provides the extra advantage of the PyTorch platform compared to other plat-
forms. This platform is also integrated with Python which permits common libraries 
and bundles to be utilized for rapidly composing neural system layers in Python. 
PyTorch is engaged with the vast community and lots of developers are engaged to 
develop it. This is a close competitor in terms of popularity with TensorFlow [16].
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Keras Keras is considered a superior level of neural system application program-
ming interface (API) that supports python language. It supports both CNN and 
RNN that are fit for running the head of TensorFlow, Theano, and CNTK. Therefore, 
this framework is considered the fastest-growing DL platform. This is an  open- source 

Table 1 Comparison of various DL frameworks

Frameworks Developer
Release 
date

Support 
language Feature Applications

TensorFlow Google brain 
team

November 
2015

C++, python, 
R

TensorBoard and 
TensorFlow 
serving tools 
make easy use of 
TensorFlow

Google translate, 
Google search, 
Google maps, 
AIRBUS, twitter, 
IBM

PyTorch Adam Paszke, 
Sam gross, 
Soumith 
Chintala, 
Gregory 
Chanan

October 
2016

C, C++, 
python

Automatic 
differentiation 
and dynamic 
computation 
graphs

Facebook, twitter, 
Google

Keras François 
Chollet

March 
2015

Python Runs on top of 
TensorFlow, 
Theano, CNTK

Microsoft, 
CERN, 
NETFLIX, 
NASA

Theano University of 
Montreal

2007 Python Used for fast 
numerical 
computation, can 
run both CPU and 
GPU

Graph structures, 
traversing the 
graph, automatic 
differentiation

DL4J Alex D. black, 
Adam Gibson, 
Vyacheslav 
Kokorin

October 
2017

Java, Scala Parallel training 
for both GPUs 
and CPUs

NLP, text or 
image recognition

MXNET Apache 
software 
foundation

February 
2020

C++, python, 
R, Java, Julia, 
JavaScript, 
Scala, go, 
Perl

Wide range of 
programming 
language, flexible 
operation

Speech 
recognition, 
forecasting, NLP

Caffe Yangqing Jia April 2017 C++ Fast in training 
and prediction

Vision 
recognition

CNTK Microsoft 
Research

January 
2016

C++ Multiple 
machines 
scalability, better 
than Theano or 
TensorFlow

Handwriting 
recognition, 
speech 
recognition

Chainer Seiya Tokui June 2015 Python Run on top of 
Numpy and CuPy 
python libraries

Machine 
translation, 
speech 
recognition, 
sentiment 
analysis
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platform and developed by contributors across the world. It also offers high- 
performing quick prototyping used to specify and train differentiable programs. The 
Keras interface is easy to use as it offers straightforward APIs and gives clear and 
significant criticism upon the client blunder. It likewise gives seclusion as an 
arrangement or a diagram of independent, completely configurable modules that 
can be stopped along with as not many limitations as could be expected under the 
circumstances. This is effectively extensible as new modules are easy to include. 
This element makes Keras reasonable for cutting-edge research [17].

Theano The open-source Theano platform is designed with Python and has an 
integration with the NVIDIA CUDA library; therefore, it can run on GPUs. This 
framework also allows parallelism with CPUs. The Python library of Theano per-
mits us to characterize, enhance, and assess scientific articulations including multi-
dimensional exhibits effectively. Additionally, Theano has tight reconciliation with 
NumPy for data computations. The uses of GPUs to perform information escalated 
calculations which are a lot quicker than on a CPU. It has a broad unit test and self- 
confirmation that can distinguish and analyze numerous kinds of mistakes [18].

DL4J DL for Java (DL4J) was contributed to Eclipse Foundation, incorporated 
with Hadoop and Apache Spark. It provides parallel training to the distributed CPUs 
and GPUs. The programming language is Java and Scala which allows the program-
mer to code more easily compared to the other platform. It gives a circulated com-
puting system as training with DL4J happens in clusters. It incorporates an 
n-dimensional exhibit class utilizing ND4J that permits logical figuring in Java and 
Scala. It additionally offers a vector space demonstrating and subject displaying 
toolbox that is intended to deal with enormous content sets and perform NLP. This 
platform is mostly used for picture acknowledgment, front location, text mining, 
and ways of discourse labeling. DL4J is supported by restricted Boltzmann machine 
(RBM) and also DBN. Additionally, it is also supported by the LSTM network, 
CNN, and RNN. This platform is highly efficient compared to Python. In multiple 
GPU systems, it also works as fast as Caffe [19].

MXNET The MXNET platform provides a variety of programming language 
facilities to code for the programmer. Among them, Python, C++, R, Julia, and 
Scala are the most popular programming language. MXNET is intended for high 
effectiveness, high productivity, and lots of adaptability. It consists of long-term 
short-term memory which is also known as LSTM networks along with CNN and 
RNN. This platform is highly used for dialogue response, forecasting, and natural 
language processing (NLP) [20].

Caffe The “Convolutional Architecture for Fast Feature Embedding” or Caffe is 
another DL framework that is created in C++ and supports the interface of Python 
[21]. This is popularly used for vision recognition, image detection, and classifica-
tion. However, this system does not include fine granularity network layers that are 
noticed in TensorFlow or CNTK.  It requires low-level language code. This is an 
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open-source platform utilized in scholarly exploration ventures, startup models, and 
huge scope mechanical applications in vision, discourse, and sight and sound. It 
additionally bolsters GPU- and CPU-based speeding up computational part librar-
ies, for example, NVIDIA, cuDNN, and IntelMLK. The Caffe is getting famous for 
its speed. It can process 60  million pictures with a simple single NVIDIA K40 
GPU. The presence of the Caffe model zoo which is a deep network pertained model 
makes the use of the Caffe platform easier.

CNTK The CNTK is a popular framework by Microsoft. It is also known as the 
Microsoft Cognitive Toolkit [22]. This system is upheld by interfaces, for example, 
C++ and Python. CNTK underpins both RNN and CNN sort of neural model. It is 
set to provide high salability in terms of tanning a convolution neural network for 
images, speech, or any text-based data. When working on multiple machines, scal-
ability is better than Theano or TensorFlow to some extent. This platform is also 
used for handwriting recognition and speech recognition. Microsoft provides lots of 
open sources to develop the model of CNTK. However, because of the absence of 
help from the ARM engineering, the capability on mobile is very constrained. This 
platform is intended for speed and effectiveness; CNTK scales well underway uti-
lizing GPUs yet has restricted help from the organization.

Chainer The Chainer is a Python-based DL framework developed by preferred 
networks in collaboration with IBM, Intel, Microsoft, and NVIDIA [23]. This plat-
form is completely written in Python and can run on the head of Numpy and CuPy 
Python libraries. This additionally gives various expanded libraries, for example, 
Chainer MN, Chainer RL, Chainer CV, etc. It also upholds CUDA computation. It 
additionally runs on various GPUs with little exertion. It also runs on multiple GPUs 
with little effort. The Chainer is becoming popular for its high-performance capa-
bilities for many of the domains. The coding units of this framework are compara-
tively easy. This system is interrogative. It provides good dynamism and helps to 
understand the flow of code better. This is also considered a good machine transla-
tion. The Chainer is broadly utilized in speech recognition and sentiment 
examination.

4  Deep Reinforcement Learning Approaches

This section describes deep reinforcement learning which is the arrangement of DL 
and the community of reinforcement learning.

At a high level, reinforcement learning provides us a set of mathematical tools 
and methods for teaching agents how to go to perceiving and to figure out how to 
optimally act with a certain response.

Comparing with the other learning methods, supervised learning is the most 
commonly used learning techniques where the data is labeled and is used for gen-
eral classification problems. On the other hand, the data is unleveled for 
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unsupervised learning and aims to predict the outputs by analyzing the behavior of 
the training data. However, reinforcement learning permits the product specialists 
and machines to consequently decide the perfect conduct with a particular setting to 
expand its performance. These learning models interact with both the environments 
and the learning agents as shown in Fig. 12.

Here, an agent can send an action to the environment, and action is the possible 
move that makes the agent. The action that executes the agent in time t that denoted 
as at can usually be chosen from a discrete subset of all possible action A. After tak-
ing an action, the agent receives an observation from the environment. The observa-
tion defines how the agent cooperates with the environment and also includes the 
state changes, st + 1. Finally the reward, rt, is given from the environment by analyz-
ing the activities that take the agent. The reward is the feedback that measures the 
success or failure of a given action considering the environment. For a given system, 
an agent senses an output in the form of actions to the environment, and the environ-
ment returns the agent’s new state that is associated with the reward. The environ-
ment rewards the agent for the correct actions, and the agent enhances the 
environment knowledge to choose the next best action [24].

Hence, the total reward, Rt, that an agent obtains the total time t can be pre-
sented as

 
R r r r rt

i t

i t t t n� � � � ��� ��
�

�

� �1
 (4)

However, if we are going to infinity than the summation, Rt is also going to infinity. 
Therefore, to handle this issue, the discount factor, γ, is considered, and the dis-
counted total reward is presented in Eq. 5. The term γ signifies the more weight that 
the reward obtained in the near future and less weight that the reward placed in the 
long term from the current state.
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Fig. 12 Deep reinforcement learning
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In general, the discounted reward, Rt, is the discounted sum of all rewards obtained 
from time t that is the summation of the discounted reward in the future shown 
in Eq. 6.

 R r r rt t t t� � � ��� �� �1
2

2  (6)

Now the Q-function can be defined considering the inputs of state and action that 
the agent can execute at that certain state. The Q-function represents the expected 
total discounted future reward for an agent in the state, s, can be achieved by execut-
ing an action, in the future.

 
Q s a Rt,� � � � ��

 (7)

In this case, an agent needs a policy function, π(s), to infer the best action to take at 
its state, s. The policy should choose an action that maximizes the future reward to 
attain the maximum Q value shown in Eq. 8.

 
� � � � � � �s Q s aaarg max ,

 (8)

In DL, there are two main approaches that we can learn a policy function. The first 
way is value learning and another way is policy learning which is discussed below.

Value Learning Deep Q network (DQN) is used to model the Q function and esti-
mate the Q value in the DL environment. In Fig. 13a, there are two parameters (state 
and action) that are considered as input, and the output is just the Q value. The deep 
neural network (DNN) is predicting the estimated and expected total reward that can 
be obtained given the state in a particular action. The problem with this approach is 
that if we want to use our policy now and we want our agent to act, we have to feed 
through the network with a whole bunch of different actions in every time step to 
find the optimal Q value. Another alternative that is shown in Fig. 13b can eliminate 
the above problems. In this case, we only input the state value, and the DNN com-
putes the Q value for each of the possible actions. In most of the DL cases where the 
actions are fixed and with a certain state, it can compute the maximum Q value 
associated with the best action.

However, this value approach faces some complexities which are given below:

• Cannot handle continuous action spaces.
• Can model scenarios where the action space is discrete and small.

Another approach, i.e., policy gradient learning, is used to overcome these 
problems.

Policy Learning Policy learning is slightly different in comparison to value learn-
ing. In policy learning, we take state, s, as input, and a probability distribution over 
a possible action is taken as output shown in Fig. 14.
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Here, π (ai) is the probability that we should execute an action ai given the state, 
s, as input and science as it is a probability distribution, and all these outputs add up 
to 1 that is shown in Eq. 9.

 
� � � �
a A

i
i

a s
�
� 1

 (9)

Therefore, in policy learning, we can learn directly the policy, and it illustrates 
which policy will be the best to take action and just execute the correct action.

5  Applications of Deep Learning in IoT Scenarios

The DL algorithm is widely used in many real-life applications because of its self- 
learning nature. The algorithm of the machine is automatically updated with past 
experience. The learning environment is developed with more advanced learning 
algorithms and big data. In this segment, we summarize some effective applications 
of DL algorithms in the IoT environment. Some applications of DL such as road 
sign detection for a smart car and real-time distance measuring in the plane for IoTs 
are significant.

The detailed DL applications in IoT scenarios are briefly discussed below.

• Image Detection and Recognition: In most IoT applications, image recognition 
and detection become an important issue. Many of the services such as roads, 
smart homes, industries, and campuses are incorporated with the intelligence 
cameras that take the input as an image or videos. Therefore, the DL algorithm is 
used to analyze, detect, and categorize the images. The model is trained in such 

State, s

Action, a

DNN Q (s, a) State, s DNN

Q (s, a1)

Q (s, a2)

Q (s, an)

(a) (b)

Fig. 13 Value learning approach

State, s DNN

π  (a1 | s)

π (a2 | s)
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Fig. 14 Policy learning 
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a way that it can handle the images and provide the decision depending upon the 
situation.

• Speech Recognition: Another important application of the DL is voice or speech 
recognition. Many of the IoT-based smart devices have a feature of voice analy-
sis. In a typical voice recognition device that uses DL neural network algorithm, 
it takes voice as raw input data, and the data is processed in the hidden layer, and 
a processed voice is presented in the output layer.

• Indoor Position Localization: Indoor localization is becoming a vital applica-
tion field for DL in the IoT domain such as smart homes, hospitals, and modern 
campuses. The raw input data is produced from different sources such as light 
communication, WiFi, ultrasound, infrared, and Bluetooth. With the advance-
ment of the DL algorithm, the indoor position is located with high precision.

• Pose Detection: Many of the DL applications incorporated with IoT applications 
require body pose detection to understand the psychology of the human includ-
ing emotions and activity to provide their accurate services. For example, the 
cameras installed in smart homes, smart cars, entertainment clubs or discos, 
gyms, and hospitals are transferring the footage into DNN and take automatic 
decisions depending on the body language of the customers.

• Power Management of Smart Grid: The smart grid provides the opportunity to 
communicate both ways from energy providers to consumers and vice versa. 
Therefore, consumers can be able to take advantage of used maximum energy in 
the off-peak hours to avoid higher electric bills. Different DL algorithms are 
involved in effective power management of the smart grid. However, the extra 
demand for electric power can also be predicted, and minor power system faults 
can automatically be cleared.

• Road Traffic Management: The DL algorithms are used in effective traffic 
management on the road. Traffic congestions are also predicted with DL algo-
rithms such as AEs, RNN, RBN, and LSTM. Therefore, effective road traffic 
control is possible by analyzing the big data that is generated from the different 
smart IoT devices.

• Agricultural Issues: The DL algorithms are developed to estimate crop produc-
tion and also to detect the various plant diseases that can ensure the production 
of healthy crops. Additionally, DL algorithms also are used in remote sensing for 
crop and land detection and classifications in large-scale agricultural production.

• Educational Purpose: The DL algorithm can be applied to make the study more 
attractive and interesting from kindergarten school to the university level. Mobile 
devices are significant in terms of gathering learners’ information and progress 
reports which are equipped with DL algorithms. Students can take advantage of 
language translation and text summarization software and make the study more 
relaxing and comfortable.

• Industrial Sector: Industry can use the DL algorithms in many applications that 
increase the production and maintenance efficiency and significantly reduce 
cost. Therefore, DL can play a vital role in industrial applications. Automatic 
product inspection is one of the major applications in the field of industrial appli-
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cations. Additionally, feature extraction and fault detection can be performed by 
analyzing the image of smart cameras.

• Government Sector: With the development of DL algorithms and IoT, the gov-
ernment can also take a wide range of advantages for effective monitoring of the 
city. Different types of natural disasters such as floods, landslides, and fires in the 
forest can be predicted, and proper steps are taken timely. DNN algorithms are 
also applied in the damage detection in the infrastructure including buildings, 
water pipelines, and roads.

• Online Shopping: Most of the online shopping apps are using the DL algorithm 
widely to promote and boost up their business. Customers can easily find their 
choice list on their screen because the DL algorithm shows the results by analyz-
ing the past experience of the customers and recommends products depending on 
their choice and taste.

• Security Issues: The IoT-based applications are highly porn to get attack by 
various cyber-threats, and among them, false data injection is a common prob-
lem. The DL network is trained in such a way that it can be able to identify false 
data and provide significant security and privacy to the customers.

6  Challenges and Future Research Directions

The IoT digitizes the physical resources like sensors, gadgets, machines, gateways, 
and networks in real time. It associates individuals with things and things to things 
continuously. A commonplace IoT system can develop quickly and bring about an 
exponential increment in assortment, speed, and general volume of information. 
Therefore, the prime difficulties of the IoT-coordinated framework are the means by 
which to break down the enormous volume of data got from all sources and make a 
move continuously. In this section, first, we discuss some of the challenges of IoT- 
integrated DL networks and then list out some of the future research directions.

6.1  Challenges

• Availability of Practical Dataset: To train DL models, it requires a large vol-
ume of the realistic dataset, and the accuracy of the model directly depends on 
the amount of training dataset. Sometimes, it requires several stages of training 
to obtain the desired output. Although IoT devices are generating a large volume 
of data, sometimes, these data are not suitable or convenient to train DL models. 
Additionally, the security issue becomes a major concern to get suitable training 
dataset. For example, data related to education, healthcare, banking, and utility 
are highly restricted to access without authorized permission. This also makes a 
barrier to the train DL algorithm. Some training dataset is given by Wikipedia to 
train an experimental DL model [25]; however, these are not enough at all.
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• Data Pre-processing: Per-processed and filtered data are needed to train a DL 
model which is becoming a vital challenge for IoT applications since data that 
are obtained from IoT devices are consisting of noises. Additionally, different 
IoT devices produce data in a different format, different types, and different 
lengths. Therefore, a unique data format is needed to prepare before training the 
DL model. For example, in image processing, CNN architecture performs well 
with normalized, fixed pixel range data.

• Security over Anomaly Data: IoT devices are directly connected with the IoT 
cloud. Hence, data that is generated from the IoT devices fed into the cloud, and 
this IoT cloud may have access to the unauthorized person. Additionally, the IoT 
cloud is highly porn to cyberattack. Data can be hacked or modified; therefore, 
when to train a DL model, there may be a chance of training with anomaly data. 
On the other hand, there are many data found in IoT servers that are an unneces-
sary or invalid form of data for training DL models which makes the training of 
the DL model more difficult.

• Training Model with a High Velocity of Data: IoT devices generate a huge 
volume of data at a very high speed. Data also come from different sources and 
different formats. Therefore, the DL model needs to train within a very short 
time with a high volume of data. This becomes challenging. Additionally, some 
data are leveled and others are unleveled. Although DNN can handle the hetero-
geneous data and gather experience from the unleveled data, it is not sure to what 
extent the DL model can handle and works accurately in the presence of a large 
volume of data.

• Developing DL for IoT: Developing a new DL framework that is suitable in the 
IoT environment is also becoming challenging as the data size is growing every 
day. DNN is needed to handle a resource-constrained architecture.

• DL Self-Limitation: Despite many good applications of DL models in a wide 
range of fields, it suffers from some limitations. Some limitations of DL 
approaches are listed below.

• One of the biggest challenges of DNN is that it works like a black box. Why the 
DNN comes up with this specific output is a very difficult task to understand. On 
the other hand, if a human is responsible to solve a task, in case of any mistake, 
it is understandable why this mistake occurs. However, some algorithms, for 
example, decision trees, are easy to understand. In many applications, such as in 
the banking sector, interpretability is important. Whether a person is eligible for 
getting alone or not is a matter of explanation because the client may ask the 
bank what is the reason behind this particular decision.

• Another challenge to work with DNN is the optimization of hyperparameters. In 
DL, hyperparameters are such kinds of parameters, with a little modification of 
this value has a significant impact on the execution of the model in terms of train-
ing speed and quality. Relying totally on the default pre-set value is not a wise 
decision. However, there are only a few numbers of hyperparameters in a model 
that is hand-tuning. Proper guidelines and research are needed to optimize the 
value of different hyperparameters.
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• DNN architecture suffers from flexibility and multitasking. When DNN is suc-
cessfully trained, it works efficiently with high a range of accuracy. However, the 
overall system needs to recalibrate and retrain to solve a similar type of problem. 
Therefore, the DNN model fails to work with a little different problem without 
fully reconstructed architecture and lose flexibility in operation.

• Sometimes DNN shows false confidence in image recognition [26], and it also 
responds with foolish examples that are completely unrecognized by humans. 
Additionally, DNN also suffers from classification and regression problems. In 
IoT application, weather forecasting and load forecasting are the common sce-
nario to handle. In [27], the author tried to improve the regression capability by 
proposing DBN and SVR methods. However, a more clear investigation is 
required to overcome the challenge.

6.2  Future Research Directions

The following research activities are suggested as future work.

• Mobile IoT Data: Mobile phone is getting a big platform to generate IoT data. 
All the mobiles are directly connected with the cloud so necessary IoT data can 
be obtained from mobile and apply them to train the DL model particularly in the 
field of smart city applications. In the article [28], the author explains the oppor-
tunity of mobile big data in DL training using a distributed DL framework. 
However, more research and investigation are required in this field to justify the 
efficient use of mobile big data in the IoT platform.

• Adding Background with IoT Data:. As IoT data is obtained from different 
IoT devices, it sometimes becomes critical to find out the source of generated 
IoT data. Therefore, additional contextual information is required to easily 
understand the data, and it will help to conveniently train the DNN. The support-
ive information with the IoT data makes the training process accelerate and helps 
to respond quickly. For example, some smart cameras can detect facial recogni-
tion and pose for the purpose of security in a smart city or self-driving car assis-
tance applications. In this scenario, adding supportive information on the IoT 
data makes the DL model come up with a more accurate solution. In this field, 
more research is needed.

• Online IoT Data Provision: The IoT devices produce data and send it to the IoT 
cloud. As the IoT data is streaming in nature, knowing the overall size and 
sequence of the data in advance is a matter of challenge. In this scenario, an 
advanced algorithm is needed to design that can stream the IoT data significantly 
without having prior knowledge of the data stream. The study in [29] shows the 
online auction architecture considering the cloud resources in IoT applications. 
However, a wide range of research is mandatory in this field.

• Implementation of Semi-supervised Training Frameworks: In DL algo-
rithms, most of them are supervised learning process which uses leveled data. On 
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the contrary, most of the data generated from different IoT sources are unleveled. 
To define this data is a time-consuming as well as expensive task. Therefore, 
research is required to train DL models with a lower number of leveled data and 
most of the unleveled data. Advanced DL frameworks need to be designed to 
attain their required output with good accuracy.

• Protection from Threats: IoT is a cyber-physical system and highly porn to a 
cyberattack. Most of the time, we rely on the data that are generated from the IoT 
devices to train the DL model. Hence, it is important to provide data safe from 
any kind of cyber-threats. In this scenario, DL models can be used to trace spe-
cious data from the huge amount of data. It is also possible to determine the weak 
zone where there is a high possibility to get an attack. To make the overall system 
more robust, research is needed in this area to provide multilayer protection 
against cyber-threats.

• Self-Maintenance of Communication Networks: The large number of IoT 
gadgets, their communication protocols, and the architecture of the network 
become more complex to maintain with the traditional ML models. However, DL 
approaches can play a vital role to make the system self-service by utilizing the 
quality of self-healing, self-configuration, self-optimization, and self-load bal-
ancing [30]. However, complete guidelines and research are needed to make the 
IoT system more easily controllable with the DL approach.

7  Conclusion

Because of the advancement of the newly developed technology in IoT and DL, 
lives have become smooth and comfortable day by day. IoT devices produce raw 
data that are connected with the cloud, and these data are fetched to train the convo-
lution neural network. Several working frameworks have been developed that are 
specialized in image recognition, voice translation, anomaly detection, forecasting, 
and many others. It is a significant achievement in the recent era that machines can 
work more perfectly with a high range of accuracy than humans do to some extent 
and the machines also never get tired. In this chapter, we explored DL framework 
and applications for IoTs. The various challenges to implement DL in IoT scenarios 
are discussed. Finally, future research directions are discussed which might help 
network researchers to contribute more in the field toward the development of next- 
generation IoTs.
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1  Introduction

Nowadays computers, sensors, and actuator-embedded handheld devices have made 
our life much smarter than ever before. These handheld devices connect through the 
Internet, thus making the Internet of Things (IoT) a practical solution for everyday 
life. The increase in smart devices has enabled education, health care, transporta-
tion, and even food court as online digital services [1]. The variety and voluminous 
data conceived by these digital services are accumulating at a phenomenal rate. 
Hence, there is a need for appropriate resources and technology to manage the mag-
nitude of data for further processing and analytics.

Although the cloud is known for its scalable processing capacity, it suffers from 
poor performance when it comes to time-sensitive IoT applications [2]. Besides, the 
industrial IoT protocol needs IP translation that incurs further interoperability costs. 
With the growth of IoT-enabled online services, the heavy transmission load in the 
network requires huge bandwidth, lack of which escalates congestion and delay in 
the cloud. Hence, a technology like fog computing that facilitates the services of the 
cloud near the data producing/consuming devices is most preferred.1

Fog computing is a decentralized ubiquitous system that affords compute and 
storage facilities to a large number of clients in the edge network, thus saving band-
width and congestion issues. The geographically distributed fog device not only 
assures the least delay for time-sensitive applications but caters to the stochastic 
needs of IoT far faster than that of cloud [3, 4]. Unlike the cloud in which data are 
stored in remote locations, the nearness of the fog devices to the data source 

1 Cisco- Fog Computing, 2015.
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guarantees high security. Though fog serves best for IoT needs, it cannot scale the 
compute requirements of complex applications like big data analytics. With pros 
and cons on either side, the federation of fog and cloud complements each other, 
thus providing everything as service [5].

With the proliferation of online services, the amount of workload that arrives 
from heterogeneous IoT devices is highly stochastic. Allocation of fog and cloud 
resources to the incoming workload is a type of real-world problem that keeps 
changing its requirement continuously. Real-world problems are solved by a system 
of interconnected components. These systems as a whole exhibit a property, but 
often, the individual interacting components are not clearly defined, thus turning the 
system into a complex one. When such complex systems are equipped with the 
capacity to learn and change their behavior by experience, they are termed as com-
plex adaptive systems (CAS) [6]. Our human immune system, ecosystem, weather 
forecasting system, traffic control system, search engine, and autonomic Web ser-
vices are some of the examples of CAS.

Depending upon the instantaneous requirement, CAS prefers an evolving set of 
solutions rather than a single best solution. A common way to represent CAS is 
through rule-based agents. An agent is a single individual module, whose interac-
tion with other modules forms the collection of rules [7]. CAS requires problem- 
solving techniques like learning classifier system (LCS) that can adapt to the 
environment through interaction. LCS is a rule-based methodology that models an 
intelligent decision-maker agent. LCS is used to solve continuous decision-making 
problems whose behavior is stochastic [8]. The saga of LCS is best described in 
the Fig. 1.

The fog-cloud enabled IoT services are a CAS that needs to learn and evolve 
decision-making rules instantaneously depending upon the situation. Though there 
are several techniques available, XCS a variant of LCS is one of the options that 
assure the best result. Unlike other approaches, XCS has got the uniqueness of 
learning and evolving capability that is far essential for the stochastic require-
ments of IoT.

Fig. 1 Chronicle of LCS [6]
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The chapter is organized with a literature review of existing works in Sect. 2 that 
relates resource allocation (RA) in fog-cloud frameworks, LCS, and XCS in spe-
cific. Then the architecture and characteristics of LCS that are inherited by XCS are 
discussed in Sect. 3. Section 4 elaborates on the driving mechanism of LCS. The 
section also differentiates the variants of LCS with their specialty. Section 5 focuses 
exclusively on the description of XCS with its importance in the RA problem. A 
case study on optimal RA in fog-cloud for IoT applications through XCS is dis-
cussed in Sect. 6. The chapter concludes with the benefits of using XCS for continu-
ous decision-making problem and scatters a glimpse of the open issues of IoT that 
could be addressed through XCS in the future.

2  Literature Review

[1] substantiates that the sense, process, and actuate characteristic of IoT differ from 
one application to the other, thus making it difficult to define a unilateral reference 
architecture for IoT. The functional views of IoT architectures that are adopted by 
giant vendors like Microsoft, Intel, and SAP were compared. The author [2] com-
pared the advantage of fog computing over the cloud from the perspective of IoT 
applications. The constraints of IoT, cloud, and fog in handling time-sensitive appli-
cations are discussed in detail.

[3] detailed the taxonomy of fog computing and presented the research gaps in it. 
Standards and regulations to adopt fog devices as the resource to process Web appli-
cations were recommended by [4]. The book chapter [5] explained the implementa-
tion of RL for RA in a fog-cloud environment for IoT applications. A novel 
framework was introduced that assured an efficient RA model for time-sensitive 
applications of IoT.

[6] explained the historical perspective of the LCS family in terms of the bucket 
brigade algorithm, Sutton’s temporal difference, and Q-learning methods. The arti-
cle tabulated the various works carried out using LCS. GA was majorly applied in 
the population set for problems like classification, navigation, and robotic. But for 
problems like data mining, non-Markov environment, function approximation, and 
RL problems, GA was applied both on the action set and population set. Certain 
works implemented GA in the match set too. The author [7] explained the differ-
ence in choosing strength and accuracy for fitness computation.

[8] presented a survey on LCS which describes its historical evolution. The role 
of MDP involved in RL and the steps involved in rule evolution are discussed. The 
author explained how the single rule set in Michigan LCS style differs from multi-
ple competing rule set of Pittsburgh style. A review of optimization techniques for 
RA in the cloud, based on load balancing is presented in [9]. Features like pricing, 
monitoring, processing, and management of service level agreement (SLA) were 
dealt in SaaS (software as a service) layer, whereas the PaaS (platform as a service) 
layer handled the scheduler and load balancer. Works related to loading balances 
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were evaluated based on CPU utilization, SLA violation, energy consumption, and 
cost parameter, respectively.

With the growing number of infrastructure as a service (IaaS) providers, not only 
does it require expertise but is time-consuming for the clients (consumer of cloud 
services) to select the provider who provides efficient service [10]. The algorithm 
follows the Technique for Order of Preference by Similarity to Ideal Solution 
(TOPSIS) in which the available IaaS resources are ranked by their similarity index 
concerning the application requirements. Finally, the top IaaS resource was allo-
cated to the corresponding application.

A novel approach for workflow scheduling in an uncertain environment was sug-
gested in [11]. The unexpected failure of hardware/software resources and stochas-
tic change in the number of objectives were treated as uncertainty in the work. The 
evolutionary approach called neural network-based non-dominated sorting genetic 
algorithm (NN-DNSGA) was employed to solve the problem.

A context-sensitive multitier fog architecture for IoT task placement was recom-
mended in [12]. Location identification, current network condition, type of service 
(sense/actuate/compute/storage), and QoS requirements are considered as context 
for task placement. The multitier fog architecture comprises IoT device (edge) 
layer, a fog orchestration layer, a fog colony consisting of fog nodes, a neighbor 
colony, and the cloud layer in the respective order. Tasks are placed in either of the 
nodes for processing depending upon the deadline requirement.

[13] proposed a novel approach where RA in fog is dealt with market equilib-
rium (ME)-based solution. The requested services are considered as buyers of fog 
resources where they are processed. The work aimed to maximize service utility. 
The utility with finite and infinite demands was evaluated under Eisenberg-Gale 
(EG) scheme, generalized EG scheme, proportional sharing scheme, and maximum 
fairness scheme.

[14] substantiated the utilization of radio access network (RAN) as a compute 
and storage resource in the fog layer, called Fog-RAN. The RA problem in Fog- 
RAN was formulated as a Markov decision process (MDP) which allocated fog’s 
resources to the IoT tasks. The performance of the system was evaluated through 
various RL methods like Monte Carlo, Q-learning, Sarsa, and E-Sarsa. [15] 
employed RL for the dynamic allocation of compute nodes to serve the arriving 
tasks. A cost mapping table was used to store the cost of deploying data chunks 
(tasks) in computation nodes. The RL-based RA algorithm resulted in an optimal 
solution than its counterparts.

Butz and Martin2 elaborated the application of LCS in detail for problems like 
data mining, robot arm controller problem, and optimal path finding in the maze 
environment. The author differentiated XCS from XCSF and other behavior learn-
ing techniques. [16] elucidated XCS through pseudo-code and explanations. The 
fundamentals of XCS, its type, and how and when XCS is more suitable are 
discussed. The author explained the idea behind an environment, the parameter set-
tings required in the XCS for the appropriate problem domain.

2 Butz, Martin V. 47.Learning Classifier Systems.
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The author [17] described the intricate concepts of XCS.  The uses of Moyenne 
Adaptive Modifier (MAM) technique, Widrow Hoff or the Least Mean Square 
(LMS) technique, the need for generalization and value estimation were explained 
with appropriate examples. The book on LCS [18] deals with generalization, scal-
ability, parallelism, complexity, and other issues of the classifier system. [19] 
explained the fundamentals of GA, its types, fitness sharing, penalty function, 
multi-objective optimization, and ML for dimensionality reduction.

[20] discussed the tournament/wheel selection techniques to select classifiers for 
reproduction and deletion. The 20-bit multiplexer problem experimented with vari-
ous parameter settings of the learning rate (β). The resource management and scal-
ability problem of XCSF was discussed in [21]. It explained how XCSF scales 
optimally by population size. The author revealed the problem involved in the local 
linear learning method. [22] described how RL is used for automated RA problems. 
The different classifications of RA and scheduling problems in the perspective of 
Monte Carlo, temporal difference, and Q-learning were discussed.

The best classifier memory-based XCS (BCM-XCS) algorithm estimated the 
number of workloads that are to be processed in the fog layer. The algorithm pre-
dicted the amount of workload such that the system minimizes the cost of delay and 
power. Green energy-equipped battery is recommended as the renewable energy 
source to fulfill the scarcity of fuel energy in the future [23].

[24] presented the open challenges related to energy-efficient resource allocation 
(EERA). Articles were broadly categorized as power-aware allocation and thermal 
aware allocation. Static power management was dealt with, at the circuit level, logic 
level, and architecture level, and dynamic power management provided solutions 
through service migration and service shutdown techniques. [25] implemented an 
energy-efficient RA framework that guaranteed energy efficiency in power usage 
effectiveness and datacenter infrastructure efficiency.

[26] suggested dynamic energy-aware cloudlet-based mobile cloud computing 
(MCC) framework to reduce the energy consumption in wireless networks through 
cloudlets for offloading and processing the data. Cloudlets are the compute/storage 
devices found in the edge network closer to the edge devices that requested services. 
The total energy consumption of all the cloudlet was computed as the product of the 
performance level of each cloudlet by per unit energy cost. [27] focused on different 
types of RL algorithms with their core concept, theoretical properties, and limita-
tions. The author claimed how partial feedback about the learner’s prediction in 
supervised learning differentiates it from RL. [28] presented the practical implica-
tion of value functions, policies in model-based, and model-free RL.  A detailed 
study on different versions of LCS, their analysis, and their application to classical 
tasks of accuracy-based LCS is presented by [29].

LCS with extended memory to solve non-Markov decision is presented by [30]. 
The concept paves the way to incorporate memory-enabled XCS for Markov deci-
sion problems. This helps to boost the processing speed of XCS. [31] suggested the 
concept of how to incorporate anything as a service (XaaS) in the cloud. Self- 
management of cloud services that lessen the burden of cloud administrators was 
also recommended.
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3  Architecture of LCS

Fundamentally, LCS comprises a population of classifiers, also called a finite set of 
rules. Each classifier constitutes a condition part, an action part, a payoff prediction 
(reward), and other parameters [18]. The population of classifiers represents the cur-
rent observation (state) of the environment for which the LCS is implemented. LCS 
is made up of four main components, namely, an environment, a performance com-
ponent, a reinforcement learning component, and an evolutionary/discovery com-
ponent [6]. The architecture of LCS is shown in Fig. 2.

• The first and last contact of LCS is with the environment through the detectors 
and effectors, respectively. A detector senses the current state of the environment 
and encodes it into formatted input data. The effector ultimately executes the 
action decided by the LCS algorithm.

The input data is either a Boolean value or nominal value. While the Boolean 
input is of form {0,1,#}, the nominal inputs are specified within an interval range 
along with # symbol. The wildcard symbol # is considered equivalent to 0 or 1 
depending upon the situation. The input data is considered equivalent to a classifier 
in the population if the non # value in the condition part of the population classifier 
matches the corresponding value of the input data. In the case of nominal values, the 
input data range is compared with the specified interval range in the population 
classifier.

• The performance component gears the interface between the environment and 
the classifier population. Population set, match set, prediction array (a utility that 
evaluates the action), and action set forms the performance component.

Fig. 2 Architecture of LCS2
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The problem instance (input) is in the form of a condition part of the classifier. If 
the input coincides with any of the classifiers in the population set, such classifiers 
are grouped into the match set. For every possible action in the match set, the pre-
diction payoff is computed as the fitness weighted average of the prediction of all 
classifiers in the match set. These prediction payoffs are stored in the prediction 
array. Depending upon the values in the prediction array, one action is chosen for 
execution. After selecting an action for execution, an action set is created with those 
classifiers in the match set that specifies the chosen action.

• The reinforcement learning component or the credit assignment component.

Once the chosen action is executed, a scalar reward is generated and the next 
problem instance is perceived. Meanwhile, the action set is updated by computing 
the Q-value which is the summation of the reward received and the discounted max-
imum value in the prediction array. The updated classifier parameters like the pre-
diction payoff pj, error ej, and fitness fj in the action set are distributed to the 
population set. Now, the population set is renewed by the discovery component.

• The evolutionary component uses different genetic operators (selection, cross-
over, mutation) that discover better rules or improve the existing rules.

Whenever the classifier parameters are updated in the population set, the evolu-
tionary component checks if the population size does not exceed the maximum 
specified size. Then the genetic algorithm is executed in the action set and the popu-
lation set. Some versions of LCS apply GA in the match set too.

Characteristics of LCS
The efficiency of LCS is characterized by certain properties like adaptability, gen-
eralization, performance, scalability, and speed [18].

• Generalization: In a population, a classifier (rule) probably matches more than 
one input vector. The different problem instances with similar consequences in 
the environment are recognized equivalent which leads to generalization. In 
short, generalization influences the reduction of population size.

• Adaptability: The capability of the LCS to generalize a classifier even when the 
accuracy criterion is rigid. It is also defined as the tolerance level of LCS for 
prediction error.

• Performance: The performance of LCS is gauged by the quality of classifiers that 
evolve in a population. A classifier population is said to be good when it provides 
less chance to add new rules. This indicates that the existing classifiers are more 
experienced (aged) and effective in deriving the required action.

• Scalability: It is the ability of the LCS to quickly arrive at the solution even with 
the increase in size and complexity of the population.

• Speed: The speed is the actual time taken by the LCS, to build a consistent clas-
sifier population, which needs no further insertion or deletion.

Correctness, completeness, and compactness are the other characteristics that 
accelerate the quality of LCS. These characteristics enable LCS to be successful in 
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the application domains like classification, decision-making, data mining, RL prob-
lems, regression, cognitive mapping, and robot navigation problems. LCS is also 
seen as a model for cognitive abilities with the goal to design an agent-based intel-
ligent decision-maker [7]. The two mechanisms that drive LCS toward its goal are 
the learning and evolutionary process.

4  Driving Mechanisms of LCS

Learning
Learning is the improvement in performance, by the experience and knowledge 
acquired through the interaction with the environment. The process of learning 
depends on the way the information is received from the environment [8]. It can be 
made either offline or online. In offline, the learning model is trained with a batch 
of training instances simultaneously, whose outcome is a single rule set. The out-
come is very much static and does not change with respect to time. Offline training 
is suitable for data mining problems, which analyze the history of the dataset.

On the contrary, online learning, also referred to as incremental learning, trains 
the learning model with each problem instance one step at a time. The outcome is a 
rule set that changes with respect to time, to every additional problem instance, 
observed from the environment. A robot navigation controller or an autonomous 
service provider that receives a stream of continuous input from the environment is 
an example of online learning.

Artificial intelligence differentiates the type of learning according to the feed-
back received from the environment3. Supervised learning is the process of learning 
through training from a labeled set of data. Each problem instance consists of an 
input and the desired output. The input is the description of the situation and the 
output is the correct action that the learner system is expected to apply in that situ-
ation. The goal of learning is to generalize a rule so as to act appropriately in situa-
tions that were not presented during the training.

Unsupervised learning is about learning from a group of unlabeled data. The 
target is to find the hidden pattern present in the collection of unlabeled data. But, 
RL varies from supervised and unsupervised learning. RL is the concept of learning 
and deriving a policy through continuous interaction with the environment [25]. It 
suits more for the interactive sort of problems which is not the competence of super-
vised or unsupervised learning.

In RL, the learner agent is supplied with observed data (state) from the environ-
ment. The agent learns to decide by interacting with the environment through the 
trial and error method which is quite different from supervised and unsupervised 
learning. Unlike other learning techniques, RL derives policy and possesses a 
reward signal that is maximized in the long run [14]. The basic idea of RL is shown 
in Fig. 3. Each type of learning suits a specific problem domain. As LCS has been 
successfully applied for classification, regression, and RL type of problems, the 
discussion of this chapter sticks to RL methodology.
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Markov Decision Process for RL
The decision-making problems which are solved by learning and interacting with 
the environment are called RL problems. Decisions made in such problems can be 
framed as a tree structure. The vertices of the tree represent the system states (s1, s2, 
s3,…..stϵS: state space) and the edges denote the individual decision or action (a1, a2, 
a3,………...atϵA) of the agent, respectively.

In principle, an RL problem is epitomized in the form of an environment. The 
environment is epitomized by a set of states (S), and for each state sϵS, there is a set 
of allowable action aϵA. Depending upon the particular state “s,” the agent takes an 
action which results in a transition to a new state s′. Based on the quality of the 
action, the agent receives some reinforcement or reward that is scalar value either 
positive or negative. The aim of the agent is to maximize this reward in the long run 
[27]. The components environment, agent, state, action, and reward are the building 
blocks of RL as described in Table 1.

Markov decision process (MDP) helps to formulate the RL problem mathemati-
cally. For this, one has to understand the definition of Markov property and whether 
a given problem is Markov or not. MDP is a sequence of random processes.

Markov property states “the future is independent of the past given its present,” 
which means that the current (present) state is adequate to predict the next state. So 
it is not necessary to track or store the past states [28]. Hence, those problems in 
which the future state is predicted given the current state is said to possess Markov 
property. MDP is defined as an ordered list (S, A, P, R, γ) where:

S is a finite set of random states st, st+1,… at every discrete time step “t”
A is a finite set of discrete actions
P: SxA→π(S), P is the transition function, π(S) probability distribution function, 

i.e., the probability the state will change from one state to another depending 
upon an action.

R: SxA→R, a reward function that obtains a scalar reward for each pair (st, at) that 
the agent receives from the environment.

γ is the discount factor ranging between zero and one. It indicates the amount of 
prominence given to the immediate reward and future reward for non- 
episodic tasks.

An episodic task is one with a finite number of states that possess a terminal 
state. On the other side, the non-episodic tasks are continuous tasks with an infinite 
number of states. While it is easy to compute the cumulative reward from the start 
to the end state for episodic tasks, it is complex to compute the cumulative rewards 
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Fig. 3 Reinforcement 
learning. (Sutton, R. S., & 
Barto, A. G. Reinforcement 
Learning: An Introduction)
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for the infinite states of non-episodic tasks [27]. Hence, a discount factor between 
zero and one is used to calibrate the value of immediate reward and future reward, 
respectively. The cumulative reward (returns) computed for episodic and continu-
ous (non-episodic) tasks are given in Eqs. (1) and (2).

Returns for episodic tasks:
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Returns for continuous tasks:
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In RL, the agent strives to maximize the cumulative reward. The agent prefers the 
particular action that produced profitable rewards in the past (exploitation). 
Nevertheless, the discovery of that prudent action is not possible without several 
trial and error attempts (exploration).

The tradeoff between exploration and exploitation is a unique feature of 
RL. Through trial and error, the agent discovers a rule/strategy to choose an action 
for a particular observation of the environment. The rule that the agent follows to 
take any action is called policy (π). Mathematically, a policy is a decision-making 
rule π:S→A that denotes state-action mapping.

A policy can be deterministic or non-deterministic depending upon the problem 
[28]. Deterministic policy denoted by π(s) holds a single possible action for every 
state. When there is more than one possible action from a state, the probability of 
executing an action is non-deterministic, denoted by π(s, a). A policy is indicated as 
π(a/s) = P[At = a/St = s] which is the probability that an agent takes an action aϵA on 
each states s ϵS.

The policy is subject to change with experience. Hence, it is essential to find an 
optimal policy that yields the best value of a function. An optimal value function is 

Table 1 Building blocks of RL

Components of 
RL Description

Environment It is the depiction of the RL problem that needs to be solved for its different 
states at each discrete time step

Agent The learner or the decision-making program of the system that takes action on 
the environment and receives a reward for it

State A state denotes the current situation of the environment at a specific time step
Action It is the decision that the agent takes on the environment resulting in the next 

state
Reward It is the reinforcement or the feedback received by the agent for the action 

taken
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the one that pays maximum value compared to all other value functions. Bellman 
equation helps to find optimal value function.

The Bellman expectation for state-action value function qπ(s, a) when the agent 
exercises action “a” on the state “s” by following policy π is shown in Eq. (3). It is 
defined as the expected sum of immediate reward and the discounted state-action 
value for the successor state st+1, with respect to the action at+1 that the agent will 
take from that state.
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The Bellman optimality equation for state-action q*(s, a) is the sum of the prob-
ability of the immediate reward and the discounted state-action value as shown in 
Eq. (4). p(s′, r/s, a) is the probability to transit from state “s”to the next state s′ when 
action “a” was taken with reward r.
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Evolutionary Process
The evolutionary process refers to the discovery of new rules or classifiers that are 
not present in the population. New classifiers are intended to make good decisions 
than the existing ones. In practice, genetic algorithm (GA) is used to create such 
new rules. GA is a computational search technique that generates a population of 
classifiers each signifying a prospective solution to a given problem [20]. Some of 
the terminologies used in GA are genome, phenome, and genetic operator.

• A genome is also known as genotype/code that represents the condition and 
action part of the classifier.

• A phenome or phenotype is the solution built from the offspring.
• The genetic operators’ selection, crossover, and mutation modify the population 

by reproducing a well-performing classifier and deleting ill-performing 
classifiers.

• The well-performing classifiers are the one that possesses high fitness value and 
contributes to the better performance of the intended system.

• The ill-performing genomes usually possess low fitness value and do not contrib-
ute to the improvement of the system.

• Single-point crossover disintegrates parent genomes into two equal or unequal 
parts and builds a new genome by reversing the subparts from each parent.

• The multipoint operator fragments the parent genomes into several parts at more 
than one place and builds new genomes.

In GA, the selection process usually extracts the well-performing genomes (clas-
sifiers/rules) for reproduction. Tournament selection and roulette wheel selection 
are some of the commonly referred selection techniques used. The same selection 
technique is used for the deletion of ill-performing classifiers also [20].
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The crossover operator creates new genomes by recombining the subparts of two 
or more parent genomes. The crossover operator can be single-point or multi-point. 
Followed by the selection and crossover, mutation takes place that randomly alters 
an individual attribute of the new genome. The procedure to implement the GA is 
described by the following steps [19]:

 (i) Initialize the size of the population.
 (ii) Declare the number of iterations/generations for which the following steps 

are repeated.
 (iii) Initialize the population with random instances that cover the possible 

search space.
 (iv) Compute the fitness of every individual classifier in the population.
 (v) Select the parent genome from the population that possesses the highest 

fitness.
 (vi) Crossover the selected genomes to derive new offspring.
 (vii) Mutate the new classifier and add them to the next-generation population.
 (viii) Repeat the above steps until the population is refined with classifiers of high 

fitness.

Significance of Reinforcement Learning and Genetic Algorithm
Besides RL, the state-action value function can be computed through other tech-
niques like dynamic programming (DP) or deep neural network (DNN). But unlike 
RL, these techniques are mostly opaque to human computation analysis and require 
prior knowledge of the system.3

Further, RL involves the concept of Q-tables (look-up tables) that comprises the 
tuple <state-s, action-a, prediction reward-p>. The size of the Q-table keeps grow-
ing with problem size, thereby increasing space complexity. Hence, RL faces a set-
back for large MDP problems. To overcome this scalability issue, the evolutionary 
computing paradigm like GA is used.

GA comprises the tuple <condition-c, action-a, prediction value-p>, where c 
refers to a cluster of states, instead of a single state. A cluster is a group of condi-
tions that represent a common state [8]. The cluster approach saves memory by 
representing various forms of a state in a single notation, thereby reducing the space 
complexity. At the same time, GA alone is not sufficient for addressing MDP prob-
lems because of the following reasons:

 1. GA does not use the fact like a policy that maps the state-action pair.
 2. GA neither notices nor keeps track of the states that an individual problem 

instance passes through.
 3. GA does not take into account the action type that it selects.

As GA ignores such useful structures in complex adaptive problems, RL is 
employed to bridge the gap [22]. RL helps the evolutionary algorithm to generate a 
better population of classifiers or improve the existing ones. Thus the combination 

3 https://pythonhosted.org/xcs
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of RL and GA enriches the capacity of each other, thereby conceiving another pow-
erful concept called LCS.

Different Models of LCS
Over the years, different versions of LCS have evolved each of which holds good, 
depending upon the probability requirement. Zeroth level classifier (ZCS), extended 
classifier system (XCS), anticipatory classifier system (ACS), supervised classifier 
system (UCS), and XCS for function approximation (XCSF) are the different types 
of LCS found in the literature [6].

The ZCS is the initial version of LCS architecture. In ZCS, the fitness of the clas-
sifier depends on the accumulated reward got by executing the classifier. The greater 
the accumulated reward, the higher is the fitness strength. The classifiers with less 
reward are considered as ill-performing and more likely chosen for deletion.

The concept of the extended classifier system (XCS) is that the fitness of a clas-
sifier is based on the accuracy of the prediction of reward rather than the value of the 
reward. It happens that a classifier with less reward value possesses high fitness, 
while a classifier with larger reward holds low fitness. In XCS, the population clas-
sifiers that survive every generation are those whose reward is predicted accurately 
rather than those with higher reward value2.

The anticipatory classifier system (ACS) is quite different from other versions of 
the LCS family. In ACS, the classifiers are denoted by <condition, action, effect> 
rather than <condition, action, reward>. The effect component indicates the impact 
or consequence of the action. It reflects the possibility of the next state caused due 
to the action specified in the current situation. Since they learn a sequence of transi-
tion models, ACS is considered as a model-based RL architecture [7].

XCSF is a function approximation oriented XCS that accepts real value inputs 
for the condition part instead of Boolean values. It approximates continuous real- 
valued function specified in the form of an interval. XCSF computes reward predic-
tion using a linear approximation technique like recursive least squares (RLS) [21].

The supervised classifier system (UCS) is exclusively designed for episodic 
problems like classification and data mining where delay in reward prediction is 
tolerable. While other versions of LCS use RL for learning, UCS adopts supervised 
learning. In UCS, GA is exerted both on the match set and population. UCS priori-
tizes the accuracy of the reward prediction to gauge the classifier. In large space 
problems, UCS proves effective generalization and consistent knowledge represen-
tation [6].

5  Accuracy-Based Extended Learning Classifier 
System (XCS)

XCS was conceived by Wilson in 1995. It evolves accurate and maximized general 
classifier for a given problem. The key feature of XCS is not only it derives optimal 
input-output mapping but also produces a minimal set of classifiers (rules) that 
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explain the mapping. This property distinguishes XCS from other ML algorithms 
whose model is opaque to human computational analysis. The different components 
of XCS that reflect LCS are shown in Fig. 4.

In short, XCS generates a feasible set of solutions, instead of a single best solu-
tion to a given problem. With its niche GA evolution and fitness description, XCS 
attempts to estimate the Q-table with an accurate and maximally generalized classi-
fier [29].

Terminologies and Parameters of XCS
Situation: A situation is a sensory input received from the environment through the 
detector. The input is a sequence of bits received at a time, usually denoted by σ(t) 
ϵ {0,1}L, where L refers to the number of bits in each input. XCS accepts a fixed- 
length string of bits as its input. It refers to the condition part of a classifier[16].

Scenario: A series of situations for which the XCS algorithm executes an appro-
priate action to maximize the reward.

Action: An action is an output executed by the XCS algorithm in response to a 
situation. The action is denoted by α(t) ϵ A where A is a list of actions ordered as 
{a1, a2, a3, ………….. an}. XCS selects the best action from the list of action choices 
depending upon the situation.

RL Problem: The given RL problem can be either a single-step problem (epi-
sodic) or multi-step (continuous). In the case of a single-step problem, the action 
performed on a situation has no impact on its successor. Execution of action results 
in a reward that indicates the end of the task. Boolean multiplexer and data mining- 
based classification problems are examples of single-step RL problems [27].

In a multi-step problem, the action performed in each state has a serious impact 
on its successor. In other words, the current state is an outcome of the action taken 
at the previous time step. Also, the reward is not obtained for every state-action pair. 

Fig. 4 Components of XCS [30]
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The maze problem, regression problem, or sequential decision-making problems 
are some of the multi-step problems.

Classifier/Rule: XCS maintains a set of classifiers that represent the state of the 
environment [16]. Each classifier “cl” is a tuple defined by the letter x ϵ {c, a, p, ε, 
f, exp, ts, as, n}. Table 2 portrays the attributes of a classifier.

Population Set: It is the collection of all rules or classifiers present in the set [P] 
at a time “t.” The attribute “N” enumerate the maximum size of the population.

Match Set: At every time step, the group of classifiers in the population [P] that 
matches the current situation (input) are moved to a set called match set [M] [8].

Prediction Array: For every possible action in the match set, the fitness weighted 
prediction average is computed and stored in the prediction array. The values in 
[PA] assist to decide the most promising action to be chosen.

Action Set: An action set [A] is a subset of match set [M]. The action set [A] 
includes those classifiers from the match set whose action is chosen for execution. 
The process of choosing the appropriate action depends on the computation per-
formed in the prediction array [PA].

Reward: A reward is a positive or negative scalar value which is the outcome 
from the environment in XCS.  RL always attempts to maximize the cumulative 
reward in the long term. The type of reward can be categorized into three types [27].

 (a) Immediate reward: It is the reward value that is returned by the environment in 
response to the action at every time step. It is denoted by “r.”

 (b) Expected future reward: The estimated reward for the successive states, espe-
cially excluding the current one. It is denoted by q(st + 1, at + 1).

 (c) The payoff or the combined reward: It is the sum of immediate reward and the 
discounted expected future reward. It is denoted by {r + γq(st + 1, at + 1)}.

The following sequence of steps explains the XCS algorithm with a detailed 
block diagram in Fig. 5 [16]:

Table 2 Attributes of a classifier

Attributes Description

c The condition c ϵ {0, 1, #}L that specifies the sensor input, otherwise called a 
situation

a The action a ϵ{ a1, a2, a3,  ………….. an } itemize the action list, otherwise called the 
output

p The prediction estimate p is the payoff expected for the action taken
ε The error is made in predicting the reward. It is the difference between the target 

prediction and the existing prediction of the classifier
f The fitness of the classifier
exp The experience denotes the number of times that the classifier has been a member of 

the action set
ts The timestamp stipulates the last time step at which the GA was invoked
as The size of the action set [A], to which the classifier is included
n The numerosity denotes the number of times that the classifier is subsumed by an 

experienced classifier
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 (i) Define the environment, agent, and initialization of population set [P].
 (ii) Formation of the match set with covering operation as and when required.
 (iii) Deriving the prediction array and choosing an action.
 (iv) Creation of action set [A] and executing the action.
 (v) Reward prediction estimate.
 (vi) Updating the classifier parameters of the action set.
 (vii) Rule evolution by genetic algorithm and action subsumption.
 (viii) Iteration repeats for the next time step.

Environment, Agent, and Initialization of Population Set
The XCS algorithm begins when the environment is instantiated. In the RA problem 
of our case study, the edge devices that generate the workload, and the fog/cloud 
nodes that process them constitute the environment. The amount of workload at 
every time step forms the input. The population set [P] is initialized with classifiers 
composing of arbitrary values for conditions, action, prediction, and other parame-
ters. With the classifier denoted by the letter “cl,” pseudo-code for the [P] initializa-
tion is illustrated with the following procedure [16]:

Fig. 5 Flow diagram of XCS algorithm [6]
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Match Set Formation and Covering Operation
The match set is initialized as an empty set. The XCS algorithm compares the cur-
rent situation with the condition part of each classifier in the population set [P]. 
Those classifiers in [P] whose condition part coincides with the situation (input) are 
moved to a set called match set. Thus, the match set [M] is created as a subset of [P].

The matching process though sounds trivial; yet, it involves a character-wise 
comparison between the input and the condition part of each classifier in [P]. In 
general, the condition in the classifier is a combination of care and don’t care [#] 
symbols. A care symbol is an element of [0, 1] values in XCS. Whereas “#” in the 
situation (input) indicates don’t care symbol. When the comparison is performed, 
each input symbol should match with the exact value of the condition part [29].

The match set [M] thus created verifies whether it encompasses all types of 
actions from the action list { a1, a2, a3, ………….. an }. It checks if the count of action 
types in [M] is equal to θmna (maximum number of action types). Usually, the count 
of action types found in [M] will not exceed θmna. If it is less than θmna, then it indi-
cates that some action types are absent in [M] for the given condition. Hence, a 
covering operation is invoked to include those missing actions [16].

The covering operation creates a new classifier by inserting a wildcard symbol 
(#) in the condition part with probability P# at each position. It is ensured that the 
condition part of the new classifier matches the current situation. The action part of 
the new classifier is assigned the value which is not present in the match set. The 
new classifier thus created is included in the population set [P], as it differs from all 
other classifiers. Then matching operation repeats resulting in a new match set [29].

Prediction Array Derivation and Action Selection
When the match set is formed, the prediction array [PA] is constructed for every 
type of action ai in the [M]. It is the fitness weighted prediction average as given in 
Eq. (5).

 
Prediction Array PA� � � � �� � �

n n
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where n is the number of classifiers that advocate the action in the match set. The 
variables P and F are the corresponding prediction value and fitness of those classi-
fiers with the action ai. Out of the values in the prediction array, an action is selected 
for the execution. The choice of the action is either by pure explore style (random 
action selection) or by exploitation (choosing the best action). In general, the action 
with the highest prediction value or highest fitness or the action that yielded maxi-
mum fitness weighted average is considered as the best action [16].

Creation of an Action Set and Execution
An action set [A] is a subset of the match set [M]. Those classifiers whose action in the 
[M] matches the chosen action are grouped as the action set [A]. The procedure behind 
the formation of the action set is coded as a function called FORM_ACTION_SET().

Once an action set is obtained, the chosen action is implemented through the 
effector on the environment. Then, the environment generates a reward prediction P 
as feedback.

Reward Prediction Estimate
The Q-learning estimation is performed in the RL part of the XCS algorithm [18]. 
The reward prediction P depends upon the type of RL problem encountered. For a 
multi-step problem (continuous task), the classifier’s prediction is calculated as the 
sum of immediate reward and the discounted rate of maximum reward expected 
from the future states in the successive time step. For a single-step problem (epi-
sodic task), the prediction P is equivalent to the immediate reward (feedback) given 
by the environment. The computation of the reward prediction for the two types of 
tasks is shown in Eqs. (6) and (7).

 
P r� � � �� �� .max PA

 
(6)

 P r=  (7)

Classifier Parameter Update
Every time a classifier is added to the action set [A], its parameters like prediction 
(p), error (ϵ), fitness (F), experience (exp), size of the action set (as), and the numer-
osity (n) are updated. Among all, experience parameter exp is incremented to indi-
cate that the corresponding classifier is encountered in the [A] yet another time. The 
procedure to update the classifier parameter follows the Q-learning method of RL 
[27]. The Q-value update is performed using Eq. (8)
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where Q(st, at) denotes the existing payoff which is to be updated, β signifies the 
learning rate, (rt+1 + γ. Maxa+1 Q(st+1, at+1)) indicates the learned payoff, γ is the dis-
count rate, and rt+1 is the immediate reward received for the action at taken on the 
state st. The value (Maxa+1 Q(st+1, at+1)) represents the largest reward expected from 
the future states in the successive time.

The parameter prediction (p), error (ϵ), and action set size (as) are updated using 
Moyenne adaptive modified (MAM) method for the first few iterations followed by 
least mean square (LMS) for the rest of the iterations [16]. According to MAM, 
until 1/β times, a parameter is updated by an average of the current and previous 
value. Once the classifier is updated to a minimum of 1/β times, the LMS strategy is 
applied [18]. The update computations behind the two techniques are described by 
the pseudo-code using arbitrary variables x and y.

 

The MAM technique enables the movement of early values of parameters more 
quickly to their “true” average value in order to avoid the parameters taking arbi-
trary values. It means that the MAM technique quickly gets rough approximation. 
However, the LMS technique used after 1/ β updates refines the estimate from 
approximation to accurate values [17].

The value of β is usually set within 0.05–0.2 which is a recommended range. The 
value of β adjusts the sensitivity of the updated parameter with respect to the changes 
in the population. The β value is used as the step size in the updates of prediction, 
error, fitness, and action set size [17].

Reward Prediction Update
The reward prediction (P) is computed as explained in Eqs. (6) and (7) depending 
upon the problem whether it is episodic or continuous. The existing reward predic-
tion is updated by the MAM and LMS technique based on the classifier’s experi-
ence. The procedure for the reward prediction update is given by the following 
pseudo-code.

 

where cl.p is the classifier’s existing reward prediction that is updated and P is 
the learned reward prediction (target).
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Prediction Error Update
The prediction error indicates the difference between the target/learned reward pre-
diction error and the existing error. The difference |(P-cl.p)| is the learned reward 
prediction error, and cl.ϵ is the existing reward prediction error. The difference 
between the two errors results in the current error that is updated. The error update 
procedure is coded as shown below.

 

In practice, it is always better to compute the update of prediction error (cl.ϵ) 
first, followed by the prediction update. If the prediction update is computed first, 
the chance of prediction error becoming zero is high. This enables faster learning 
and is suitable only for simple problems. But in the case of complex problems, zero 
error in the very early stage goes misleading. So updating the prediction error (cl.ϵ) 
followed by a reward prediction update is best recommended.

Fitness Update
The fitness of the classifier indicates the accuracy level of the reward prediction. 
The accuracy of the reward prediction is reciprocal of the reward prediction error2. 
The lesser the error, the greater the accuracy is considered. Hence, the accuracy of 
the ith classifier (ki) is calculated as the reverse of the classifier’s error by Eq. (9):
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where the parameter e0 (0<e0 < 1) is the error threshold under which a classifier 
is measured as most accurate. So if the error of the ith classifier ei is less than the 
threshold error, the accuracy of ki is set to one. The values v > 0 and ∝ within the 
range [0, 1] are the constants that control the degree of diminishing inaccuracy if the 
reward prediction of the classifier is inaccurate. Next, the relative prediction accu-
racy ( ki

′ ) over other classifiers is estimated by Eq. (10):
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where  ki is the accuracy of the ith classifier and kx is classifier x in the [A]. 
Eventually, the fitness of each classifier is updated through the LMS method, by 
Eq. (11):
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where f represent the existing fitness value which is updated and ki
′  represents 

the learned fitness2.

GA Rule Evolution and Action Subsumption
The rule evolution part of the XCS determines the insertion of well-performing 
classifiers and deletion of ill-performing classifiers with respect to the scenario, as 
the time proceeds. While the action set [A] is used for choosing the more effective 
classifier for reproduction, the population set [P] is meant for the insertion of a new 
classifier or deletion of the existing classifier [6]. Before invoking GA, it is verified 
whether it is possible to apply GA at that particular time. Given the current [A], it is 
possible to invoke GA, only when the average time (ts) is greater than the GA 
threshold (θGA) for all classifiers in the [A].

The parent classifiers are chosen from [A] based on their fitness value. The cho-
sen classifier then undergoes crossover and mutation to generate new child 
classifier(s). The parameters of the children classifier are initialized with the aver-
age of their parent values [20]. Usually, the offspring classifiers thus created are 
added to the [P]. But if the subsumption procedure is involved in the system, then 
the addition of the new classifier to the [P] is reconsidered.

GA subsumption is a process that accelerates the generalization of the classifier. 
A classifier is treated more general if its error (cl. ei) is less than the threshold error 
(e0) and its experience (cl.exp) is greater than the subsumption threshold (θsub) [16]. 
The subsumption process searches for an equivalent classifier in the [P] that is more 
generally such that the new classifier could be generated from it or even could be 
replaced.

The idea is that the new classifier that does not satisfy the generalization condi-
tion is considered incompetent. They do not contribute much to the improvement of 
the system since everything is accomplished by the parent (general) classifier itself. 
When such a general classifier is encountered in [P], the new classifier is subsumed 
by incrementing the numerosity of the parent classifier and eliminating the new 
offspring.

Independent of GA subsumption, action set subsumption is solely meant to per-
form in the action set. The process searches the most general classifier that is maxi-
mally general and accurate in the [A] instead of [P]. If such a classifier exists, its 
numerosity is increased, followed by the elimination of the subsumed classifier 
from [A] and [P].

Resource Allocation and the Significance of XCS
The revolution of availing anything as a service (XaaS) has led the industries and 
enterprises to host their applications on the Web from where it provides online ser-
vice to the consumers [31]. Hosting the application and its supporting packages 
requires enough compute/storage facilities like fog computing that resides near to 
clients providing service at low latency. The allocation of fog/cloud resources to the 
workload (requests from IoT) for processing is referred to as fog-cloud resource 
allocation [10].

Moreover, the exponential growth of the IoT device makes it the biggest con-
sumer of power. Power consumed per unit of time is estimated as energy. Hence, 
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energy conservation is an inevitable factor in the performance estimation of the RA 
model [24]. The success of any RA framework lies in the efficient algorithm that is 
deployed to handle the computing resources. The choice of the algorithm depends 
on its capability to manage the application requirement with minimum delay, 
energy, and budget.

The proliferation of IoT application exhibits complexity in terms of heterogene-
ity, mobility, and context awareness [5]. Hence an algorithm that learns and adapts 
according to the changing requirements of the IoT-fog-cloud framework is required. 
Amid other approaches, XCS not only learns and adapts the optimal I/O mapping 
but evolves a minimal set of rules that describe those mapping, thus making it prom-
inent among data scientist gadget.4

6  Case Study

An optimal RA in fog-cloud for IoT applications through XCS is the problem con-
sidered as a case study. The workload request from various IoT devices and the 
resource pool (fog and cloud) that supply the compute nodes forms the environ-
ment. The agent is the program that encapsulates the detector, population set [P], 
match set [M], prediction array [PA], action set [A], the GA, and the effector.

At every time step, the amount of workload is given as the input. The goal of the 
proposed framework is to estimate the optimal number of workload that is to be 
processed in fog with minimum delay and energy consumption. The fog-cloud RA 
framework balances the quantity of workload that is distributed among the fog layer 
and the cloud.

System Model
The proposed RA framework considers every time period “t” as 10 seconds. At 
every time period, the amount of user requests (σ(t)) from their edge devices to the 
base station is termed as workload. It is represented as a discrete-time signal to be 
in the range [0, σmax]. The value of σmax is set to 100, which is the maximum work-
load that the base station receives per second. Hence with every “t” set as 10 s, the 
amount of workload ranges between 0 and 1000 requests per second.

The fog layer encompasses a fog controller (base transceiver station) and a col-
lection of fog nodes that are geographically located near to each other. The fog 
controller node distributes the incoming workload between the fog nodes and the 
cloud. The number of active fog nodes at every time period “t” is denoted by fn(t) ϵ 
[0,fnmax], where fnmax is the maximum amount of fog nodes available in the fog layer.

The job of the agent program hosted in the fog controller is to estimate the num-
ber of workloads (δ(t)) that are to be processed in the fog layer. Therefore δ(t) is 
supposed to be less than or equal to σ(t). Hence the residual workload (σ(t)−δ(t)) is 
transmitted to the cloud. At any time period “t,” the estimation of δ(t) is influenced 

4 http://hosford42.github.io/xcs/
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by various factors like the amount of workload, number of active fog nodes, the 
processing capacity of each fog node, and the battery capacity of the active 
fog nodes.

The fog-cloud framework for RA with respect to XCS comprises environment 
and agent as shown in Fig. 6. At any instant of the time period “t,” the fog controller 
is expected to receive 0–100 requests per second. The workload first reaches the fog 
controller from where it is partially distributed to the fog layer or to the cloud for 
processing. The fog controller hosts the agent program that estimates δ(t). Finally, 
the performance of the fog-cloud RA model is evaluated in terms of delay and 
energy consumption cost.

XCS Solution
The RA framework modeled as XCS contributes to the estimation of the optimal 
number of workloads to be processed in fog (δ(t)). The actual input to the system at 
every time period is the condition part of the classifier. The specific combination of 
bits in the classifier’s condition represents the amount of incoming workload σ(t), 
battery capacity of the fog nodes b(t), and the magnitude of network congestion h(t). 
The action δ(t) which is the optimum amount of workload to be processed in the fog 
layer depends on these input parameters and the processing capacity (k) of each 
fog node.

The pseudo-code to compute δ(t) given below first checks if the available battery 
capacity is less than the operating power (Pop) required to handle the σ(t) workload. 
If true, it indicates that the fog layer no longer has enough power to process and all 
the workload is offloaded to the cloud which makes δ(t) = 0. Otherwise, δ(t) is com-
puted as the product of the active number of fog nodes fn(t), the processing capacity 
of the fog node (k), and the unit of one time period (t).

Fig. 6 XCS-based fog-cloud framework [23]
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The value of δ(t) is stored as the action part, against the condition of the classi-
fier. As time passes, the population of classifiers evolves with their associated pre-
diction, error, and fitness values.

Delay and Energy Computation
The performance of the XCS algorithm that enables an efficient fog-cloud RA is 
evaluated in terms of delay and energy consumption. The delay parameter reflects 
the actual response time of the RA system. Hence the total delay is computed as the 
sum of three delays, namely, transmission delay (dt), processing delay (dp), and 
offloading delay (doff).

The transmission delay represents the time consumed for propagation on the 
wireless network. The processing delay is the time consumed to compute the amount 
of workload (δ(t),) in the fn(t) amount of fog nodes, each with “k” processing capac-
ity. Hence the processing delay in the fog layer for the time period “t” is given by 
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 . The offloading delay (doff) is the time taken to transmit the 
residual workload (σ(t) − δ(t)) on to the cloud. Thus, the 
offloading delay depends on the amount of residual work-

load and the intensity of congestion (h(t)) in the network. It is calculated as doff = (σ(t) 
− δ(t))·h(t). Then the total delay is computed as shown in Eq. (12):
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With the trend moving toward online services, the massive scale of IoT devices 
that enable these services has become the largest consumer of power nowadays. The 
power consumed per unit of time which is referred to as energy has a direct effect 
on the cost of the RA framework. Hence, the calibration of energy is inevitable in 
evaluating the performance of the RA framework. The magnitude of energy con-
sumption is estimated as the sum of operating energy and computing energy.

The operating energy is estimated as the sum of three types of power consump-
tion as shown in Eq. (13)

 
e e e eop on maint trans� � �

 
(13)

where (eon) is the power consumed by the fog nodes to be in on-state, (emaint) is 
the power consumed by the maintenance equipment like UPS and cooling systems, 
and (etrans) is the power consumed for transmitting the workload to the cloud.
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The computing energy refers to the power consumed by the active server/nodes 
(fn(t)) to process the workload (σ(t)) in terms of computing and storage. It is defined 
as a function of ecp(fn(t),σ(t)) as in Eq. (14)
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(14)

The overall energy consumption of RA is then estimated as the sum of operating 
energy (eop) and computation energy (ecp) as given in Eq. (15)
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(15)

Thus the computation technique for delay and energy consumption, incorporated 
in the fog-cloud resource allocation framework through the XCS algorithm, 
increases the efficiency of the model. The crust of the proposed work lies in deriving 
the optimum number of workload that is to be processed in the fog layer. Ultimately, 
the efficiency of RA depends on the correct distribution of workload among the fog 
and the cloud layer to balance energy consumption with the minimum delay.

7  Conclusion and Future Enhancements

The chapter reveals how XCS is used to solve the RL problem that involves continu-
ous decision-making tasks. The fog-cloud resource allocation for IoT applications 
dealt through XCS consumes minimum energy and delay than its rival works. 
Though contemporary techniques like XCS were found to be efficient to solve the 
modern IoT-based RA problem, still there are research areas that are to be explored. 
Lack of sufficient IoT-based training dataset, constraints found with the ML models 
for IoT, cost involved in training, and generalizing the model for IoT are some of the 
open issues that need to be addressed in the future.
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Convolutional Neural Network (CNN)-
Based Signature Verification via 
Cloud- Enabled Raspberry Pi System

Iqraq Kamal, Hwa Jen Yap, Sivadas Chandra Sekaran, and Kan Ern Liew

1  Introduction

Based on the Global Economic Crime and Fraud Survey 2018 [1] ‘46% of Southeast 
Asian companies reported experiencing economic crime in the last two years, up 
from 26% in 2016’. One of the misconducts that are occurring is signature forgery, 
even though paper-based form of authorisation is expected to be consigned to his-
tory by 2018. Many argued, however, that paper-based forms of payment such as 
cheques should not be phased out until suitable alternatives are introduced. 
Furthermore, any non-contextual document that contains signature can be easily 
forged. This could cause multiple fraudulence in any industry despite the size of the 
organisation. A more proactive action needs to be taken to ensure that the cheque 
book can be verified in a more accurate manner to reduce the monetarily loss of 
the people.

Many problems that require high accuracy classification has adopted machine 
learning. This is including a signature verification system to identify forged signa-
ture and real signature. Many previous works utilise CNN to develop an offline 
signature verification system. CNN is the state-of-the-art for deep learning com-
puter vision [2]. The convolutional layer feature extraction process is flexible in 
recognising the signature despite its inconsistent position in a picture. This key fea-
ture makes them a viable deep learning architecture to verify signature. However, 
most of them focus more on developing a writer-independent signature verification 
system. The algorithm is trained based on available online dataset to find the pattern 
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between the forged signature and the real signature. Even so, for security sake, it is 
important not to just classify signature into forged and real signature but to also 
identify the owner of the signature itself.

To make this possible, a writer-dependent signature verification process needs to 
be developed. The system must be portable and reliable. The portability is going to 
help verify signatures of important documents and cheque. Having this system is 
expected to reduce the amount of fraudulence and scam. This is especially true if the 
banks can implement the system to validate the signature of the person on the 
cheque with high accuracy and repeatability. Furthermore, the rapid development of 
IoT enhances the accessibility of the data with a remote device. To add, with the 
presence of cloud storage, the data is safer and can be shared globally. This is very 
useful for the implementation of machine learning due to its data-hungry nature. 
The purpose of the research is to develop a portable product that can verify signa-
tures. The three main objectives to attain are as follows:

 1. To develop a suitable offline writer-dependent signature verification using CNN.
 2. To integrate the verification process to an IoT architecture.
 3. To maintain the security and the accuracy of the verification process.

2  Literature Review

This chapter provides an overview of previous research on CNN and Raspberry Pi. 
It introduces the framework for the case study that comprises the focus of the 
research described in this paper.

It is important to set the context of the literature review work by first providing:

 1. An explanation of its specific purpose for this case study.
 2. Comments on the previous treatment on the broad topic of CNN on handwritten 

signature and the usage of Raspberry Pi.
 3. An indication of scope of the work presented in this chapter.

An appreciation of previous work in this area served two further purposes. 
Firstly, working the findings from past literature into a formal review helped to 
maintain the topics’ perspective throughout the study. Past literature can be used as 
a comparison point of the implementation of tools such as cloud and Raspberry Pi. 
Secondly, having a complete literature review will raise the opportunities to articu-
late a more critical analysis on the application of CNN on hand signature verifica-
tion. To add, results from previous models in past literatures can be used as a 
benchmark of the optimisation level of the model we are currently using. By com-
paring the result, we can know the best architecture to implement for verifying 
handwritten signature.
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2.1  Background of Signature Verification

Signature verification is validating the identity of an individual by analysing his/her 
signature. The process intends to differentiate a genuine signature from a forgery 
[3]. Unlike any handwriting process, a signature contains unique individual features 
and is usually a combination of personal symbols that are far more complicated to 
be validated.

A survey by Pal [4] stated that the common approach towards this problem is 
separated into two classes: Class 1 is a genuine set of signature and Class 2 is forged 
signature. To calculate the performance of each test, two types of errors are consid-
ered which are the false rejection and the false acceptance. Based on that, there are 
two types of error rate which are the false rejection rate (FRR) and the false accep-
tance rate (FAR).

Based on Justino [5], there are three common types of common forgeries as 
listed below:

 1. Random forgery. It is not done by intent, the forger might not have any initial 
idea of the genuine signature or even the author’s name. It might include the 
forger’s own signature.

 2. Simple forgery. The author’s name is known, but the forger does not have any 
access to the sample of the genuine signature. The signature produced is in his/
her own style.

 3. Skilled forgery. The forger knows the author’s name and they have access to the 
sample of genuine signature. They can recreate the signature in a similar fashion 
as with the original.

The skilled forgery can be divided into 4 four kill levels which are:

 1. Forged signature that is produced with the genuine author’s name only.
 2. Forged signature that is produced by an inexperienced forger without the knowl-

edge of the exact spelling but rather by observation.
 3. Forged signature that is produced after some unrestricted practice by non- 

professional forgers.
 4. Forged signature that is produced by a professional impostor or person who has 

experience in copying signatures.

One of the most challenging tasks in classifying a signature is in finding a signifi-
cant distinction between each signature. As stated by Zhang [6], feature extraction 
plays a very important role as it should able to extract features that help to increase 
interpersonal distance between each signature example of different persons while 
reducing interpersonal difference for those belonging to the same individual.
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2.2  Convolutional Neural Network (CNN)

In the work of Fukushima [7], CNN is inspired by Hubel [8] study on receptive 
fields in the visual cortex. Fukushima [6] introduced two basic types of layers in 
CNN, which is the convolutional layer and the downsampling layer. Later, Weng [9] 
introduced a method called max pooling where a downsampling unit computes the 
maximum of the activation of the units in its patch. Max pooling is commonly used 
in modern CNN. CNN is heavily used in image classification and is more reliable in 
handling image data compared to the common artificial neural network (ANN). 
‘One of the largest limitations of traditional forms of ANN is that they tend to strug-
gle with the computational complexity required to compute image data’ [10].

2.3  Standard Components of CNN

Basic CNN are composed of three types of layers [11] :

 1. Convolutional layer

 a. Focuses on the use of learnable kernel. The kernel glides through the input 
and the scalar product are calculated for each value in that kernel. The net-
work will learn which kernels are activated when there are specific features at 
a given position of input [10]. The process is also known as sparse interaction 
and needs less parameters to be stored which will reduce the memory require-
ment of a model and improve statistical efficiency compared to ANN which 
uses the traditional matrix multiplication method [12].

 2. Pooling layer

 a. The purpose of the pooling layers is to reduce the spatial resolution of the 
feature maps and thus achieve spatial invariance to input distortions and trans-
lations [13]. As stated by [12], pooling is crucial for handling input of varying 
sizes. It is done by varying the size of an offset between pooling regions 
ensuring the same number of summary statistic is received by the classifica-
tion layer.

 3. Fully connected layer

 a. The fully connected layer contains neurons of which are directly connected to 
the neurons in the two adjacent layers, without being connected to any layers 
within them. This is analogous to the way that neurons are arranged in tradi-
tional forms of multilayer perceptron. The arrangement for a fully connected 
layer could dictate the performance of the whole architecture. Based on Basha 
[14], higher number of nodes in the fully connected layer is needed in a shal-
low architecture to obtain better result, while deeper architectures require a 
smaller number of nodes irrespective of dataset type.
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2.4  Activation Function

Activation function serves neural networks into two primary manners, which are to 
help take into account the interaction effect between the features and to help the 
model accommodate the non-linear effects.

2.5  Rectified Linear Units (ReLU) Activation Function

ReLU is one of the non-linear activation function. The units are easy to optimise 
because they are similar to linear units. The only difference that ReLU has is that 
half of its domain provides zero as the output. This makes the derivatives through a 
ReLU stay large and consistent. In short, ReLU can be presented as follows:

 
f x x� � � � �max 0,

 

Due to its simplistic nature, the ReLU function should be able to accelerate the 
training speed of deep neural network compared to the traditional activation func-
tion. However, one drawback using the ReLU is that there will be no learning via 
gradient-based method whenever their activation is zero. All the input that has less 
than zero value will be rendered meaningless [12].

2.6  CNN Against Traditional Image Classifier

In the year of 2019, there were at least 500 million of photos uploaded online. This 
vast amount of data created leads to the need to advance the field of computer vision 
especially in image classification. Image classification is highly useful to help users 
to recognise data and pattern. The advancement has introduced multiple technolo-
gies that are highly accurate to handle different variation of image classification. 
This includes the development of CNN, a state-of-the-art technology for image 
classification in deep learning. With more hardware capacity available, a deeper and 
more complex architecture can be developed and deployed. This leads to a more 
accurate and general model to be created. However, there are still many other image 
classifiers that are available. The CNN is expected to perform better based on its 
ability to learn and extract features from the image, to provide a more accurate pre-
diction and for the overall generality of the prediction compared to another image 
classifier.

There are many other traditional image classifiers developed without the imple-
mentation of machine learning. Thakur [15] conducted a review between different 
types of image classification. The review compared five different image classifica-
tion methods which are parallelepiped techniques, minimum distance classifier, 
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maximum likelihood classifier, ANN and support vector machine. Based on the 
comparison, the ANN can deal with noisy input efficiently and has a high computa-
tion rate. Due to the nature of it being data driven, a typical neural network should 
be able to have a better generality in predictions compared to other image classifi-
ers. However, being data driven means it is also exposed to some other disadvan-
tages such as heavy time consumption for data training, is considered as semantically 
poor and will occasionally encounter the problem of overfitting. Even though the 
architecture of the ANN is different compared to CNN, it is comparable since CNN 
commonly uses fully dense multilayer perceptron to classify the image extracted 
from the convolutional layer.

In another study conducted by Lee [16], a deep neural network is compared to 
scale-invariant feature transform, speeded-up robust features and binary robust 
independent elementary feature. The comparison is performed using a webcam 
attached to a turtle bot. It is found that the deep neural network works 20% better 
compared to other classification methods. However, there are certain trade-offs 
when using a deep learning method. The time taken to train the CNN to achieve 
satisfying accuracy is significantly longer. The comparison shows that for a mobile 
robot, traditional vision classification only requires between 30 s and 1 minutes to 
achieve 70% accuracy. This shows that, for supervised learning, CNN will require a 
lot of data and time to train to achieve an acceptable level of accuracy. Even so, for 
a mobile robotic application, the user can still utilise traditional computer vision 
since it does not require the level of accuracy a CNN could offer. This is supported 
in a study conducted by O’Mahony [17] where they figured, despite the accuracy 
that the CNN offers, it could be an overkill for certain applications. They found that 
deep learning excels at solving a closed-ended problem, but not in problems such as 
robotic, augmented reality, virtual reality, and 3D modelling where traditional tech-
niques flourish and are more efficient. To add, deep learning requires highly pow-
ered GPU and TPU to be trained on.

The CNN has been proven to perform better based on its ability to learn based on 
the image data, capability to provide a more accurate prediction and the overall 
generality of the prediction compared to traditional image classifier. Nevertheless, 
there are many limitations that come with the perks that it offers, which requires a 
high volume of data and high GPU computation for training and is less dynamic 
when it comes to robotic and 3D modelling-related tasks. As society embraces the 
inclusions of the IoT in everyday life, more portable devices that can give a real- 
time feedback will be deployed; hence, it is very important to overcome the limita-
tions that CNN have to make it future-proof and increase its overall dynamic so that 
it can be vastly used later.
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2.7  CNN-Based Signature Verification Process

Signature verification process usually includes two different data extraction model. 
The first one being online and the latter one being offline. For comparison sake, we 
will look in the online verification system. Online signature verification will record 
more variables compared to offline verification. In a study conducted by Julita [18], 
it is suggested to take account three different variables which are the speed, pressure 
and orientation during the signature capturing process. The paper utilises support 
vector machine as its learning model. The result shows a 100% rate of accuracy to 
predict forgery and non-forgery. To add, Sae-Bae [19] found that, by taking account 
the number and length of strokes of each signature, they managed to get an average 
of 3% error rate. The signature data used is taken from mobile devices. Despite 
being a promising technology, this will only work if the whole signature system in 
every industry is managed online and digitally and the user has an accurate touch-
screen pad for data collection.

For practicality, offline (static) signature still offers a more pragmatic approach 
towards our current situation in the society. Offline signature verification is done 
using pictures or images of signature as its data. Based on the literature we reviewed 
and compared, we are expecting CNN to provide a good classification and predic-
tion when it comes to verifying a signature. In a research by Khalajzadeh [20], a 
99.86% accuracy is achieved from predicting a Persian signature from 22 persons. 
Based on the paper, it is stated that having a convolutional layer as a feature extrac-
tion increases the robustness about signature location change and scale variation. 
From that, we assume that it is likely that CNN will be able to predict forgery in the 
signature. This is proven in a study conducted by Mohapatra [21] where the model 
is trained to differentiate between the forged and original signature. Their model can 
outperform other models on the same dataset. Even so, we would like to focus on 
the fact that they are using NVIDIA Tesla GPU which is made specifically for deep 
learning. The same case is true for Hafemann [22], where they used Nvidia Tesla to 
train their dataset. The need to have a very good GPU to accelerate the training time 
is supported by Cozzens et al. [23] as they ran their CNN on a CPU instead of a 
GPU. The time taken to train a large dataset was significantly different, and, in their 
case, due to the time constraint, a smaller size of data is used which then caused the 
model to overfit and affect its overall accuracy. Finding the right ratio between 
amount of data and complexity can be challenging. However, the finding is obvious 
that larger dataset led to a better model accuracy as more variation of data being fed 
will help to generalise the model from being overfitted. This is shown in the study 
conducted by Dey [24] as they stated that a possible reason for the lower perfor-
mance on the GPDS300 is the lesser number of signatures for each signature style 
as they are not able to outperform the state-of-the-art model for that dataset.
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2.8  Writer-Dependent and Writer-Independent Signature

The difference between writer-dependent and writer-independent signature is in the 
utilisation of convolutional layer as a feature extractor. The amount of data available 
to be processed can be hugely impacted by the type of signature we are processing. 
Most of the state-of-the-art models for signature verification utilise writer- 
independent method to study the correlation between the CNN model and the accu-
racy it can provide. This can be seen in the study conducted by Sronothara [25] 
where they deploy two main convolutional architectures which are LeNet and 
AlexNet to be compared on the same dataset, and in the research conducted by 
Cozzens [23], the paper utilises SigComp2011 dataset to test the accuracy of the 
model that they are developing. Despite the number of the signature available 
online, the outcome of the paper is limited only to classify between two classes, 
which are the original and forged signatures. However, in a real-life scenario, clas-
sification that is directly related to the end user is much more important. The model 
must be able to classify the owner and the authenticity of the signature.

To overcome the limitation of getting sufficient data for writer-dependent signa-
ture verification, Hafemann [22] proposed a two-stage approach, which is to use the 
convolutional layer to extract feature from writer-independent signature and then 
utilise the weight on a writer-dependent-based classifier. They managed to achieve 
a very low equal error rate. However, the model shows a very high FAR and a low 
FRR. This technique is promising to overcome the lack of data to verify writer- 
dependent signature. However, the limitation is in the inter-relation between the 
writer-independent dataset and writer-dependent dataset. Based on Hafemann [22], 
the technique is not stable as it shows varying rates of accuracy across multiple 
users and dataset and a more defining user-specific threshold to verify writer- 
dependent signature needs to be studied.

The use of CNN to verify a signature is proven to be viable and promising due to 
its ability to extract feature and finding inter-relation between pixels despite the 
position and orientation of the signature in the image. Based on previous studies, 
across multiple architectures and dataset, the results show that with the right imple-
mentation, CNN could achieve an average of 85% accuracy rate. However, there are 
several obstacles that need to be addressed which are its capability to handle a small 
dataset of unique signature, the computation power it requires and the time taken to 
train the dataset. To implement a CNN-based signature verification in IoT, we will 
require a more rigid user-specific threshold to be trained as data to increase its accu-
racy. Furthermore, its IoT compatibility can be improved either by deploying the 
model on a single-board computer or utilising cloud as a training centre.
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2.9  IoT and Machine Learning

It is expected that by the year of 2025, there will be 21 billon IoT devices deployed 
around the globe. The massive increment of fully connected devices will accelerate 
the amount of data produced exponentially. Meaningful data collected helps the 
advancement of many other industries. A user is expected to have more insight of 
their day-to-day operation and gained a better perspective to increase the efficiency 
of their own organisation. This is especially true to help implement machine learn-
ing or any other prediction models. This is demonstrated by Kumar [26] where 
machine learning is implemented for early detection of heart diseases. The device is 
first used to monitor real-time heart conditions and is connected to the hospital to 
alert them if the user is facing any cardiac problem. On a bigger scale, machine 
learning is also implemented in a surveillance system. A computer vision is inte-
grated with IoT to automate the use of IP cameras. The system is used to detect any 
movement based on the sequencing of the picture with a 100% success rate. Machine 
learning has a very promising application in the IoT; the presence of huge amount 
of data enhances the accuracy of a predictive model. However, computation power 
is still a main issue to implement machine learning. Even in the paper by Rajan [27], 
they implemented fog computing for the IoT instead of the conventional wireless 
transmitting method in healthcare. It is one of the ways to process the data received 
from the sensors.

Based on the trends that come from previous studies, it is obvious that most of 
the novel system developed is for large-scale application. The topology will usually 
require a direct connection from the sensor head to the processor or cloud for data 
processing. The sensor must be able to measure and record data accurately, and the 
size must be compatible to accommodate its objective. However, arguably, this 
arrangement is not suitable for all applications. The suitability of the application is 
influenced heavily by the number of sensors used in a single system.

For a single sensor system like signature verification, the topology is not cost- 
and time-effective. When it comes to applying a signature verification system, most 
of previous use cases propose an online signature verification solution rather than 
offline [18, 27]. Despite being able to overcome the rigidity of the system by utilis-
ing day-to-day smartphones and PDAs, the verification system is limited to digital 
system and cannot be implemented on a paper-based signature. There are only small 
areas covering the usage of single-board computers (SBC) as a sensor and process-
ing unit. We could argue that this is because of two main reasons. The first one being 
most of the problems that were solved using machine learning on IoT devices 
require a real-time data feedback. Especially from Kumar [25] and Rajan [26], both 
are utilising clinical data that comes from IoT sensors worn by humans. Since the 
data is uploaded in real time and will only be meaningful after a certain pattern is 
discovered, it would be more efficient to directly train those datasets through cloud 
computing. The second point is that the previous use case does not require a physi-
cal human-machine interaction (HMI)). The sensors are used directly to feed the 
data into the data cloud storage. On SBC, multiple peripherals can be utilised, and 
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the data can be directly processed before being sent out to the cloud. To add, with 
SBC, the user can have computation power to run a prediction model without the 
need of cloud computation. SBC can solve a more unique problem such as signature 
identification and verification due to its dynamic nature to portability and flexibility.

2.10  Single-Board Computer (SBC)

Small but compact, SBC is a device that has the capability of a normal computer but 
with a fraction of its computational power. Moving towards IR 4.0, SBC was 
deemed to be one of the most important tools that can be deployed to complement 
an IoT system. With the portability its offering, it opens multiple possibilities in 
different fields such as automation and robotics. To add, with the computational 
power that is sufficient to run a normal program, SBC offers portability to run a 
machine learning model. With the use of a more sophisticated machine learning 
model, there are multiple reasons to choose single-board computer over cloud com-
puting such as having real-time human-machine interface capacity through extra 
peripherals that it provides and the capability to act as an independent server for 
cloud storage that could enhance data security.

As stated by Maksimović [28], Raspberry Pi has a similar capacity of a personal 
computer to the domain sensor network. It is the perfect platform for interfacing 
with wide variety of external peripherals. Having Wi-Fi and Internet access, it is one 
of the most viable devices for remote communication and cloud application. 
Raspberry Pi is also relatively cheap and is more readily accessible to the public.

2.11  Deep Learning on Raspberry Pi

It is normal to assume that any machine learning and deep learning model should 
run on a highly powered computer. However, with the presence of SBC such as 
Raspberry Pi, it is not necessary. Despite the limited computing power that Raspberry 
Pi offers, it has a built-in software such as Scratch which enables users to program 
and design animations, games or interesting videos. In addition, programmers can 
also develop script or program using Python language. It is still able to run a simple 
yet crucial deep learning architecture. The implications of such possibilities are 
huge as more classification task can be done on a more remote area and in turn will 
promote the development of both SBC and deep learning model such as CNN.

Training data on a Raspberry Pi has issues. However, there are several ways that 
can be executed to help train the model. In the paper written by Dürr [29], the data-
set was trained separately on a NVIDIA GTX 780 GPU for 40 minutes. The trained 
model then is transferred into Raspberry Pi. To verify the capability of Raspberry Pi 
in handling a pre-trained model, the model is compared with the commonly used 
OPENCV. The model managed to outperform it in terms of accuracy and speed, 
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even though the computational power in Raspberry Pi is significantly less compared 
to standard gaming or tensor laptops. By utilising a pre-trained network, it is still 
able to achieve the accuracy of the model without compromising any other factor. In 
addition, it is possible to implement a more complex architecture with this method 
such as VGG 16. The model can be pruned before the training occurs with only a 
small drop in accuracy as trade-off.

The rationality of having a lightweight CNN model can be seen from a CNN- 
embedded Raspberry Pi to monitor structural health. Monteiro [30] trains the whole 
dataset of the model on Raspberry Pi. The architecture that they are using is five 
layers of CNN and a max dropout layer in between. Despite being able to achieve 
100% accuracy and beating the state-of-the-art algorithm in structural health moni-
toring, the model relies on a very simple pixelated image as its dataset. This is not 
applicable for our use case as a signature is a highly complex object. In order to 
overcome that, Nikouei [31] introduced a depthwise separable convolution to reduce 
the computational cost of the convolution layer itself. The L-CNN file size is only 
5% from the typical VGG-16 architecture, but it is still be able to produce a remark-
able accuracy to detect human presence in motion. Despite being very light, the 
whole architecture of the model is built to detect presence of human-based object in 
a video. The objective does not require a high-level accuracy; hence, this applica-
tion is not the most suitable for signature verification.

Raspberry Pi is a viable device to deploy CNN algorithm for various applica-
tions. However, the most crucial matter here is to recognise the need of the applica-
tion and its relation to the limitations of Raspberry Pi. Various low feature tasks can 
be carried out by allowing the training to happen directly on Raspberry Pi. However, 
to perform a highly accurate verification process, a deeper layer of network needs to 
be deployed. For the time being, this process is more feasible to be done on a com-
patible computer. In the same context, a longer time is required to do hyperparam-
eter tuning in Raspberry Pi, hence affecting the optimisation process of the model. 
On a final note, to have a well-built deployable model straight on a Raspberry Pi, it 
is preferable to have a strong base model trained in a personal computer. Having a 
strong benchmarking model will help to indicate the sufficiency of the custom-
ised model.

2.12  Raspberry Pi-Enabled Cloud System

The key point to all IoT application is the remote accessibility towards the data 
available in any system. With the capability that Raspberry Pi offers, the user will 
be able to connect it to larger inter-device system through the Internet. In the case of 
a signature verification system, all the data collected through Raspberry Pi can be 
stored in the cloud. The user can access the signatures collected through Raspberry 
Pi on other devices for verification process monitoring and model training purposes.

One of the ways of setting up cloud is by utilising an open-source software such 
as the ownCloud. By installing ownCloud, the accessibility of the files in the cloud 
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is not restricted locally. This can be seen in a paper written by Princy [32] where 
they set up a cloud storage for the Raspberry Pi to accommodate real-time data stor-
ing system. The data is then stored in the cloud for future use. By having a private 
cloud storage, the data stored are more secure and are personalised to the user only. 
However, the accessibility is limited if the network is restricted by firework and 
blocked ports. To overcome this, Pimple [33] implemented Weaved which provides 
a unique IP by utilising tunnel protocol on the physical device.

On the other hand, for IoT application, Raspberry Pi can be connected to well- 
known cloud storage providers such as Google Drive or Dropbox. The provided 
service usually comes with multiple other perks such as free storage and high acces-
sibility without the need to personally maintain the server. It is an advantage if the 
user is not able to provide enough storage in their drive to be used as cloud storage. 
This can be seen in a paper written by Ikuomola [34] where Raspberry Pi is con-
nected to Google Drive for a smart surveillance system to overcome the need for 
having a physical hard drive.

Raspberry Pi has enough capability from hardware and a software standpoint to 
be connected directly to the cloud. The open-source software such as ownCloud and 
the readily available Python library make it easier for Raspberry Pi to transmit and 
receive any data via the Internet. Therefore, the integration of IoT with signature 
verification process is important to ensure data accessibility and security through 
cloud implementation. In addition, by having a push notification that informs the 
end user regarding the signature verification progress enhances the overall security 
and the reliability of the system. For our current use case, we will be using push 
bullet as the mean of notifying end user.

3  Methodology

The purpose of this chapter is to describe the methods used to create the CNN-based 
signature verification on a cloud-enabled Raspberry Pi and to assess the system’s 
ability to meet the aim and objectives of the paper. This chapter will explain the 
hardware setup, application design, data processing, user experience and the limita-
tions that come with it. This will be followed by a discussion on the full setup of the 
whole system on the Raspberry Pi 4 including the advantages and disadvantages of 
the tools chosen. It concludes with problems encountered during the research and 
future suggestion to improve the whole system (Fig. 1).

Fig. 1 Research approach overview
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3.1  Hardware and Environment Setup

We are dividing the product development system into two parts which are the devel-
opment of our CNN as our classification model for signature verification and imple-
mentation in SBC and the integration of the IoT system to make our system portable 
and able to function remotely. The development of the CNN is done in our laptop 
due to the availability of more computational power. By using our laptop, the CNN 
can be trained and optimised faster compared to a SBC. To ensure our model train-
ing can be done in the laptop, we are enabling CUDA for our NVIDIA GPU. CUDA 
is a parallel computing platform and is commonly used to train deep learning using 
GPU. Table 1 shows the specs of the laptop that we are using.

We are using Raspberry Pi 4 as our main device to capture images, verify signa-
ture and upload images to the cloud. The main reason we are using Raspberry Pi is 
because of its size and compactness. Having a small signature verification device is 
going to help make the product portable and can be easily transported everywhere. 
Plus, Raspberry Pi has a built-in camera slot that is useful to capture signature image 
and a Wi-Fi adapter making it easy to connect it to the Internet and to upload data to 
our cloud storage. For the Raspberry Pi camera, we are using the standard 5 MP 
1080 camera module board. The camera weighs only 3g with the dimensions of 
25 mm × 20 mm × 9 mm which makes it suitable for mobile application. The devel-
opment of the CNN is done using Python 3.7.7 on PyCharm IDE. We utilised the 
TensorFlow and Keras library to configure our deep learning model and data pro-
cessing application such as image augmentation and model evaluation. For 
Raspberry Pi, we are using Python 3.7 on Thonny IDE to capture image and run the 
pre-trained deep learning model for the verification process. Unlike in the PC, the 
Raspberry Pi is running TensorFlow Lite. The TensorFlow Lite enables on-device 
machine learning with low latency.

3.2  Cloud Storage Setup

One of our main objectives is to create a signature verification system that is porta-
ble and accessible through cloud. The Raspberry Pi is expected to upload the cap-
tured signature image to the cloud, thus making it available for it to be accessed 

Table 1 Dell G5 specifications

Dell G5 Tech Specs

Intel® Core™ i5-8300H CPU @ 2.30GHz
8192MB RAM
NVIDIA GeForce GTX 1050Ti
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using a highly powered computer for future model training. Instead of using the 
common cloud provider service like Google Drive or Dropbox, we are using own-
Cloud, a software used to create and utilise file hosting services. ownCloud is free, 
thus allowing any capable user to install and operate without any charges. Since it is 
running on a user private server, the user can avoid limited quotas on storage space 
and the number of connected clients. The capacity of the storage is depending on the 
physical capabilities of the server. In our case, ownCloud utilises the 64GB space of 
micro-SD installed on the Raspberry Pi.

Furthermore, since the data is trained outside of Raspberry Pi, it is crucial to 
transfer the data to the training PC to improve the accuracy of the training model 
progressively. By automatically feeding the captured image of the signature to the 
server, the user can download the data as a client. This data pipeline from Raspberry 
Pi to cloud will be able to cover the limitation to train the data directly on the 
Raspberry Pi. Users can access it anywhere and utilise a more powerful computer to 
train the dataset to have a better prediction model in the future. For our use case, 
having a private storage increases the safety and the security of the data we own. A 
private server plays an important role to counter any kind of identity theft or mis-
conduct towards stored data.

To implement the ownCloud, we are using PHP and NGINX to run the cloud 
software. NGINX is an open-source http server. It is well known for its high perfor-
mance, simple configuration and low resource consumption. Since NGINX is an 
event-driven architecture, users will only need small and predictable amounts of 
memory under load. To add, with the presence of SSL certificate on NGINX, the 
cloud connection is fully encrypted and secured to be used.

3.3  Pushbullet

To notify the user of the status of the program, the paper utilises third-party app 
called Pushbullet. The app can be used to easily transfer data from your phone to 
your PC. In our case, we are using it to transmit data directly from Raspberry Pi to 
our smartphone. The data transmission is not limited locally as it is going through 
cloud. By using this app, the user is notified with the progress and the result of the 
signature verification on the Raspberry Pi. The push notification is useful to solidify 
the signature verification system by keeping the end user notified with the usage of 
their signature from time to time. The coding of the push notification is integrated 
into the main coding flow in Raspberry Pi.

The Pushbullet package is installed through pip pushbullet.py in the Raspberry 
Pi terminal. The package includes all the crucial function to notify the user through 
the push notification system. The unique API key is available for any signed-up 
user. It is used to synchronise all devices that are registered within the account. 
Once the user runs the program, the function will send the notification to all selected 
devices as shown in Fig. 2.
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3.4  Application Design

The process of the whole signature verification system starts with the development 
of deep learning model in our Dell G5. The development is explained under the data 
processing chapter. Once the deep learning model is fully developed and tested, it is 
uploaded manually into the Raspberry Pi through the SD card. The signature verifi-
cation process is done in the Raspberry Pi. It captures the signature image while at 
the same time produces the prediction based on the pre-trained CNN that we devel-
oped in the PC. While the verification process is executing, it will notify the users’ 
smartphone through the third-party push notification app. Once the verification is 
done, the captured image will be uploaded to the ownCloud for it to be accessed by 
the PC. Having this loop between the PC and Raspberry Pi can ensure the execution 
of periodic progression of the deep learning model by using newer user signature.

3.5  Data Handling

In this subsection, we are going to explain the development of the CNN used in our 
system. This includes our sampling strategy, data pre-processing and explanation of 
the CNN architecture we are using. It is then followed with our analysis on the 
model performance based on the hyperparameter tuning we did (Fig. 3).

Fig. 2 Inter-connection between devices
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3.6  Signature Sample Acquisition

For the purposes of this use case, the sample acquisition will be in the form of gath-
ering real signatures and forged signatures. 659 signatures are collected in total, 
from 2 users. The initial idea is to have the signature that comes from multiple 
people. However, since we will require a model to predict the class of signature, the 
number of signature classes is reduced to 2 to improve its overall accuracy. The data 
is collected using 3x3 cm grid drawn on a paper. The users are then asked to sign in 
the space provided. To get the forgery signature, the writer collects the data from 
four random persons. They were instructed to copy the original user’s signature. In 
this case, even though the four forgers have never seen the sample signature previ-
ously, they are still categorised as skilled forger since they are exposed with real 
forgeries and are not within time constraint while copying the original signature 
(Fig. 4).

Once the users and forger finished signing on the 3 × 3 grid, the paper is then 
scanned for us to obtain the image of signatures. We then chose the acceptable sig-
nature to be used as training and validation image for our model. Once the signa-
tures are chosen, the grid is then split using Windows photo editor.

The images are then divided into four different folders based on four different 
classes consisting of user 1 real signatures, user 2 real signatures, user 1 forged 
signatures and user 2 forged signatures. 70% of the signatures in each class are 
being used as training set and 30% of the signatures are used for validation set 
(Fig. 5).

Fig. 3 Data handling sequence
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3.7  Image Augmentation

Since the number of signature images that we have is only 659 signatures, we are 
using image augmentation to fully utilise each one of them. Image augmentation is 
one of the many ways to increase the variety of images used to train a model without 
acquiring new data/images. When it comes to computer vision, it is best to have at 
least 1000 images per class. Having a large dataset is very crucial as it will improve 
the performance of the model significantly and prevent overfitting from happening. 
For our use case, generating image data manually is time-consuming and tedious. 

Fig. 4 Sample signatures gathered on 3 × 3 cm grid

Fig. 5 Post-processed 
signature image
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The best solution is to apply different techniques to process the images such as rota-
tion and flipping. To augment the image that we have, we are utilising the function 
in TensorFlow package called ImageDataGenerator. The function will automati-
cally augment the images based on the parameters we have set (Fig. 6).

Even though image augmentation does not increase the amount of raw data that 
we have, the process is expected to produce enough variability to prevent our model 
from overfitting without losing meaning and relevant data of the signature and to 
increase the overall robustness of our CNN. Below is the sample of the augmented 
signature we have managed to obtain (Fig. 7).

3.8  Convolutional Neural Network (CNN)

For this paper, we are using a customised CNN model architecture. The configura-
tion of this model is used based on the amount of data that we have and the problem 
that we are trying to solve which is to identify a writer-dependent signature. Since 
there were not many past literatures focusing on offline writer-dependent signature 
verification, we are proposing this configuration as our pilot model. In addition, we 
are not able to utilise the signature data available online because we are verifying 
the signature and classifying them to their user rather than just differentiating 

Fig. 6 Image 
augmentation parameter

Fig. 7 Sample of augmented images
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between a real signature and a forged signature. To add, most of state-of-the-art 
CNN architectures for image classification require huge amounts of data and are 
therefore less suitable for our use case (Fig. 8).

Table 2 shows the summary of the architectures. It includes the output shape of 
kernel for each layer of parameter it has. The model that we are using consists of 
three convolutional layers complimented with three max pooling layers. Having 
three convolutional layers is expected to cover all the important parameters to learn 
and classify the complexity of any signature. The activation function used at each 
layer is the ReLU. As stated in the previous chapter, ReLU is used to improve the 
training speed of the model. As for the classification layer, we are using the dense 
neural network with the SoftMax activation function. To prevent overfitting, we 
implemented dropout before the final classification layers. The dropout is used to 
randomly ignore some number of layer output which in turn provides a different 
view of the configured layer despite multiple iterations. The architecture has over 
2,461,476 parameters.

3.9  Training Result

To review our model performance, we are using matplotlib library in Python to 
visualise the training and testing progress over time. The accuracy metric is deter-
mined after the model parameters, and it is the measure of how accurate the models’ 
prediction is compared to true data. On the other hand, loss function is used to opti-
mise the model. The loss is measured based on training and validation process. It is 
the sum of the difference between predicted images and the real class of the image. 
Since this is a multi-class classification problem, we prioritised the accuracy of the 

Fig. 8 Pilot model convolutional layer
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model more than its loss. To plot the graph of performance for our model, we plot 
two graphs which are the model accuracy graph and the model loss graph for every 
parameter tuning we did with the model. For the model accuracy, the y-axis is the 
accuracy of the model and on the x-axis is the epoch. For the loss accuracy graph, 
the y-axis shows the loss and the x-axis shows the epoch. The graphs provide mean-
ingful indication of the model such as the speed of convergence and the status of the 
model as to whether it may be overlearning the training data.

There are few hyperparameters that we tune throughout the training process, 
which are the epochs, batch size, steps per epoch and dropout ratio. We run through 
multiple parameter setups to find the highest point of accuracy while having lowest 
point for model loss. Here we only include three different pairs of graphs that are 
significantly different from each other based on the hyperparameter tuning 
that we did.

One of the first hyperparameter configurations we tested was by setting the epoch 
at 300. As shown in Fig. 9, both graphs fail to converge. Even though we manage to 
achieve 100% result on the train accuracy, the test accuracy started to decline after 
the 50th epoch. The split of the graph explains that our model is overfitted and it is 
impacted by the number of epochs we set, which is 300. As we allow the model to 
keep on iterating after point of convergence which is around the 100th epoch, the 
separation becomes more obvious. This is supported by the trend on the model loss. 
The projection of the test set increases after each iteration. The increment could 
mean that there are too many parameters being introduced in this model for such a 
limited amount of data, which leads us to reduce the epoch and alter the dropout 
ratio to prevent overfitting of the data.

Table 2 Pilot model layer summary

 Layer (type) Output shape Param #

conv2d_4 (Conv2D) (None, 148, 148, 32) 896
activation_6 (Activation) (None, 148, 148, 32) 0
max_pooling2d_4 (MaxPooling2 (None, 146, 72, 32) 0
conv2d_5 (Conv2D) (None, 146, 72, 32) 4640
activation_7 (Activation) (None, 73, 36, 32) 0
max_pooling2d_5 (MaxPooling2 (None, 73, 36, 32) 0
conv2d_6 (Conv2D) (None, 71, 34, 64) 18496
activation_8 (Activation) (None, 71, 34, 64) 0
max_pooling2d_6 (MaxPooling2 (None, 35, 17, 64) 0
flatten_2 (Flatten) (None, 38080) 0
dense_3 (Dense) (None, 64) 2437184
activation_9 (Activation) (None, 64) 0
dropout_2 (Dropout) (None, 64) 0
dense_4 (Dense) (None, 4) 260
activation_10 (Activation) (None, 4) 0
Total params: 2,461,476
Trainable params: 2,461,476
Non-trainable params: 0
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As for the second major hyperparameter tuning, we reduced the number of epoch 
to 200, increased the batch size to 64 and increased the dropout ratio to 0.2. For the 
model accuracy basing on Fig. 10, we are able to maintain the convergence of both 
train and test set. This is possibly because the model is not overfitted and is still able 
to generalise well due to the lower number of epoch. Even so, the graph is a bit flat. 
This was clearly due to the increment of the batch size. This leads the model to have 
only 63% average accuracy. On the other hand, the model loss converges well 
despite the presence of spikes in the graph. This is possibly due to the increment of 
the dropout ratio preventing the model from overfitting. This pair of graphs high-
lights the evidence that the epoch and dropout ratio have a correlation to the number 
of data available. Having lower epoch and high dropout ratio could increase the 
overall accuracy and prevent the model from overfitting.

To further increase the accuracy of our model, we increase the dropout ratio from 
0.25 to 0.1 while maintaining other parameters. The implication can be seen in the 
model accuracy where we managed to obtain 83% accuracy of the model. As shown 
in Fig. 11, even though the test accuracy dropped at 160th epoch, it manages to 
converge back at the 200th epoch. This is due to the higher number of dropout 

Fig. 9 Model accuracy and model loss at 300 epochs

Fig. 10 Model accuracy and model loss at 200 epochs with batch size of 64 and dropout ratio of 0.2
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compared to previous parameter. Our models are more accurate but are inclined to 
overfit. As for the model loss, compared to the previous graphs, we managed to 
obtain only 0.49 loss. Even so, the spiking of the test set loss is a sign of a high 
dropout ratio.

Overall, the graphs show the speed of convergence and the status of the model. 
Based on that, we are able to know the best number of epoch for our use case, which 
is 200 epochs. To add, setting a really high dropout ratio helps to remove unneces-
sary parameter that does not provide meaningful information that can help the 
decision- making process of our classifier. Based on the training and testing process, 
the significance of having high volume of data becomes more apparent to improve 
the accuracy and at the same time increase the overall generality of the model. In the 
context of signature verification, the problem can be more complicated, since signa-
tures are more prone to have a lower consistency per user. To add, the complexity 
increases when we are trying to classify a writer-dependent signature. This due to 
the limited amount of signature that we can obtain from a single user (Fig. 12).

Once the trained model is transferred to the Raspberry Pi, the user will be able to 
execute the signature verification and classification process through the Raspberry 
Pi terminal. The system is going to update the user every time a new picture is taken 
by the program and once the prediction result is out.

Based on Fig. 13, the picture on the right is sent before the authentication pro-
cess, and image on the left is the slide-down notification on the prediction result. For 
our example in the figure, Class 1 means the signature belongs to real user 1. This 
is true and to test it further, we repeat it with seven original signatures that belong to 
user 1 and four fake signatures of real user 1.

Based on Table  3, the model predicted three signatures wrongly making the 
accuracy to fall at only 70%. This means that 20% of the time the system can falsely 
declare an original signature as forgery and 10% of the time it can falsely claim fake 
signature to be correct. The latter is considered as more dangerous error where it let 
forged signature to slip by. However, the rate at which this happens within an 

Fig. 11 Final model used for signature verification. The model epoch is at 200 with 0.1 drop-
out ratio
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Fig. 12 User experience flowchart

Fig. 13 Notifications from Pushbullet during program execution in Raspberry Pi
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organisation that does not possess a certified signature verification system is reduced 
by 90% with the help of this system.

There are several reasons that could affect the accuracy of the model which are 
the quality of the image taken and the lack of image pre-processing in the Raspberry 
Pi. While capturing the image of the signature, there is no standard procedure set. 
This could affect the overall quality of the image taken since we used scanned 
images as training and testing dataset during the CNN development. The difference 
of quality could impact the prediction accuracy. Therefore, it is best to train based 
on its real-life application.

To add, we did not implement any heavy image pre-processing of the captured 
image other than scaling and grey scaling. A more refined pre-processing method 
such as sharpening could be applied to improve the quality of the image.

4  Problems and Limitations

There were several challenges that the researchers encountered while conducting 
the experiment for this paper. The first challenge was to get a good number of sig-
natures to be used as trainable data. Unlike recognising other common or typical 
daily object like dogs or cats, signatures are very limited and difficult to get. To add, 
the signature used to train the model has to be consistent. Having a very high vari-
ability between each real signature will defeat the purpose of the signature verifica-
tion process. Hence the solution is to use the grid prepared on paper so that the size 
is consistent, and the user can use the space provided as a guidance. Another solu-
tion would be to compare the signature with the available accepted signature before 
using it as training data to ensure the difference is within an acceptable tolerance.

Secondly, due to the inconsistent nature of the signature and the volume of the 
data, it is very likely to overfit the predicting model. One of the solutions in this 
paper is to augment the data before it is being fed into the model. However, the 
interconnection between the augmented image is still present, and it is not as effec-
tive as getting a good raw data.

Table 3 Confusion matrix on prediction of real and fake signature

N = 1 Predict correctly Predict wrongly

Real signature 3 2
Fake signature 4 1
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5  Conclusion

A CNN-based signature verification system on a cloud-enabled Raspberry Pi has 
been successfully developed. The paper has acknowledged past literature on signa-
ture verification, CNN, Raspberry Pi and the usage of cloud. It is followed by 
detailed explanation of training the CNN and the execution process on Raspberry 
Pi. The product is supposed to help the end user to detect and prevent fraudulent in 
workplace. Coming back to our research objectives which are:

 1. To develop a suitable offline writer-dependent signature verification using CNN.
 2. To integrate the verification process in an IoT architecture.

We managed to create a pilot CNN model for our use case. However, improvements 
are needed in terms of preparing high-quality real-life application image of the sig-
nature and reducing the complexity of the CNN model to prevent overfitting 
improvement as we only managed to achieve 70% accuracy on real-life application. 
We did manage to integrate the process in an IoT architecture with the implementa-
tion of Raspberry Pi, Pushbullet notification and ownCloud service. Although there 
are certain limitations that need to be addressed, the premise of having a portable 
signature verification tool is promising.

6  Future Research

There are many ways to improve the current system produced in this paper. First, 
the CNN could be implemented directly into the Raspberry Pi by using a lighter or 
pruned version model. By doing this, user will be able to update the model in real 
time without having to export the data to an external computer to be trained again. 
However, the data is not more secured compared to being at the server.

Secondly, having a larger dataset of user signatures will significantly help to 
optimise the model and to prevent overfitting from happening. Since we are only 
limiting the signatures to only two people, in the future, more user signatures should 
be introduced to the model to improve its usability in a real scenario.

Thirdly, a better camera model could be used to produce a higher resolution 
image of the signature. This research did not compare the specification of the hard-
ware or the quality of the image against the accuracy of the model. Future research 
could develop or propose a baseline or minimum specification of imaging hardware 
and quality to be used for the signature verification process.
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Machine to Machine (M2M), 
Radio- frequency Identification (RFID), 
and Software-Defined Networking (SDN): 
Facilitators of the Internet of Things

S. Sharmila and S. Vijayarani

1  Introduction

In the current era of networking, seamless connectivity and ubiquitous computing 
are not a great challenge. Human and machine communication was restricted at the 
initial stage of Internet growth, and the advancement in Internet technology has 
made communication between everything as in the IoT. It is the latest technology 
that creates a universal network of devices and machines embedded with software 
that is capable of exchanging and communicating information with each other via 
the Internet [1]. The significant aspect of the IoT is that it can renovate an object into 
an intelligent smart object by providing actuating, communicating, sensing, and 
computing ability to the object.

The IoT generates data from the connected object, and it is used for further anal-
ysis and decision-making. The exponential escalation in Internet connectivity and 
the gadgets has necessitated the IoT that bridges the gap among the objects and 
services [2]. In the IoT, an object determines everything that can communicate or 
not and the flow of an event, as well as data created by the interconnection of smart 
things, facilitating the process of management, control, decision-making, tracking, 
and coordination. Bind of heterogeneous techniques and significance has made the 
IoT as a great success [3]. Figure 1 shows the significance of the IoT.

IoT paradigms are framed with the assistance of M2M, RFID, and SDN tech-
nologies. The flaws met in the design of applications are rectified using these tech-
nologies. The functionality of the industrial, healthcare, and data transmission 
applications is accomplished by the facilitators, namely, M2M, RFID, and 
SDN. Each technology has a unique feature and is applied based on the requirement 
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of the application. The IoT is widely used in smart home, industry, automation, and 
healthcare [4], and it is shown in Fig. 2.

M2M is a combination of communication system and information technology 
with machines that provide the data transmission facility with reduced human inter-
vention. In the context of M2M, the transmission of information is attained by the 
network of communication. The functionality of the entire device is accomplished 
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Fig. 1 Important features and significance of the IoT

Fig. 2 Applications of the IoT
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by the information exchanged among the devices. The information is generated and 
exchanged among the devices that provide significant inference and for the formula-
tion of a conclusion. M2M achieves a ubiquitous communication system with com-
plete mechanical automation. The framework of M2M is widely used in the 
applications of e-healthcare, smart grids, industrial automation, intelligent transpor-
tation system, environmental monitoring, and smart cities [5, 6].

RFID is a data transmission approach, which is based on wireless technology, 
and it captures the data from varied identification attributes. RFID is a standardized 
scheme, and it is used in various economic and tracking sectors [7]. It is also 
employed in the field of access control, traceability, and logistics. The key advan-
tages of RFID are identification, unitary, low cost of tags, and wireless communica-
tion that provide the application with significant practical benefit and progression in 
terms of applications and concept [8].

SDN is an innovative paradigm based on a wireless network that has changed the 
control and management aspects of the networking system by developing them sim-
pler and flexible. The main intent of SDN is to segregate the management and con-
trol plane from the data plane by initiating the necessary protocol into the system. 
The scalability and the performance of the network are enriched by the features of 
SDN to attain better transmission. It provides effective transmission architecture 
and widely used in the data transmission paradigm [9, 10].

The IoT is a combination of intelligent objects, and the sensed raw data through 
the objects are transmitted to the cloud for further processing and decision-making. 
The processed outcome that will be displayed at the user terminal is represented 
in Fig. 3.

Cloud Service
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GSM Tower

IoT Devices

Internet

Gateway

Fig. 3 Overall framework 
of the IoT
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This chapter is organized as follows: Sect. 2 illustrates the facilitators of the IoT, 
Sect. 3 discusses the  Machine 2 Machine communication, Sect. 4 illustrates the 
Radio-Frequency Identification (RDIF), Sect. 5 describes the Software-Defined 
Networking (SDN), Sect. 6 discusses the issues and challenges, and Sect. 7 con-
cludes the facilitators of the IoT.

2  Facilitators of the IoT

The interrelated electronic devices, digital machines, and software in the IoT can 
transmit or exchange information over the connected network without the require-
ment of human to the computer or human to human interaction. The transmission is 
achieved with the assistance of prominent technologies, namely, machine to machine 
(M2M), radio-frequency identification (RFID), and software-defined networking 
(SDN). The significance of these technologies and their importance in the applica-
tion are discussed in this section.

3  Machine to Machine (M2M)

The autonomous communication system among two electronic devices without the 
involvement of human is determined as machine to machine (M2M) communica-
tion. The rapid adoption and emergence of wireless approach, the pervasiveness of 
the electronic system, and the software system complexity have attracted the M2M 
system that is widely used in academia and industry [11].

3.1  Autonomous Device Management System via M2M

The M2M communication system facilitates the autonomous and ubiquitous com-
munication facility, which embarks mechanical automation with potential features. 
M2M network enriches the production in industry and has shown effectiveness in 
varied areas. The promising applications with M2M technology are outlined 
in Fig. 4.

As illustrated in Fig. 4, M2M has numerous applications, and the devices require 
diversified functions and characteristics. The nature of nodes differs for every indi-
vidual application that is simple to the intelligent node. The M2M nodes are catego-
rized from low, mid, and end sensor nodes in accordance with the hardware capacity. 
According to the requirement and based on the variety of nodes as well as the 
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capability, the necessity of function will be determined. The M2M node category is 
summarized and their functions are categorized in Table 1.

In the paradigm of machine automation, the machines perform the opera-
tions such as

• Optimizing the parameters that are relevant to the consumption of power, moni-
toring, and the distribution of multimedia at homes.

• Weather monitoring and production of huge products in the giant industry.
• Maintenance time of a certain variety of products and developers.

The M2M communication system can enrich the performance and satisfaction of 
customers, and the productivity of the industry is also enriched. The variation 
between the M2M and IoT is illustrated in Table 2.

3.2  Collaborative Infrastructure Formulated by M2M

The system model of M2M is composed of M2M device domain, M2M network 
area domain, and M2M user or admin domain, which are shown in Fig.  3. The 
domains in the M2M model are interlinked and they work together.

Traffic
Control

Billing

Robotics

Security

Automotive

Utilities

Tele
medicine

M2M
Application

Logistics

Fig. 4 Applications of M2M communication
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3.2.1  M2M Device Domain

It is the collaboration of a huge number of devices, electronic components (sensors, 
smart meters, and actuators), and gateways (concentrators and point of data aggre-
gation). The sensory information is collected from the atmospheric condition and 
from the varied parts of the M2M area domain that collaboratively formulate intel-
ligent decisions to broadcast the data to the gateway. The gateway receives and 
manages the received sensed data that acts as an intelligent device. The data trans-
mission is attained through a single- or multihop channel through network area 
domain to the back-end user/admin server. The device instilled in the M2M varies 
based on the type of application.

Table 1 Categories of M2M senor nodes

Category of node
High-end 
node Mid-end node

Low-end 
node

Application service
Biomedical, 
Military

Home network, 
automation in industry, 
management of asset

Environment 
protection

Function Data aggregation Function 
not required

Function may be required 
or may not be required

Function 
required

Autoconfiguration Function 
required

Function required Function 
required

Power saving Function 
required

Function may be required 
or may not be required

Function 
required

Localization Function 
required

Function may be required 
or may not be required

Function not 
required

Quality of service 
support

Function 
required

Function may be required 
or may not be required

Function not 
required

Localization Function 
required

Function may be required 
or may not be required

Function not 
required

Transmission control 
protocol/Internet 
protocol

Function 
required

Function may be required 
or may not be required

Function not 
required

Power control Function 
required

Function may be required 
or may not be required

Function not 
required

Traffic control Function 
required

Function may be required 
or may not be required

Function not 
required

Characteristics Density Low Mid High
Complexity High Mid Low
Energy efficiency Low Mid High
Cost High Mid Low
Scalability Low Mid High
Internet protocol IP IP Non-IP
Mobility Mobility Low mobility Low, almost 

static
Hop count Low Mid High
Intelligence High Mid Low
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3.2.2  M2M Network Area Domain

The M2M network area domain acts as an interface between the M2M device 
domain and the M2M user/admin domain. The network protocols are employed to 
provide reliable and cost-effective device with extensive coverage areas that trans-
mit the sensory information from the M2M device to the user/admin domain.

3.2.3  M2M User or Admin Domain

The user/admin domain is composed of clients in the M2M application and a back- 
end server (BS). The key component of BS is the M2M system, and it is the integra-
tion point of sensory information storage that is propagated from the device domain. 
This domain also offers the real-time observation of data from numerous client 
applications for the remote monitoring management (RMM) system. In smart grids, 
the control center works as the BS, and the M2M health observation server acts as 
the BS in healthcare application. The BS will vary based on the nature of the appli-
cation and requirement.

The M2M communication scenario is categorized as a client/server model and 
the peer-to-peer model. The client/server model establishes communication between 
the M2M devices with one or more M2M servers. In the scenario of the client/server 
model, the electronic devices rely on the M2M device domain and servers placed 
within the application domain. It is mostly used in environmental monitoring, smart 

Table 2 Differentiation of M2M and the IoT

Machine to machine communication 
(M2M) Internet of Things (IoT)

M2M permits machines to relay or 
transmit information based on the 
necessity with the assistance of protocol

The object in the environment is connected using 
the IoT. The objects connected to the Internet 
without any intelligence brought into the IoT 
through smartphones, which act as a gateway 
between objects and the Internet

M2M works on the point to point 
transmission that is an embedded module 
of hardware or mobile communication 
system

The IoT depends on the network with IP that 
bridges device data to middleware or cloud 
platform

Big data is handled by the hardware 
reliance in M2M

Embedded software dependence makes the IoT to 
handle big data in an easy way

The generation and utilization of data only 
from the electronic device

Sensor data and devices are integrated into the 
system

Example: Data transmission with 
machines and electronic devices, namely, 
washing machine, refrigerator, and smart 
meters via Internet protocol (IP) over a 
wireless or wired medium

Example: Near-field communication (NFC) enables 
the facility of interaction with advertisements in the 
newspaper through movie posters or shortcodes

M2M is denoted as plumbing due to the 
limited scalability

The IoT utilizes various standards with high 
scalability, and it is universal enablers

Machine to Machine (M2M), Radio-frequency Identification (RFID)…
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electrical power grid, and home automation. Other communication paradigms use 
the peer-to-peer model, whereby the devices transmit directly among them. This 
type of communication is signified as inter-M2M device transmission that can be 
either via an ad hoc or by the mobile network mode [12]. The collaborative infra-
structure is shown in Fig. 5, and the key technology of M2M is shown in Table 3.

3.3  Significance of M2M in the IoT

M2M communication system utilizes a licensed spectrum and long-distance com-
munication technology, which has numerous benefits to industry, academia, and 
user community. The network deployment cost is low and network coverage is bet-
ter in M2M [13, 14]. The significance of M2M in the IoT is described below:

• The communications among the electronic devices are standardized using the 
3GPP technology, and it facilitates the machine-type communication (MTC).

• M2M plays a vital role in many applications and business; the operational effi-
ciency is enriched.

Gateway
M2M

Devices

M2M Area Network Domain
M2M Service Platform

Domain

M2M Service 
Platform

Service
Consumer

User/Admin Domain

M2M Devices
Domain

Fig. 5 Collaborative infrastructure of M2M communication

Table 3 M2M network key technology

Standards
Data 
rate Used in Application

Bluetooth Low (Personal area network) 
PAN

Sharing of music and video files

802.15.6 Low (Body area network) BAN e-Healthcare
Zigbee Low PAN Automatic control
Ultra-wideband High PAN Live video streamlining
Wi-Fi High (Local area network) LAN Laptop connectivity and smart 

metering
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• The installation of M2M technology is simple and easy to maintain.
• The establishment of M2M-based devices is highly scalable, reliable, and 

cost-effective.
• M2M offers higher throughput, minimum latency, less energy utilization, and a 

high range of compatibility.
• M2M facilitates high security and privacy features.
• M2M offers massive concurrent device communication and reduces bursty 

traffic.
• The priority scheduling and mechanism of access control is available in the 

M2M communication system.

Due to the significance of the M2M technology, it has been widely used in many 
commercial applications, and their characteristics are given in Table 4.

Table 4 M2M and their commercial platforms

Platform Application protocol Characteristics
Application 
interface Feature

Cosm Hypertext Transfer 
Protocol

Web 
application, 
mobile 
application, 
device sharing, 
user 
management, 
data analysis

Representational 
state transfer

Real-time data, 
open-source 
application, 
analyze 
automatic 
control and 
monitoring

ThingSpeak Hypertext Transfer 
Protocol

Mobile 
application, 
device sharing, 
user 
management, 
data analysis

Representational 
state transfer

Real-time data, 
open-source 
application, 
analyze 
automatic 
control and 
monitoring

Nimbits Hypertext Transfer 
Protocol

Mobile 
application, 
device sharing, 
user 
management

Representational 
state transfer

ioBridge, 
sharing data 
points and 
Google Cloud

EVERYTHING Hypertext Transfer 
Protocol

Web 
application, 
mobile 
application, 
device sharing, 
user 
management

Representational 
state transfer

Active digital 
identification

(continued)
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Table 4 (continued)

Platform Application protocol Characteristics
Application 
interface Feature

Sensinode Hypertext Transfer 
Protocol/Constrained 
Application Protocol

Web 
application, 
user 
management, 
M2M area 
network 
support

Representational 
state transfer

Nano stack, 
Zigbee

One Platform Hypertext Transfer 
Protocol

Mobile 
application, 
user 
management, 
data analysis, 
M2M area 
network 
support

Representational 
state transfer

Cloud-based 
service

Axeda Hypertext Transfer 
Protocol Secure

Web 
application, 
mobile 
application, 
user 
management, 
data analysis, 
M2M area 
network 
support

Representational 
state transfer/
Simple Object 
Access Protocol

Axeda 
Wireless 
Protocol, 
cloud-based 
service

SensorCloud Hypertext Transfer 
Protocol Secure

Mobile 
application, 
user 
management, 
data analysis, 
M2M area 
network 
support

Representational 
state transfer

MicroStrain 
Sensor, Math 
Engine

BugSwarm Hypertext Transfer 
Protocol

Web 
application, 
device sharing

Representational 
state transfer

Linux support

NeuAer Hypertext Transfer 
Protocol

Mobile 
application, 
device sharing

Representational 
state transfer

Rules and Tag

iDigi Hypertext Transfer 
Protocol

Web 
application, 
mobile 
application, 
data analysis, 
M2M area 
network 
support

Representational 
state transfer

iDigi product 
and Zigbee

S. Sharmila and S. Vijayarani



229

4  Radio-frequency Identification (RFID)

Radio-frequency identification (RFID) system is based on the wireless communica-
tion technology, and it captures the information that is linked with varied recogni-
tion attributes of entities having RFID labels [15]. The process of data collection 
and transmission is attained by electromagnetic waves between RFID tags and read-
ers (interrogators). The labeling granularity is accomplished by automatic identifi-
cation and data capture (Auto-ID). RFID allocates diverse identification codes for 
related items, and better visibility is provided with the various levels of identifica-
tion in the process of manufacturing and logistical. The effectiveness of the tracking 
and processing system is attained by the RFID technology [16]. Various applica-
tions of RFID technologies are illustrated in Fig. 6. The advancement of RFID facil-
itates the digital data embedded in the tags to read and capture via radio waves. The 
different kinds of tags and their features are given in Table 5 and Fig. 7.

4.1  Framework of RFID

The RFID is used in many application sectors, and it works on the 3C concept. The 
facets of RFID mechanism include context, capture, and control, whereby the pro-
cess of tracking and monitoring is achieved. In the context, the RFID integration in 
the environmental condition is explored and the RFID tags will work. The con-
straint in communication and processing environments such as obstacles, reflection, 

Logistics

Product
Tracking

Applications of
RFID

Identification

Payment

Access Control

Asset
Management

Fig. 6 Applications of RFID
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Table 5 Features of RFID tags

Kind of tag

Features

Passive tag Active tag
Semi-passive 
tag

Internal power source No Yes Yes
The carrier wave backscattered from the 
reader that is attained by signal

Yes No Yes

Response Weaker Stronger Stronger
Size Small Big Medium
Cost Less expensive More 

expensive
Less expensive

Potential shell life Longer Shorter Longer
Range 10 cm to few 

mts
100 mts 100 mts

Sensors No Yes Yes

Activate Tag Passive TagVs

433 MHz &

2.45 GHz

150 meters 15 meters

Powered by

RF waves

Indoor

Small to

Large

Internal

Battery

Outdoor

Medium to

Large

860-960

MHz
Frequency

Read Range

Power

Location

Asset Size

Fig. 7 Active RFID vs passive RFID
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and interface is investigated. The environmental situation is identified and the pro-
cessing is adjusted for the situation.

The election of equipment in RFID (readers and tags) is done in the capture pro-
cess, whereas accurate identification of data is attained by the process of exploration 
and environment. In this phenomenon, the necessary conditions such as reading 
range of RFID tags, location of antenna, the privacy of data, security issues, power 
control, and operation frequencies are adjusted based on the necessity of zone. The 
real-time control system and the implementation of the business rule are adminis-
trated [17, 18]. The middleware is correlated with the enterprise system, graphical 
user interface, and database in the capture facet. Generally, the following compo-
nents are incorporated into the RFID system:

• Unique Electronic Product Code (EPC) per firm will be assigned and the RFID 
tags are fixed to the item.

• Databases and networked RFID readers are instilled in real time.
• The information is exchanged via RFID antennas among the middleware, wire-

less networks with tag, and control platforms.

The RFID tags are categorized as active and passive that is powered by the 
energy source from the electromagnetic waves, and it is radiated by the backscatter-
ing method from the reader antennas of RFID.  The storage and communication 
ability are limited, and the transmission is also not possible on its own in the passive 
tag. The data reading is possible only between the ranges of 0.6 to 3 m. The on- 
board long-life system of battery provides power supply for active tag, and the 
energy supply is sufficient in this system, which permits the independent data trans-
mission within an immense range (90 meters approximately). The transmission fre-
quency range determines the benefit of RFID technology. The RFID technology is 
categorized based on the frequency range, and their benefit also varies for every 
range. The frequency range and their benefits are explained in Table 6.

The communication is developed by the antennas, and there are numerous kinds 
of antennas in an active and passive RFID system. Based on the necessity of the 
beam width, antennas are selected. Figure 8 displays the framework of an RFID 
system. The RFID tags sense the atmospheric condition and transmit the sensory 
information. The RFID reader reads the data and the information is processed by the 
local software and at the backend system.

Table 6 Various kinds of RFID

Type of RFID Benefit

Low frequency (LF) The communication is established in the metal or water surface
High frequency (HF) Developed based on global standards. Tags are very flat with a diameter 

of 1 cm
Ultrahigh frequency Multiple tags can be read and manufactured by the ISO standard
Microwave frequency Tags are very small in size
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4.2  Significance of RFID in the IoT

The RFID uses the electromagnetic signal to identify, capture, and track the tag 
attached to the object [19]. RFID has made automation in various sectors and also 
shows proficiency in several aspects that are explained in this section. The signifi-
cance of RFID is depicted in Fig. 9.

• The data collection process in RFID technology is highly automated, whereas it 
minimizes the occurrence of error and effort of humans.

• RFID accepts the tag reading by item scan or line of prospect is not needed.
• Multiple RFID tags can be recognized and read by the RFID readers that increase 

the efficiency of RFID.
• The presence of any item with RFID tags contained in a specific range of envi-

ronments can be identified instantly and matched with the relevant data in the 
database.

• In the case of assets, identified assets are cross-referred against the preferred 
location and the recorded information such as presence, relocation, and missing 
data are verified.

• The fixed readers and active scanners are integrated with RFID to make the com-
plete automation of the tracking system.

Fig. 8 Overall system design of RFID
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• RFID system makes the complete automation of emergency planning and arrang-
ing security solutions in the industrial and other business sectors.

• The objects and employees can be tracked and maintained with the assistance of 
RFID tags and readers.

• The RFID-attached asset control system enriches the security premises and also 
provides automation in the maintenance of products.

5  Software-Defined Networking (SDN)

Software-defined networking (SDN) is a network management technique, which 
facilitates the configuration of effective network programmatically and dynami-
cally, and it enhances the performance of the network and monitoring schemes. 
SDN addresses the issues in static architecture, and it is generally associated with 
the OpenFlow protocol [20]. SDN technology is widely applied in the industrial 
sector and attained significance in the performance. The architecture of SDN decou-
ples the data forwarding function and control of the network. The SDN is agile, 
directly programmable, open standard, managed centrally, and configured program-
matically [21, 22]. Figure  10 shows various use cases of the software-defined 
network.

Fig. 9 Significant features of RFID

Machine to Machine (M2M), Radio-frequency Identification (RFID)…



234

5.1  Three-Layered SDN Architecture

SDN is a network that has changed the control and management view of the net-
working system by developing them simpler and flexible. In SDN, the framework 
segregates the management and control plane from the data plane by initiating the 
necessary protocol into the system. It provides effective transmission architecture 
and is widely used in most cases of data transmission paradigm [23, 24]. The three- 
layered architecture of SDN is displayed in Fig. 11.

5.2  SDN Application Plane

The SDN application plane communicates directly to their necessity of network and 
determined behavior of network that controls through northbound interface (NBI). 
The decision-making is attained by the abstract data view, and it has one application 
logic as well as more than one NBI driver. The process of controlling the network is 
achieved by the relevant NBI agents.

5.3  SDN Control Plane

The SDN controllers lie in the mid of framework, and it is centralized logically 
which is in charge of the following:

Fig. 10 SDN use cases
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• The necessities are translated from the application plane to data plane.
• An abstract view of the network is provided by this plane.

It acts as an intermediary plane and controls the data flow among the planes.

5.4  SDN Data Plane

The SDN data plane permits the forwarding of data and maintains the traffic between 
the interfaces that reside outside the plane and the internal processing unit. This 
plane precludes the details of implementation such as maintenance of physical 
resources, slicing or visualizing the data, and mapping the logical and physical 
data [25].

5.5  Significance of SDN in the IoT

The software-defined network has numerous advantages in the integration of the 
IoT and data transmission network that is explained below [26]. Figure 12 illustrates 
the significance of SDN in the IoT.

Fig. 11 Three-layered SDN framework
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5.6  Central and Standardized Policy

SDN incorporated the standard policy across the connected network. In the public 
and private cloud, data policy is utilized to manage the data process and management.

5.7  Single Plane of Glass

In the context of cloud, SDN act as a single plane of glass that facilitates the simple 
way of data transmission and processing.

5.8  Native Integration

The effective integration of native software with the cloud service and relevant soft-
ware constructs is achieved.

Fig. 12 Importance of SDN
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5.9  Visibility and Analytics

SDN can perform visibility and analytics into the network and relevant applications.

5.10  Data Integration

SDN could attain the integration of the native system with the platform of cloud 
management.

5.11  Rapid Cloud Adoption

The integration of software, network, and cloud adoption is attained with minimum 
disturbance.

6  Issues and Challenges of the IoT

The Internet of Things (IoT) has embarked the connected, smart nodes, and perva-
sive computing that communicate autonomously and provide the needed service. 
Moreover, IoT nodes are gathering huge sensory information and private informa-
tion that becomes a goldmine of malicious nodes. This context creates various 
issues and challenges in the IoT [27–30]. Figure 13 shows various issues in the IoT.

6.1  Connectivity

Data transmission across the electronic device in the IoT is achieved by wireless or 
wired communication technology by incorporating connectivity standards. In the 
IoT, there are numerous connectivity standards, and standardization is a compli-
cated issue to meet all kinds of needs.

6.2  Security

The data transmitted over the network is confidential, and it is necessary to safe-
guard the privacy of the data. The hardware and connectivity security protocols are 
utilized to achieve the privacy and security of data over the network. The evolution 
of security is illustrated in Fig. 14, and the attacks as well as their nature are illus-
trated in Table 7.
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Fig. 13 Various issues in 
the IoT
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Fig. 14 Evolution of security in the IoT
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6.3  Power Management

The electronic component resides inside the IoT device utilizes the energy supplied 
by the battery or external power source. The process of replacing or recharging the 
power suppliers in the IoT is complicated. Hence, the proper energy maintenance 
mechanism is needed and the incorporation of mechanism for every individual 
method is a complicated process. Designing an IoT device with an effective power 
management approach is a huge challenge in the IoT.

6.4  Complexity

The integration of various technologies, embedded software, and device together is 
a complicated process. The connectivity is achieved by the development and ease of 
design of the device, which is a vague progression.

6.5  Rapid Evolution

In the information era, numerous devices are connected to make the automation in 
life, and it is a naissance in industry. The designing of IoT devices needs to consider 
various aspects, namely, security, user-friendly, flexible, and ease of integration. 
Besides the advancement in technology, the IoT has various limitations and also 
faces diversified challenges. In Table 8, various challenges and their benefits, as 
well as limitations, are listed.

Table 7 Various security attacks and their nature

Type of attack
Level of the 
threat Suggested solution for the attack

Active High Ensuring both the confidentiality and integrity
Passive Low Utilizing symmetric encryption approaches
Man in the middle 
(MIM)

Low to 
medium

Data confidentiality approaches incorporated

Eavesdropping Low to 
medium

Encryption approaches applied to all the devices

Privacy High Blind signature and ring signature approaches used
Interruption High Robust authorization mechanism employed
Routing diversion High Connectivity-based method used
Blocking Extremely high Anti-jamming, packet filtering, active jamming, and 

updated antivirus programs are installed
Fabrication Extremely high Authenticity mechanism in data is applied
DoS Extremely high Cryptography mechanism in data is applied
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7  Conclusion

This chapter outlines the overview of M2M, RFID, and SDN, whereas these tech-
nologies play a prominent role in the integration and data transmission in the 
IoT. Based on the necessity in every individual application, appropriate technology 
is incorporated into the application. The exchange of information among the elec-
tronic device is attained by M2M technology. The process of tracking and control of 
every individual item is carried effectively by the RFID technology. Every individ-
ual technology poses an individual role in the application area and achieved effec-
tiveness in the process of automation. This chapter anticipates varied technologies, 
challenges, and prominent features in various applications.
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Architecture, Generative Model, and Deep 
Reinforcement Learning for IoT 
Applications: Deep Learning Perspective

Shaveta Malik, Amit Kumar Tyagi, and Sameer Mahajan

1  Introduction

Along with dig data and cloud computing, artificial intelligence is growing rapidly 
with the advancement of deep learning especially with the neural networks with an 
increase in the venture in smart cities, smart healthcare, and the Internet of Things 
(IoT). A large amount of data need to be processed that is generated by the IoT [30]. 
Deep learning plays an important role in many applications with the IoT for better 
results, and it dominates the industry and research along with the IoT. Deep learning 
technology has the capability and potential to reduce the large complex dataset into 
the predictive and alteration output. Moreover, many companies like Microsoft, 
Amazon, Google, Apple, etc. [1] are seriously investing through deep learning tech-
nology. Deep learning applications are unsupervised learning, supervised learning, 
and reinforcement learning. It is one of the leading areas of deep learning. Supervised 
learning on datasets for the classification is used in many areas like image recogni-
tion and handwriting recognition [2, 3]. Unsupervised learning on datasets with no 
label is used for clustering. Now deep learning can be used in the field of robotics 
also. With the fastest growth of deep learning, the IoT is also connected with it with 
sensors, and all devices can communicate through sensed data. For the application 
of deep learning, large datasets are becoming obtainable. Potential learning for deep 
learning is provided by the reinforcement learning.
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The learning algorithms of deep learning are based on the artificial neural net-
work or layers of artificial deep learning without any supervision. The concepts 
behind the ANN are related to the human brain. Deep learning algorithms give bet-
ter performance as compared to machine learning algorithms. There are a number 
of deep learning frameworks, i.e., deep sense, etc.; one of the deep learning algo-
rithms is DeepIoT that is used to compress the structure of the deep neural network, 
and after compression, the model can be deployed to commodity devices. Various 
deep learning architectures such as convolution deep neural network (CNN), deep 
neural network, and recurrent neural network (RNN) have been applied on various 
applications such as computer vision and automatic recognition of speech. Deep 
learning basically covers one approach that is to build and train the neural network 
(NN). Neural network uses multiple hidden layers and multiple nonlinear opera-
tions which are performed on each layer. There are three deep learning algorithms, 
i.e., supervised, unsupervised, and reinforcement learning algorithms. A number of 
sensors are deployed in the IoT, and the IoT generate a homogeneous volume of 
data for many applications such as smart homes, smart manufacturing, and smart 
agriculture. Deep learning plays role in embedded and mobile deep learning, and it 
is feasible of making IoT applications more reliable and effective.

Various Software Libraries
There are various frameworks that support various techniques, i.e., machine learn-
ing and deep learning.

• Torch
• Theono
• TensorFlow
• Caffe

Torch
In which there are many community-driven packages. For example, image process-
ing, video processing, computer vision, etc. It is efficient and easy to use, which is 
based on LnaJIT. It is a scripting language with the implementation of CUDA.

Theano
It works in an n-dimensional array to evaluate the mathematical expression, and it 
is a faster and efficient approach. This library is for large-scale computation.

TensorFlow
It is for the distributed computing. It is not as much as faster than the Theono. For 
numerical computations, it uses data flow graph.

Caffe
It gives poor performance for recurrent networks. Caffe 2 is more powerful and 
scalable, and it is a successor of Caffe. Apart from those libraries, some other librar-
ies are Keras, Lasagne, etc. All these libraries are reusable and user-friendly. They 
all support a distributed environment.

This chapter will discuss the challenges in embedded, mobile, multimedia 
healthcare, and many more applications in the IoT with deep learning to process 
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large amounts of data with advanced techniques and methods, for example, deep 
learning, machine learning, etc. Most of the applications include sensor data, e.g., 
most of the healthcare applications include sensors, i.e., detection of pulse rate, 
heart rate detection, automatic blood pressure detection, etc. It can be connected 
with smartphones for the fitness-based application in measuring a number of steps, 
count of the calories, count of heartbeat, etc.

Deep Learning Techniques/Methods Used in the Current Era
• Just like machine learning is considered as the subfield inside the circle of artifi-

cial intelligence, similarly, deep learning is the subfield present inside the circle 
of machine learning. The mechanism used in deep learning is learning deep rep-
resentations which involve hidden layer processing, i.e., the involvement of 
learning multiple layers and abstracts from data [14]. Practically, any neural dif-
ferentiable architecture is considered as deep learning until it satisfies the condi-
tions of optimizing a differentiable objective function with the use of a variant of 
SGD, i.e., stochastic gradient descent. Both supervised and unsupervised learn-
ing tasks have supported the tremendous growth of neural architectures. A few 
major techniques are listed below:

• Multilayer Perceptron (MLP): The feed-forward neural network is the multilayer 
perceptron, and between the input and the output layers, it consists of multiple 
layers hidden. The mechanism involves the perceptron employing the arbitrary 
activation function and does not force compulsions on strict binary classifiers. 
MLPs are generally seen as nonlinearly transformed stacked layers, intending on 
learning hierarchical feature representations. Universal approximations are 
another name given to MLPs.

• Autoencoder (AE): Autoencoder is an unsupervised model that practices upon 
the reconstruction of input data in the output layer. The middlemost layer also 
known as the bottleneck layer is considered as the salient feature representation 
in the input data. We might witness a few variants of autoencoders, majorly 
denoising autoencoder, etc.

• Convolutional Neural Network (CNN): It is also one of the special kinds of feed- 
forward neural network which consists of convolution layers in addition to pool-
ing operations. It is capable of enhancing the efficiency and accuracy through 
capturing the global as well as local features significantly. It works best on the 
data which show grid-like topology.

• Recurrent Neural Network (RNN): RNN focuses on modeling and processing of 
sequential data. It consists of loops and memory so that they remember the for-
mer computations, unlike any other feed-forward neural network. In such cases 
there might be a problem of vanishing gradient, variants like LSTM (long short- 
term memory) and GRU (gated recurrent network) are put into action to over-
come such an issue.

• Restricted Boltzmann Machine (RBM): RBM generally comprises two layers, 
the hidden layer and the visible layer, and therefore may be referred to as a two- 
layered neural network at times. The restricted word here implies that there exists 
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no phenomenon of intra-layer communication in either of the layers of this net-
work. It is very easy to stack it to a deep net.

• Neural Autoregressive Distribution Estimation (NADE): NADE follows unsu-
pervised model which is built on top of an autoregressive model along with feed- 
forward neural nets. In order to model data distribution and densities, NADE is 
proved to be a quite efficient and tractable estimator.

• Adversarial Networks (AN): AN comprises a discriminator and generator which 
makes it a generative neural network. The two neural networks are allowed to 
compete within themselves in a minimax game framework by training them 
simultaneously.

• Attentional Models (AM): AM are considered to be differential neural architec-
tures. Their operational implementation is established on content addressing on 
an input sequence. Majorly domains of computer vision and natural language 
processing incept such mechanisms because of them being typically ubiquitous. 
Even deep recommender system research is witnessing the emergence of the 
attentional mechanism.

• Deep Reinforcement Learning (DRL): DRL is a trial and error-based operation. 
The basic components which come under this paradigm are agent, actions, envi-
ronment, states, and rewards (can be even penalties). DRL is the only learning 
process that has achieved human-level performance in the fields of gaming, self- 
driving cars, and many other domains. It is based on the reinforcement learning; 
in fact with the combination of deep neural network, without handcrafted fea-
tures, and domain heuristics through deep neural nets, the agents are enabled to 
acquire knowledge from the raw data and come up with efficient representa-
tions [14].

Organization of This Work
Section 2 discusses the evolution of deep learning techniques in detail. Section 3 
discusses our motivation, the reason behind writing this article on IoT applications 
with deep learning. Further, the scope of computer vision or machine learning and 
deep learning during COVID-19 and post COVID-19 era is presented in Sect. 4. 
Section 5 discusses deep learning frameworks, used in various applications (e.g., 
healthcare, transportation, agriculture, finance, etc.). Then, Sect.6 discusses several 
generative models in detail. Section 7 discusses the uses or role of deep learning 
applications in an Internet of Things-based environment. Further, Sect. 8 discusses 
various possibilities with deep learning for IoT-based applications. Section 9 dis-
cusses several opportunities and challenges in deep learning for IoT-based applica-
tions. Further, Sect. 10 discusses future research gaps in deep learning-based IoT 
environment for the twenty-first century. In last, Sect. 11 concludes this work in 
brief by including several interesting future remarks.
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2  Evolution of Deep Learning Techniques

The human brain links to neural networks and relates to computer model which was 
established by Walter Pitts and Warren McCulloch in 1943. They called threshold 
logic to mimic the thought process with the combination of mathematics and algo-
rithm. In 1960 the ongoing back model was lauded by Henry J. Kelley.

Deep learning model is CNN based on ANN (artificial neural network). In deep 
generative model (DGM) such as the nodes in deep belief neural network and deep 
Boltzmann machine [4].

In 1967 [5], Alexey Ivakhnenko and Lapa published a working learning algo-
rithm for supervised, deep, feed-forward, and multilayer perceptrons.

In 1986 [6, 7], Rina Dechter introduced deep learning to the machine learning 
community. In 2000 [8, 9], Igor Aizenberg and his colleagues introduce ANN (arti-
ficial neural network) with Boolean threshold neurons.

In 1989, Yann Lecun et al. applied the backpropagation algorithm which was the 
reverse automatic differentiation in 1970, with the deep neural network in handwrit-
ten recognition [10–13] of ZIP codes on mails. It required 3 days to train the algo-
rithm [14].

In 1992, cresceptron was published [15–17]; in recognition of 3D objects, it is a 
method in scenes of cluttering. In cresceptron, in each layer without supervision, 
cresceptron learned an open number of features, through back analysis. By deep 
neural network, max pooling is now often adapted, e.g., ImageNet tests.

In 1994 Carvalho with Mike Fairhust and David Bisset introduced or printed 
results of Boolean neural network with multilayer [18].

In 1995 [19–21], Brendon Frey introduced the wake-sleep algorithm which was 
fully connected with layer and several hundred hidden units, and it was taken over 
2 days to train the network.

The way to get backpropagation to work is to use continuous activation func-
tions; the researchers used binary neurons. That time, they didn’t think about the 
gradient that they can train with gradient also even if they didn’t have the idea of a 
continuous neuron.

In 1995 the field again died and the idea of the neural network got out of control 
but in 2010 neural nets again came out and people used neural nets in recognition of 
speech with dynamic performance with good improvement; in 2013, computer 
vision also worked with neural nets. In 2016, neural nets were used by natural lan-
guage processing (NLP). From 2017 to 2020, neural nets or neural network is used 
in many applications, i.e., robotics and prediction. Now, machine learning and deep 
learning algorithms are working in many areas in managing/tracking/identifying 
COVID-19 patients also.

Supervised Learning
90% of deep learning applications use supervised learning. Supervised learning is a 
process by which, you collect a bunch of pairs of inputs and outputs, and the inputs 
are feed into a machine to learn the correct output. When the output is correct, you 
don’t do anything. If the output is wrong, you tweak the parameter of the machine 

Architecture, Generative Model, and Deep Reinforcement Learning for IoT…



248

and correct the output toward the one you want. The trick here is how you figure out 
which direction and how much you tweak the parameter, and this goes back to gra-
dient calculation and backpropagation. Supervised learning stems from perceptron 
and Adaline. The Adaline is based on the same architecture with weighted inputs; 
when it is above the threshold, it turns on and below the threshold, it turns off. The 
perceptron is a two-layer neuron net where the second layer is trainable and the first 
layer is fixed. Most of the time, the first layer is determined randomly and that’s 
what they call associative layers.

3  Motivation

In-deep learning strategies have appreciated great achievement in the corrective and 
speaking society in the last few years, hitting previous methods of acoustic model-
ing technology, language modeling, etc. There are several factors to consider that 
contributed to this success. In all application backgrounds, deep learning structural 
skills practical presentations from unlabeled data and multidisciplinary work stud-
ies were extensively useful. In many language processing tasks and language model, 
integrating the space vector learned word models, smooth and compiled based on 
semantic and syntactic knowledge.

Content in the context of words, with repetitive structures, has led to significant 
improvement. Repeated neural networks have also shown promise in music pro-
cessing. In acoustic modeling, the ability of deep structures to distinguish many 
aspects of input variables, such as diversity results that rely on the speaker in speech 
acoustics.

4  Scope of Machine Learning and Deep Learning During 
COVID-19 and Post COVID-19 Era

COVID has exposed the limitations of deep learning and machine learning. That 
was not the first time the technology has failed. In 2016, machine learning algorithm 
failed to predict the Brexit vote as well as the US presidential election. Few reasons 
behind the popularity of techniques in the Recent Few Years are as follows:

• Machine learning and deep learning have high computational power.
• Due to high speed of deep learning algorithms, it improves the graphics 

processing.
• Large data provide better training material for the deep learning algorithm as 

large amount of data is increasing day by day.
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Rate of Increase of the Adaption of Internet of Things
As the rate of increase in the adaption of the IoT, the popularity of machine learning 
and deep learning increases. It also enhances the data storage capacity which leads 
to enhanced market growth. Before COVID-19 or a few years back, there has been 
a production of medical science with informatics techniques like medical imaging, 
genomics, etc., and now these have been transformed through advances in computer 
science.

4.1  Use of Machine Learning and Deep Learning 
to Fight Coronavirus

Deep learning has been applied in various fields, for example, healthcare, robotics, 
cyber-security, etc.; the more refined architecture of deep learning has made all the 
development possible. Machine learning and deep learning are used in many appli-
cations in COVID-19 to detect the virus. One of the technologies is thermal imaging 
which is used in early detection of virus and detects the person who has the virus 
and beginning to show the symptoms. These techniques come under the field of 
thermal imaging science. The camera is to detect the infrared radiations and show 
different colors for a different level of radiations. If the patient has a symptom of 
fever in the early stages of infection with the virus, then the body temperature 
will rise.

As shown in the image, the symptom with virus has more radiations on the upper 
part of the body. In Fig. 1, we can see the red colors and the more brutish color. Note 
that this image is captured by a computer machine.

Fig. 1 Thermal imaging of human by artificial intelligence [2]
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Through machine learning and deep learning algorithm, it is possible to detect 
the symptom or early detection of the virus. In transportation, business, and com-
merce, it is insufficient or expensive to test or detect the infection or virus, but by 
using cameras with thermal imaging and to scan individual, this would be based on 
machine learning or deep learning algorithm with processing of input data in real 
time. Many algorithms of ML and DL can be used for detecting the virus.

Some algorithms are support vector machine (SVM), K-nearest neighborhood 
(K-NN), random forest model, CNN, etc. Artificial intelligence (AI) is used in sev-
eral applications within the COVID-19 pandemic situation, i.e., scaling customer 
communication, analyze the behavior of patient who has disease, understand how 
COVID-19 spreads, and hospitals are using mobile app to manage COVID-19. 
Various learning algorithms are used with the IoT, i.e., searches the patterns where 
people are infected or sick and analyzes the captured data through hospitals, etc.

4.2  Role of Artificial Intelligence with the Internet of Things 
During COVID Situation

Artificial intelligence is the most demanding field of work, and it plays an important 
role in managing COVID-19. The devices that helped in managing the virus are the 
following:

• Connected Thermometers: It measures the body temperature of the patient, 
and it analyzes the real-time patient data and sends it to the nurse or doctor for 
continuous monitoring.

• IoT Button: It is designed for the emergency or any need in the hospital. If any 
facility needs in the hospital related to maintenance or cleaning issue, etc.

• COVID Voice Detector: It detects the voice of the infected patient by evaluating 
the sound of their cough, even breathe, and the way they speak. Many machine 
learning and deep learning algorithms are used to predict or analyze speech and 
cough data.

4.3  Artificial Intelligence with IoT Post COVID Outbreak

Artificial intelligence will also play a dynamic role in post COVID outbreak. 
According to expert only by wearing mask is difficult to handle the virus.

• Wearable Devices: This helps in monitoring real-time data related to person 
whose having symptom of COVID, collecting a large amount of data on the 
cloud, fast decision-making, and faster response time with analysis of data. In 
short, it is used to collect the signs and status of health from users. Devices are in 
the form of bracelets and ring.
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• Telemedicine and Remote Diagnosis: In which patient take consultancy 
through online and doctors diagnose the patients and prescribed the medicine to 
them virtually. Moreover, with the portable IoT devices, data is captured and sent 
to the doctors, and it helps the doctor to prescribed medicine to patients. For 
example, data related to body temperature, sugar and oxygen level in blood, 
heart rate, digital image of ear, throat, and other body parts, etc.

• Robotics and Automation: This is used in various hospitals by delivering drugs 
to the patients, doing surgery, and serving food to patients. This helps in reducing 
the direct contact of the doctor with patients. It also improves the efficiency of 
the medical staff. Camera is used in it to detect if the patient has taken medicine 
or not, etc.

• Automatic Air Purifier: It automatic purifies the air and maintains the quality 
levels of the air. It checks the air quality index; when the air quality index 
decreases, it gives alert that is also connected with the mobile application. It 
automatically sanitizes the hospitals, theater, and patient rooms through robots.

• Drones: Remotely monitoring of hospitals, any infected area, and dispensaries, 
and it helps the ambulance in clearing the traffic with AI-enabled cameras. It also 
helps to supply essential things, for example, blood, injections, etc.

5  Architecture of Deep Learning Frameworks for Various 
Applications (e.g., Healthcare, Transportation, etc.)

Today deep learning frameworks or deep learning architectures are used in various 
applications like healthcare, agriculture, etc. The details of the deep learning (DL) 
architectures in the section are given below and explain their underlying algorithms. 
There are three major types of neural networks (NN), convolutional neural networks 
(CNN), pretrained unsupervised networks, and recurrent or recursive neural net-
works (RNN), and up-to-date description will be provided.

5.1  Convolutional Neural Network (CNN)

The convolutional neural network (CNN) is one of the key neural networks (NN) for 
image classifications and image recognition in neural networks. Detections of 
objects, identification of faces, etc. are some of the places where CNNs are com-
monly used. As compared to conventional, a reduced pre-processing with less data 
pre-processing is required for image classification algorithms [22]. Parameter shar-
ing and sparse interactions are key aspects of CNN. Parameter sharing in a specific 
feature map is the sharing of weights among all neurons. This aims to reduce the 
number of system-wide parameters and makes the computation more effective and 
efficient, and on the other hand using kernels or feature detectors smaller than the 
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input image, sparse interaction, or sparse weights is implemented. Three phases are 
usually performed by each layer of a convolutional neural network. To create a 
series of linear activations, the layer performs multiple convolutions in the first step, 
this is followed by the generally called detector stage, and it involves running linear 
activations through a nonlinear activation function [23, 24].

CNN has been in development for a long time and many CNN-based architec-
tures have been developed. Some of the best-known examples are AlexNet, ResNet, 
LeNet and LeNet-5, and the GoogLeNet. We will explore more about these in the 
subsequent sections.

5.1.1  CNN-Based Architectures

One of the pioneers of deep learning, Geoffrey Hinton and his colleagues, Alex 
Krizhevsky and Ilya Sutskever, introduced AlexNet as the first deep architecture. 
AlexNet has several layers of convolution, followed by a layer of POOL. It includes 
eight main layers, where convolutional layers are the first five layers and fully con-
nected layers are the last three layers.

Designed by researchers at Google, GoogLeNet won the ImageNet 2014. 
Compared to AlexNet, CNN is much deeper; GoogLeNet comprises 22 layers rela-
tive to the 8 layers of AlexNet. The key contribution of GoogLeNet is to create an 
initiation layer that reduces network parameters. This in turn helps the network to 
perform better. At the top of the convolutional layers, GoogLeNet also uses the 
average method of pooling, which further removes parameters that lead to marginal 
gains inefficiency.

ResNet introduced a novel architecture with “skip connections” and heavy batch 
normalization features. Such skip connections are also referred to as gated units or 
recurrent gated units and have a strong resemblance to the successful recent ele-
ments used in RNNs. They were able to train a neural network with 152 layers 
thanks to this strategy, while still having less complexity than VGGNet. The layers 
are reformulated instead of unreferenced functions when learning residual func-
tions. As a result, by increasing network depth, in terms of refine and to achieve 
extensive precision, these residual networks are easier. The residual modules are 
stacked one over another, similar to GoogLeNet, to form a full end-to-end network. 
Simonyan and Zisserman created VGGNet. VGGNet consists of 16 convolutional 
layers and is very appealing because of its very standardized architecture. VGG 
involves subsequent convolutional layers accompanied by layers of pooling. To 
make the layers narrower, the pooling layers are responsible. The narrower the 
layer, the deeper it is.

In Fig. 2, it shows the top 5 error rate percentage. AlexNet is the highest in error 
rate and ResNet is the lowest in error rate.
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5.2  Pretrained Unsupervised Networks

Pretrained unsupervised networks are a deep learning (DL) model; in a neural net-
work using unsupervised learning, each hidden layer is trained in terns to get more 
accurate and appropriate fit of dataset. In unsupervised learning algorithm, the pre-
vious layer is used as an input which is a trained layer and then trains the whole 
network in supervised network. We will be discussing some pretrained unsuper-
vised networks such as autoencoders, generative adversarial networks (GAN), and 
deep belief networks in the following sections.

• Autoencoders are an unsupervised learning method in which neural networks are 
utilized for the purpose of representation learning. The network figures out how 
to pack and encode information successfully and afterward figures out how to 
recreate the information back to a portrayal that is as close as conceivable to the 
first contribution from the diminished encoded representations. The input, out-
put, and the hidden layer constitute an autoencoder. Dimensionality reduction for 
data visualization and data denoising are some of the most important applica-
tions of autoencoders.

• Generative adversarial networks (GANs) are networks that use generative mod-
els and have shown great progress over the years. Its abilities to generate and 
manipulate images in never seen before ways have made it one of the best 
approaches of deep learning. Subsequent sections have a brief introduction 
to GANs.

• Deep belief networks are algorithms that create outputs using probabilities and 
unsupervised learning. They are composed of latent binary variables, and both 
undirected and directed layers are present. Binary variables range in 0 and 1, and 
the probability lies between 0 and 1. Neural networks (NN) can be linked together 
in a series of diverse combinations. In order to do this, a connection is formed 
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between each network. Greedy learning algorithms are used to pretrain deep 
belief networks. This is a problem-solving strategy that involves making an opti-
mal option for each layer in the sequence and ultimately finding a global opti-
mum. Image recognition and video recognition are some applications of deep 
belief networks [25].

5.3  Recurrent Neural Networks (RNNS)

RNN focuses on modeling and processing of sequential data. It consists of loops 
and memory so that they remember the former computations, unlike any other feed- 
forward neural network. In such cases, there might be a problem of vanishing gradi-
ent; variants like LSTM and GRU are put into action to overcome such an issue. 
RNN is a type of neural network, in which the previous layer is used as an input to 
the current layer.

It actively captures consecutive and time dependencies. RNNs typically add 
cycles that connect neighboring nodes or time steps to the traditional multilayer 
network architecture [27].

Networks of long short-term memory (LSTM) are a form of recurrent neural 
networks that can learn order dependence in case of a sequence prediction issue. In 
complex problem fields like machine translation, speech recognition, and much 
more, this is an essential behavior. If the gap between references is minimal, RNN 
works accurately in bits of information referring. When the gap between the refer-
enced data is large where RNN starts to suffer, RNN cannot always link this data. 
As the gap between dependency increases, the error gradients disappear exponen-
tially, and as a result, the network can be very slow or not able to process learning. 
To cope with this, LSTM and TBPTT are used. RNNs are extremely powerful, and 
this is evident by the range of their applications. Some of the major applications of 
RNN involve prediction problems, language modeling and generating text, machine 
translation, recognition of speech, generating image descriptions, tagging of video, 
text summarization, call center analysis, detection of face, applications as image 
recognition in OCR, and composition of music [28].

Hence, this section discusses several deep learning frameworks which are in 
trend in this era and used in many popular and critical applications. Now, the next 
section will discuss about generative models of deep learning in detail.

6  Generative Models

The use of probability, statistics, and artificial intelligence (AI) in applications to 
generate a depiction or abstraction of observational evidence or target variables that 
can be computed from findings is called generative modeling [29]. In unsupervised 
machine learning, generative modeling is used as an attempt to justify phenomena 
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in data, allowing algorithms to consider the real world. It is possible to use this AI 
understanding to determine all sorts of probabilities through modeled data on a mat-
ter [29].

Generative models can be classified into two types: explicit density models and 
implicit density models. An explicit density function pmodel (x; Ө) is defined by 
explicit density models, while implicit density models describe a stochastic opera-
tion that can produce data directly. Maximum likelihood models are a good example 
of explicit density models. Meanwhile, generative adversarial networks (GANs) 
have proven to be the best implementation of implicit density models [30]. GANs, 
being in active development and interest for several years now, have been described 
in the subsequent section.

6.1  Generative Adversarial Networks (GANs)

In 2014, Ian Goodfellow and others from the University of Montreal first proposed 
the idea of generative adversarial networks (GANs). In any domain, GANs are able 
to imitate any data distribution: images, audio, voice, and prose. GANs train two 
models in parallel using unsupervised learning. How they utilize a boundary check 
that is significantly less than average as for the volume of information on which the 
organization is prepared is a pivotal component of GANs. As comparable to the 
training dataset, the network is compelled to effectively the training data, leading to 
improved performance at generating data. A GAN network is made up of a parallel 
working discriminator (D) and a generator (G). The purpose of the generator is 
about being able to produce a fake output that matches a real output, through the 
training of the generator from its encounters with the discriminator and not with any 
real material [31]. With the ability to distinguish false data from real data, the gen-
erator’s purpose is to create an output that is so identical to the reality which con-
fuses the discriminator [23].

A random vector of fixed length is accepted as an input by the generator model 
which then generates a domain model. The vector is extracted from a Gaussian 
distribution completely at random. Points in this multidimensional vector space 
relate to points in the problem area and produce a compact representation of the 
dataset after training. Latent variables are those variables that are essential to a 
domain but not explicitly measurable. The vector space is referred to as a latent 
space which provides compression of the defined raw data or high-level principles, 
such as the arrangement of data input. The generator model adds sense to points in 
a specified latent space in the case of GANs so that additional points taken from the 
latent space can indeed be offered as input to the generator model and used to intro-
duce additional and related examples of output. The generator model is retained and 
used to produce new samples after practice [33].

The discriminator model generates a validation binary decision mark by taking 
an instance (true or generated) from the domain as input (refer Fig. 3). The model 
generator produces sample, and actual examples come out from training set. A 
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normal (and well-acknowledged) model of categorization is the discriminator. The 
model of the discriminator is eliminated after the training phase, now that we are 
concerned mostly in the generator. The generator can often be reused based on its 
learnings. Using the same or related input data, any or more of the function extrac-
tion layers may be used in transfer learning applications [33].

Generative models have the ability to be used in numerous applications and are 
often used to improve image resolution [32]. Another helpful application of GANs 
(generative adversarial networks) has become the ability to produce images based 
on a comprehensive caption specification [34].

7  Deep Learning Applications in the Internet of Things

The neural network model works better in some special domain, i.e., CNN (convo-
lution neural network) model works better in vision-based application and dimen-
sionality reduction works better in visualization [35–37]. There are many other 
applications of DL in which the IOT is used, i.e., human poses detection for smart 
home automation and automatic car assistance. This section first discusses about the 
foundation services of the IoT that is used by deep learning and then discusses about 
applications of deep learning with the IoT.

7.1  Foundation Service of the Internet of Things That Is Used 
by Deep Learning

 a) In General

Fig. 3 Discriminator model of GAN
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Image Recognition: In which the input data for the deep learning is in the form of 
images and videos, and it can be equipped by the mobile devices with the high- 
resolution cameras Intelligent and automated with high resolution cameras can 
be used in many applications like smart home, etc. [38].

Speech and Voice Recognition: Smart wearable devices, automatic speech recog-
nition, and mobile devices, these are more suitable way for people to connect 
with their devices. The main concern in speech recognition or voice recognition 
is energy intensiveness when the functionality is on the resource-constrained 
devices. In neural network model, voice or speech data is taken as an input and 
then passes it through different hidden layers and then speech or voice sound of 
particular is presented as an output.

Indoor Localization: Indoor services can be used for the indoor navigation, and it 
is also used with the IoT in different sectors, i.e., smart homes, hospitals, etc. The 
input data used for these applications are mobile or data from mobile devices and 
other technologies also, i.e., RFID, Wi-Fi or Bluetooth, and ultrasound. DL mod-
els can be used along with this to predict the location [39–41].

Figure 4 shows the number of IoT applications and functional services

 b) As Applications

• Smart Homes: The concept of the smart home is used in many applications con-
nected with the IoT; nowadays, most of the appliances are connected with the 
IOT for enhancing the homes, to improve the life quality. This can be connected 
with DL models to predict or monitor the trends or health trends, etc.[42]

• Smart City: In which the IoT is included with a number of domains, i.e., agri-
culture, energy, transportation, etc. Large amount of data that come from differ-
ent domains can be analyzed by the DL models which will give high-quality 
output [43].

• Smart Energy: Smart grid and consumers of energy constitute a major part of 
IoT big data; this is the two-way communication. Based on the real- time analyt-
ics, energy providers are dependent on energy consumption patterns and thus 
learnings from this analysis can be used to predict and figure out the needs of 
consumer and take appropriate business decision [44].

• Intelligent Transportation System: Many applications used related to auto-
matic recognition of traffic signals, autonomous driving, and automatic car assis-
tance system. Lin et al. proposed a method or concept of real-time detection of 
traffic signs based on CNN model with GPU [45].

Image Recognition Voice or Speech recognition

Smart Home Smart Energy

Smart Cities ITSIOT Applications

Foundational 

Services

Localization

Smart Healthcare 

Agriculture

Fig. 4 IoT applications and functional services
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• Smart Healthcare: DL models can be used for healthcare application, i.e., clas-
sification of medical images that is a very known and trending application in 
healthcare domain. Pereira et al. [46] detect Parkinson’s disease at early stages 
with the idea of recognition of handwriting through CNN deep learning model.

• Smart Agriculture: IoT and DL models can be used in domain of agriculture, to 
recognize the number of crops and diseases of plants. Classification and predic-
tion of crop disease can be done using CNN or other models of deep learning. 
Mobile app can be used to identify the fruit, vegetable, and plant disease. It can 
be helpful for farmers [47].

 – Other Applications of Deep Learning Used with the IoT

• Education: In which IOT and DL models can be used in education domain. 
Mobile devices can be used to collect the data of learners or students. DL models 
can be used to predict the progress of the students, for example, MOOC courses 
are very popular nowadays and large amount of data generated from the learners 
or students. It is helpful to analyze and predict the behavior of struggling student 
[48, 49].

8  Possibilities with Deep Learning in IoT-Based Applications

The present deep learning gives the medical care industry the capacity to examine 
huge measure of information at remarkable paces without settling on precision. In 
general, mathematical methods enable deep learning models to operate at human 
level cognitive ability; also it works based on hidden layers. In the near future, deep 
learning use will be a hot technique to use in healthcare, as well as for suggesting 
healthcare best tools, techniques, curing techniques for a disease, etc. It will change 
and make a huge in this world. We can find how many multimedia applications are 
used in healthcare industry.

Hence, Figure 5 discusses future uses of deep learning for multimedia applica-
tions in healthcare industry.

8.1  Possibilities with Deep Learning

• Quantum Deep Learning

Quantum annealers along with other deep quantum information processors like 
programmable photonic circuits can be used to construct deep quantum networks. 
The Boltzmann machine is said to be the simplest deep quantum network. Bits with 
tunable interactions constitute the classical Boltzmann machine. In order to ensure 
that the dispersal of its expressions matches to the statistical data, by adjusting the 
interaction of its constituting bits, Boltzmann machine will be trained. Using an 
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adjustable model corresponds with the set of interacting quantum spins if neural 
network (NN) is considered and it can be quantized. Thus, we can peruse out the 
yield qubits to get the outcome by instating the information neurons in the Boltzmann 
machine to a fixed state and letting the framework to get warmed up. Compared to 
a general-purpose quantum computer, the quantum annealing device (QAD) (quan-
tum information processor) is much easy to construct and enlarge. D-Wave com-
puter is one such device. The readers are suggested to refer [50] to know more about 
potential limitations of machine learning and deep learning.

8.1.1  Others

In the future, for fast coding, deep learning tools will incorporate simplified pro-
gramming frameworks. The most popular deep learning tools, like TensorFlow, 
BigDL, OpenDeep, Caffe, Theano, Torch, and MXNet, will be more useful in the 
near future. Deep learning tools will be embedded in every design surface in almost 
every application. For visual development of reusable components, the deep learn-
ing toolkits will support a larger scale. Hence, few possibilities can be made with 
deep learning as:

• Deep learning networks will clarify computer memory.
• In building datasets for DL models, neural architecture search will play a key role.

Multimedia Applications in
Healthcare

Applied
Computing

Enterprise
Computing

Enterprise
Applications

Enterprise
Information

Systems

Consumer
Health

Healthcare
Information

Systems

Forecasting

Record
Storage
Systems

Enterprise
Information

Systems

Multimedia
Information

Systems

Computing
and Business

Automation

Life and Medical
Sciences

Operations
Research

Information
Storage
Systems

Information
Systems

Application

Information
Storage

Alternatives

Information
Systems

Social and
professional topics

Professional
topics

Networks

Fig. 5 Deep learning future uses for multimedia applications in healthcare industry

Architecture, Generative Model, and Deep Reinforcement Learning for IoT…



260

• To search convolutional architectures, many applications will continue to use 
reinforcement learning.

Hence, this section discusses the uses of deep learning in the current era and in 
the next decade. Now, the next section will discuss several opportunities and chal-
lenges in deep learning-based IoT-based applications in detail.

9  Deep Learning for IoT-Based Applications: Opportunities 
and Challenges

To support reliable and low-cost communication, next-generation wireless networks 
are needed. Over the previous few years, artificial intelligence (AI) has grownup 
exponentially with machine learning (ML) in deep learning (DL) and enhanced 
learning (EL) which shows its importance in many types of applications, where 
planning or retrieval problems govern an important role. Internet of Things (IoT) 
infrastructure is one of the most important applications for next- generation wireless 
networks. Many researchers and practitioners widespread nature of this type of sys-
tem leads to evaluate the use of DL techniques to make IoT smarter, more trustwor-
thy, and more efficient. By 2020, Forbes predicts that the IoT industry will grow. 
Smart cities, smart grid, health, and IoT (IoT) industries are the pioneers of this 
major transformation and growth. The Industry 4.0 scale is taking benefit of the IoT 
industry.

IoT applications have a large number of disseminated devices that contain static 
data. Clearly, wireless solutions are particularly important in this context as evi-
denced by the huge growth of industrial components (usually very low-key) that 
facilitated the real execution of this technology. Data gathered by devices grows 
slowly in size and heterogeneity. To improve intelligent and efficient resource man-
agement and network management is the edge of DL, and to improve overall system 
performance of the basic devices is essential. IoT devices produce large packets or 
short packets over wireless downlink due to which communication agreements also 
need to be in line with the dynamic IoT status in real time. For standard wireless and 
wireless networks, IoT networks often need to be developed depending on their 
power consumption, and load balancing techniques should be designed devices for 
many years in a trustworthy way to use the IoT.

The diversity of IoT devices also increases the issue of interoperability from a 
practical point of view. The one of the biggest problems in the industry is security, 
and security detection to infrastructure protection from harmful network attacks, 
unwarranted access, and protecting user privacy is essential but at the same time 
challenging. For example, in order to provide the largest category of cyber threats, 
the malicious detection systems need to adapt to unexpected events. The smart IoT 
needs to face all the major challenges listed above. Deep learning (DL) resolves a 
wide variety of difficulties without human intervention.
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10  Future Research Gaps in Deep Learning-Based IoT 
Environment for Twenty-First-Century Generation

The real applications with a variety of features and complex system deal with a 
variety of domain changes. In case of industry with the complex system, the differ-
ent manufacturers produce the same system but with different sensors and sensory 
numbers, e.g., to monitor the condition or climate. Research into the evolution of 
unintelligible domains, especially those used in complex physical systems, is lim-
ited but has great potential to have an impact, especially on industrial systems.

Another idea is to adopt the simulation into the real app and use the simulation 
space. This approach is particularly appealing as the details will be sufficient in the 
source domain. Production models are widely used in computer viewing functions. 
Examination of the availability of samples produced in accordance with the body’s 
compatibility is an open-ended research question. Also, controlling the production 
of relevant data samples by looking at body processes in the same way is an open 
research questionnaire. Learning enhancements have thrived especially in applica-
tions that have a broad and detailed simulation environment.

In addition, the levels of stress that RL has been used extensively in the PHM 
context have been equally reduced. In maintaining decision-making, the digital 
twins can provide support. Complex problem requires research. Moreover model 
can be enriched with information obtained as deep learning (DL), and expert knowl-
edge is a highly renouncing research area. While many of the indicators are cur-
rently being traced to physics-enabled machine learning, there is no consensus or 
integration into the alternative methods and how they can be transmitted to indus-
trial applications. Further research is needed to develop and integrate these 
approaches, which may also lead to improvements in the definition of advanced 
models and methods. Datasets are supposed to be the leading drivers of research and 
experimentation in many areas in deep learning (DL) like NLP (natural language 
processing) and CV (computer vision). However, in the PHM context, the lack of 
representative data prevented the widespread use and modification of DL methods 
in industrial applications.

There are many solutions to this challenge: expansion of data, data processing, 
and use of physics machine learning models or rather from an organizational per-
spective, data sharing across corporate boundaries. ML models tend to be less con-
structive and have an increased risk of overheating when insufficient data is 
available.

However, the study of adding data to time series data is limited. Investigating 
how data additions can be used in PHM situations, especially in time series data, is 
one of the potential indicators of research. Newly, many methods of producing sam-
ples or defective traits have been suggested by neural generative networks [50]. 
However, most studies focus on vibration data and pre-processed signals to make 
them look like the image. An exciting research guide is to explore the transfer of 
these approaches to extremely complex databases and time series data.
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In the future, an additional challenge that needs to be addressed is the effective 
and efficient structure and selection of training data stocks. This applies specially to 
changing environments with very different working conditions where the training 
database does not fully represent the full range of expected working conditions. The 
decision is to be taken if the new data is added in the database then it need to train.

The research also focuses on practical learning: selective detection that will 
make significant improvements in algorithm performance.

Lastly, future researchers may look forward to continue their research work on 
black box problems, scalability, standardization, and the structure of the deep learn-
ing model.

Hence, this section discusses several research gaps in deep learning models like 
black box problems, scalability, the structure of the model, etc., in detail. More 
details about computer vision, machine learning, and deep leaning can be found in 
[43–45, 50, 51]; readers are suggested to read the listed articles to enrich their 
knowledge. Further, reader can refer [52–55] articles for knowing about several 
critical issues in the Internet of Things and various computing environments.

11  Conclusion

Deep learning (DL) and the Internet of Things (IoT) have been applied to a number 
of applications, and they have drawn lots of attention of researchers in current years. 
These two technologies are the chain like producer and consumers; the IOT gener-
ate the data or raw data that is analyzed by the deep learning algorithms, and deep 
learning (DL) generate high end level abstraction that give into the IOT system for 
the sufficient changes and good performance of services. The paper explained char-
acteristics, challenges of deep learning with IOT, and architecture of deep learning. 
It also presented the use of artificial intelligence technologies with the IOT and deep 
learning or machine learning algorithms. Moreover, in this paper, the future research 
direction is identified in the path of deep learning for IOT-based application.

Further Reading
• Deep Belief Network
• Robotic Process Automation
• Intelligent Automation
• Automated Analytics
• Quantum Programing
• Quantum Machine learning
• Quantum Deep learning
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Enabling Inference and Training of Deep 
Learning Models for AI Applications 
on IoT Edge Devices

Divyasheel Sharma and Santonu Sarkar

1  Introduction

Consider an autonomous driving vehicle that must infer the road, pedestrians, vehi-
cles, and other objects ahead and in its surroundings. The vehicle must make real- 
time decisions where any delay could mean a catastrophe. Similarly, consider an 
industrial surveillance system that tracks objects in a factory. Since the factory 
workers would inevitably be part of the video stream being processed, their privacy 
is a concern, ethically, and enforced by regulations such as GDPR [1]. In both the 
scenarios, if the artificial intelligence or machine learning (AI/ML) models that 
provide inference are deployed on the cloud, the real-time decision-making may 
suffer for the autonomous vehicle, and the risk of personal and proprietary- industrial 
data breach increases for the factory. It would be better to deploy the inference mod-
els at the edge (i.e., on the autonomous vehicle; and within the factory premises/the 
camera) to reduce the latency in decision-making by the model and the risk associ-
ated with data transfer to the cloud.

There are numerous applications where edge computing brings fast intelligence 
locally, such as air quality monitoring, people occupancy estimation, factory goods’ 
quality control, and precision agriculture. Nearly 70% of data is being created at the 
end devices, and half of this data is estimated to be processed at the edge. Moreover, 
the edge AI software market is said to grow from $335 million in 2018 to $1152 
million by 2023 [2].

The emergence of these applications that have a tight delay and privacy require-
ments and the rapid advancements in inferencing and training capabilities of AI/ML 
models on resource-constrained infrastructure has created edge AI as an attractive 
alternative to the cloud. However, edge AI’s success depends on how AI/ML 
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models, especially the deep learning models that promise the state-of-the-art predic-
tion accuracy, perform on resource-constrained edge devices.

Figure 1 shows a generic interplay between end devices, the edge computing 
platform, and the cloud infrastructure. Edge computing platform (also known as 
edge device) can have varied hardware configurations. For instance, it can very well 
be a small-sized ASIC device like Google Coral, a tiny computer, or a reasonably 
large computing infrastructure with containerized services.

An edge computing platform remains in the end devices’ close vicinity to reduce 
the latency of data collected from these devices. The computing platform analyzes 
the data using AI/ML techniques and provides a real-time response back to the 
device. It also transmits the processed information to the cloud for large-scale data 
processing. Prominent cloud providers such as AWS, Google, IBM, and Microsoft 
Azure support building such edge platforms and provide a plethora of PAAS offer-
ings to integrate edge devices with their cloud platforms.

Typically, the modern trained neural networks-based models are hundreds of lay-
ers deep and large with millions of model parameters and activations [3] and do not 
fit in the constrained memory at the IoT edge. Moreover, larger networks tend to 
perform a larger number of operations (FLOPS) that degrade prediction latency.

Recent literature [4] suggests that deep networks’ compression and acceleration 
lead to an improved inference of deep learning models on the resource-constrained 
edge. For example, compressing the 95MB ResNet-50 model with 25.6 M param-
eters led to the 75% reduction of trained parameters and 50% computation time [4, 
5]. Typically, there is a trade-off between model compression and inference accu-
racy [6, 7], and various methods of optimization such as network pruning [8, 9], 
model quantization [6, 7], low-rank factorization [10–15], and knowledge distilla-
tion [16] are proposed. Cheng et  al. [4] have organized these methods into four 
categories: parameter pruning and quantization, low-rank approximation and spar-
sity, transferred/compact convolution filters, and knowledge distillation. Lebedev 
et al. [12] provide yet another overview of inference techniques that differentiate 

Fig. 1 Overview of AI/ML at the edge
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edge nodes’ optimization with sufficient edge resources from edge devices with 
tight resource constraints. The overview includes techniques to pre-process model 
input to narrow the search space of models (e.g., by targeted inputs focused on 
regions of interest in a video frame), optimize the model structure to reduce the 
number of multiplication operations, model selection where the optimization func-
tion weighs both prediction accuracy and inference time, and recommendations for 
energy-preserving hardware. Furthermore, it describes techniques related to the 
segmentation of models using horizontal and vertical partitioning of the models 
[17] and early exit of inference [18]. Various inference frameworks that support 
model optimization have also been developed in the industry: TFLite [19], Nvidia 
TensorRT [20], and specialized hardware (ASICs), e.g., Nvidia Jetson series [21], 
coral from Google [22], Intel OpenVino/Movidius [23, 24], and Qualcomm’s 
Snapdragon [25].

Another option to enable edge AI is to train the model on edge. Storing and train-
ing an AI/ML model on edge can lead to cost-savings that are otherwise associated 
with first, transferring data to the cloud and, second, centrally training the model on 
extensive computing infrastructure. Moreover, keeping the data and processing at 
the edge preserves privacy. Although singularly, an edge device is resource- 
constrained, distributed training is possible considering many edge devices’ collec-
tive resources. Mostly, a technique for updating a centrally trained AI/ML model 
with local updates from the edge called federated learning has been successful [26]. 
Other possibilities are to transfer-learn a pre-trained model on the edge device 
[27, 28].

The rest of the chapter is organized as follows. Section 2 focuses on model infer-
ence at the edge and discusses model optimization techniques such as network prun-
ing, model quantization, knowledge distillation, and inference frameworks. Section 
3 concentrates on training/retraining at the edge and describe federated learning that 
leverages hybrid cloud-edge architecture and retraining at the edge device via trans-
fer learning and weight imprinting. Finally, in Section 4, we conclude the chapter by 
discussing possible future directions.

2  Inference at the Edge

The inference is the process of using a trained machine learning model to make 
predictions on new input data. When the trained model resides at the IoT edge, 
inference happens at the edge.

Inference at an edge IoT device is of particular interest because it promises 
reduced latency and the risk associated with transferring data from the edge to the 
cloud, memory utilization, and dependence on constrained network bandwidth. 
However, the edge inference is challenging due to the typically large size of deep 
learning-based trained models, which provide state-of-the-art prediction accuracy. 
The models’ large size increases prediction latency and puts pressure on limited 
memory resources available at the edge device. Below we discuss three approaches 
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to optimize the models’ size for inference at the edge, namely, model pruning, 
model quantization, and knowledge distillation.

2.1  Model Pruning

Model pruning implies removing the redundant structure from a neural network. 
The structure could be optimized by removing weights, neurons, filters, or channels. 
Typically, insignificant weights are reduced to zero, i.e., as shown in Fig. 2, structur-
ally, the connections with those weights are removed from the neural network. This 
removal of neural network connections is known as connection pruning.

In [29–32], various researchers have shown that networks with too many param-
eters do not generalize for a fixed dataset. In contrast, networks with too few param-
eters may not represent the dataset adequately. Hence, a trade-off between prediction 
accuracy and network complexity can be explored and exploited to simplify neural 
network architecture, leading to improved memory footprint, energy efficiency, and 
model latency that are important for performing inference at the resource- constrained 
IoT edge.

Blalock et  al. [33] have discussed various pruning algorithms in their survey 
article and concluded that pruning works with little or no loss of accuracy. Sometimes 
pruning even increases accuracy, e.g., by finding the right capacity network that 
avoids overfitting [8].

Several model optimization techniques for neural networks have been proposed 
by LeCun [32] and references therein. Zhu et al. [9] have recently experimented 
with more modern deep learning models, namely, deep CNNs, stacked LSTM, and 
seq2seq LSTM models, and shown that a 10X reduction in weight parameters is 
possible with minimal loss in prediction accuracy.

Fig. 2 A connection-pruned network
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In their seminal paper on pruning, Han et al. [8] introduce pruning as an impor-
tant training-time step to reduce the network size in their algorithm that learns the 
network weights and the essential connections. The following two-phase learning 
algorithm with pruning is proposed to reduce the energy required to run deep learn-
ing models on mobile devices while preserving accuracy:

 1. In the first phase, the neural network architecture is trained, then all the connec-
tions with weights below a threshold are set to zero (i.e., the connections are 
removed, and hence, the network is pruned). This pruning results in a sparser 
network.

 2. In the second phase, this sparse network is retrained (i.e., fine-tuned) with the 
remaining connections to reinforce the new network architecture and compen-
sate for any loss inaccuracy.

As shown in Fig. 3, both phases can be iterated to simplify network architecture 
further while maintaining accuracy. Table 1 lists the pruning algorithm variants that 
are defined based on structure, scoring, scheduling, and fine-tuning [33].

Pruning is evaluated based on various goals for which it is performed, e.g., to 
reduce storage footprint or computational cost of inference. The overall compres-
sion ratio to the fraction of parameters pruned is evaluated to measure the impact on 
storage footprint. FLOPS is measured to evaluate the computational cost of infer-
ence since multiple parameters such as model input and filter size impact it. Blalock 
et al. [33] provide an open-source library – called ShrinkBench – for pruning with 
functions to evaluate pruning methods. ShrinkBench provides various magnitude- 
base baselines to compare pruning methods: global magnitude pruning, layer-wise 
magnitude pruning, global gradient magnitude pruning, layer-wise gradient magni-
tude pruning, and random pruning.

It has been found that for large amounts of pruning, pruning methods do better 
than random pruning; however, the same is not valid for small amounts of pruning. 
Pruning all layers of the network uniformly provides worse results than pruning 
selectively in different layers. Moreover, for a constant number of fine-tuning itera-
tions, pruned models tend to perform better than the same-sparsity models trained 

Fig. 3 Pruning neural networks with heuristic-based structured pruning with fine-tuning. For 
example, weights pruning with a low-magnitude heuristic below which all weight parameters are 
set to zero (i.e., connections are removed)
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from scratch with random weights initialization. However, recently, the Lottery 
Ticket hypothesis [37] proposes that dense, trainable neural networks have equiva-
lent sparse, trainable subnetworks with the same capacity and suggests a new tech-
nique to learn these equivalent sparse neural networks from scratch.

As shown in Fig. 4, first, train a randomly initialized neural network and prune 
it. Second, reset each remaining connection weights in the pruned network to the 
same randomly initialized value from the first step before the network was trained. 
Training, pruning, and then resetting remaining connections’ weights can be per-
formed iteratively till the model accuracy does not degrade significantly. The result-
ing pruned network is an equivalent subnetwork. Interestingly, it can be trained 
from scratch to achieve commensurate accuracy within commensurate iterations if 
the initial connection weights for the pruned structure are set to the same as the 
respective initial randomly initialized weights from the original large network. 

Table 1 Variants of pruning methods

Types
Variant 
techniques Description References

Structure Unstructured 
pruning

Each weight parameter is pruned individually to 
create a sparse network

[34]

Structure pruning Sets of parameters are pruned together. For 
example, entire neurons, filters, or channels

[35]

Scoring Local Pruning fractionally within a sub-component of a 
neural network and comparing scores at the 
sub-component level, e.g., a layer

[8]

Global Comparing scores at the network level irrespective 
of where pruning takes place within the network

[36, 37]

Scheduling Single-step Prune all parameters in a single step [38]
Multi-step Prune a fraction of parameters iteratively in 

multiple steps
[8, 39]

Fine- 
tuning

Original weights Continue to train the network with original 
weights

Rewinding Continue to fine-tune the network with weights 
from an earlier state

[37]

Re-initialization Choose new weights for the complete network [37, 38]

Fig. 4 The Lottery Hypothesis scheme to find equivalent sparse networks to a dense network
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However, finding the optimal subnetwork without pruning the network first is an 
open problem.

In practice, typically, to optimize the model, pruning is applied along with post- 
training quantization that we discuss next.

2.2  Model Quantization

Quantization means converting data to types with reduced precision. In neural net-
works, quantization reduces the floating-point representation of deep learning 
parameters (i.e., weights, activations, and gradients) to a lower-precision (typically 
8-bit integers). Like pruning, research efforts in quantization have also reduced 
memory footprint of the deep learning models while keeping accuracy comparable 
to the original large deep learning models. Quantized models are memory-efficient 
since they take less space, lead to the faster inference, have faster downloads on 
networks with limited bandwidth, and consume less energy.

Figure 5 shows a scale-round approach to provide intuition on how to quantize a 
real number, 2.56 from [0, 10] range to an 8-bit integer in [−128, 128] range using 
the uniform integer quantization scheme [38]. First, the number is scaled to the 
target quantized range and then rounded to the nearest integer. In this example, 
floating-point 2.56 is quantized to 32, an 8-bit integer value. We also see that 32, 
when scaled back, gives 2.528, which is not quite 2.56. This loss in precision may 
lead to some loss of accuracy in network predictions, which is typically acceptable. 

Fig. 5 A scale-round uniform integer quantization scheme to quantize a real number (i.e., 2.56) 
from [0,10] range to an 8-bit integer in [−128, 128] range
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The technique requires the exact quantization of zero, which is achieved by provid-
ing a zero-point offset. For simplicity, the zero-point offset is omitted from the 
example in Fig. 5.

Given a floating-point tensor (aka multidimensional array) Xfp, the quantized 
tensor Xq can be calculated by a uniform integer quantization scale-round 
shift scheme:
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where S~(Xq _ max − Xq _ min )/2n − 1 represents a scaling factor, z =  − Xfp _ min/S is the 
zero-point offset (shift), and n is the number of bits used for quantization.

Matrix multiplications are a typical operation in neural networks and involve 
multiplication and accumulation operations. Doing multiplication and accumula-
tions with 32-bit floating-point numbers as operands lead to 32-bit floating-point 
multiplications and accumulations. Since deep neural networks involve many matrix 
multiplications, and floating-point operations consume more power than integer 
operations, quantized operands could lead to resource savings and efficient compu-
tations. If operands are quantized 8-bit integers, products become 16-bit, and accu-
mulations are 32-bit integers. Since matrix multiplications chain in the neural 
networks, the operands need to be rescaled to 8-bit whenever required.

Quantizing weights and activations leads to smaller size models, whereas quan-
tizing gradients leads to lesser communication costs in a distributed learning setting 
[39]. Quantization may be performed before or after training a model. When an 
already trained model is quantized, it is called post-training quantization. Whereas 
in quantization-aware training, a training graph simulates low-precision behavior in 
the forward pass and accounts for it as quantization error that is optimized together 
with the training loss.

Why quantization works in deep learning is not well understood. Empirically, 
quantization is an effective method of compressing models. It is also theorized that 
low-precision operations can be considered noise, which is known to act as a regu-
larizer [39]. Other theories are emerging to prove that original networks’ statistical 
properties are preserved in quantized networks even when numerically the weight 
(or activation) values are changed from floating-point to low-precision num-
bers [39].

Quantization techniques can be divided into deterministic and stochastic tech-
niques. Further deterministic quantization can be achieved by various techniques: 
rounding [40], vector quantization [41], and quantization-as-optimization [42]. 
Rounding involves converting continuous values to discrete. Vector quantization 
uses cluster-based approaches to cluster real values into subgroups that are then 
replaced by the cluster-centroid value. Quantization-as-optimization poses the 
quantization problem as an optimization problem. Stochastic quantization tech-
niques comprise random rounding and probabilistic quantization. In random round-
ing, the quantized weights are sampled from a discrete distribution. In probabilistic 
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quantization, weights are sampled from a discrete prior distribution whose param-
eters are inferred using a learning algorithm.

2.3  Knowledge Distillation

Transfer learning [43] has shown that a trained model’s essence can be preserved 
and used to train another network. However, transfer learned models are typically of 
similar neural network architecture; hence, of similar depth and the number of 
parameters, constraining the usage of transfer learned models on resource- 
constrained IoT devices. The motivation is to be still able to train a large, deep net-
work that adequately learns a representation of the input data; however, it then 
transfers the generalizations from the large network to a shallow and lightweight 
model that can meet inference time performance constraints.

At training time, we want to extract the maximum knowledge from data. It makes 
sense to train large models, even ensemble models, that may even overfit individu-
ally whose predictions can be averaged at test time. However, when we want to 
make inferences on new data at test time, the large/ensembled trained network is 
accurate in predictions but inefficient under various deployment constraints such as 
that of an IoT edge. Large deep learning models are often over-parameterized [44], 
and big ensemble models have high redundancy and low knowledge per parameter. 
At test time, we need models that have a small memory footprint and minimum 
computations.

Since a trained deep learning model essentially represents a function approxima-
tion representing the training data, we have the function available to us after training 
the model. Can the knowledge in this learned function be transferred to a sim-
ple model?

The knowledge distillation technique [45] helps in achieving this goal. The tech-
nique differs from transfer learning in the fact that there is no weights transfer. 
Instead, the aim is to transfer generalizations (i.e., knowledge) from the larger 
trained network to a smaller, simpler model.

Knowledge distillation is a technique to create such a compressed model from a 
pre-trained large model. The small, compressed model preserves the knowledge 
from the large model and mimics its behavior. The main intuition behind knowledge 
transfer is as follows: Typically, a deep learning model – for example, a classifica-
tion model – outputs a one-hot encoded vector representing classes with a single 1 
and many 0s. However, more knowledge is embedded in the inputs (logits) to the 
softmax function that provides non-normalized probabilities for various classes, 
resulting in output as probabilities. Logits contain a more granular sense of the 
closeness of various classes to each other for a given input rather than a one-hot 
encoded vector that preserves a high-level binary output. For example, one-hot 
encoded vector predicting digit 7 for 0 to 9 digits is represented as [0 0 0 0 0 0 0 1 
0 0] whereas logits [0.0005 0.05 0.1 0.003 0.005 0.003 0.002 0.3 0.002 0.001] may 
tell us that while predicting handwritten digits class a 7 is closer to a handwritten 1 
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or 2 rather than to 6. Hinton et al. [45] refer to the relationship between classes as 
dark knowledge. As discussed in the example above, the knowledge that a handwrit-
ten 1 is closer to a handwritten 7 than 6 is an example of such dark knowledge. 
Hinton et al. [45] call the logits output as soft targets instead of a one-hot encoded 
output, referred to as a hard target.
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The logits are further softened using a temperature parameter (T) in the softmax 
function (Eq. 1), where different temperature values can provide even more infor-
mation about a class prediction’s relationship with other classes. For example, 
increasing the temperature may lead to soft targets that may tell more about the 
relationships between various classes.

While training a distilled network, one could train a small network for the soft-
ened targets. However, as shown in Fig. 6, Hinton et al. [45] suggest that the best 
results are achieved when both soft and hard targets are considered. The cross 
entropy loss is minimized between the original network’s soft targets and the small 
network’s soft predictions while keeping the temperature the same as what was set 
for the original network to obtain the softened targets. Similarly, another cross 
entropy loss is minimized for hard predictions and hard targets with temperature 
T=1. The knowledge distillation training method has also been referred to as a 
teacher-student training method where the larger model is considered a teacher and 
the smaller model is the student [47]. The technique was first introduced in 2006 by 
Bucila et al. [46]. Later in 2015, the method was generalized by Hinton et al. [45].

Fig. 6 Knowledge distillation
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3  Training Models at the Edge

Traditionally, machine learning models are trained centrally on complete datasets. 
Consider training machine learning models on users’ mobile data in such a setting. 
First, the data from each mobile device needs to be sent to a data center, and second, 
models need to be trained on the massive amount of collected data.

Most data, such as on a mobile device or an industrial IoT edge, are siloed and 
distributed, and there are data privacy and security concerns about sending data to 
the cloud. These challenges motivated researchers [48] to ask the question: Can 
machine learning models be trained locally on edge devices without sending data to 
the data centers? With growing computing power on the edge devices, there is an 
opportunity to store data locally and perform machine learning training at the edge 
node. This opportunity has led to the development of a new algorithm for distributed 
machine learning known as federated learning [48].

3.1  Federated Learning

Gboard is a keyboard for mobile phones that uses a successful practical implemen-
tation of federated learning. Let us consider the Gboard scenario [49].

The Gboard keyboard aims to allow mobile phone users to type on a small form 
factor keyboard efficiently. Since human fingers are more significant than the keys, 
the virtual key-presses may be imprecise. Gboard uses a machine learning model to 
predict a user key-press. Similarly, machine learning models predict the next words 
that make typing easier for users.

Since training models for mobile users centrally raise data-communication costs 
and privacy issues, federated machine learning is proposed. Figure 7 depicts a feder-
ated setting, where an initial model is trained centrally on a server and deployed on 
mobile phones. Each deployed model is then updated with training over local data. 
To preserve users’ privacy, the local data on the mobile phone is encrypted. When 
users’ phones are either idle or charging, they check in to the central parameter 
server; the server may begin new epochs for federated machine learning. Each 
mobile phone runs several rounds of stochastic gradient descent on the device and 
sends its parameter updates to the central server. Only the parameter updates (i.e., 
weight, bias, and gradients in the deep learning setting) are shared with the central 
server. Of course, not all phones are idle charging and available all the time. Hence, 
the central server picks a small percentage of users’ phones for participation in fed-
erated learning at a time. At the central server, all the parameter updates from vari-
ous mobile phones are averaged. These averages update the central model 
parameters. After the model is updated, the parameter updates received by the cen-
tral server are deleted.

To further maintain user privacy, differential privacy-based federated learning 
approach is proposed [50]. Figure  8 shows the two additional steps used in this 
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approach. First, the parameter updates to the central server are clipped below a size, 
and a calibrated noise is added after the model is averaged.

Unlike training in the cloud, in federated learning, the datasets are typically 
unbalanced and non-IID since each user’s mobile phone usage behavior differs. 
Empirically federated learning has been shown to train models with equivalent 
accuracy to the centrally trained at the cloud.

Fig. 7 Federated learning

Fig. 8 Differentially private federated learning. Edge devices clip their updates, and the central 
server adds noise before averaging the updates
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FederatedSGD (FedSGD) and federated averaging (FedAvg) are two algorithms 
for communication-efficient updates [48]. Stochastic gradient descent (SGD) can be 
applied to federated optimization. Single batch gradients can be calculated per 
round of communication. The gradient updates are sent to the central server, and the 
average gradient is used to perform the central model’s weight updates. The partici-
pation of devices is governed by a parameter C, where C=1 implies 100% of clients 
are participating.

In FedAvg, the device itself can perform multiple steps of training using gradient 
descent. The amount of computation is controlled by a fraction of participating cli-
ents in around (C), the number of training passes on a local dataset in each round 
(E), and the minibatch size (B) for edge-level updates. FedSGD is the same as 
FedAvg when E = 1 and B = ∞.

3.2  Adaptive Retraining

Transfer learning is the most popular method to adaptively retrain pre-trained mod-
els for related new data. Below we discuss two flavors of transfer learning that allow 
retraining at the resource-constrained edge device. In both cases, the last layer of the 
pre-trained model is retrained on the edge device.

Retraining via Backpropagation at the Edge
Backpropagation is used to update weights at each layer of a neural network. 
However, backpropagation can also be used to update weights only for the last fully 
connected layer of a pre-trained network. However, this principle is utilized to 
retrain a pre-trained network at the edge device with a deviation.

Typically, in transfer learning, weights at several layers are frozen except for a 
few (e.g., last) layers. Such a model is retrained. However, typically already com-
piled models are downloaded and deployed on an edge device. For example, a 
TensorFlow Lite model is compiled to run on edge TPU (tensor processing unit). 
This implies that the weights are locked and cannot be retrained on the edge device. 
However, in the retraining-with-back-propagation-at-the-edge technique, the last 
layer of the pre-trained network is removed, and then the model is compiled. The 
last layer is then implemented to allow retraining on the resource-constrained 
device. One drawback of this approach is that it requires iterative training and a 
more considerable amount of data.

Retraining via Weight Imprinting
The weight imprinting technique allows updating the weights of the last layer of a 
pre-trained neural network classifier using a small dataset on an edge device. The 
technique works for adding new classes to the model while preserving the network’s 
ability to classify the pre-trained classes.

Figure 9 shows the two steps involved in retraining new models on the edge 
using weight imprinting. First, a base classifier is trained. Then, for a few new data 
points, e.g., images of a class that is not currently represented in the network, the 
classifier’s embeddings are extracted, normalized, and added to the penultimate 
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layer of the base neural network as a weight update. The new extended classifier can 
be used to perform inference for all the existing and new classes.

Weight imprinting is based on setting proxies (a representative data point) for 
each class and adjusting activation vectors with L2 normalization. Essentially, using 
proxies and L2 normalization at the end of an embedding extractor such that the 
output embedding has unit length provides the mathematical trick that creates 
equivalence in proxy-based metrics learning and softmax-based classifiers [51], 
which enable learning with small amounts of data.

In contrast to retraining via backpropagation at the edge, weight imprinting does 
not need the model’s recompilation. However, if there is a sizeable intra-class vari-
ance in the dataset, backpropagation performs better than weight imprinting. Lastly, 
weight imprinting needs specific engineering for each use case, whereas backpropa-
gation at the edge is generic.

4  Conclusion

This chapter has introduced the most prevalent techniques for inference and training 
of neural network models at the IoT edge.

Model optimization with connection pruning leads to a sparser network with 
insignificant weights turned to zero. Zero weights can be ignored during inference 
to improve latency. Moreover, sparse networks tend to be easier to compress. 
Quantizing model parameters to perform inference using low-precision arithmetic 
produces models with smaller footprints that conserve processing power. The 
knowledge distillation technique generates smaller (distilled) models by targeting 

Fig. 9 Weight imprinting
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softer probabilities (i.e., outputs of logits) during training. Current literature has 
fewer references where the model optimization techniques of pruning, quantization, 
and knowledge distillation are combined. Combining model optimization tech-
niques to explore higher optimization efficacies that can lead to efficient model 
inference at the IoT edge devices is a fertile area for further research.

Federated machine learning trains a high-quality centralized neural network with 
the leading training loop running over distributed local datasets at the edge devices. 
Only local weight updates are transferred to a centralized parameter server that 
averages the parameter updates to train a new model. Federated learning is a step 
toward privacy-preserving training and avoids large data transfers from the edge 
devices to cloud. One of the prominent use cases of federated learning is the smart 
keyboard in Android devices. However, building a successful learning model from 
a set of heterogeneous devices is still a big challenge. Moreover, while there are 
steps toward privacy-preserving federated learning, adhering to new and future reg-
ulations and explaining federated-learned models also remain open questions for 
future research. Lastly, we discussed adaptive retraining techniques of either retrain-
ing the last layer via backpropagation at the edge or directly imprinting weights for 
new classes that perform transfer learning with fewer available data and make 
retraining practicable at the IoT edge devices.
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1  Introduction

The IoT is a collection of smart objects that are wirelessly connected via smart sen-
sors. The IoT consists of millions of smart devices “things” and it is considered as 
an integrated or extended part of the future Internet. Nowadays, the IoT dominate 
the research area of computer because it provides suitable solutions for various 
modernistic systems such as smart cities, transportation, emergency services, secu-
rity, retails, automotive industries, agriculture, healthcare, and waste manage-
ment [1].
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The three main components in any IOT system are (i) processing units, (ii) main 
memory, and (iii) storage. Processing units are responsible for performing the logic 
operations, whereas the main memory is responsible for fast and direct access of 
data by the CPU (i.e., short-term access). Storage is responsible for delivering data 
to the CPU from secondary storage (i.e., long-term access), traditionally imple-
mented by using HDD. However, nowadays, an emerging NVM type is designed to 
fit the requirements of evolution, such as NAND flash memory, NOR flash memory, 
MRAM, ReRAM, FeRAM, SCM, and STT-RAM. These types have the benefits of 
low-power consumption, supporting ULSI, and providing high reliability. The 
abovementioned benefits make NVMs the most favorable option for IOT systems 
and could replace the conventional storage such as HDD and volatile RAM [2].

Contributions In this chapter, we present a survey of techniques for designing and 
managing IoT using NVM.

The rest of the chapter is organized as follows: Section 2 mainly summarizes the 
characteristics and the challenges of various memory technologies.

Section 3 provides extensive detail about state-of-the-art techniques as follows: 
In Sect. 3.1, the IoT-based flash memory techniques are discussed. In Sect. 3.2, the 
IoT-based MRAM is presented. In Sect. 3.3, the IoT systems that use ReRAM are 
investigated. In Sects. 3.4 and 3.5, the IoT systems that use FRAM and SCM are 
reviewed, respectively. In Sect. 3.6, the techniques that use STT-RAM and TCAM 
are discussed. In Sect. 3.7 and 3.8, the IoT systems that use hybrid and others mem-
ories to improve the efficiency of IoT systems are discussed, respectively. Finally, 
summary and future research hints are given in Sect. 4.

Scope For the sake of a concise presentation, we limit the scope of this chapter as 
follows. We focus on NVM management techniques for IoT and not their circuit- 
level design issues. We focus on the key ideas of each work and include only selected 
quantitative results, since different works use disparate evaluation platforms and 
workloads. We hope that this chapter will be useful for computer architects, NVM 
designers, and researchers in the area of the IoT.1

1 We use the following acronyms frequently in this chapter: application programming interface 
(API), convolution neural network (CNN), deep neural network (DNN), dynamic RAM (DRAM), 
embedded flash (eFlash), erasable programmable read-only memory (EPROM), error-correcting 
code (ECC), polyethylene glycol dimethacrylate (pEGDMA), execute in place (XIP), flash transla-
tion layer (FTL), finite impulse response filter (FIR), garbage collection (GC), hard disk drive 
(HDD), initiated chemical vapor deposition (iCVD), Landau-Lifshitz-Gilbert (LLG), magnetic 
RAM (MRAM), magnetic tunneling junction (MTJ), microcontroller unit (MCU), nonvolatile 
large-scale integrated (NV-LSI), one-state error recovery (OER), phase-change memory (PCM), 
polymer-intercalated resistive random access memory (i-RRAM), radio-frequency identification 
(RFID), self-write termination (SWT), silicon-oxide-nitride-oxide-silicon (SONOS), single NVM-
based self-write termination (SWT1R-nvFF), single/multi/triple level cell (SLC/MLC/TLC), 
solid-state disk (SSD), spin-transfer torque random access memory (STT-RAM), static RAM 
(SRAM), storage class memory (SCM), storage memory management unit (SMMU), store energy 
(ES), structured query language (SQL), system on chip (SOC), ternary content-addressable mem-
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2  Memory Overview

This section summarizes the characteristics and the challenges of various memory 
technologies. Figure 1 presents the device level properties of various memory tech-
nologies. In this figure, endurance refers to the number of erase cycles a memory 
block can withstand before it becomes invalid.

The latency and energy consumption of write operations are significantly higher 
than that of latency and energy consumption of read operations for all NVMs. The 
specific characteristics of different NVMs are discussed below.

Flash Memory There are two types of nonvolatile semiconductor flash memory: 
NOR and NAND. In NOR flash, one end of each memory cell is connected to the 
source line and the other end directly to a bit line resembling a NOR gate. In NAND 
flash memory, the memory cells are connected in series with 16 or 32 memory cells 
connected to the bitline and source line through two select transistors. Figure  2 
depicts the schematic and circuit diagrams for NOR and NAND flash memory. 
NOR is a high-speed random access memory which can be programmed at byte 
level while NAND is similar to HDD. It is page-based and suited for storing sequen-
tial data such as pictures, audio, or PC data. Reading from NOR flash memory is 

ory (TCAM), true random number generator using write speed variation of oxide-based RRAM 
(TRNG-UWSVOR), and ultra large-scale integration (ULSI).
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identical to reading from RAM. As a result, most microprocessors used NOR flash 
memory as XIP memory [3], which means that the program located in NOR flash 
memory has the ability to be directly executed from the NOR without the need to be 
copied into RAM before. NOR flash memory is generally used in IoT system 
devices like GPS and e-readers that do not require as much memory.

NAND flash memory is a high speed serial access and the speed of program-
ming. In recent years, NAND flash memory has become popular to be used as sec-
ondary storage as it has the performance better than traditional storage. It is widely 
used as storage unit for data-heavy application in IoT systems, such as wearable 
devices, which require cheap and high-capacity storage.

ReRAM is one of the most promising memories, due to its low power consump-
tion and high-speed operation. Panasonic started the mass production of 0.18  m 
ReRAM for wearable and IoT applications in 2013. The most important feature of 
this memory which distinguishes them from flash memory is that they are byte- 
addressable. IoT systems have traditionally used DRAM as a volatile memory and 
HDD or (SSD (i.e., flash memory)) as secondary storage. The gap in their speeds 
lead to large variance in their interfaces. ReRAM offer many features such as high 
density and high endurance comparing to flash memory. ReRAM is a form of non-
volatile storage that operates by changing the resistance of a specially formulated 
solid dielectric material called a memristor – a contraction of “memory resistor” – 
whose resistance varies when different voltages are imposed across it [4].

ReRAM is based on a simple three-layer structure of a top electrode, switching 
medium, and bottom electrode as shown in Fig. 3. The resistance switching mecha-
nism is based on the formation of a filament in the switching material when a volt-
age is applied between the two electrodes. There are different approaches to 
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implementing ReRAM, based on different switching materials and memory cell 
organization. ReRAM can be classified as organic or inorganic ReRAM based on 
the properties of the insulator. Because of its low cost, good flexibility, and simple 
structure, organic ReRAM is very advantageous for wearable device applications. 
Furthermore, ReRAM has many advantages over DRAM, PCM, and MRAM, such 
as water-resistant due to its internal structural simplicity and material stability [5]. 
For the above reasons, the ReRAM is expected to be used as universal memory 
technologies in IoT systems.

PCM has been widely considered as alternative to DRAM. PCM can store data 
by switching the GST film between two states, namely, amorphous (reset, i.e., high 
resistance) and crystalline (set, i.e., low resistance). Figure 4 illustrates the sche-
matic drawing of the traditional mushroom-type PCM cell. PCM exploits the large 
difference between the resistivity of the amorphous and the crystalline phase in 
phase change materials where the electrical currents are applied to switch the mate-
rial repeatedly between the two phases. The main advantages of PCM over DRAM 
are its nonvolatility, zero standby power, resiliency to soft errors, low read latency, 
and scalability. However, PCM consumes more power than DRAM, has long write 
latency, and has lower lifespan [6].

FeRAM the bit cell of FeRAM structure is similar to a DRAM bit cell except it 
uses a ferroelectric layer instead of a dielectric layer to achieve nonvolatility. Due to 
the high write speed and unlimited endurance of FeRAM, it is suitable for event 
tracking in autonomous vehicles and other industrial IoT applications.

FeRAM is significantly faster, reduces write energy, and uses nominal voltages, 
which make it suitable for IoT applications especially in RFID [8]. Figure 5 shows 
the schematic diagram of a typical FeRAM cell.

STT-RAM stores data in MTJ. As illustrated in Fig. 6, MTJ is composed of two 
ferromagnetic layers in addition to an isolating barrier interposed between them. 
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This employed data storage technique has zero leakage power and can retain data 
without the need of any power supply for 10 years. Furthermore, STT-RAM has a 
comparable read speed than that of SRAM, and its single-cell structure presents 
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much higher density than SRAM. STT-RAM is an emerging NVM technology that 
has better write energy, endurance, and performance than traditional NVM such as 
eFlash. In more details, it provides low latency (≈ ns), high lifespan (≈ 1016 cycles), 
and low energy consumption (≈ f J perbit). These features make it as a promising 
solution to replace the eFlash memory on IoTs. On the other hand, it has some dis-
advantages such as susceptible to data security and data privacy attacks, as well as 
magnetic attacks [10, 11]. Table  1 provides comparative evaluation of different 
NVMs in terms of pros and cons.

Table 2 classifies the previous works based on optimization metric, and it is clear 
that the techniques proposed are guided by multiple optimization goals which need 
to be carefully balanced.

3  State of the Art Techniques

The selection of tools for evaluating NVM-based IoT techniques is very important. 
While the simulation has flexibility to examine the designs which may currently not 
have any real implementation, it may be very slow to permit high exploration of the 
design space. In contrast, real system insemination permits more accuracy testing, 
and because of their high speed, it permits to execute huge number of procedures 
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and instructions. Based on the above reasons, Table 2 also classifies the works based 
on their evaluation tools and platform. In the following sections, we discuss the 
previous techniques and mechanisms based on the type of NVM that has been used.

Table 1 A comparative evaluation of different NVMs [7]

NVM

NAND flash 
memory

(+) Inexpensive (+) Reliable
(+) Flexible (+) High degree of density
(−) Has lifespan (−) Does not support XIP

NOR flash 
memory

(+) Inexpensive (+) Reliable
(+) Flexible (+) High degree of density
(+) Ability to XIP without using too much power
(−) Has lifespan (−) Very expensive

ReRAM (+) High density (+) High endurance
(+) Water-resistant
(−) Limited write endurance (−) Resistance drift
(−) Susceptibility to process variation (−) High write energy and latency

PCM (+) High density (+) Scalability
(+) Zero standby power (+) Low read latencies
(−) Long write latency (−) High write energy consumption
(−) Limited write endurance

FeRAM (+) High speed (+) Nominal voltages
(+) Power consumption (+) High endurance
(−) Low storage density (−) Higher cost
(−) Overall capacity limitation

STT-RAM (+) Low latency (+) High lifespan
(+) Low energy consumption
(−) Susceptible to data security and data privacy attacks (−) Susceptible to 
magnetic attacks

Table 2 Classification based on optimization metric and evaluation platform

Category References

Optimization metric

Performance [5, 12–27]
Energy consumption [8, 11, 12, 16–24, 26, 28–32]
Accuracy [14, 21]
Lifespan [12, 14, 15, 18, 19, 21, 25]
Less area [19, 20, 22, 23]
Water-resistant [5]
Security [11, 19, 33]
Cost [23, 26]
Evaluation platform

Real system/prototype [8, 5, 11–14, 17–20, 25, 31]
Simulator [15, 16, 21, 22, 24, 26–30, 32, 33]
Both simulator and real system [23]
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3.1  Flash Memory

Due to the explosion of data that IoT devices will collect, a huge numbers of proces-
sors and reliable embedded NVM will be required to process and manage the data 
from these IoT devices. Flash memory is currently the most widely used nonvolatile 
memory that has attracted great attention in recent years.

Balsamo et al. [12] argue that there is a need to integrate transient approaches 
within a general IoT programming framework such as ARM’s mbed IoT device 
platform. The paper illustrates some current approaches in transient computing and 
highlights their appropriateness for operating with mbed. Following this, an assess-
ment of the Hibemus approach on an NXP device employing mbed libraries and 
APls is revealed as a validation of the transient approach with mbed. This was 
achieved specifically using MCU-dependent mbed APIs to access to the flash mem-
ory and MCU-independent mbed APIs to trace the allocated main SRAM memory 
to be saved.

Bando et  al. [13] introduce three caching mechanisms that are believed to be 
essential parts for IoT-oriented single-level storage systems. In the first caching 
mechanism, the memory appears as a large main memory with the aid of SMMU 
where data can be accessed in a unified manner despite whether it is on the memory 
or on the DRAM. The second mechanism reduces the access latency to resource- 
limited IoT devices by caching the table of the FTL on the host DRAM.

The third one is an ad hoc device-to-device data relay where nearby IoT devices 
can access other’s cached data by proximity-based wireless communication.

Deguchi et al. [14] propose two reliability enhancement techniques for 3D-TLC 
NAND flash-based SSD for DNN weight storage. The basic objective of the pro-
posed mechanisms is to reduce the number of data bit errors by ignoring the unes-
sential data bits to enhance memory performance. The first proposed technique, 
namely, OER, eliminates all of one-state errors in DNN weights when ECC fails to 
recover them. DNN weight data mapping, the second proposed technique, decreases 
errors of certain bits by assigning “0” to the reliable state of memory cells. The 
proposed memory has an extended data-retention lifetime by 700 times to achieve 
more than 10-year lifetime of IoT edge devices such as infrastructures and 
automobiles.

Shi et al. [15] propose an algorithm for data aggregation preprocessing called 
DAP to improve the efficiency of the flash memory. The proposed algorithm parti-
tions the data into normal and hot data to decrease the number of transfers of valid 
page and obstruct erasures through GC. The algorithm has been validated on the 
flash simulation platform FlashSim. Experimental results demonstrate the useful-
ness of the proposed algorithm in terms of enhancing the IoT-based power grid 
storage system’s performance, decreasing redundant write operations, reducing the 
number of physical block erasures, reducing the number of times of physical page 
read and write, and expanding the lifetime of solid-state devices.

Xu et al. [28] address the issue of reduction of power consumption in NVM by 
proposing two policies of cache management, which are the asymmetry-aware 
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cache filling and the locality-aware cache flushing. The first technique was pro-
posed to mitigate data locality and read/write asymmetry issues by triggering a new 
cache line filling only when all of them are occupied. Also, shadow cache, a small 
size SRAM, was introduced to predict data locality of a cache line. Shadow cache 
is looked up whenever a memory request misses in the working cache. The requested 
cache line will be migrated into shadow cache if it doesn’t exist in it also. Locality- 
aware cache flushing was introduced to judge whether a cache line should be invali-
dated after being flushed proactively. The authors demonstrate the effectiveness of 
the proposed policies, using micro-benchmarks, in reducing the power consump-
tion, and it outperforms the power-agnostic cache management policy.

3.2  MRAM

Due to the fact that nonvolatile memory-based circuits are becoming incredibly 
attractive for use in memory exhaustive applications such as digital FIR filters, Rao 
et  al. [29] present a magnetic RAM-based digital FIR filter. In their paper, the 
authors develop a compact mathematical model for MTJ. The state of MTJ in this 
model is calculated in two steps: dynamic switching state and tunneling resistance. 
The authors employ LLG equation to accomplish the first step so that the behavior 
of the model can be replicated while Julliere’s and Brinkman’s equations are used 
to calculate the resistance and current flowing through the MTJ.  Moreover, the 
paper proposes a new configuration, namely, 3T2MTJ, for MRAM that stores the 
data into two complimentary MTJs and designs a dual-port MRAM based on the 
proposed configuration. An evaluation of the performance of MRAM is conducted 
and compared with the classic SRAM-based system.

Senni et al. [16] investigate the employment of MRAM to design a process suit-
able for IoT. A validation of the rollback procedure, i.e., to completely restore a 
previously valid state of the processor when, for example, an error or power failure 
occurs, is also presented using RTL simulation. The rollback can be achieved by 
creating checkpoints to save the state of the system (both registers and main mem-
ory) either periodically or at strategic instants during the execution of the applica-
tion. The proposed work shows that MRAM demonstrates the best performance and 
energy estimations of the backup/restore phases when compared with differ-
ent NVMs.

Sun et al. [30] introduce a new computational architecture for CNN applications 
with MRAM memory. The architecture has been fabricated using the 22 nm device 
of STT-MRAM memory co-designed with processing-in-memory CNN accelerator. 
The basic operations of the proposed architecture include loading the CNN coeffi-
cients in MRAM and then, loading image into SRAM as it is faster for multiple read 
and write. After that, coefficients and image data are sent to CNN processing block 
for convolution operations. Finally, the convolution results will be sent to host pro-
cessor. The MRAM CNN accelerator chip enables multiple models within one sin-
gle chip, and it can be used for IoT and smart device applications.
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Table 3 summarizes the advantages/disadvantages of the aforementioned 
techniques.

3.3  ReRAM

Due to the simple structure and low-power embedded NVM of ReRAM, it has been 
utilized in the IoT to enhance power consumption performance as well as stabilizing 
the signals by making them stronger and clearly captured. This section discusses the 
methods that utilize ReRAM in the field of IoT systems. As a response to resistive 
random access memory issues in solution-oriented process and switching mecha-
nism uncertainty, Lee et al. [5] introduce a new organic ReRAM called i-RRAM 
that employs the iCVD process to deposit the polymer. In addition, pEGDMA with 

Table 3 A comparative assessment of different system design and architecture techniques

Flash memory

[12] (+) Transient computing approach that enables computation to be sustained despite power 
outages
(−) Limited lifespan for flash memory

[13] (+) Introduce three caching mechanisms that are essential parts for IoT-oriented single- 
level storage systems
(−) Using SLC composed of high cost

[14] (+) Extended data-retention lifetime by 700 times to achieve more than 10-year lifetime of 
IoT edge devices
(−) Using 3D TLC composed of low performance

[15] (+) Enhances the IoT-based power grid storage system’ performance. (+) Decreases 
redundant write operations. (+) Reduces the number of physical block erasures. (+) 
Reduces the number of times of physical page read and write. (+) Expands the lifetime of 
SSD.
(−) Classifying hot and cold data composed of extra overhead. (−) Not considering 
address mapping. (−) Not considering wear leveling

[28] (+) Reduce the power consumption
(−) Flushing policy composed of extra overhead

MRAM

[29] (+) Reduce the power consumption by 77% as compared to SRAM-based design. (+) 
Reduces memory size by half by using NOR cells, add shift, and barrel shifter cells
(−) Using NOR flash requires a much more complicated procedure when erasure 
procedure is invoked

[16] (+) MRAM has the best performance and energy estimations of the backup/restore phases 
when compared with different NVMs
(−) No real design (i.e., using a design kit) for MRAM is envisaged to accurately evaluate 
the energy, performance, and area overhead

[30] (+) Designs MRAM CNN accelerator chip that enables multiple models within one single 
chip, and it can be used for IoT and smart device applications
(+) Reduces the power efficiency to 9.9 TOPS/W with reliable read and write operations 
when compared with SRAM
(−) Using CNN composed of high computational cost
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a highly cross-linked structure was used as an insulator. It is shown that i-RRAM 
works stably even in water without any waterproof protection kit. The proposed 
memory presents a flexible, wearable, and waterproof organic memory as well as 
unambiguous switching mechanism.

Furthermore, Lo et al. [17] proposed SWT1R-nvFF for unipolar ReRAM devices. 
The proposed design aims to surmount the following challenges of nonvolatile 
nvFFs: the high waste of excessive ES in fast-switch as well as endurance and reli-
ability degradation because of overwrite. The proposed nvFF has three modes: flip- 
flop, store (NVM-write), and restore (wake-up). The proposed method manages to 
avoid overwrite and reduces ES by combining single NVM with SWT.

In addition, Ueki et al. [18] proposed low-power 2 Mb ReRAM macro to over-
come typical flash issues in data writing power consumption and reading time. The 
proposed ReRAM consists of a thin Ta2O5 switching layer inserted between a Ru 
bottom electrode and a metal cap. The function of bottom electrode is to stabilize 
high resistance states while the metal cap is used to control the forming voltage. The 
variation of off-state resistance was enhanced with a pulse modulated verify. In 
order to improve the high temperature retention, an interfacial layer, such as Ta2O5, 
was inserted on the Ru bottom electrode. This layer works as an oxygen supplier, 
and oxygen vacancies in the conductive filament are annihilated with the oxygen 
from the interfacial layer, resulting in the retention degradation.

TRNG-UWSVOR is proposed by Yang et al. [19]. The authors use reset speed 
variation as entropy source in their proposed circuit in order to diminish the com-
plexity of circuit and generate more random bits. The speed variation amplifies the 
fluctuation of oxygen vacancy trap and de-trap which make the signal strong and 
has long duration to be easily and precisely captured. Self-adaptive control of write 
driver uses cell state detect module to sense the write end point accurately and give 
feedback to the arbiter module. The clock cycles during resets is used to trig a coun-
ter and then serialized into a random bit stream. The proposed work shows strength 
in the signals; also the signals are smoothly captured as it has long duration.

3.4  FeRAM

IoT devices are rapidly growing which triggers the need for storage tools with high 
capacity. Many methods have been proposed to support the IoT with strong and 
robust memory by utilizing and employing the capabilities of FRAM. Jeloka et al. 
[8] proposed charge recycling FRAM method to improve the efficiency of read and 
write operations. This proposed approach was introduced to address the following 
issues of the conventional FRAM: (1) every bit consumes at least CV2 energy to 
pull both the FeCap and the bitline capacitance high. (b) Moreover, most of this 
energy is wasted because only a small fraction of it is used to switch the FeCap 
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polarity. The proposed method uses resonance between the FRAM array capaci-
tance and an off-chip inductor to generate a sinusoidal clock in order to be able to 
read from and write to memory efficiently. Two transistors, namely, pull-up and 
pull-down, are employed to restore the energy consumed to write or read and main-
tain the amplitude of the resonating waveform.

3.5  SCM

Dinesh et al. [20] introduced a new memory interface intellectual property for inter-
facing IoT SoC with storage class memory or NVM.  The proposed architecture 
employs the storage class memory as executable memory for IoT SoC while being 
invisible to core. In the current designs, one of the main issues is that the system has 
to be synchronized with a mobile device with higher memory or cloud in order to 
accurately process the collected data to reach conclusions and make decisions. This 
latency can be minimized by embedding the proposed IP interface as executable 
memory with parameterized cache that uses advanced caching algorithms. Table 4 
summarizes the advantages/disadvantages of the aforementioned techniques.

Table 4 A comparative assessment of different system design and architecture techniques

ReRAM

[5] (+) Stable wearable waterproof memory with high flexibility
(−) Using i-RRAM composed of overheating and high cost

[17] (+) Decreases the amount of power needed to store data and keep away from overwrite 
operations
(−) Using SRAM composed of low storage capacity, more complex design, and volatile 
(i.e., data is lost when memory is not powered)

[18] (+) Considerable power reduction in data writing and speeds up data reading process
(−) Using ReRAM composed of extra cost and difficulties in etching process

[19] (+) Amplifies signals’ strength so they would be captured clearly as they have long 
duration
(−) Using TRNG not support enough flexibility because it is implemented in hardware, 
and verification of randomness is required

FRAM

[8] (+) Raises energy efficiency in read and write functions
(−) Using FRAM composed of lower storage density, higher cost, and overall capacity 
limitation

SCM

[20] (+) Presents a practical solution for limited executable memory space issues
(−) The support is limited for read and write functions. (−) Doesn’t support write back in 
the IP
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3.6  STTRAM and TCAM

Yu Lu [26] introduced a unified STT-MRAM-based memory system which com-
bines both nonvolatile and volatile memories. A single memory subsystem can 
remove unnecessary energy-hungry transactions and dramatically improve the IOT 
energy efficiency. It can remove transactions that require large amount of energy 
and enhance IOT energy efficiency. Also, the proposed system minimizes the IoT 
weaknesses by providing stability and prevent anti-tearing and atomicity for secure 
transactions.

In IoT field, there are some major points that should be taken into account in the 
designing phase, for instance, decreasing power consumption, increasing security 
and intelligence, and nonvolatility. For that, Lai et al. [34] take the benefits of STT- 
MRAM to design the IoT device that improves the efficiency and achieves the sta-
bility in the processing data, as well as provides the non-power standby mode (i.e., 
keeps all IoT objects in the stand which leads to increase the battery life).

Replacing eFlash with SSTRAM is the main contribution of De et al. [10]. The 
authors utilized the SSTRAM instead of eFlash (associated with cost) to provide 
privacy and security for the data in the memory. In other words, STTRAM has the 
ability to bear the thermal and magnetic attacks which faces the IoT network archi-
tecture. STTRAM is based on the small free layer size to discover the attack and 
then discard it. Therefore, STTRAM helps the networks’ devices to keep on execut-
ing without deadlock.

TCAM is a kind of content-addressable memory, which is characterized by its 
flexibility due to the mechanism of manipulating the data in the memory. In other 
words, TCAM uses “don’t care” in the pattern matching [35].

Chang et  al. [27] present the challenges in the design of the nonvolatile 
TCAM. These challenges are summarized as follows: (i) The tolerance of a small 
resistance ratio is low. (ii) The long search takes more time. (iii) The length of the 
word is limited. Therefore, the authors introduced a standard structure for the non-
volatile TCAM that is usable for different devices such as eFlash. Table 5 summa-
rizes the advantages/disadvantages of the aforementioned techniques.

Table 5 A comparative assessment of different system design and architecture techniques

STTRAM

[26] (+) Reduce the weaknesses of the IoT devices and preventing a tearing for the safe 
transactions
(−) Using MTJ requires extra reduction of damping and an increase of thermal stability

[11] (+) Provides new various security and privacy challenges, like magnetic attacks. Also, 
reduce the number of corrupted bits
(−) Partitioning EPROM into four parts or segments required extra overhead

TCAM

[27] (+) Improve the tolerance of a minor resistance ratio and reducing the consumption time of 
the searching
(−) High cost
(−) Each bit of storage in TCAM requires two bits: One for the value and the other for the 
mask
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3.7  Hybrid

The great development of technologies used in our daily lives is an indicator of the 
rapid growth of applied science and technology area. Recently, there has been a 
clear trend toward improving the effectiveness and efficiency in many application 
technologies through inventing new techniques or improving existing techniques. 
This section discusses the improvement of energy efficiency of current flash mem-
ory techniques in the IoT platforms.

Cai et al. [21] used multiscale computing in several building blocks of NV-LSI 
circuits to examine the trade-off between saving and performance of power energy. 
The authors hybridized CMOS, MTJ, and NV-LSI to improve the utilization of 
power consumption and to reduce the sensing energy.

Chang et al. [22] used a single NVM device with bi-directional voltage-divider 
control scheme to develop a cell that has the ability to quick search with lesser 
energy consumption of search and write processes. Also, two forms of invalid-entry 
power consumption suppression are developed to improve the updating process of 
invalid-bits through adjusting the trade-off between area overhead and power 
consumption.

In order to reduce the execution time and power consumption of a microsystem, 
Chien et al. [23] designed a buffer between the MCU and flash memory using eRe-
RAM instead of DRAM. The embedded controller in the ReRAM macro can per-
form the following tasks: (1) facilitate communication between the MCU and the 
ReRAM macro. (2) Perform built-in self-test where the whole ReRAM is checked 
by measuring the yield for three reference currents to calculate the best yield which 
is used to notify the MCU to fix the setting. (3) Perform built-in self-repair where 
column defects that should be repaired are recorded. (4) Compare data for the write- 
and- verify function. (5) Correct errors by using ECC algorithms. (6) Asymmetric 
coding, where data is reversed and marked by a bit flag in the case of the number of 
1’s in a word is greater than the number of 0’s for yield enhancement. Simulation 
results show that eReRAM provides better performance compared to eSTT-MRAM 
in terms of cost, area, and reliability.

Jayakumar et  al. [31] presented an energy-aware memory mapping system of 
program section in hybrid FRAM-SRAM micro controller devices. In the proposed 
technique, a program is partitioned to one or more atomic sections, namely, func-
tions. eM-map performs a one-time characterization to find the optimal memory 
map for the functions that constitute a program. The function is assigned a memory 
map, and the eM-map performs the following operations: migration, execution, and 
checkpointing. Then, the total energy consumed in all three stages is calculated. If 
the function is executed successfully, the assigned memory map can be considered 
valid else eM-map iterates through all possible configurations for a function to 
arrive at the energy-optimal configuration. The checkpointing is performed at the 
end of a function in order to diminish the amount of data to be check pointed which 
in turn reduces the non-determinism.
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Prasad et al. [24] introduced a hybrid LP8T2MTJ NV-SRAM cell through add-
ing two nonvolatility MTJ and two additional transistors to 6T SRAM cell to reduce 
the energy of backup and restore operations. The proposed scheme uses MTJ to 
store and retrieve data held by the cell in order to accelerate the response wake 
times. The authors defined four operational modes for the proposed scheme includ-
ing (1) normal where the proposed LP8T2MTJ cell acts as conventional 6T SRAM 
cell; (2) power off; (3) backup where the state of memory cell is written into the 
MTJ; and (4) restore mode where values stored in MTJs are reloaded into the cell 
nodes. The proposed architecture reduces the backup energy due to elimination of 
separate MTJ writing interface and additional control signals.

3.8  Others

The various benefits of NVM motivate Dou et al. [37] to present the challenges of 
developing NVM circuit devices for nonvolatile logics, computing-in-memory, and 
IoT security. NVM has several advantages including low operation voltage, compat-
ibility with CMOS devices, and speed access. The authors define the main chal-
lenges of NVM devices including small R-ratio and large variations on cell 
behaviors.

Hayashikoshi et al. [32] introduced a power management technique with activity 
localization by rescheduling for efficient normally off computing where a task tran-
sits to power-off mode if the waiting time is extended over the breakeven time. 
Furthermore, autonomously standby mode transition methodology was also pro-
posed to select the optimum standby mode of microcontrollers. The proposed 
NVRAM is divided into many blocks where only the target blocks are turned on and 
unnecessary blocks are turned off immediately.

An integration of an ultralow power transistor charge-trap embedded NVM into 
a 40 nm CMOS logic process is provided by Kouznetsov et al. [25]. The proposed 
NVM technology is based on SONOS transistor which consists of the following 
three components: a polysilicon gate (S), an oxide nitride oxide gate dielectric, and 
a silicon substrate (S). The integration of the eNVM requires only five masking lay-
ers. A typical bit cell of SONOS NVM comprises a SONOS control gate and a MOS 
select gate transistor connected in series. The authors developed a test chip contain-
ing an 8 Mb eNVM macro to demonstrate the capabilities and manufacture ability 
of the proposed SONOS eNVM technology.

Valea et al. [33] presented a secure context saving system to provide a context 
saving procedure for IoT devices that use NVM to store and retrieve the device 
state. When the power supply is going down, the system encrypts the context data 
and generates MAC signature and saved them into NVM. On the other side, when 
the power supply is becoming available, the encrypted data and the MAC signature 
are checked to confirm the integrity of the recovered data. Table 6 summarizes the 
advantages/disadvantages of the aforementioned techniques.

A. I. Alsalibi et al.



301

4  Conclusion and Future Outlook

In overall, the outcomes of this survey are likely to be valuable for researchers, 
technique makers, and NVM professionals working in the fields of IoT 
technologies.

To conclude, a brief summary is presented as follows:

Flash memory is appropriate to use in wearable devices, GPS, and e-card, due to its 
high reliability and low cost. However, limited number of erase cycles (i.e., lifes-
pan) is the main limitation that prevents such memory to become more popular 
in IoT applications.

MRAM is suitable for the edge devices due its small area usage (i.e., more “cells” 
can be packed onto a single chip) and fast read/write times, high endurance, and 
strong retention. However, MRAM reliability is low because plates, which have 
a thickness of less than 1 nm, are complex to manufacture reliably.

ReRAM is proper for the SOC because of its lower read latency and a faster write 
performance. However, high cost and difficulties in etching process are the main 
challenges that prevent such memory to dominate in a variety of IOT applications.

Table 6 A comparative assessment of different system design and architecture techniques

Hybrid

[21] (+) Enhances NV-LSI latency, power, and robustness. (+) dynamic power reduction
(−) Using CMOS takes up more space on the chip

[22] (+) Requires less area and enables longer WDL. (+) fast search speeds
(−) Using MLC composed of extra power consumption and low lifespan

[23] (+) Reducing of system execution time and power consumption
(−) Using CMOS takes up more space on the chip

[36] (+) Allows to benefit of both SQL-like and non-SQL DB solutions
(+) Guarantees high stability and efficiency. (−) not using a real testbed

[31] (+) Enhancing speedup of up to 2x and reducing energy consumption
(−) Using hybrid FRAM-SRAM composed of complex implementation and management

[24] (+) Reduction in backup energy. (+) reduction in restore energy
(−) Not possible to refresh programs when using SRAM. (−) SRAM has more complex 
design

Others

[32] (+) Minimizing the total power consumption
(−) Various sensor modules require extra management overhead

[25] (+) Operating at the main power supply of 0.81–1.21 V with low current consumption in 
several operation forms
(+) Affording 100 k erase/program cycles, 25 ns read access time, and data preservation 
for the numerous IoT applications
(−) Using SONOS composed of low storage density

[33] (+) Preventing attacks on the saved state of the IoT devices
(−) Initial cost of design and development is very high for SOC
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FeRAM is suitable for the edge devices and MCU sensors due its low power con-
sumption and high endurance. However, the low density and the high cost are the 
main challenges that prevent such memory to be widely used in IOT applications.

SCM bridges the performance and reliability gap that is acquired between DRAM 
and NAND in the memory hierarchy nowadays because it is using NAND as 
secondary storage and DRAM as main storage (i.e., a cache) for active data. 
However, its complex implementation and integration with DRAM and NAND 
flash memory are the main dilemma.

SSTRAM is with near-zero leakage power consumption and better scalability than 
conventional memory. However, the amount of electricity current needed to 
reorient the magnetization is currently too high for the most commercial IoT 
applications. The reduction of this electricity current density alone is the main 
research concern for present academic researcher in spin electronics.

Hybrid memory that exploits heterogeneity and parallelism of various NVM by 
combined different kinds of such memory in same IoT system is vital and could 
increase reliability, read and write performance, and lifespan, as well as reduce 
power consumption, cost, and area space, which in turn could increase the effi-
ciency of the entire IoT system.

Future proposed models of the IoT should focus in providing syntactic interoper-
ability along with various IoT devices. One of the most serious challenges of the 
syntactic interoperability among heterogeneous IoT devices is the security aspect 
that should be carefully considered in the near future.
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1  Introduction

Cities improve their decision-making capabilities by using emergent technologies 
such as the IoT, big data, and cloud computing. However, the hyper-connectivity 
product for using these technologies build new challenges for city officers because 
it increases the attack surface. City officers need to define the best cybersecurity 
strategies for minimizing the impact of cybersecurity attacks, so they require the 
use of a risk analysis methodology to identify the city’s critical assets, the vul-
nerabilities of its components, and the possible attack vectors. Cities are dynamic 
and complex systems due to their different relationships in social, economic, and 
demographic axis, if they include technologies such as IoT, which are solutions 
with heterogeneous characteristics (several manufacturers), fast-growing (about 50 
billion devices for the year 2030), and with a lack of strong security, could increase 
their complexity. In this context, traditional risk methodologies that are generally 
more static could be limited for evaluating systems and characterize the complexity, 
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uncertainty, ambiguity, and amplifying effect of cyberattacks on smart cities. To 
operationalize the systematic cyber-risk analysis, some researchers propose using 
Bayesian networks to evaluate the relationships and causes between the different 
components of a system in a probabilistic way. To model the cyber-risk relation-
ships of smart cities, it is possible to abstract the city’s physical features using digi-
tal twin approaches.

The IoT is a key component for building smart cities. This technology allows the 
generation of a digital twin smart city by obtaining data by sensing the different 
components of a smart city. However, its characteristics of heterogeneity and lack 
of advanced security expand the surface of cyberattacks; this increases the probabil-
ity of affecting decisive and critical city operations. Traditional risk analysis meth-
odologies require adapting to flexibility, dynamism, and a large amount of data from 
IoT ecosystems to detect threats, vulnerabilities, and risks in smart cities. In this 
context, Bayesian networks allow the construction of multifunction diagnostics and 
the development of predictive probability to face the challenges mentioned above. 
Therefore, the application of Bayesian networks in the field of cybersecurity brings 
dynamism to the traditional risk analysis methodology to evaluate IoT systems and 
mathematically model the smart city digital twin to simulate different types of 
attacks that can affect a smart city. This also allows predicting the possible impact 
of attacks to establish the best security strategies.

This study analyzes the use of artificial intelligence (AI) methodologies to evalu-
ate cybersecurity risk in a smart city context due to the inclusion of emergent tech-
nologies such as big data, cloud, and the IoT.  For this, we first performed an 
overview of cybersecurity attacks in the smart city context. Then, we analyze risk 
methodologies for evaluating the negative impact of cybersecurity attacks on smart 
cities, through the use of cognitive security techniques.

This study is structured as follows. Section 2 reviews briefly cybersecurity 
attacks in the context of smart cities. Section 3 introduces the risk methodology to 
evaluate uncertain and complex scenarios. Section 4 presents a model to assess 
cybersecurity risk in smart city based on Bayesian networks. Finally, Sect. 5 draws 
the conclusions.

2  Background

2.1  Smart City

According to the United Nations (UN), the global urban population is expected to 
increase to 68% by 2050. For the UN, the fastest increase is in megacities that host 
over 20 million inhabitants, which are located mostly in developing countries. For 
instance, Tokyo, New Delhi, Shanghai, Mexico City, and São Paulo are the world’s 
most populous and largest cities with an agglomeration of 37 million, 29 million, 26 
million, and 22 million inhabitants, respectively. This trend creates sustainability 
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challenges for the cities [1]. The UN mentions that 828 million people lived in 
slums in 2015, lacking essential drinking water and sanitation services. Cities need 
to face urban growth and specific aspects like energy, pollution, sanitation services, 
and traffic. Cities integrate smart solutions to enhance the decision-making process 
and address these issues associated with urbanization. Smart cities arise as a novel 
dimension of urbanization due to the fusion of the city infrastructure with digital 
services and information [2]. A smart city can improve the power grid’s resilience, 
prioritize road maintenance to match traffic needs, or react in events like an explo-
sion or disease spread using integrated information [3]. A smart city is based on a 
sensor model that takes into account the sensing of diverse city aspects, such as 
automation, pollution, energy, and traffic and social synergies produced by people 
through diverse channels and components. For establishing the sensing of a city, 
smart cities use emergent technologies such as AI, big data, cloud, and the Internet 
of Things (IoT) [4] to embed computing and communication capabilities of physi-
cal objects of smart city [5]. Smart cities are building considering three fundamen-
tals pillars: economic, environmental, and social (see Fig. 1).

Sustentability

Smart
health

Bigdata IoT

Economic Environmental Social

Cloud
Artificial

Intelligence

Smart
traffic

Smart
agriculture

Smart
grid

Fig. 1 Smart city components
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2.2  Smart City and Cybersecurity

The different infrastructures and services in the smart city’s domains may present 
vulnerabilities and expose the smart city to cyberattacks that expose confidentiality, 
integrity, and availability. For instance, through ransomware attacks on medical 
devices, attackers exploit vulnerabilities in SCADA systems.

All technology is susceptible to cybersecurity problems and being attacked by 
people with harmful intentions. For technologies that extend to the physical world, 
where there are, therefore, hybrid systems between digital and physical, the risks 
are higher, as in smart cities. In addition to causing severe consequences for a city’s 
users, the attacks imply significant economic costs: the cybernetic firm IBM esti-
mates that the average cost of a data breach is around 3.92 million dollars, an 
expense that could cause severe damage to any city. The systems that interact within 
the smart city environment are subject to a series of threats, materializing through 
different attack vectors, impacting the target asset or system. Security flaws are 
commonly exploited, whether in applications (e.g., Adobe Flash), protocols (e.g., in 
SSL), and devices (e.g., design flaws in smart TV), among others.

Recent cases indicate a much more alarming trend for the smart cities ecosystem: 
the most critical DDoS attacks are carried out using IoT devices. In October 2016, 
companies such as eBay, the New York Times, Netflix, PayPal, Spotify, and Twitter 
had serious difficulties providing their service or were inaccessible. The reason was 
a massive DDoS attack against DNS provider Dyn. For the most part, they used IoT 
elements (mainly IP surveillance cameras, digital video recorders, and home rout-
ers), managing to generate record traffic in this type of attack (the primary method 
of classifying its power).

Smart Traffic
In smart cities, several devices such as cameras, sensors, road detectors, and other 
roadside units (RSU) have been used to propose traffic control strategies that mea-
sure traffic flow characteristics in real-time, such as the length queues, vehicle 
speed, and traffic density.

Subsequently, the collected information is reported to a traffic controller that 
handles the traffic flow dynamically according to the deployed control strategy. 
However, most of these techniques are implemented on top of legacy traffic infra-
structure, which lacks security. Therefore, the intelligent traffic management system 
becomes vulnerable to attack. Attackers can exploit vulnerabilities in these systems 
employing, for instance, disrupting measurements and communications (i.e., denial 
of service (DoS) attack) to produce phantom traffic jams or degrade the transporta-
tion service quality or replay attacks (i.e., providing controllers with false detec-
tion data).

Since these systems still depend on insecure sensor measurements, they must be 
accompanied by attack detectors that observe the model’s estimates. These detec-
tors can identify malicious activity if decisions do not support observations.
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Smart Grids
Smart grids (SG) arose due to the necessity of modernizing the electricity grid, link-
ing control and monitoring processes with green technologies known as eco-friendly 
or non-polluting. SGs are grid systems that integrate many computing and digital 
communication technologies and services into the electrical system infrastructure 
as described by the National Institute of Standards and Technology (NIST). 
Therefore, SGs go beyond the smart home and business energy meters, as bidirec-
tional energy flows and bidirectional communication and control capabilities can 
bring new functionality. For example, SGs can provide a platform to maximize 
availability, efficiency, economic performance, reliability, and the highest security 
against attacks and natural power outages. These connected networks create new 
vulnerabilities caused by cyber intrusion and corruption, leading to devastating 
physical effects and considerable economic losses, meaning that the number of risks 
increases. For example, new nodes in the power grid create new entry points that 
attackers could exploit. Besides, new threats to computer systems appear day by day 
due to the rapid increase in sophisticated hacking tools; therefore, any telecommu-
nications link within the electrical network represents a potentially unsafe way of 
operating it. Although the most obvious strategy for causing blackouts is through 
physical damage of generators, substations, and power lines, other activities com-
promise the sensors operation, communication devices, and control systems by 
identity theft or transmitting incorrect commands to control centers to disrupt the 
system. These activities cause power outages and in some circumstances, physically 
damages critical system components.

Smart Home
Cybersecurity attacks for their vulnerabilities have targeted smart homes. It is cru-
cial to consider that, in most cases, users of this technology do not have in-depth 
technical knowledge for the proper use of the said technology. Smart homes poten-
tially provide extra comfort, security, and more comprehensive environmental sus-
tainability. For instance, a smart air conditioning system can employ Web-based 
data sources and various home sensors to perform smart operational decisions, 
rather than simplistic fixed-time or manual control schemes. This system can pre-
dict the house’s expected occupancy by tracking location data. The air conditioner 
then saves energy when the house is empty or reaches the desired comfort level 
when it is occupied. Additionally, smart homes can help with daily tasks such as 
cleaning, cooking, laundry, and shopping. Nevertheless, the smart home system 
should be safe and reliable to exploit these benefits. In the following, some vulner-
abilities that can be found in the devices of these houses are listed:

 – The system hardware in smart home devices has several vulnerabilities, such as 
these devices’ drivers. Such controllers are commonly tiny 8-bit microcontrollers 
with minimal computing resources and storage, limiting the capacity to imple-
ment complicated security algorithms. Another vulnerability they have in the 
devices comes from the factory since they contain different network standards 
and different software update capabilities.

Integration of AI and IoT Approaches for Evaluating Cybersecurity Risk on Smart City



310

 – The most significant vulnerability for these devices is that the complexity of the 
networks lacks basic protocols; for this reason, in various situations, the owners 
of this type of house are not assisted by experts to give proper administration to 
the network.

Smart Health
The IoT is aimed at hospitals for monitoring the health status of patients. However, 
cyberattacks on IoT devices could cause death; for instance, an insulin overdose for 
a diabetic patient occurs when the blood glucose levels are below 70 mg/dL; if the 
patient is given insulin through an IoT device that is under attack, it could cause 
hypoglycemia under symptoms such as fainting, weakness, seizures, and respira-
tory problems, among others.

The attackers can be economically motivated for highly organized criminal syn-
dicates to attack health and life sciences organizations to steal sensitive data and get 
valuable pharmaceutical and biomedical intellectual property.

In this sense, vulnerable applications and medical devices increment healthcare 
organizations’ risk, especially healthcare providers. This risk can be attributed to 
more obsolete medical devices and applications that often run on antiquated and 
unsupported operating systems. When clinical networks are improperly segmented, 
there is a higher risk that IoT attacks could expand to medical systems.

Cyberattacks
There are many cyberattacks in smart city subdomains. Cyberattacks use different 
vector attacks, and their goal is different depending on the kind of attacks. In the 
following, some examples of cyberattacks on the smart city domain are presented:

 – Man-in-the-middle: Attacker could intervene, interrupt, or modify the communi-
cations between two devices. For instance, the attacker could try to poison the air 
conditioning system by sending fake information from the thermostat and then 
listen to the conversation of other home’s devices.

 – Theft of data and identities: Attackers could access connected devices to obtain 
personal data because they have inadequate security. An attacker takes advantage 
of security lacks in IoT devices to intercept data flow and steal information to 
carry out possible fraudulent transactions and identity theft, among others.

 – Device hijacking: The attacker takes control of a device but does not modify its 
functionality, but uses it as a vehicle to infect other connected devices. In this 
way, by infecting a smart plug, the attacker could access the smart lock and 
change the access PIN to open the doors.

 – Distributed denial of service (DDoS): This attack attempts to stop the service to 
its legitimate user. Permanent denial of service (PDoS): This is the “strong” vari-
ant of DDoS since its purpose is to cause physical damage to the target devices 
so that they must be repaired or replaced. An example of this attack can be attack-
ing a thermostat to provide false data and causing irreparable damage to other 
devices due to extreme overheating.

 – Ransomware: Software whose purpose is to compromise the availability of 
information and systems. In most cases, a financial outlay is required by the 
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affected party to recover the data since the affected organization’s operation can 
be compromised entirely, depending on the severity of the infection. As an 
approximation to the possible impact that ransomware could have on the smart 
city, in 2016, the health sector became a preferred target for cybercriminals due 
to their ransomware campaigns’ success. In the same way, researchers have dem-
onstrated the attack capacity of ransomware on IoT devices. For instance, on a 
thermostat, increasing the temperature to the maximum and then blocking it.

 – Phishing: It is an attack that uses the impersonation of services and websites, 
misleading the user for stealing classified information, injecting malicious soft-
ware, and other purposes. An example could be Anthem’s case (a health insur-
ance company), in which the use of LinkedIn made it possible to identify targets 
to initiate the attack, which allowed the stealing of data from 79 million people. 
Most of the attacks aim to steal credit card information and personal data, observ-
ing a tendency to direct this type of attack toward cloud systems due to the 
increase in their use. Along these lines, the theft of Office 365 credentials has 
been the target of recent phishing campaigns. The significant threat to smart cit-
ies focuses on the theft of credentials; this represents a gateway to access IoT 
devices to which users, whose data was acquired fraudulently, have authoriza-
tion. In the case of critical infrastructure, the threat is even more significant.

A smart city has different technologies (IoT, AI, big data, cloud, mobile) in its 
core that are susceptible to cyberattacks. The IoT is maybe the most critical because 
it has a vast heterogeneous network of connected objects with humans in the loop 
interacting through apps. IoT ecosystems present several factors that could influ-
ence uncertainty as follows [6]:

 – Error in the IoT design and implementation
 – Physical variability, produced by actuators, sensors, and humans who are foreign 

to the system
 – Presence of trusted agents and their roles
 – Software-hardware used for data transfer
 – Scalability
 – User preferences for security and privacy
 – Uncertainty in data-information-knowledge

3  Risk Analysis

The development of rigorous methods to evaluate cyber risk could minimize cyber-
attacks’ effects and uncertainties on improving the smart city’s cybersecurity pos-
ture and ensuring their long-term resilience.

Wu et al. [7] mention that the vulnerabilities are severe security threats that an 
attacker can misuse to obtain unapproved access to the system. Additionally, an 
attacker can strike additional hosts due to the interdependency among vulnerabili-
ties. Moreover, Wu indicates that the attack success is the likelihood that (i) the 
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vulnerabilities are favorably exploited and (ii) the vulnerability susceptibility 
depends on factors such as complexity, exploitability, and remediation level (see 
Eq. (1)).
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where

 – Ac denotes attack complexity.
 – Av denotes attack vector; it reveals the context by which vulnerability exploita-

tion is probable.
 – PR denotes required privileges; it defines the level of privileges an attacker 

must hold.
 – RE denotes the remediation level.

Broadly, risk analysis methods could be classified into two types:

 1. Systematic risk, uncertainties generated by external factors that impact all. 
Generally, systematic risk is associated with “market risk”; it can analyze the 
economic risk in periods of economic weakness like recessions, wars, or fluctua-
tions in currencies.

 2. Unsystematic risk, specific uncertainty.

Other types of risk are the following: social risk, environmental risk, and opera-
tional risk.

3.1  Systematic Risk

According to Renn et al. [8], the four major components for dealing with systemic 
risk are complexity, uncertainty, ambiguity, and ripple effects beyond the source 
of risk.

The systemic crisis context considers two main phases: (i) the quiet phase and 
(ii) the crisis phase.

The inclusion of cognitive sciences (fuzzy engineering, Bayesian networks, con-
volutional networks) in cybersecurity could be considered to evaluate and predicted 
attacks, threats, and risk more adaptive and dynamically [9].

On the other hand, if the main objective of the attacker is to damage the control 
systems [10], therefore the attacker must follow the actions:

 1. Infiltrate the field network.
 2. Invalidate system functions.
 3. Provoke incidents.
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One typical modeling that is widely used to represent relationships or cause-
effect is the Bayesian network.

3.2  Bayesian Network for Risk Analysis

Tundis et al. [28] mention that a growing interest in system risk analysis is the capa-
bility of showing the system under analysis interdependence with other systems and 
their interactions. Moreover, Tundis indicates that each systematic risk system’s 
entity system generally belongs to a complex and heterogeneous network. Any net-
work shock could be propagated in a non-uniform way, and it has the most signifi-
cant speed depending on both exogenous and endogenous amplification factors. 
According to Tundis, modeling systemic risk is a complicated operation because 
need represents a risk in its dynamic and static characteristics. Tundis proposes 
developing a systematic risk analysis using Bayesian networks (BNs) based on goal 
diagrams. According to Tundis, the BN could describe the probabilistic relation-
ships between faults/causes and failures/consequences. A probability function is 
used to associate each node with a particular set of values.

A BN is a probabilistic model that connects a set of random variables and their 
dependency relationships. These models use Bayesian inference, estimating the 
posterior probability of the unknown variables based on the known variables. BNs 
are a powerful form of machine learning to help decrease these models’ false- 
positive rate.

The BN could establish models of attack knowledge and employ them to predict 
upcoming attacks and determine the risk [11, 12]. Likewise, BN can be used to 
evaluate the connectivity risk of protected core networking [13]. A risk assessment 
approach for telecommunication networks by utilizing the BN is introduced in [14] 
to examine the impact of attacks on the workflow. Zhang et al. [15] introduced a 
dynamic risk assessment using a fuzzy probability Bayesian network (FPBN) 
approach. Information risk factor analysis (FAIR) is one of the most traditional 
models for quantitative assessment of cybersecurity risks; Wang et al. [16] proposed 
a more flexible alternative approach (FAIR-BN), which implements the FAIR model 
using BNs. Zhu et al. [17] proposed a BN to analyze the spread of the attack over 
time and the consequences of the cyberattack on the industrial production process. 
They were evaluating dynamic cybersecurity risk quantitatively.

Judea Pearl first proposed the Bayesian network in 1985; these networks are also 
known as acyclic graph models or belief networks. It should be emphasized that BN 
as a risk management tool is one of the most important for the financial sector, 
because its significant contributions in the definition of probabilistic conditions of 
inference, with comprehensive management of variables, will be used to enhance 
the efficiency of the cybernetic attack detection systems.
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Definition Let G = (V,E) an acyclic directed graph, where V is a set of nodes and E 
is a set of edges. Then, let X = (Xi)(i∈V), the random variable is represented by the 
node i∈V. The joint probability assigned to the node can be expressed as:

 
p x i Vpx xi pa i� � � � � �  

(2)

where pa(i) is the node i parent. Moreover, for any random variable, their joint prob-
ability can be obtained by:
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Dynamic Bayesian networks (DBNs) are a temporal extension of BNs that allows to 
model dynamic processes. According to Onisko et al. [18], missing data signifies 
the most challenging task in developing a dynamic model. Nevertheless, there are 
several ways to handle this difficulty, one of which is to use an additional state to 
represent missing values. Onisko mentions that reasoning algorithms for BNs do 
not require complete information. Moreover, the posterior probability distribution 
over a variable in analysis can be derived given any subset of possible observations. 
Sequential or temporal information appears in many areas of engineering and sci-
ence. On the one hand, the data analysis to predict future data may be of interest. On 
the other hand, analysis of the complete data sequence may also be necessary to 
identify patterns. This analysis can be carried out using dynamic Bayesian net-
works, a particular type of Bayesian networks specifically designed to model 
time series.

Ayele et al. [19] mention that DBNs are just Bayesian network applied for mod-
eling temporal dependencies on time series structures. Simple BNs do not consider 
changes in time, and it cannot handle time-variant operating environments. DBNs 
are more useful for handling time-dependent risk scenarios.

The following steps are proposed to build DBNs:

 1. Transforming indicator factors into a Markov chain process.
 2. Define the discrete nodes’ state.
 3. Designate a marginal probability table for discrete root nodes and a conditional 

probability table for other discrete nodes.
 4. Calculate the discretized conditional probability distributions of each continu-

ous node.
 5. Select the prior probability distribution for the system.
 6. Construct the likelihood function, considering the system failure rate data.
 7. Learning in a DBNs.
 8. Computing the probabilistic inference (i.e., posterior distribution).

Some relevant aspects related to building DBNs which are mentioned by Ayele 
are the following:
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 1. A continuous variable (node) can take on a value between any other two values. 
Commonly, two approaches are used for managing continuous variables: static 
and dynamic discretization. The former needs to split the total range of the con-
tinuous variables into a finite number of intervals, while the latter provides fine- 
grained discretization in the regions that contribute notably to the density 
functions’ structure.

 2. The representation of a real-world problem by a DBN structure often necessi-
tates the introduction of several nodes, and in such cases, conditional probabili-
ties cannot be determined for all nodes precisely. This process is based on the 
expectation-maximization.

According to Frigault et al. [9], a model based on DBNs could be used to incor-
porate temporal factors; this graphical model is used for probabilistic inferences in 
dynamic domains that can permit users to monitor and update the system as time 
progresses and even predict other system behaviors [20]. Besides, they explain that 
in a standard DBN model, the system is represented as a BN sequence. Each BN 
represents a time interval of the DBNs corresponding to a given instant of time. 
Furthermore, the DBNs will have arcs between specific vertices of successive time 
sectors. In a DBN model, the Markovian property can be assumed to be satisfied, 
and the vertices can be classified as either observable or unobservable. The observ-
able vertices value is known earlier during the analysis process, whereas that of 
unobservable vertices is not available but can be inferred.

According to Cabañas [21], a DBN is an extension of BNs in which random 
variables evolve over time. In the following image, you can see an example of DBNs 
with two variables, xt and yt, where the instant of time is denoted by t.

DBNs can contain two types of variables: observations represented by a square 
and hidden variables or state variables represented by a circle. In DBNs, the sys-
tem’s state only depends on the state in the previous instant y of the current observa-
tions (Markovian property). The DBNs in Fig. 2 models a hidden Markov model 
(HMM), which is the simplest type of DBNs: it contains a single discrete state vari-
able and a single observation. However, DBNs are a more generic model. It may 
contain more variables, and the state variables may not be directly dependent on the 
observation. Given the topology of Fig. 2, the factorization of the DBNs at time T is:

 
P X Y p x x p y x p xt

T
t t t
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Therefore, to specify a DBNs, you need to define:

 – Transition probability p(xt | xt − 1).
 – Probability of observation p(yt | xt).
 – Initial state probability p(x0).

The inference problem in DBNs consists of calculating pXT | YT, where XT denotes 
a finite set of observations and YT = {y0, y1, …, yT} y XT the set of corresponding hid-
den variables. Let αt(xt) be the joint probability of all observations y states up 
to time t:
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with the initial condition of α0(x0) = p(x0). If you want to calculate the most probable 
value of the hidden variable in the next instant, given the observations, you must 
apply Bayes’ theorem:
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3.3  Digital Twin

Cities are complex systems that connected economic, environmental, and social 
dynamics elements. According to Dembski et  al. [22], complex systems include 
innovative and technological concepts, such as car-sharing and autonomous driving, 
decentralized smart energy grids, smart home, or digitization of administration 
tasks. A digital twin is associated with producing a parallel virtual version of the 
smart city that replicates humans’ integration, infrastructure systems, and technol-
ogy. According to Mohammadi and Taylor [19], connectivity and analytical capa-
bilities enabled by the IoT are the base for the cognitive development of smart city 
digital twins. The IoT allows for the convergence of the physical and the virtual 
world and using machine learning algorithms focuses on the data provided by IoT 
solutions; digital twin tries modeling behaviors to detect anomalies and predict fail-
ures. Batty mentions that numerous studies define a digital twin as a “cyber-physical 
integration” for representing the real-world things with the same fidelity. On the 
other hand, the digital twin is considered the forefront of the Industry 4.0 revolution 
because it allows real-time decisions. The potential for digital twins within a smart 
city is associated with rapid developments in connectivity through the IoT. The digi-
tal twin is considered in Gartner’s top ten strategic technology trends since 2017 [23].

Fig. 2 HMM model DBNs [21]
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According to the Smart Cities World Community [24], digital twins connect 
urban built environment spatial modeling, electrical and mechanical systems mod-
eling based on deep learning informed training or mathematical descriptions, and 
real-time sensor data derived from IoT platform solutions. Among the advantages of 
modeling are cost savings, enhanced services for citizens, operational efficiencies, 
preventive maintenance, raised safety and security, and the inherent feasibility of 
automated generative design.

Digital twins can be employed for decision support, operator training, process 
control and monitoring, predictive maintenance, product development, real-time 
analytics, and behavior simulation [25]. Some sectors that considered the use of 
digital twins are the following: healthcare, maintenance, and urban sustainability.

Three main components constitute a digital twin (see Fig. 3):

 – Physical environment that includes physical objects like human resources, cars, 
or buildings.

 – Virtual environment that includes the virtualization model of the system or phys-
ical object.

 – Connections of data between physical and virtual environment. Data is collected 
for sensors on physical objects, and then the data is processed using cognitive 
computational techniques; next, the virtualization model is built based on the 
behaviors or patterns detected on the data.

The main objective of a digital twin is to establish a decision context. There are 
four areas for decision-making in a digital twin [26]:

 1. Knowledge representation means classifying and cataloging unstructured data 
using cognitive computing techniques.

 2. Intelligent decisions, artificial intelligence (AI) can add context to these internal 
and external data sources and monitor processes.

Virtual environment

Digital Twin

Digital object

System/physics models
Virtual

visualization

Data

M
an

ag
in

g

Anomaly
detection

Physical environment

Human
resources

Material
resources

Site Tools

Physical object Collects

Automatic
Data
Flow

Process

Prediction
events

Residual
assessment

Risk
assessment

Fig. 3 Digital twin components
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 3. Autonomous execution, AI identify values and thresholds for specific decision 
points based on past data for automated decision-making.

 4. Enhanced assistance, multiple channels can allow users to interact with intelli-
gent knowledge bases and drive value from the automated processes.

Industrial Internet of Things (IIoT) utilizes digital twins for implementation in 
the manufacturing industry. IoT systems can be controlled and optimized through-
out their data lifecycle:

 – Data from the manufacturing systems.
 – Data from the Internet/users.
 – Data from manufacturing.

Digital twin generates a virtual environment that can replicate an infinite number 
of scenarios. The simulated data is propagated and perpetuated through continuous 
embedding AI algorithms to establish the best decisions for specific scenarios [27]. 
With the introduction of AI, autonomous systems could learn from observation and 
experience and build the surrogate models of their environment to predict events 
and optimize decisions, for instance, using reinforcement learning (see Fig. 4).

4  Modeling Smart City

A smart city brings innovation and connects the government, industry, and citizens 
through the use of data with a wealth of information. In contrast, cybersecurity has 
raised concerns about data privacy and threats to smart city systems.

An analysis of the various definitions of smart cities found that technology is a 
constant element. For instance, the Institute of Electrical and Electronics Engineers 
(IEEE) suggests that a smart city support economy, mobility, environment, people, 

Data
Analytics

Artificial
Intelligence

Keras

Recurrent
Neural
Networks

K-Nearest
Neighbours

Support Vector
machineTensorFlow

Convolutional
Neural

     Networks

Fig. 4 Artificial intelligence applied to digital twin
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life, and governance through technology. TechTarget describes a smart city as a 
municipality that uses information and communication technologies to share infor-
mation with the public, boost operational efficiency, and enhance the quality of 
government services and citizen welfare. Sivrikaya mentions that the smart city 
shows the following challenges [2]:

 – Functionality: all information that is needed by smart city services has to be 
accessible.

 – Heterogeneous Environment: the domain of a smart city consists of several sub-
domains. The data model needs to respond to a requester from a different domain.

 – Dynamic Environment: the environment is permanently changing; this means 
that the data model used has to be dynamic.

 – Huge amount of devices: there are thousands of devices or services in a city- 
scale environment.

Additionally, digital twins contain much information; however, it will be incom-
plete and imperfect. On the other hand, current risk models could be computation-
ally heavy to run in real time during operation, or they do not capture the dynamics 
of risk for operational decisions due to lack of necessary detailing level.

It is essential to establish a dynamic risk model that can manage the lack of infor-
mation and uncertainties under this context. Boje et al. [27] mentions that digital 
twin implementation could be represented in a semantic way through the acquired 
knowledge with the use of AI-enabled agents. On the other hand, Tundis based its 
process to model Bayesian network mapping rules from the SysML/UML of 
platform- independent models to risk analysis platform-dependent models. 
Information systems could be modeled for using UML diagrams [28]. This subsec-
tion defines one approach to modeling a smart city and determining its nodes and 
relationships. Dembski et  al. [22] mention that cities are complex systems con-
nected to economic, environmental, and social conditions and their changes. 
Additionally, they are also characterized by the perceptions and interests of citizens 
and stakeholders. A knowledge base is required with vocabularies and ontologies to 
manage the information diversity and overload [29]. Austin et al. [33] mention that 
a digital twin is a cyber representation of a physical system on the real time through 
monitoring and synchronization of data with events. According to Austin, social and 
natural domains generate difficulties in defining semantics and rules for the interac-
tion on the smart city.

When faced with the challenge of representing a complex socio-technological 
system, OWL models’ use is a critical step to ensure correct alignment among mul-
tiple domains such as actors, sensors, management workflows, Web resources, and 
BIM model data, among others. Petrova-Antonova proposes that digital city model-
ing follows the concept of a digital twin for providing data-driven decision-making. 
According to proposal of Petrova-Antonova, the city consists of entities and per-
forms different functions summarized as follows:

 1. Entity could be an object or an actor.
 2. Entities have state.

Integration of AI and IoT Approaches for Evaluating Cybersecurity Risk on Smart City
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 3. Actors have goals.
 4. Goal can be quantified using indicators.
 5. Actor can perform actions.
 6. Functions are used by a group of actors.
 7. Functions can be grouped into services.
 8. Services can be supported by process.
 9. Entities participated in a process.
 10. Process consisted of events.
 11. Actions can change state and impacted entity.

Some instances of object are car, SCADA system, or traffic light, actor is driver 
or analyst, and functions are water and energy supply, waste collection, and traffic 
control. The events are recording according to the vocabulary of Recording and 
Incident Sharing (VERIS).

On the other hand, Austin proposes the following ontologies and rules for model-
ing the smart city.

 – Urban building block level ontologies and rules: requirements, sensors, network, 
and control.

 – Meta-domain ontologies and rules: temporal, spatial, units, and currency.

4.1  Experiment

For modeling a smart city, we follow the structure in [30]. A risk index is introduced 
to identify the vulnerability of a distribution system to be studied under cyberattack; 
this index is calculated as follows:

 RI V C� � ,  

where V denotes the probability of the vulnerability used to initiate a successful 
attack and C indicates the outcomes produced by the attack.

Given that a dynamic network is used, according to Wang et al. [31] we need to 
consider the matrix of Table 1.

To build the Bayesian dynamic network of Fig. 5, the model of components of 
smart city shown in the Fig. 1 was taken as a reference.

The Bayesian server software helps to visualize the temporal nodes in all the 
times with which one works, as shown in Fig. 5. For each time, the network is the 
same, but the temporal node will have different probabilities depending on the time 
(see Fig. 6).

The following results have been obtained for each temporal node. These results 
indicate the probability with which the node that refers to one of the aspects of the 
city (SO, ECO, ENV) presents an attack or not knowing the information of all the 
parent nodes. The table results were obtained from Bayesian server software.

R. O. Andrade et al.
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In Table 2, we can see all the possible combinations of the parent nodes and the 
node’s corresponding probabilities that refer to the city’s social aspect regarding all 
the times considered. The resulting probabilities indicate that it is very likely that 
this aspect will be violated if attacks are carried out on the parent nodes because 
most of the probabilities of state 2 are greater than 50%.

On the other hand, in Table 3, we can observe all the possible combinations of 
the parent nodes and the ECO node’s corresponding probabilities that refer to the 
city’s economic aspect referring to all the times considered. The resulting probabili-
ties indicate that the behavior is maintained over time; that is, if the node at time 
t = 1 has been violated in subsequent times, the probability that it will be violated 
again is similar to the probability presented at time t = 1 and in the same way if the 
node is not violated.

Finally, in Table 4, we can observe all the possible combinations of the parent 
nodes and the ENV node’s corresponding probabilities that refer to the city’s envi-
ronmental aspect regarding all the times considered. The scenario is to change since 
if an attack co-occurs, the same thing will not necessarily happen later. From all the 

Table 1 Probability of cyberattacks on smart city

(t) time
(t + 1) time
Very high High Middle Low Very low

Very high 0.4 0.2 0.2 0.1 0.1
High 0.2 0.4 0.2 0.1 0.1
Middle 0.1 0.2 0.4 0.1 0.1
Low 0.1 0.1 0.2 0.4 0.2
Very low 0.1 0.1 0.2 0.2 0.4

BD

IoT

Al

Cloud

SG

ST

SA

SH
ECO

ENV

SO

Fig. 5 BN of the smart city
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possible scenarios, it can be seen that the resulting information suggests that the 
node has a tendency to be attacked.

Additionally, we can observe possible scenarios that occur on the Internet, such 
as the following: From the model, the probability that the smart traffic node (ST) is 
attacked (state 2) or that it is not attacked (state 1) can be obtained by knowing 
information about all the parent nodes, which are the IoT, BD, AI, and cloud.

Table 5 shows all the possible scenarios that can happen in the smart traffic node 
concerning the attack or not of the parent nodes. It is logical that if the attacker 
decides not to take any action, the probability that there is no attack on the ST node 
should be greater than 0.5, which occurs. In the opposite case, if the attacker man-
ages to damage all the parent nodes’ systems, the probability of the existence of an 
attack on the ST node is high.

Another exciting result of this table is that if the attacker decides to damage only 
the IoT and AI systems, the probability of an attack on the ST node is 82%. Of all 

Fig. 6 DBN model of smart city

R. O. Andrade et al.
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the possible combinations, it can be seen that for the ST node to present an attack, 
the IoT nodes must have mainly been compromised.

Now consider another example in which it includes the leaf nodes (temporary 
nodes); we have the scenario where:

 
P t t tECO ,|,ENV ,|,SO ,|,IoT,|,Cloud�� � �� � �� �� �1 3 4

 

In Table  6, it is observed that the probabilities of the possible events at time 
t = 4 in the social field, knowing that what happened in the environmental field at 
t = 3 and the economic one at t = 1, considering the parent nodes IoT and cloud, it 
is very unlikely that the city has presented an attack since the probabilities presented 
are very low in state 1 (no attack) and state 2 (attack).

Table 5 Table of P(ST |IoT, BD, cloud, AI)

BD IoT Cloud AI ST = State1 false ST = State2 true

State1 
false

State1 
false

State1 
false

State1 
false

0.843679144654573 0.156320855345427

State1 
false

State1 
false

State1 
false

State2 true 0.581630990939282 0.418369009060718

State1 
false

State1 
false

State2 true State1 
false

0.404503680913654 0.595496319086346

State1 
false

State1 
false

State2 true State2 true 0.926541832777806 0.0734581672221936

State1 
false

State2 true State1 
false

State1 
false

0.388417623255147 0.611582376744853

State1 
false

State2 true State1 
false

State2 true 0.177589741034746 0.822410258965254

State1 
false

State2 true State2 true State1 
false

0.762891350464351 0.237108649535649

State1 
false

State2 true State2 true State2 true 0.0146072597080552 0.985392740291945

State2 true State1 
false

State1 
false

State1 
false

0.540310390366177 0.459689609633823

State2 true State1 
false

State1 
false

State2 true 0.89408127817979 0.10591872182021

State2 true State1 
false

State2 true State1 
false

0.638550973598681 0.361449026401319

State2 true State1 
false

State2 true State2 true 0.516640393909009 0.483359606090991

State2 true State2 true State1 
false

State1 
false

0.516330120053403 0.483669879946597

State2 true State2 true State1 
false

State2 true 0.8408S8418620032 0.159111581379968

State2 true State2 true State2 true State1 
false

0.671032592476116 0.328967407523884

State2 true State2 true State2 true State2 true 0.064902111275846 0.935097888724154

Integration of AI and IoT Approaches for Evaluating Cybersecurity Risk on Smart City



330

Since the temporal nodes do not have connections between them, this network 
does not provide interesting information if you want to know information regarding 
several different temporal nodes at different times, for example, if we calculate 
P(ECO (t = 1), SO (t = 2) | BD, Cloud, AI, IoT). The model gives the results that if 
all the parent nodes are violated, and there has been a failure in the economic aspect 
in time 1, in time 2 in the social aspect, there is a 34% probability of an attack and 
26% if there is no attack; note that the results are not significantly different com-
pared to the previous result where information is obtained from the same temporal 
node. Following this logic, it is 25% probable that there is no failure in the eco-
nomic aspect and 38% probable that there is a failure given that the environmental 
aspect and all the parent nodes of the network have been violated.

Table 6 Probability of effects in Economic, Enviromental, Social domains due to attacks in IoT 
and Cloud infrastructures

IoT Cloud
Economic 
(t = 1)

Environment 
(t = 3)

Social (t = 4) = state1 
false Social = state

State1 
false

State1 
false

State1 false State1 false 0.11 0.13

State1 
false

State1 
false

State1 false State2 true 0.15 0.11

State1 
false

State1 
false

State2 true State1 false 0.1 0.14

State1 
false

State1 
false

State2 true State2 true 0.15 0.12

State1 
false

State2 
true

State1 false State1 false 0.16 0.087

State1 
false

State2 
true

State1 false State2 true 0.2 0.083

State1 
false

State2 
true

State2 true State1 false 0.11 0.13

State1 
false

State2 
true

State2 true State2 true 0.14 0.091

State2 
true

State1 
false

State1 false State1 false 0.11 0.09

State2 
true

State1 
false

State1 false State2 true 0.14 0.07

State2 
true

State1 
false

State2 true State1 false 0.13 0.17

State2 
true

State1 
false

State2 true State2 true 0.15 0.14

State2 
true

State2 
true

State1 false State1 false 0.13 0.12
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5  Conclusions

Cities are complex systems that connected economic, environmental, and social 
dynamics elements. The different infrastructures and services in the smart city’s 
different domains may present vulnerabilities and expose the smart city to cyberat-
tacks that expose the aspects of confidentiality, integrity, and smart city availability. 
Digital twins can be applied for developing decision support, real-time analytics, 
and behavior simulation in a smart city context that could support the modeling to 
detect cyberattacks [32–34].

Ecosystems, organizations, or informatics systems enhanced their cybersecurity 
posture based on reducing vulnerabilities. Attackers exploit vulnerabilities to per-
form cyberattacks. In the IoT environment, security should be considered a key fact 
since various devices communicate with multiple communication technologies. 
When heterogeneous devices interact, security vulnerabilities of each device are 
gathered, and new security vulnerabilities may happen.

The IoT is a crucial element of the evolution of a smart city. In the upcoming 
years, billions of devices will be raised and interconnected by the IoT, as endorsed 
by international consulting firms. It is worth noting that the IoT is vulnerable to 
cybersecurity attacks; this would strike the safety of the smart cities.

The modeling of the dynamic Bayesian network is interactive, and this allows a 
knowledge of the network with which one is working. Our model can be improved 
if a priori information given by experts is considered; Since the nodes are of type 
Boolean, state 1 represents no attack in the node, and state 2 represents the existence 
of an attack. The current network can be improved by considering more states in the 
temporary nodes.

The development of rigorous methods to minimize cyberattacks’ effects and 
uncertainties could improve a smart city’s cybersecurity posture. Incorporating risk 
management could improve the smart cities’ capability to assure long-term 
resilience.

We could combine the proposal of risk-based layered security with machine 
learning or data mining techniques to evaluate, enhance, and measure the cyberse-
curity on IoT solutions adopted in smart cities.

The simulation scenario is based on simulated data from cyberattacks, we con-
sidered as future work to include dataset with a greater variety of cybersecurity 
attacks to evaluate the accuracy of the risk analysis model on smart cities. We con-
sider important to validate the relationships between the different nodes to evaluate 
the possible entry and exit points of the attack surface.
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Cognitive Internet of Things: Challenges 
and Solutions

Ali Mohammad Saghiri

1  Introduction

The Internet of Things (IoT) refers to an ecosystem including a set of devices, 
objects, and everything that has a unique identifier and the ability to communicate 
and transmit data over a network [1]. IoT-based systems generally include sensors, 
actuators, and control elements with limited resources in terms of computational, 
storage, and power. These systems will be the leading platform for deploying new 
businesses and play a crucial role in developing industries in the near future. IoT- 
based systems require a suitable design to organize their structure in a self- organized 
manner because of their distributed and dynamic nature. Therefore, many manage-
ment approaches based on Artificial Intelligence (AI) and cognitive systems have 
been utilized in the IoT. As two results of these approaches, Cognitive Internet of 
Things (CIoT) and Artificial Intelligence of Things (AIoT) have been reported 
in [2, 3].

The rationale behind utilizing AI and cognitive systems theory is described as 
follows. From technical perspectives, the size of generated data by IoT devices is 
increasing, resources are distributed, and the characteristics of these systems are 
changing dynamically. Because of these characteristics, IoT systems require 
AI-based algorithms for management in a self-organized manner [4, 5]. On the 
other hand, from human perspective, human agents cannot solve challenges in many 
situations. Some of challenges that lead to the inefficiency of human agents are 
explained as follows. The reaction time of humans is not appropriate for controlling 
modern drones and vehicles. Humans are not able to make appropriate decisions 
considering big data generated by the IoT. The distributed and dynamic nature of 
the IoT leads to many managerial problems that are not solvable by humans 
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manually. Therefore, human agents will be replaced by some intelligent systems 
such as cognitive systems in the near future, and then we will be faced with many 
cognitive systems that are combined with the IoT. Since cognitive systems are des-
ignated based on cognitive processes of the human brain and mind, utilizing these 
systems will have high priority in the development of CIoT because we can utilize 
human logic to make decisions with high accuracy and speed.

The main drawback of recently reported algorithms as management algorithms 
in CIoT is that most of them only focus on utilizing AI without considering funda-
mental issues of cognitive systems. In other words, many of recently reported algo-
rithms for CIoT should be classified as applications of AI in the IoT. In the absence 
of human agents and deploying self-organized management mechanisms based on 
AI, we will be faced with an unknown situation that might be hurtful. This is because 
many problems of AI such as controllability and predictability are not solved prop-
erly [6–8]. Therefore, a management mechanism based on AI may inherit these 
problems implicitly. This means that utilizing the ultimate power of AI-based sys-
tems in designing CIoT may lead to a self-organized system that can hurt 
humans easily.

More specifically, challenges such as security, predictability, and complexity do 
not have a same meaning in all intelligent versions of the IoT [9]. Ignoring these 
challenges leads to missing the goals of cognitive systems in CIoT. In the literature, 
there is no study on challenges in designing CIoT considering associated technolo-
gies such as IoT, AI, and cognitive systems.

In this chapter, at first, AI, IoT, and cognitive systems are studied independently. 
Then, fusion between these technologies are analyzed. Finally, some of challenges 
in designing CIoT are highlighted with a special focus on cognitive systems. The 
rest of this chapter is organized as follows. In Sect. 2, associated technologies to 
CIoT and their challenges are explained. In Sect. 3, challenges and solutions in 
designing CIoT with a particular focus on cognitive systems are summarized. 
Section 4 is dedicated to conclusions.

2  Internet of Things, Artificial Intelligence, and Cognitive 
Systems: Definitions, Combinations, and Challenges

In this section, all possible combinations among AI, cognitive systems, and IoT are 
studied considering definitions and design challenges (Fig.  1). In the next three 
subsections, we give short descriptions for each field independently. Then, compari-
sons between each pair of technologies are given. In addition, some notes that high-
light the importance of developing CIoT technology are given in the last part of this 
section.
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2.1  Internet of Things

IoT ecosystem was introduced by Kevin Ashton in 1999 [4]. In the IoT, the “things” 
can include everything from a smart-board to a smart traffic control system. In these 
systems, each thing on the earth can be connected to other things. Thing-to-thing 
communication can be used to organize many scenarios in different fields, such as 
healthcare and educational systems. The integration of these systems with new 
computing technologies, including cloud, edge, and fog computing, can signifi-
cantly benefit users, businesses, and markets. Some advantages of IoT-based sys-
tems are given below [10–13]:

• Efficiency in real-time decision-making for management and control can be 
obtained. This is because sensors gather a considerable amount of required infor-
mation in the IoT ecosystems.

• Transparency can be obtained using information gathered by a wide range of 
sensors that monitor different parts of IoT-based systems in online fashion.

• Automation is an attractive characteristic that can be obtained via IoT-based sys-
tems. Utilizing IoT-based protocols, thing-to-thing communication can be done 
without requiring human involvement.

• Monitoring systems based on IoT sensors are very cheap and also efficient in 
terms of energy and cost.

• The integration among different IoT-based systems, including sensors, proces-
sors, and actuators, results in many benefits such as efficient data analyses and 
decision-making to resolve large-scale systems’ complexity.

• IoT-based systems can be used to organize efficient mechanisms considering 
safety and security concerns for humans.

The above benefits lead to emerging smart governments, smart cities, smart 
healthcare, and smart manufacturing. The main challenges in designing IoT-based 
systems are given below [13], [14]:

Fig. 1 Challenges in Designing Cognitive Internet of Things
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• Heterogeneity: In IoT-based systems, the number of devices is increasing and 
the type of them are very different from each other. Therefore, designing man-
agement algorithms among devices is very challenging.

• Scalability: During the evolution of IoT-based systems, the number of sensors, 
actuators, and processers increases drastically. Therefore, in these systems, 
designing management algorithms in a scalable manner is vital. The primary ver-
sions of IoT-based systems focus on client-/server-based architectures, including 
cloud, fog, and edge computing. Recently, client-/server-based concept has been 
alternated with peer-to-peer communication and processing to handle distributed 
computations more efficiently.

• Big data: Since the number of devices is increasing, the variation of generated 
data by instruments is high, and the rate of data generation is excessive. Therefore, 
IoT-based systems lead to appearing big data with many managerial challenges.

• Network management: The network infrastructure for IoT-based systems is 
constructed over a wide range of devices that are distributed over various geo-
graphical positions. Therefore, network management algorithms should be 
equipped with policies to face with different environments (noisy and dynamic).

• Privacy: Privacy preserving in IoT-based systems is a difficult task due to the 
large-scale data analytics and heavy computations related to privacy concerns. 
This problem becomes more challenging after appearing machine-generated 
data because data owners are not clearly identified.

• Security: During the development and expanding IoT ecosystems, accessibility 
of devices increases day by day. As a result, designing secure algorithms in these 
systems is very difficult. In developing the Web of Things, this problem will be 
challenging because of increasing the availability of things.

• Legal liability and responsibility: When a thing makes a decision, and conse-
quently many hurtful actions occur, the main question that arises is who is in 
charge of the results.

• Sensors and actuators: Designing inexpensive, accurate, and energy-efficient 
sensors and actuators belong to the main goals of designers of the IoT. Achieving 
these goals requires many high-tech methods and also researches that are not 
available in some situations.

• Data analysis and decision-making: Distributed, dynamic, and large-scale 
nature of the IoT leads to appearing many challenges in data analyzing and 
decision-making.

• Interoperability and standardization: The number of players in designing and 
utilizing IoT-based systems is increasing. In this domain, many platforms are 
closed-source, and other open-source platforms do not use standard architec-
tures. It seems that defining some standards may be useful, but it will not easily 
happen because of the nature of software development in this field and weak 
interoperability.
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2.2  Artificial Intelligence

Artificial intelligence does not mean the same concept to all scientists. In [15], 
Professor Russell introduced four definitions of artificial intelligence. According to 
his definitions, a wide range of devices can be considered as intelligent systems. 
Recently, a new classification for intelligent systems is introduced in the literature 
to provide a big picture of the future of intelligent systems. According to [9], intel-
ligent systems are classified into three classes as explained below (Fig. 2):

• Artificial Narrow Intelligence (ANI): this type of intelligence refers to intelli-
gent systems that can do specific tasks. For example, an agent with capabilities 
such as face recognition and games playing can be identified as artificial narrow 
intelligence. These agents are programmed to do tasks and cannot detect and 
formulate unknown tasks in a self-organized manner. We do not expect to see 
self-awareness in these agents. Some authors refer to this type of intelligence as 
weak artificial intelligence.

• Artificial General Intelligence (AGI): the concept of this type of intelligence 
does not refer to a unique thing in the mind of all leading scientists of artificial 
intelligence. Most researchers use artificial general intelligence for those agents 
that their intelligence is equivalent to human agents.

• Artificial Superintelligence (ASI): the author of [16] introduced three types of 
superintelligence: speed ASI, collective ASI, and quality ASI. Speed ASI refers 
to an agent faster than human, collective ASI refers to decision-making capabili-
ties similar to a group of humans, and quality ASI refers to an agent that can do 
works that humans can’t.

Recently, some changes have been made on the above classification. In [17, 18], the 
authors argue that human-level intelligence is different from AGI. They argue that 
human characteristics may put some assumptions and limitations in the computa-
tions of the machine. Therefore, human-level intelligence may not lead to general 
intelligence to solve a wide range of problems than human agents suffer from solv-
ing them. Using human-level intelligence to design AGI may lead to determining 
some implicit upper bounds in the machine and defeat the generalization 

Fig. 2 Venn diagram for 
definitions of AI
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capabilities. On the other hand, authors of some papers such as [18] argue that there 
is no difference between AGI and ASI when the definitions of AGI is not limited to 
human-level intelligence. According to [16, 18], if AGI-based agents’ capabilities 
are further than human intelligence and there is no exact definition for ASI capabili-
ties, then there is no need to differentiate AGI from ASI. All in all, definitions for AI 
is changing based on observations and expectations of humans. Some of the advan-
tages of AI-based systems are given below:

• Estimation of values in management procedures with high-precision such as 
energy consumption and peak hours in power grid [19]

• Big data analytics with high precision [20]
• Increase the efficiency of management systems and asset management [19]

Although AI provides significant changes and improvements for digital business 
and facilitates smart services and digital transformation, it challenges present tre-
mendous risks for individuals, organizations, and society. A list of challenges in 
designing AI-based systems is given below:

• Energy Consumption, Global Warming, and Environmental Pollution: One 
of the challenges of most machine learning algorithms is high energy consump-
tion. In [21], environmental pollution and global warming are reported as other 
side effects of high computational power usage in AI-based systems.

• Data Issues: A category of AI invests in data-driven algorithms to construct 
machine learning models. It should be noted that, in some situations, there are 
some problems in data that lead to many difficulties in data-driven machine 
learning algorithms [22, 23]. For example, we may face with issues related to 
data incompleteness, data heterogeneity, data insufficiency, imbalanced data, 
untrusted data, and data uncertainty.

• Security: Security is a critical issue that has received much attention in recent 
years. An emerging field called adversarial machine learning was the first attempt 
to solve some security problems in data-driven machine learning methods [24].

• Privacy: Many of data-driven machine learning methods are fed by data of huge 
amount of users. During the execution of these methods, some different roles are 
determined, including data owner, data manipulator, and data visualizer. Many 
efforts should be done by researchers to solve the problems related to saving 
privacy considering different roles [25].

• Fairness: An algorithm is fair when its results are independent of some variables 
such as gender, ethnicity, and sexual orientation [26].

• Safety: In mission-critical, real-world environments, there is little tolerance for 
failure that can damage humans and devices. In these environments, existing 
approaches are not sufficient to support the safety of humans.

• Beneficial: A beneficial AI system is designated to behave in such a way that 
humans are satisfied with the results. Designing these systems will be required 
but extending their theory is still an ongoing process. In these systems, the agent 
is initially uncertain about the preferences of humans, and human behavior will 
be used to extract information about human preferences [27].
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• Predictability: One of the most critical issues in designing intelligent systems is 
predictability [6–8]. Some problems, including ambiguity and paradox, may lead 
to an unpredictable AI-based system.

• Explainable AI: Explainable AI refers to AI methods such that the results of the 
solution obtained by them can be understood by human experts [28]. Since some 
machine learning algorithms such as deep learning invest in non-explainable 
symbols to do tasks, the results of these algorithms cannot be explainable.

• Complexity: The primary versions of intelligent systems invested in limited set 
of algorithms to do their jobs and therefore their complexity was limited to sim-
ple algorithms. This assumption is not correct any longer. The complexity of 
intelligent systems is increasing day by day.

• Monopoly: Many of AI-based solutions require substantial computational 
power. There are few companies (IBM, Amazon, and Microsoft) and countries 
which invest in AI and also high computational power devices. For example, few 
countries are pioneers in quantum computation that will be one of the enablers of 
artificial general intelligence and superintelligence. This capability may lead to 
the appearance of a monopoly in the scope of AI.

• Responsibility: AI-based systems such as self-driving drones will act autono-
mously in our world. In these systems, a challenging question is “who is liable 
when a self-driving system is involved in a crash or failure?” This problem has 
many dimensions. In [29], some interesting points related to responsibility issues 
are covered for a specific case study.

• Controllability: Eventually, AI-based systems surpass human’s abilities in gen-
eral intelligence and become superintelligent. In this situation, a superintelli-
gence could become powerful and difficult to control for humans [30].

• Reproducibility: This feature refers to the ability of an agent to be recreated 
[31]. Existing AI-based methods lack this ability.

• Continual Learning: This ability received much attention in recent years. In 
supervised, unsupervised, and reinforcement learning methods, traditional algo-
rithms only focus on fixed sets of data as training and testing sets. In real-world 
applications, we must consider a stream of data, and the learning process is 
ongoing. Continual learning methods enable agents to adapt to a continually 
changing environment [32].

2.3  Cognitive Systems

Cognitive computations can be interpreted with different perspectives in all types of 
intelligence, such as ANI, AGI, and ASI. Cognitive computing focuses on designing 
computations similar to computations that occur in the human brain. Many fields, 
including computational phycology and neurosciences, are used to organize cogni-
tive systems. Some references such as [33] report a close relationship between cog-
nitive systems and human-level intelligence. According to [34], this field enables 
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computer programs with the abilities of knowing, thinking, and feeling as 
explained below:

• Computer with the ability of knowing: in this domain, several concepts such 
as fuzzy logic, the theory of causality, ontologies, denotational mathematics, 
object-attribute relation theory, concept algebra, process algebra, and inference 
algebra are used to design cognitive systems with the ability of knowing.

• Computer with the ability of thinking: in order to organize this capability in 
machines, two approaches are introduced in the literature. The first approach 
takes advantage of brain-like computer machinery, and the second approach 
focuses on determining causal relationships among concepts.

• Computer with the ability of feeling: emotional intelligence, sentiment analy-
ses, and opinion mining are used to organize cognitive processes considering 
feeling capability.

All in all, cognitive computing requires many concepts from philosophy, psy-
chology, linguistics, artificial intelligence, anthropology, and neuroscience. Some of 
the applications of cognitive systems are given below [35]:

• Cognitive computing and robotics: utilizing cognitive computing to drive 
robots was one of the goals of engineers in the last centuries. Recently, robots 
have been used to solve simple and routine tasks. Existing robots lack of cogni-
tive abilities for analyzing smart cooperation among humans and robots but this 
style will be changed.

• Emotional communication systems: currently, communication between 
humans and robots suffer from many problems such as ambiguity and paradox. 
These problems become more challenging after digital transformation and aris-
ing some technologies such as virtual reality, augmented reality, and artificial 
life. The emotional communication based on cognitive systems facilitates com-
munication between those entities that understand emotional symbols. This tech-
nology may affect the treatment of humans with some diseases such as autism.

• Medical cognitive systems: as an important application of cognitive systems, 
medical systems can be nominated, especially for managing chronic diseases. 
Because of the multidisciplinary origin of cognitive systems that focus on tech-
nologies such as machine learning, AI, and natural language processing, cogni-
tive systems are going to detect modes and relations among diseases from data 
with high accuracy.

In [9], a list of challenges in designing cognitive systems is reported. This list is 
explained as below:

• Problem Identification and Formulation: these terms refer to two primary 
cognitive abilities in humans. Existing approaches in designing cognitive sys-
tems suffer from a lack of automated mechanisms to implement mentioned 
abilities.

• Inspired Models: a wide range of researches in cognitive systems focuses on 
inspired models considering the human brain and mind. These researches are not 
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mature enough to implement the cognitive abilities of humans, and therefore 
their abstractions may not lead to an appropriate cognitive system.

• Connectionist and Symbolic Approaches: recently, connectionist approach has 
received much attention to design learning algorithms because of extraordinary 
capabilities of deep neural networks. However, this approach does not invest in 
human-readable elements, and therefore it is not appropriate for implementing 
some cognitive processes. On the contrary, the symbolic approach focuses on 
some cognitive abilities and also human-readable elements; however, their per-
formance in real-world problems is not appropriate.

• Layered and Flat Cooperation methods: cognitive systems may be organized 
as either layered or flat architectures. The architecture affects the growth of cog-
nitive systems when cognitive processes try to improve their abilities.

• Architecture Design: for more than 10 years, designing cognitive architecture 
has received much attention. This problem is still open, and there is no general-
ized framework to cover all cognitive abilities [36]. This problem becomes more 
challenging in designing artificial general intelligence [37].

• Evolution Strategy: cognitive abilities of humans have been evolved over cen-
turies based on several mechanisms, including genetic algorithms. Every cogni-
tive system requires an internal or external mechanism to improve its cognitive 
abilities over time.

• Programming Strategy: selecting or developing a programming strategy to 
cover all cognitive abilities is a challenging problem.

• Semantic and Communication: the process of organizing communications 
among cognitive systems has attracted particular interest in recent years. To 
organize such process, many concepts such as ontologies and semantic web must 
be customized.

• Morality: designing morality at the core of the cognitive system is a challenging 
problem. Since the basic principles for morality are not fixed, programming this 
concept as computer code in the cognitive system is not easy.

• Learning, Creativity, and Innovation: analyzing the cognitive abilities of 
humans lead to appearing these concepts. Among these concepts, only learning 
abilities are developed in artificial intelligence, and other concepts are missed 
these days.

• Machine Selection: cognitive systems that manage the human brain are based 
on biochemical mechanisms. We may organize cognitive systems on other types 
of machines.

• Explainable Systems: humans are able to explain the reasons behind their deci-
sions. This cognitive ability should be implemented in cognitive systems. Most 
existing AI-based agents are not explainable, and therefore they cannot give rea-
sons for their decision-making.

• Trust: since cognitive systems will be used as self-organized mechanisms in a 
wide range of complex systems, designing algorithms for preserving trust will 
be vital.
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• Safety: many cognitive processes may be emulated in machines but implement-
ing those cognitive processes that their main goal is the safety of humans will 
be vital.

• Predictability: implementing some cognitive systems such as those inspired by 
humans may lead to designing unpredictable systems.

• Security: security in cognitive systems refers to those mechanisms that secure 
cognitive processes. The concepts behind securing cognitive processes may be 
different from traditional security mechanisms.

• Energy Consumption: executing a cognitive system may be energy-consuming 
because of utilizing many learning algorithms in different parts of cognitive pro-
cesses that are usually executed in a parallel manner.

• Computational Power: The computational power required by learning-based 
algorithms is increasing. Therefore, utilizing cognitive systems that widely 
deploy learning algorithms leads to implementing algorithms that require high 
computational power.

• Complexity: identifying and organizing cognitive processes are complex prob-
lems. A dimension of complexity problem refers to the infancy knowledge of 
humans about the nature of cognitive abilities in humans.

• Storage (Memory): in all types of cognitive systems, memory plays an essential 
role. In some cases, more storage result in more cognitive abilities. Since the size 
of data gathered by these systems is increasing, utilizing data for analyzing and 
decision-making requires efficient algorithms.

2.4  Artificial Intelligence and Cognitive Systems

For more than 10 years, researchers have focused on identifying AI, cognitive sys-
tems, and relevant concepts. The relation between AI and cognitive systems is stud-
ied in the next two paragraphs [35]:

From cognitive systems perspectives: Many concepts of AI such as fuzzy logic, 
inference engines, reinforcement learning models, and ontologies are obtained 
through high-level cognitive analyses on humans. In this domain, some examples 
are given below [33, 34]:

• Fuzzy logic, ontologies, and theory of causality have a close relationship with 
knowing systems in humans.

• Reinforcement learning has a close relationship with repeated learning processes 
based on reward and penalties in humans and animals.

• Artificial neural networks are designated based on neuro-like interactions that 
come from neuroscience analyses.

From an artificial intelligence perspective: In many algorithms such as search 
mechanisms, function approximation, and statistical learning methods, big data 
analytics will be key enablers of cognitive systems in the next centuries. In addition, 
big data technology has received much attention for revolutionizing cognitive 
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systems. In comparison to big data analyses that focus on solving challenges related 
to volume, velocity, variety, and veracity of data, cognitive computation focuses on 
organizing processing methods that mimic data processing in the human brain to do 
tasks. It should be noted that human brain memory is limited, but its image process-
ing is efficient. Therefore, the goal of the learning systems designers is to organize 
cognitive processes that are similar to cognitive processes in the brain.

The progress in both mentioned perspectives is still ongoing. In addition to chal-
lenges of cognitive systems and AI that will be transferred to hybrid systems based 
on these technologies, the following challenges can be highlighted that should be 
considered [35].

• Efficient data collection (high speed and high quality)
• Efficient natural language processing and human-computer interaction with 

emotional cognition
• New processor design considering challenges of cognitive systems and AI

It is obvious that some of challenges such as security and safety are common 
challenges between AI and cognitive systems although their objectives are different 
from each other according to the context of their applications.

2.5  Artificial Intelligence and the Internet of Things

In the last decade, different combinations between AI and the IoT have been reported 
in the literature. For example, Intelligence of Things is studied in [14], Internet of 
Intelligent Things (IoIT) is explained in [5], and Artificial Intelligence of Things 
(AIoT) is used in [3]. In all of these examples, AI-based algorithms are used to bring 
more capabilities to the IoT such as intelligent sensing, intelligent connection man-
agement, and intelligent data processing. There is no fixed boundary among defini-
tions of AI-based IoT systems. Overall, AI can increase the value of the IoT. On the 
other hand, IoT can promote the capabilities of AI. In the rest of this part, benefits 
and challenges in designing hybrid systems based on AI and IoT are studied.

All benefits from AI and IoT can be obtained in hybrid systems based on these 
technologies. Some benefits of these systems are given below [38]:

• From application perspective, AI can be used to design smart business, home, 
healthcare, and industries.

• Infrastructure of business intelligence will be organized on a combination of AI 
with the IoT. In these systems, intelligent decision-making and processing will 
be beneficial. In these systems, the IoT is in charge of collecting data and AI is in 
charge of processing the data in order to make sense of it.

• Personalized services such as personalized healthcare and medicine may be 
organized based on IoT and AI.

• AI plays a vital role in IoT to manage the flood of data and provide the analytics 
required to extract knowledge from data.
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Challenges that arise during fusion of AI into the IoT are explained as below [14].

• Complexity: in IoT-based systems, many elements play different roles. These 
systems may be classified as complex systems. This means that, because of high 
complexity of IoT-based systems, deploying AI in them results in many prob-
lems. In addition, IoT limitations such as processing power, memory, and delay 
in real-time applications will lead many challenges to design AI-based algorithms.

• Heterogeneity: hybrid systems based on AI and IoT inherited different forms of 
heterogeneity from IoT. IoT systems suffer from challenges that come from wide 
heterogeneity of devices, platforms, operating systems, and services that exist 
and will be used to construct applications. Therefore, these challenges should be 
considered during adopting AI.

• Security and privacy: AIoT inherited these challenges from both AI and the 
IoT. In other words, these challenges are very serious in hybrid systems based on 
the IoT and AI. For example, AI-based mechanisms require data to learn a model 
for a security mechanism, but keeping the privacy of these data in some devices 
in IoT systems cannot be preserved because of hardware/software weaknesses in 
devices.

• Standardization: this challenge can be considered for AI, IoT, and their combi-
nations. Since problems related to interoperability and heterogeneity are not 
solvable easily, determining standards for hybrid systems based on IoT and AI 
results in many problems.

• Accuracy and speed: in AI-based systems, data-driven machine learning algo-
rithms require an adequate amount of data to increase their accuracy. But, in 
IoT-based systems, gathering more information results in consuming more time, 
and therefore in real-time applications of IoT, many difficulties arise during 
usage of AI-based methods.

• Client-server and peer-to-peer: popular architectures for IoT-based systems 
are based on edge, fog, and cloud computing concepts. However, there are many 
challenges while deploying these architectures in practice. For instance, the edge 
computing should be enhanced for optimizing the latency of transmitting mas-
sive data of the IoT in networks and achieving real-time responses with high- 
performance for analyzing the vast data using AI. All in all, client-server-based 
architectures would not be able to provide requirements for developing IoT sys-
tems in the future. Therefore, moving the IoT systems into a decentralized path 
may be the right decision. One of the famous decentralized architecture is peer- 
to- peer system. Peer-to-peer systems such as blockchain have received much 
attentions in recent years.

• Legal aspects: in hybrid systems based on AI and IoT, many entities play roles. 
Therefore, legal challenges and legal relationships should be studied and clari-
fied. This challenge will be serious after appearing crashes and faults among 
things (such as drones and vehicles).

• Artificial stupidity: this problem has many dimensions in the IoT. In data-driven 
machine learning, sufficient data is required to train an appropriate learning 
model, and without data, the learning model has no trustable accuracy. Since 
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transferring vast amounts of data in IoT ecosystem is costly, the learning algo-
rithms may be constructed based on inappropriate data. In other words, lack of 
data in the IoT leads to inappropriate learning model, which lead to error-prone 
decision-making mechanisms.

2.6  Cognitive Systems and Internet of Things

Cognitive systems are widely used in the IoT [39]. The relation between cognitive 
systems and the IoT is an interesting issue because of the following perspectives.

• From IoT perspective: The distributed, dynamic, and large-scale nature of IoT 
leads to high complexity in designing the management algorithms of these sys-
tems. Therefore, human thinking models as digitalized models are required for 
fast and accurate decision-making. Cognitive systems are applicable to not only 
the IoT but also other systems such as those illustrated in Fig. 3 [39–50].

• From cognitive systems perspective: The IoT refers to the huge amount of 
physical devices scattered around the world, all collecting and sharing data, that 
makes new services. These services provide valuable data for designing learning 
models and approaching to organize fully featured cognitive systems and also 
artificial general intelligence.

In order to merge cognitive systems with the IoT, several architectures are reported 
in the literature. According to [51–53], CIoT can be designated based on three- 
layered architecture explained as follows:

• Requirement Layer: in this layer, the goals and behavior of the system are 
determined using a language.

• Cognitive Process Layer: in this layer, cognitive processes are organized. Each 
cognitive process may be designated to manage several tasks.

• Things Management Layer: this layer manages IoT system using decisions 
made by cognitive processes.

Fig. 3 Cognitive systems applications [39–50]
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Hybrid systems based in IoT and cognitive systems bring numerous benefits 
which some of them are summarized as below [54]:

• In contrast to existing intelligent systems that only focus on structured data and 
simple learning mechanisms to solve problems, deploying cognitive systems 
may rely on multiple cognitive processes that invest in both structured and 
unstructured data.

• Similar to the human brain that utilizes information from multiple sources to do 
tasks, cognitive systems are able to implement the same functionality in the IoT.

• As an important feature of cognitive computing, big data gathered by the IoT 
ecosystem can be used for continually learning and reasoning based on cognitive 
processes similar to the learning process in humans.

• Cognitive computing will bring many abilities to process natural language to 
learn quickly from structured and unstructured data collected from various 
sources.

As it was previously mentioned, challenges in designing CIoT come from three 
sources: cognitive systems, AI, and IoT. Therefore, CIoT may inherit all of chal-
lenges from these sources. It should be noted that some of those challenges that are 
mentioned for AI and cognitive systems, such as trust, safety, security, and predict-
ability, do not refer to exactly similar concepts and their meaning depends on the 
context. For example, to design a cognitive system, cognitive processes and the 
human mind are involved in the assumptions of computation, but in an AI-based 
system, there is no fixed set of assumptions. Some of challenges of CIoT will be 
discussed in Sect. 3.

2.6.1  Priority of Cognitive Internet of Things

An important issue that should be considered during the usage of AI in the IoT is 
that a wide range of AI-based systems does not consider the cognitive processes of 
humans. Therefore, they are not suitable to be used in CIoT. Because of this issue, 
more much efforts should be done on designing cognitive systems and their applica-
tions to engineering fields such as IoT and robotics, instead of utilizing AI without 
a cognitive computation perspective. For example, an intelligent system in the IoT 
that does not consider human safety may easily execute harmful actions against 
humans in a self-organized manner because harmful actions may lead to optimizing 
an objective function. This problem becomes more challenging when machines lack 
capabilities to understand the real meaning behind sentences that humans utilize to 
communicate with each other and also machines.

Some advantages of CIoT against other intelligent versions of IoT are explained 
as follows. The first advantage is that many important assumptions that conduct the 
cognitive processes are implicitly considered during the development of cognitive 
systems in CIoT. These assumptions may be missed in designing intelligent systems 
based on AI. The second advantage is that during the development of CIoT, many 
assumptions are injected into the knowledge of machines, which leads to facilitate 
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the communication between humans and machines. The last advantage is that con-
trollability and predictability of machines that are critical concerns in developing 
intelligent systems based on AI can be better managed through cognitive systems.

3  Challenges and Solutions in Designing Cognitive Internet 
of Things

In this section, some challenges in designing CIoT are explained in more details. 
The list of terms that present potential challenges is given below.

 • Problem identification and formulation
 • Energy consumption and environmental pollution
 • Explainable systems
 • Layered and flat cooperation methods
 • Architecture design
 • Safety

• Morality, privacy, responsibility
• Inspired models
• Predictability and control ability
• Security and trust
• Semantic and communication
• Machine selection

3.1  Problem Identification and Formulation

Thinking ability is considered as one of the main abilities in cognitive systems. 
CIoT inherited challenges of designing thinking machines from cognitive systems. 
Among numerous problems that should be solved for approaching an acceptable 
level of thinking ability, problem identification and formulation are considered as 
fundamental problems for autonomously organizing IoT. For example, CIoT sys-
tems should be able to automatically detect problems behind performance degrada-
tion and then deploy an appropriate mechanism to solve the problems. According to 
[15], detecting the problem (single-state, multiple-state, and contingency) and for-
mulating it in a well-defined manner are the first steps of problem-solving proce-
dure based on AI. According to [55], three approaches may be utilized for analyzing 
complex structures such as CIoT, as given below:

• Top-down (forward engineering)
• Bottom-up (backward engineering)
• Hybrid (forward engineering and backward engineering)

One approach that has attracted much attention in recent years is based on 
knowledge-based systems such as the Cyc project [56] and [57]. In the Cyc project, 
we can insert some facts about the problems into a knowledge base and then extract 
new problems using an inference engine. In [57], a rules-based configuration for 
problem detection is proposed.

All in all, in the field of CIoT, there is no general framework to identify and for-
mulate problems in a self-organized manner. Most of the existing frameworks 
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follow the bottom-up approach because the top-down approach for finding prob-
lems in different domains leads to challenging problems. For example, in the litera-
ture, a machine learning method is suggested for solving a problem by a scientist 
and other scientists try to modify that machine learning method for solving new 
versions of that problem. This process is usual in human societies. This means that 
few persons determine new problems, and others try to reuse problem-solving strat-
egies that are not substantially novel. As a powerful strategy and based on bottom-
 up approach, genetic algorithms can be used to create  a fully featured cognitive 
system. Genetic algorithms performed well in nature, and scientists argue that com-
puter programs may apply this functionality as an evolutionary strategy.

3.2  Energy Consumption and Environmental Pollution

A wide range of intelligent systems invest in a high volume of data and also process-
ing power [58]. In existing computers that mainly require high energy to support 
storage and processing power, executing intelligent algorithms leads to high energy 
consumption and sometimes high environmental pollution. In [21], the author stud-
ied these challenges in deep learning methods. In cognitive systems, these problems 
become more critical because many learning algorithms may be involved in the 
basic functionality of cognitive systems such as self-awareness. In CIoT that invest 
in architectures based on cloud, fog, and edge computing, each thing can execute 
learning algorithms with the aid of cloud computing or other elements such as fog 
and edge. However, high energy consumption problem will exist, and its position 
will be exchanged from things to other parts of CIoT ecosystem.

It should be noted that high-energy consumption problem is not only associated 
with learning elements of CIoT but also depends on the size of CIoT that is increas-
ing because of the drastic growth of the size of IoT systems. On the other hand, IoT 
devices may use a wide range of radiofrequencies to communicate with each other, 
and the side effects of this phenomenon are not clear. In the next paragraph, some 
solutions reported in the literature are summarized.

In [59], green industrial IoT architecture is reported. In this architecture, an 
energy-efficient solution for industrial IoT (IIoT) is suggested. In addition, sleep/
wake up-based scheduling mechanism is reported to define energy-efficient algo-
rithms. In [60], wireless energy harvesting technique for the IoT is applied. In this 
solution, the energy harvesting technique is customized for smart cities. This tech-
nique refers to a promising solution for extending the lifetime of low-power devices. 
In [61], several algorithms for efficient energy management for the IoT in smart 
cities are suggested. Two novel solutions that may be considered in this domain are 
explained as follows:

• From a hardware standpoint, we may use energy harvesting techniques [62] 
(thermal, optical, and waves) to gather wasted energy from devices which are 
involved in learning processes.
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• From a software standpoint, we can share files (models) in client/server or peer- 
to- peer fashion. These files can be the output of every learning process. With this 
approach, everything may use the shared model without paying its learning costs. 
Transfer learning theory may be used in this domain [63]. In addition, block-
chain technology can be used to share knowledge (models) in fully distributed 
and protected manner. Considering this issue, an interesting discussion is given 
about the future of the Internet of Things (IoT), blockchain, and Internet of 
Minds (IoM) in [64].

3.3  Explainable Systems

A system is called explainable when the reasons behind its selected actions can be 
understood or interpreted by a human. In AI field, designing explainable system is 
known as a challenging problem [28, 65, 66]. CIoT inherited this challenge from 
AI. In CIoT ecosystems, machines will make many decisions, and therefore explain-
able systems will be useful. In the next paragraph, this problem is studied in the IoT 
and CIoT.

In [67], an explainable AI approach is used to the IoT in agriculture. In this 
approach, a fuzzy rule-based system that is interpretable is reported. In [68], explain-
able AI is applied to a healthcare framework for combating COVID-19-like pan-
demics. Another application of explainable AI in healthcare is reported in [69]. In 
this application, wearable devices were considered in cognitive processes and also 
some mechanisms are introduced to achieve some characteristics such as account-
ability. In [70], the authors invest in utilizing explainable AI to build cognitive cities 
based on the IoT. Since the consequences of decisions in industries are very impor-
tant and industrial IoT is going to be very popular, some papers such as [71] sug-
gests some mechanisms for utilizing explainable AI in industries.

In summary, since the penetration of CIoT is increasing along with vanishing of 
human roles in automation, cognitive systems will make many decisions at the core 
of CIoT. Therefore, finding reasons and interpretations behind each decision will be 
vital. In some applications such as healthcare systems, this problem will be chal-
lenging because the consequence of each decision in these systems can be 
challenging.

3.4  Layered and Flat Cooperation Methods

CIoT inherited layered and flat cooperation design challenges from IoT and cogni-
tive systems. In what follows, we study these challenges from two perspectives.

From IoT design perspective: The following approaches have been used to 
organize IoT ecosystems:
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• Layered cooperation among nodes of a network leads to the evolution of client- 
server architecture to cloud, fog, and edge ecosystems [72, 73].

• Flat cooperation among nodes of the network leads to the evolution of peer-to- 
peer systems to blockchain systems. These ecosystems may be more scalable 
than layered approaches [74].

From cognitive systems design perspective: the following approaches are used 
to handle complexities in designing cognitive systems:

• Layered cooperation among agents leads to organize multilevel cognitive sys-
tems to handle complexities in the environment of these systems. Deep learning 
can be classified as a result of this approach [75, 76].

• Flat cooperation leads to organize single layer cognitive systems. In order to 
handle more complexities, more layers are required [76].

In [76], layered architecture for cognitive Internet of vehicles that is an example 
of CIoT is reported. This paper focuses on security and then assumes an infrastruc-
ture based on cloud computing to execute learning algorithms. In [77], a layered 
architecture for the IoT is reported that considers the environmental complexities 
surrounding the devices. In [2], a cognitive management framework for the IoT for 
enabling autonomous mechanisms is reported in which a three-layered cognitive 
engine is utilized to bring self-healing capability.

3.5  Architecture Design

CIoT inherited several design challenges such as architecture design from IoT and 
cognitive systems. Therefore, the challenge of architecture design in CIoT can be 
analyzed from the following perspectives:

• From IoT design perspectives: there are numerous architectures such as those 
reported in [52, 54, 74] to organize the IoT ecosystem, and there is no standard 
to build a unique solution. It should be noted that peer-to-peer systems such as 
blockchain are used to change traditional architectures of IoT that invest in cloud 
computing and client-server concepts. This change results in appearing complex 
architectures of the IoT.

• From cognitive systems design perspective: according to a research reported in 
[36], more than 80 cognitive architectures are developed since 40 years ago. This 
report also gives several taxonomies of cognitive architectures. Among notable 
architectures, cognitive systems architectures ACT-R and Soar have influential 
positions [78, 79]. Selecting appropriate architecture considering problems of 
CIoT leads to a challenging task. Cognitive systems try to organize cognitive 
abilities related to perception, attention, action selection, memory, learning, rea-
soning, and metareasoning. The main problem that occurs during applying cog-
nitive systems is that many limitations related to computations, memory, and 
interconnection patterns should be applied to organize a customized cognitive 

A. M. Saghiri



353

system for CIoT. For example, memory that is considered as a simple element of 
cognitive systems may be converted to a complicated element of CIoT because 
we have no infinite size of memory, and increasing the size of information leads 
to increasing the access time. In addition to the mentioned challenges, many 
parameters with the origin of the infrastructure of IoT may affect the functional-
ity of the cognitive systems.

3.6  Safety

CIoT applications will be vital in decision-making in a wide range of systems such 
as autonomous vehicles and drones. Because of the widespread CIoT applications, 
the cost of harmful and unsafe actions of them is very high. Some researchers focus 
on designing safe models considering the cost of harmful actions [80]. From another 
point of view, some papers such as those reported [81–83] try to judge the actions 
of an agent considering the safety of human. This problem is going to very challeng-
ing because of the vanishing role of humans and appearing fully self-organized 
systems. Unfortunately, this problem is not considered adequately in CIoT, and 
most of papers such as [84, 85] only focus on using CIoT and IoT to build secure 
systems such as secure homes and secure vehicular networks to bring safety 
for humans.

3.7  Morality, Privacy, and Responsibility

These terms refer to different dimensions of challenges in designing CIoT. The rea-
son for discussing them in a group is that these concepts have many shared attri-
butes among themselves. For example, keeping the privacy of data during the 
learning process can be classified under both privacy and morality [86]. From 
another perspective, defining morality in the cognitive systems of CIoT refers to 
novel concepts that are not related to privacy. Since the cognitive systems approach-
ing to abilities of artificial general intelligence, designing moral cognitive systems 
will be an open issue.

Cognitive systems will be used as self-organized mechanisms in different fields. 
Since human decision-makers will be replaced by these systems, we must have 
appropriate mechanisms to find those entities that are responsible for each action 
done in the system. For example, who is responsible of an accident among autono-
mous vehicles? This problem becomes more challenging after rising some tools 
such as GANs [87]. These tools are able to generate samples for data. This capabil-
ity may be used to generate fake texts, pictures, and videos by CIoT in a self- 
organized manner [88]. Humans may not able to control some of these abilities in 
machines. For example, a machine may be involved in a crime and then generate 
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fake evidence for it. As two main challenges in this area, we may refer to two critical 
abilities studied in the next paragraph.

Deception and cheating belong to the human agents, but these characteristics 
may appear in a cognitive system. This is because cognitive systems are going to 
mimic the behavior of humans. For artificial narrow intelligence-based agent, we 
can’t say that deception and cheating come from the intention of the machine, 
because these agents have no mind or consciousness. Deploying artificial general 
intelligence at the core of cognitive systems in CIoT may lead to these challenges. 
These challenges have not been considered yet in the literature of CIoT.

3.8  Inspired Models

Most cognitive systems such as Soar and ACT-R are inspired by the human brain 
[78, 79]. This is because the human brain is used to determine cognitive processes, 
and many studies are done on identifying and categorizing these processes based on 
neural and psychological sciences. Brain-inspired cognitive systems focus on either 
emulating the functions of different parts of the brain or input/output of total parts. 
For example, deep learning methods focus on emulating neural interactions in the 
brain, while the learning automata theory focuses on emulating human behavior 
[75, 89]. In addition, many cognitive processes are inspired by the collective behav-
ior of humans in societies reported in the literature as game theory, social sciences, 
and swarm intelligence fields [90–92]. Implicitly, many nature-inspired and also 
bio-inspired algorithms are reported in the literature of CIoT. This is because many 
processes that manage our environment, from biological to ecological, can be seen 
as cognitive processes. In the next paragraph, some of these efforts are summarized.

In [93], a bio-inspired solution to distributed spectrum allocation problem in 
CIoT is reported. In this solution, a cognitive radio management algorithm is merged 
with a biological mechanism called reaction-diffusion to provide efficient spectrum 
allocation algorithm. In [94], conceptual descriptions of nature-inspired cognitive 
cities are analyzed. The authors of this work assumed cognitive city as a complex 
system that will be approaching to complex adaptive systems. They organized their 
model based on principles such as decentralized control and multi-directional net-
working. In [95], a cognitive model of task scheduling for IoT is suggested based on 
ant colony and genetic algorithms. In [96], cognitive packet networks for secure IoT 
are reported. The theory of cognitive packet networks relies on random neural net-
works that are brain-inspired learning techniques. In [97], a deep reinforcement 
learning technique is used to solve a task assignment problem in an intelligent ver-
sion of the IoT.

Since there is no well-known framework that both communities of cognitive sys-
tems and the IoT agree on, cognitive systems experts may not accept some solutions 
that are published in the literature as cognitive solutions. As it was previously men-
tioned, we cannot consider every AI-based system as a cognitive system. In other 
words, more efforts should be made in this field.
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3.9  Predictability and Controllability

These terms can be explained from two perspectives as given below:

• From CIoT design perspective: CIoT inherited predictability and controllabil-
ity challenges from AI. In the literature, some papers such as [30] show that the 
controllability problem in AI-based solutions will not be solvable in many cases. 
In addition, according to well-known theorems such as Godel theorem and some 
challenges such as ambiguity and paradox come from the complexity field [6, 
98], many problems cannot be formulated and solved based on mathematics. All 
of these challenges may be transferred to CIoT trough cognitive computation, 
and therefore CIoT systems will not be predictable and also controllable.

• From CIoT applications perspective: IoT systems are known as useful tools 
for online monitoring. AI-based tools may be used to utilize specific information 
to predict and control other systems. In this perspective, cognitive systems and 
machine learning algorithms are utilized to make decisions with high accuracy. 
For example, in [99], the authors use intelligent energy management of solar- 
powered sensor devices in a dynamic environment. They designated an algo-
rithm that selects  a model among a set of prediction models. In [100], the 
cognitive amplifier for the IoT is represented.

Overall, CIoT systems may be used to solve many problems such as controllabil-
ity and predictability, although these problems exist in the core of CIoT.

3.10  Security and Trust

These challenges are multidimensional and very critical. We study them based on 
two perspectives, as explained in the following.

• From CIoT design perspective: since cognitive systems will be self-organized, 
they should be designated securely, because there will be no human agent to 
analyze attacks and then define corresponding defense mechanisms. Analyzing 
the security of cognitive systems and AI-based mechanisms is not easy, and few 
papers focus on this issue. For example, adversarial machine learning is a field 
that focuses on securing machine learning algorithms that invest in data-driven 
algorithms [24]. It seems that attacks to CIoT might be very complicated and 
also based on high-tech AI-based mechanisms. Therefore, security mechanisms 
for CIoT must be organized carefully. On the other hand, because of the increas-
ing availability of things over the Internet, the reaction time to defense and recov-
ery is very low. It seems that cognitive systems might be used to organize the 
attacks, and therefore we must design cognitive defense mechanisms [101]. 
During the design of CIoT, some issues are shared between security and trust. 
For example, most of AI-based security mechanism are based on trusted data. 
Therefore, attackers may use some features of data to hack security mechanisms.
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• From CIoT applications perspective: many papers such as [44, 45] focus on 
using cognitive systems to design secure systems.

All in all, every software, including cognitive systems, may be hacked. Analyzing 
security challenges in cognitive systems is in the early stages.

3.11  Semantic and Communication

In the era of CIoT, challenges related to semantic and communication will be cru-
cial. Most of systems such as computer networks, robotics, and the IoT will deploy 
cognitive systems. If all of these systems utilize standard language [102] and also 
ontology [103], cognitive systems of them will be able to increase their cognitive 
abilities through interactions among themselves. Some related papers are explained 
in the next paragraph.

In [104], authors focus on the role of object-oriented ontology in the 
IoT. According to this study, designers of IoT systems may reimagine data items, 
devices, and users, as significant as actors in a flat ontology. In [105], the authors 
focus on ontology to organize unified and formalized descriptions to solve the chal-
lenges of semantic heterogeneity in the IoT security domain. They reported four key 
sub-domains to cover a security situation in the IoT. These domains are context, 
attack, vulnerability, and network flow. In addition, user-defined rules can compen-
sate for the limited description ability of ontology. Therefore, this model can 
enhance the reasoning ability of its ontology.

Many existing cognitive systems such as those reported in [2, 50] are designated 
to solve specific problems and do not utilize communication and knowledge shar-
ing. So, the communication among cognitive systems embedded in devices around 
humans will not happen with existing approach. One of the techniques that can be 
used in CIoT to share knowledge among things is based on peer-to-peer file sharing 
systems and also blockchain [106].

3.12  Machine Selection

Organizing ecosystems for IoT and CIoT based on different technologies such as 
nano, molecular, and biological have attracted particular interests in recent years 
[107–109]. In these ecosystems, each thing may be equipped with sensors, actua-
tors, and processing elements. In every technology, the type of cognition may be 
different because of the quality of processors and also interconnections among 
things. In the rest of this section, challenges and solutions of machine selection are 
summarized.

Nanotechnology, biotechnology, and quantum computation can be used to gener-
ate, process, and transmit data at different scale. These technologies will form the 
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infrastructure of IoT systems according to the literature. In [107], the Internet of 
Nano Things (IoNT) is reported that refers to the intersection of three technologies: 
nanoscale devices, communication networks, and IoT. This technology focuses on 
the state-of-the-art methods in electromagnetic communications among nanoscale 
devices. In [110], the Internet of Multimedia Nano-Things (IoMNT) is introduced. 
IoMNT focuses on issues related to multimedia contents in IoNT. These systems 
have a high potential to manage a high volume of data generated at the nanoscale. 
On the other hand, in [111], the challenges in designing Internet of Multimedia 
Things (IoMT) are studied. It should be noted that, this technology is fused with 
nanotechnology to organize IoMNT. In [109], the potential of molecular computa-
tion is utilized to present the Internet of Molecular Things (IoMT). In [108], the 
Internet of Bio-Nano Things (IoBNT) is introduced. The rationale behind IoBNT is 
to merge concepts of synthetic biology and nanotechnology to define engineering 
principals for biological embedded computing devices. This technology enables 
applications such as intra-body sensing and actuation networks.

In summary, different ecosystems based on nanotechnology, biotechnology, and 
molecular mechanisms might be used to organize infrastructure for future genera-
tions of CIoT. In each ecosystem, many problems should be solved to support main 
functionalities of cognitive systems. Therefore, more much efforts should be done 
to organize CIoT based on the mentioned ecosystems.

4  Conclusions

In this chapter, challenges in designing CIoT have been summarized. The main 
contribution of this chapter was to study the challenges from three perspectives: AI, 
IoT, and cognitive systems. It seems that many of the recently reported algorithms 
that only use AI to solve problems of CIoT will be evolved into cognitive processes. 
Therefore, we may accept them as the first steps in organizing CIoT. Since the prog-
ress in this field is still ongoing, there are no fully featured and unified solutions for 
CIoT. The proposed study opens a new horizon to deploy the concepts of cognitive 
systems in CIoT.
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An AI Approach to Rebalance 
Bike- Sharing Systems with Adaptive User 
Incentive

Yubin Duan and Jie Wu

1  Introduction

Bike-sharing systems (BSSs) have been deployed in major cities across the world. 
The environmental and economic benefits brought by the BSS speed up the deploy-
ment of the BSS [7]. Riding bikes is more environment friendly and helps to reduce 
the CO2 emission. The BSS also brings economic benefits to the public. Deploying 
a BSS in a local neighborhood could increase accessibility with local businesses. In 
addition, BSSs address the “last mile-first mail” issues in cities by decreasing jour-
ney times and increasing users’ mobility. Driven by the idea of green commuting 
and the economic benefits, more and more people tend to use shared bikes for the 
daily commute. Many BSS operators also upgrade their bikes to utilize IoT devices 
such as GPS and alarm sensors. This makes maintaining the BSS easier, especially 
for bike rebalancing with AI systems.

Efficiently rebalancing the BSS is necessary and challenging with the expansion 
of the BSS. Without bike rebalancing, the asymmetric users’ demands for bikes in 
temporal and spatial domains would cause overflow and underflow events as shown 
in Fig. 1. In docked BSSs, such as the Citi bike system in NYC, the overflow events 
occur at stations that are full of bikes. Users cannot return bikes to those overflow 
stations, which increases the detour distances of users. The underflow events occur 
at stations that have no bikes. Users cannot rent bikes at those underflow stations, 
and the BSS loses the potential profit. Although there are no concepts of station 
capacities for dockless BSSs, such as the Mobike in China, too many bikes clustered 
in a small region would also cause overflow events, since it would cause congestion 
in the city. The underflow events where there are no bikes in an area also make the 
BSS operators lose users. Those negative impacts caused by bike overflow and 
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underflow events motivate the BSS operators to rebalance their systems in a timely 
and cost-efficient manner.

Motivated by the quick development of AI algorithms, we investigate the bike 
rebalancing problem in this paper and attempts to optimize it with reinforcement 
learning. We follow the user incentive approach to rebalance the BSSs. Specifically, 
the BSS operator would provide a monetary incentive for users if they rent/return 
bikes at locations specified by the operator. We consider both source incentive and 
destination incentive for renting and returning bikes, respectively. Compared with 
truck-based rebalancing approaches, the user-based approach is more flexible and 
has been implemented in real-world BSSs, such as the Bike Angle project1 in 
NYC.  Our objective is to maximize the number of bike usages during a day. 
Maximizing the number of bike usages is critical since it could benefit both system 
operators and users. A larger number of bike usages means a better service level of 
the system. It could satisfy more user demands for bikes and enlarge the profit of 
BSS operators. Our constraint is the budget constraint that means the summation of 
incentives provided to users in a day is limited by a constant value. The budget con-
straint is essential for BSS operators since they need to make profits for long-term 
operation.

The problem we investigated is different from existing research. The state-of- 
the-art user-based bike rebalancing scheme [22] only considers the source incen-
tives but ignores the power of destination incentives. Specifically, their scheme only 
considers encouraging users to rent bikes from nearby regions with a source incen-
tive. We notice that destination incentives that let users return bikes at alternative 
locations can also help to rebalance the system. Adaptively combining those two 
incentives could bring extra benefits for bike balancing. Besides, we extend the 
problem scenario of which only considers the dockless BSSs. Both dockless and 
docked rebalancing problems are considered in this paper.

The benefits of the destination incentive are shown by the example in Fig. 2. In a 
dockless BSS, there are two users u1 and u2, and only one available bike located at 
R on the map. We assume u2 arrives at the system right after u1 reaches its 
destination u1

′  . Firstly, we only consider source incentives. If a user cannot find 
bikes nearby his/her source location, the BSS would incentivize the user to enlarge 

1 https://www.citibikenyc.com/bikeangels/
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its source detour region and pick up a bike, as shown in Fig. 2a. Note that users have 
maximum detour distances [24] since their mobility is limited by walking. Therefore, 
as illustrated in Fig. 2b, user u2 cannot rent the bike, and the BSS operator loses the 
user. However, we notice that the detour distance of user u1 is relatively small and 
does not exceed the detour distance limitation. u1 could have another detour near its 
destination if an incentive is provided. If we also consider destination incentive, the 
user u1 could return the bike at location R′ instead of its destination, as shown in 
Fig. 2c. Then, the user u2 could successfully rent the bikes with source incentives.

The example shows that the number of bike usages or the service level is 
increased from 1 to 2 by providing destination incentives along with source 
incentives.

Inspired by the motivation example, we propose a user-incentive-based rebalanc-
ing scheme that considers both source and destination incentives. However, it is not 
trivial to design such a scheme. The first challenge is the complex user dynamics.

[10] and [22] have shown the user dynamics in both temporal and spatial domains 
in docked and dockless BSSs, respectively. For dockless BSSs, another challenge is 
the extremely large number of bikes in a city. For example, Mobike plans to deploy 
hundreds of thousands of bikes in Guangzhou, China. Determining the incentive 
price for each bike is computationally complex. Another challenge for both dock-
less and docked BSSs is to adaptively adjust the source and destination incentive 
prices for each time slot in a day.

We propose to use reinforcement learning approaches to solve those challenges. 
Although the user dynamics are complex in both temporal and spatial domains, 
there exist usage patterns. Liu et al. [20] have shown that the user demands could be 
predicted by using machine learning techniques. The reinforcement learning agent 
could learn the pattern from its exploring experience. Besides, the reinforcement 
learning agent could adaptively adjust its pricing policy according to the reward 
function. Reinforcement learning algorithms fit our problem scenario. In addition, 
we could divide the city into multiple regions and let bikes in the same region have 
identical incentive prices. The problem scale could be reduced, as well as the 

(a) u1 accepts the source 

incentive

(b) u2 cannot rent the 

bike w/o dest. incentive

(c) Dest. detour of u1

helps u2

Destination 
detour region

Maximum 
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Fig. 2 An illustration of the benefit of destination incentive
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complexity of training a reinforcement learning agent. Therefore, in this paper, we 
extend the reinforcement learning framework proposed by [22] that only considers 
source incentives and propose a hybrid incentive scheme that makes use of both 
source and destination incentives.

The contributions of our paper are summarized as follows:

• We propose to rebalance the BSS by offering users both source and destination 
incentives, which brings extra benefits compared with the source-incentive-only 
schemes.

• We analyze the advantage of the destination incentives and propose to combine 
the source and destination incentives by splitting the rebalancing budget.

• We adapt the state-of-the-art reinforcement learning framework for rebalancing 
dockless BSSs to determine the destination incentive prices.

• We further extend our scheme to docked BSSs by adding the capacities of each 
station into the state space of the reinforcement learning agent.

• We test the performance of our hybrid incentive schemes through experiments on 
a real-world dataset.

The remainder of the paper is organized as follows. Section 2 presents our prob-
lem statement, which contains the notations and system models. Section 3 presents 
our hybrid incentive scheme, which adaptively adjusts source and destination incen-
tive strength. Section 4 discusses the extended scheme for docked BSS rebalancing. 
Section 5 illustrates the experiment that is conducted on a real-world dataset. 
Section 6 reviews the related works. Section 7 concludes the paper.

2  Problem Statement

2.1  Overview

In our model, we propose an adaptive approach for rebalancing dockless BSS. Given 
a limited budget, which is not sufficient enough to totally balance the BSSs, our 
approach adaptively allocates the budget to incentive users to conduct a detour at 
source and/or destination based on the underflow/overflow distribution across time 
and space. The objective is to maximize the overall service level of the system over 
a day. The service level is quantified by the number of satisfied users or the number 
of bike usages.

Specifically, the incentive used to encourage users to rent bikes at neighbor 
regions of their sources is denoted as a source incentive, while the incentive is called 
a destination incentive on the other side. For a source incentive, the BSS operator 
provides locations of available bikes to each user, along with incentive prices of 
bikes in neighbor regions. For a destination incentive, the operator suggests that 
users return bikes to neighbor regions of the user’s destination. The price of source 
and destination incentive is determined by the incentive scheme. A reinforcement 
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learning-based price scheme for source incentive has been studied in [22]. We pro-
pose to jointly consider source and destination incentives inspired by the benefits of 
destination incentive that we have observed. Users’ choice of accepting incentives 
or not is simulated by the environment model. The performance of the rebalance is 
evaluated via the service level, which equals the number of satisfied users or the 
number of bike usages. The reinforcement learning framework of our hybrid incen-
tive scheme is shown in Fig. 3 (Table 1).

2.2  Incentive Scheme Model

In the incentive scheme, we discretize time and space into time slots and square 
regions, respectively. The BSS operator provides differential source and/or destina-
tion incentive price for each region at each time slot. Specifically, each day is sepa-
rated into m time slots in the time domain, denoted by T  =  {t1, t2, …, tm}. In the 
spatial domain, a city H is divided into n square regions, i.e., H = {h1, h2, …, hn}. The 
neighbors of a region hi are defined as the four regions that are directly adjacent to 

RL agent

State

Environment

Each Region 

# Bikes

# Renting

# Returning

(BSS information)

Reward

Action

(source and destination incentive price )

Fig. 3 An overview of the reinforcement learning framework

Table 1 Table of notations

Notations Description

H The region set and H = {hi,. .., hn} the slotted time set and T = {ti,. .., tm} the user 
set and U = {ui,. .., uo}

T Number of bikes in hi at the beginning of t
U Number of bike rented from hi during timeslot t
φi(t)Di (t) Number of bike returned to hi during timeslot t
Λi(t) Neighbor regions of h
N (hi) uk ’s cost of moving from hi to hj with distance o
ck(i, j, δ)Ti j (t) Number of users in hi who rent bike from hj and return to hj during time t
Pi + (t)/ pi 
− (t) B+/B−

Source/destination incentive price of region hi at t Budget provided by the BSS 
operator for the source/destination incentive
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hi, and the set of neighbor regions for hi is denoted as N(hi). Users to the BSS system 
are denoted by U = {u1, u2, …}. Although the actual user demands vary across time 
and space, the patterns on their demands in both temporal and spatial domains pro-
vide basis for our discretization. Our statistic on traces data from Mobike shows the 
existence of rush hour and demand hot spots. The number of users’ rent events and 
return events at region hi during time slot t are modeled as random variables Di(t) 
and Λi(t), respectively. The number of bikes in hi at the beginning of time slot t is 
denoted as φi(t).To deal with the imbalance of the BSS, we assume that the provider 
is willing to provide a budget B for user incentive, including a source incentive 
budget B+ and a destination incentive budget B−. Our incentive scheme helps BSS 
operators to decide the differential price of source incentive p ti

� � �  and destination 
incentive p ti

� � �  for each region hi at each time slot t. That is, if a user rents bikes at 
a neighborhood region hi of his/her source region during time slot t, he/she can 
obtain an incentive p ti

� � � . Each neighbor region may contain more than one bike, 
and the bikes in the same region have the same incentive price. Similarly, a destina-
tion incentive p ti

� � �  is given to users who return bikes to hi that are adjacent to 
users’ destination region during time slot t. Different from the source incentive, we 
assume that each region only contains one potential return location, which is the 
center of the region. This simplification is to reduce the complexity of the model.

2.3  Environment Model

The environment mainly models user dynamics and provides feedback to the incen-
tive scheme. Based on the source and destination incentive price vector generated 
by the scheme, the environment simulates each user’s choice of accepting the incen-
tive or not. We assume each user has a cost if he/she goes to alternative locations to 
rent bikes (with source detours) or return bikes (with destination detours). We fol-
low the user cost model in [22, 24]. Specifically, a user uk has an initial cost C for 
either source or destination detour. Besides, the cost is also relevant to the detour 
distance δ. Specifically, let ck(hi, hj, δ) and ck

′(hi, hj, δ′) denote the source and destina-
tion detour cost, respectively. hi and hj represent regions where uk rents and returns 
a bike, respectively. δ and δ′ are the corresponding source and destination detour 
distance. If the user uk rents (or returns) a bike at a region, which is the neighbor of 
his/her source (or destination), his/her source detour cost ck(hi, hj, δ) = C + ηδ2 (or 
destination detour cost ck

′(hi, hj, δ′) = C + ηδ′2), where η is a constant coefficient. We 
assume users are not willing to rent or return bikes at regions further than neighbor 
regions, and that the cost of renting or returning bikes in these regions is infinity. If 
the user uk rents (or returns) bikes in the same region as his/her source (or destina-
tion), there is no cost. Note that if a user detours at both source and destination, he/
she will receive both source and destination incentives in one trip, which helps to 
resolve the overflow and underflow problem of the BSS.

Users make decisions on whether to accept source and/or destination incentive 
before they start riding. A user decides whether to accept the source incentive first, 
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and then makes a decision regarding the destination. If a user in hi requests a bike 
during time slot t, and he/she decides to rent a bike in hj and to return it in hk due to 
the incentives, then we increment τij(t) by one to record this trace.

2.4  An Existing Pricing Scheme for Source Incentive

A pricing algorithm for source incentive is proposed by Pan et al. [22]. Their pricing 
scheme is based on a Markov decision process (MDP) and is optimized by using a 
reinforcement learning approach inspired by the hierarchical reinforcement learn-
ing and Deep Deterministic Policy Gradient algorithm [17]. The pricing algorithm 
is briefly stated in the section, and our adaptive incentive scheme is built upon it.

The MDP is used to model the interaction between the pricing scheme and the 
environment. Specifically, the MDP is a 5-tuple (S, A, P, r, and γ), where S is the set 
of states {st}, A is the set of actions {at}, P describes the transition possibility 
between states under an action, r denotes the immediate reward, and γ is the dis-
count factor. The weight of future rewards and the present reward is determined by 
the discount factor γ ∈ [0, 1]. γ = 1 represents that the future rewards share the same 
importance as the present reward, i.e., the overall reward is the additive sum of the 
reward from each time slot. The pricing scheme takes source incentive prices given 
to all regions as an action and the number of satisfied users as a reward. The MDP 
ends when the budget B is used up. The pricing scheme finds a policy πθ, which 
maps states to actions, through optimizing the MDP based on reinforcement learn-
ing. The number of bikes rented from hi and returned to hj during time slot t is 
denoted by τij(t).

Formally, their pricing scheme is defined as:
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The objective is to maximize the number of valid traces over all regions and time 
slots. The first constraint is the incentive budget limitation. The second constraint 
means that the number of bikes in each region should not be less than zero at any 
region during any time slot. The last constraint represents the evolution of the num-
ber of bikes in each slot among different time slots.
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The MDP is optimized by applying reinforcement learning algorithms. The rein-
forcement learning aims to train a parameter set θ in πθ such that the overall rewards 
can be maximized by following a policy πθ. Formally, the overall reward brought by 
the policy πθ is:
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2.5  Problem Formulation

Based on the system and environment models, the BSS rebalancing problem is pro-
posed. We aim to maximize the service level of a BSS in a one-day service circle. In 
each service circle, the BSS operator provides budget B+ and B− for source and 
destination incentives. Formally, our problem can be expressed as:
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Note that the difference with the existing price scheme can be found in the first 
two constraints, where we consider two kinds of incentives. The overall budget of 
source and destination incentives remains as B. The difference is that some part of 
the budget B− is assigned to conduct the destination incentive:

3  Hybrid Incentive Scheme

3.1  Benefits of Destination Incentive

Although the source incentive is a straighforward way to increase the service level, 
it cannot fully unitize the power of user incentive. Besides source incentive, we use 
Fig.  4 to illustrate that the dockless BSS can also be balanced through the 
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destination incentive. In the figure, the blue nodes represent areas whose return 
events are more frequent (i.e., the number of bikes on the area increases) in the 
given time window. The amount of extra return events for each region is shown in 
the figure, and each node’s area is proportional to the extra value. The red nodes 
have the opposite meaning. By applying the destination incentive, i.e., incentivizing 
users to return bikes to neighbor regions, the imbalance usage can be greatly eased. 
A possible assignment for users is shown in the figure. The arrows indicate the des-
tination incentive direction, and the number of users needed is shown along the 
arrows. However, the imbalanced demand cannot be totally satisfied since the num-
ber of extra return events could be different from the number of extra rent events. 
Although the spatial distribution cannot be fully balanced, the service level of the 
system can be improved because more users are able to rent bikes.

 

The unique benefit of the destination incentive is illustrated through the toy 
example in Fig.  5. By applying the destination incentive, the service level can 
increase to 2. Only applying the source incentive cannot achieve such a service 

return 
events

rent 
events

destination 
incentive 
direction

Neighbor 
region

Neighbor 
region

Rent/return 
region

Neighbor 
region

Neighbor 
region

Fig. 4 An illustration of 
destination incentive
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level. In the example, we consider that there are three users appearing in time slot 1, 
2, and 3 at location u1, u2, and u3 shown in the figure, respectively. Their correspond-
ing destination is u1!, u2!, and u3!. There is only one bike in the map, and it is 
returned at location R at t = 1 without considering destination incentive. As shown 
in Fig. 5a–c, only user u1 can successfully finish her trip, and users at u2 and u3 can-
not rent a bike since the detour distance exceeds the limitation. In this case, the 
number of satisfied users is 1. However, if the destination incentive is allowed at t = 
1, the bike can be returned to location R! instead of R. Although it is too far for user 
u1 to rent the bike, users u2 and u3 can finish their journeys without any detours. That 
is, the number of satisfied users increases to 2 with a well-designed alternative 
return location suggestion, and the users’ total walk distance is the same as follow-
ing the source or destination incentive scheme.

Although the destination incentive may have a better control on the trend of the 
bike flow, deciding the return location is complex due to the large size of the poten-
tial returning points. Especially for dockless BSSs, a bike could be returned to any 
location as along as it does not block others. The large solution space makes the 

(a) t=1 (b) t=2 (c) t=3

(d) t=1’ (e) t=2’ (f) t=3’

Fig. 5 An example showing the benefit of returning at alternative destinations

Y. Duan and J. Wu



375

learning algorithm hard to converge. To cast off that complexity, we propose to 
sample the metric middle point of each region as the potential returning point. It 
means that if a user accepts the destination incentive, the system would suggest the 
metric middle point of the destination region as the returning point. This additional 
constraint not only reduces the action space for reinforcement learning algorithms 
but also reduces management difficulties for the system operator (Fig. 6).

The trade-off is that the efficiency of the destination incentive might be reduced. 
That is because choosing the middle point as returning point may cause the unnec-
essary detour, which may increase the detour distance of a user. If the pay-off 
brought by the destination detour is not more than detour distance wasted on a cer-
tain user dynamic, the destination detour is not useful anymore.

3.2  A Hybrid Incentive Scheme

Either the source incentive or destination incentive itself has its own shortage on 
certain user dynamics. Therefore, besides considering incentivizing users to just 
pick up or just drop off bikes in neighbor regions, we propose to combine these two 
kinds of incentives and build a hybrid incentive scheme. The intuition behind the 
hybrid incentive scheme is that the scheme could adaptively adjust the source and 
destination incentive based on different imbalance situations.

In the hybrid incentive scheme, the state and action space in the MDP is enlarged 
because of the destination detour budget B− and price p−. Specifically, a state vector 
st is constructed by 
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Fig. 6 Adaptively 
adjusting source and 
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reaches the time slot upper bound, or when any of the remaining budget for source 
or destination incentive is empty.

An action vector at in A for time slot t is constructed by the source incentive price 
vector p t i ni

� � � � �� �, , ,1  and source incentive price vector p t i ni
� � � � �� �, , ,1 . 

Although the transmission probability P is built on the enlarged state and action 
spaces, the state transmission still can be simulated via our environment model. The 
reward r of the hybrid incentive scheme is constructed by rewards from source 
incentive r+(st, p+) and rewards from the destination incentive r−(st, p−).To adapt the 
modification to the MDP, we extend the actor-critic framework in [22]. The size of 
the actor network is enlarged as shown in Fig. 7. The actor network 1 is used to learn 
the source incentive prices p+(t), and the actor network 2 is used to learn the destina-
tion incentive prices p−(t). As for the critic network, the sub-Q-value of each region 
hi at step t is evaluated based on p t p ti i

� �� � � �� �,  instead of just considering p ti
� � � , 

and the estimation of the Q-value changes correspondingly.

3.3  Adaptively Adjust Source and Destination Incentive

Besides adjusting the learning framework, we also propose two different ways to 
adjust the ratio of source and destination incentive price. One way is to adjust the 
strength of source and destination incentive by controlling the ratio of source and 
destination incentive budget. It is achieved by splitting the total budget into source 
and destination incentive budgets based on a ratio ρ.

Definition 1 (Budget Division) Assume the total budget available is B, and the 
budget division ratio is ρ. Then the budget appointed to source incentive is ρ, and the 
remaining (1 − ρ)B is used for the destination incentive.

Under this scheme, the remaining budget of source and destination incentive in 
the initial state s0 becomes:

 
B B B B� �� � �� �� �, 1

 

The overall reward during a day under policy n0 becomes:

actor network 1

linear

actor network 2
state st

critic

network
value

Fig. 7 The learning 
framework for hybrid 
incentive scheme
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The other way is to adjust the ratio between detour distances of source and des-
tination incentive. It is achieved by adding the maximum detour constraint to users 
in the environment model. Let l denote the maximum detour distance that a user can 
accept, including source and destination detour. The value of l can be extracted from 
a user survey when applying the scheme in the real world. We split l into two parts 
ls and ld, which correspond to the maximum source detour and maximum destina-
tion detour, respectively. Let a denote the adjust parameter between ls and ld.

Definition 2 (Detour Distance Division) Given the maximum detour distance l of 
each user and parameter a, the maximum detour under source incentive is ls = al, 
and the detour under destination incentive is ld = (1 − a)l, as shown in Fig. 6.

To keep consistent with the environment model, we assume the user rejects the 
detour either if his/her detour distance exceeds the limitation or if he/she cannot 
gain profit from the detour. Through this setting, we try to limit each region’s source 
and destination incentive among all time slots.

Formally, based on a, we attempt to limit the source and destination incentive as:

 
p t C l p t C l t Ti i
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1and
 

The budget division strictly imposes restrictions on budgets of source and desti-
nation incentives, while the detour distance division restricts the source and destina-
tion incentive price on estimation. Either kind of incentive is adaptive among 
regions, and the sum of incentive prices cannot exceed the corresponding budget. 
The budget division is applied to the initial state of the MDP. The detour distance 
division is applied to the environment, the incentive greater than the limitation can-
not bring benefits to the scheme.

3.4  Properties

In addition to the adaptive adjustment, the hybrid incentive scheme can help to 
break a long detour distance of one user into two short detour distances of different 
users. More clearly, we use the example in Fig. 8 to show the benefits brought by 
applying source and destination incentives at the same time. We consider there are 
two users arriving at time slots 0 and 1, respectively. Their origins are u1 and u2, and 
destinations are u1

′ and u2
′ ,  respectively. There is one bike located at R at the begin-

ning time slot t = 0. The solid lines show users’ paths if only the source incentive is 
allowed. By following the solid lines, user u1 rents the bike from R and returns it to 
u1

′. Then, user u2, who comes after u1 returns the bike, has to rent the bike at u1
′ with 
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a 200 m detour, while the detour distance of user u1 is 0. The 200 m detour of u2 may 
exceed his/her maximum detour limitation. In contrast, the dashed lines show paths 
when both the source and destination incentives are allowed. User u1 could return 
the bike to R′ with a 100 m destination detour. In this case, user u2 could rent the bike 
from R′ with a 100 m source detour. The relatively long detour of user u2 is equally 
shared by u1 and u2 in our hybrid incentive scheme.

According to the survey [24], the growth rate of each user’s detour cost is propor-
tional to the square of his/her detour distance. Our hybrid system provides a prob-
ability that let users with relatively shorter detour distances help share the long 
detour distance. It mitigates the burden for users with relatively longer detour dis-
tances and helps to attract more users to accept the incentive. It may help to incen-
tive more users to become involved in the rebalancing and increase the number of 
satisfied users to the system. With more potential users joining rebalancing, the 
system is easier to choose proper users for rebalancing.

4  Hybrid Incentive in Docked BSS

In this section, we consider the docked BSS in which users must rent or return bikes 
at bike stations deployed by the BSS operator. In the docked BSS scenario, our 
objective is also maximizing the service level of the BSS in the daily service period.

In the docked BSS rebalancing, let H denote the set of stations rather than 
regions, and let hi denote the station i. The docked BSS suffers more from the imbal-
ance bike distribution. Specifically, it would cause overflow and underflow stations. 
The overflow stations are the stations that are full of bikes. Users cannot return bikes 
to overflow stations. The underflow stations have no bikes, and users cannot rent 
bikes. We also follow the user incentive approach to resolve the overflow and under-
flow issues. Specifically, at each time slot t, the BSS operator would assign source 

(a) t=0 (b) t=1 (c) t=2

100

200

100

Fig. 8 Illustration of combining source and destination incentive
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and destination incentives for each station hi. The source incentive price is denoted 
as p ti

� � � , which is the amount of monetary incentive for a user who rents bikes 
from the station. We provide source incentives to resolve the overflow issues. 
Similarly, the destination incentive price p ti

� � �  represents the incentive for a user 
who returns bikes to hi. It is used to resolve the underflow issues of a station. The 
source and destination incentive prices would not be provided at the same station. 
That is, if there is a source incentive at station hi at time t, the destination incentive 
price p ti

� � � � 0 .
The challenge of rebalancing a docked BSS is the capacity limitation of each 

bike station. Let cH denote the vector of station capacities of stations in H. Specifically, 
even if a station is located in a popular area and has a large number of bike renting 
demands, the station cannot hold more bikes than its capacity. The destination 
incentive might be infeasible for these fully occupied stations. The reinforcement 
learning agent needs to know the current number of bikes in each bike station at 
each time slot, along with the capacity of the station.

Besides the capacity limitations, there is no concept of neighborhood region in 
the docked BSS rebalancing. For the dockless BSS rebalancing scenario, we use 
neighborhood regions to reduce the complexity for the reinforcement learning 
agent. The incentive price for each region is affected by its four neighborhood 
regions rather than all regions in the map. For the docked scenario, we also need to 
reduce the state space for the agent. In particular, there are usually hundreds of sta-
tions in a city. When determining the incentive price for a station, taking the states 
of all stations into consideration would also lead to a large solution space. Therefore, 
similar to using neighborhood regions, we only consider states of k nearby stations 
when determining the incentive price for each station in a docked BSS. The k nearby 
stations of station hi are defined as the first k nearest stations to hi. Same as neigh-
borhood regions, the k nearest stations of hi are determined and could be hard coded 
into the reinforcement learning agent.

Considering the differences between docked and dockless BSSs, we extend our 
reinforcement framework to learn the source and destination incentive price for 
docked BSSs by enlarging the state space (adding station capacities as features) and 
replacing neighborhood regions with k nearby stations. The state and actor vectors 
of the reinforcement learning agent are updated to:
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Specifically, the state vector of the reinforcement learning becomes st
′ = (st, cH) 

where st is the state vector used for dockless BSS rebalancing and cH is the vector of 
capacities of stations in H. To make sure the source and destination incentive prices 
at a station would not be positive simultaneously, we update the action vector to at

′ 
= (b(t) ∈ {1, −1}, pi(t) ∈ R+, i = 1, …, n) where b(t) is used to specify whether it is 
the source incentive or the destination incentive and pi(t) represents the incentive 
price for station hi.
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The environment model is also modified to fit the docked BSS rebalancing sce-
nario. The detour cost model used for dockless BSSs cannot be used for docked 
BSSs since there are no neighborhood regions in docked BSSs. As a result, we 
update the cost model for docked BSSs and remove the limitations caused by neigh-
borhood regions. Instead, we set maximum detour distances for users based on their 
original trip lengths. Assume a user plans to rent bikes from the station hi and return 
to hi

′. The alternative pick-up station is hj. Then, in docked BSSs, the source detour 
cost of the user is:
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where the parameter κ is used to adjust the maximum detour distances. For example, 
when we are setting κ = 1, we assume that a user would not be willing to take a 
detour whose length is longer than the user’s original journey. The cost model for 
destination detour is updated in the same way.

By updating the state and action spaces of the reinforcement learning agent and 
the environment model, we extend our hybrid incentive scheme for dockless BSSs 
to docked BSSs. The performance of the extended scheme is tested on real-world 
datasets, and the results are illustrated in Sect. 5.

5  Experiment

5.1  Dataset

We use the data published by Mobike to construct the dockless dataset and use the 
trip history data published by NYC to construct the docked dataset. The NYC data-
set contains more than 1.5 million trip records for 328 bike stations. The Mobike 
dataset contains more than 100 k trip records of Shanghai. The record of each trip 
includes trip duration (in seconds), trip start (end) time and date, start (end) latitude 
and longitude, etc. The summary of the Mobike dataset is shown in Table 2. We first 
visualize the imbalanced bike distributions in those datasets.

The spatial imbalance of the Mobike dataset is shown in Fig. 9. To illustrate the 
spatial imbalance, we plot the usage of region in Fig. 7 for AM rush hours (7:00–9:00 
AM) and PM rush hours (6:00 PM–8:00 PM). The blue nodes represent stations 

Table 2 The Mobike dataset

Data source Mobike traces (Shanghai)
Timespan Aug. 1 2016 to Sep. 1 2016
Weekdays (weekends) 24 (8) days
Bike data # Bikes 79,063 # Trips 102,361
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whose return events are more frequent (i.e., the number of bikes on stations increase) 
in the given time window. The node’s diameter is proportional to demands of the 
corresponding station. The red nodes have the opposite meaning. Figure 10 shows 
the variation of spatial imbalance over multiple time slots.

In addition, we investigate the bike imbalance of the NYC dataset. Figure 11a 
shows the statistics on a bike user’s trip duration. Figure 11b illustrates the statistics 
of the temporal usage distribution of trips on 08/01/2016 (Monday). It shows that 
more than 55% of trips are shorter than 10 min. Figure 11b further shows that the 
demands of bikes are not even during a day. There also exist morning and evening 
peak hours.

Fig. 9 The temporal and spatial imbalanced distribution in the dockless BSS dataset

Fig. 10 Rebalancing among multiple time slots
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5.2  Experiment Setup

In our experiment, the environment model is built on OpenAI Gym, a toolkit for 
comparing reinforcement learning algorithms. Specifically, a day is temporally 
divided into 24 time slots, and the Shanghai city is spatially divided into 20–40 
regions. The effective area of the city is bounded by [30.841°N, 31.477°N] and 
[120.486°E 121.971°E]. Users’ time requests, locations, and destinations are 
extracted from the Mobike trace data. Through the statistics of unique bike ID, there 
is a total of 79, 063 bikes used in the dataset. Considering the retirement of broken 
bikes, the actual number of bikes may be less than that amount. Users’ riding speed 
is chosen as the mean speed of all users, and the walking speed is assigned as 5 
km/h. The cost of user detour obeys the cost model introduced in Sect. 2.3.

When training the hybrid incentive scheme, the Adam algorithm is used to opti-
mize both actor and critic networks. The learning rates for training both parts are set 
as 10–4. In each step, to explore more action space, a Gaussian noise is added to 
each action generated from the actor network. Although [17] proposed to add 
Uhlenbeck-Ornstein noise to actions, the Gaussian noise is used for simplicity. The 
discount factor γ in the MDP is chosen as 0.99.

In the first set of experiments, we compare the performance of our algorithm 
with others under different budgets. The budget is varied from 1000 to 2000, and the 
performance is quantified by the decreased unserviced ratio defined in [22]. The 
number of unserviced users increases by one if the user cannot find a bike to ride, or 
he/she is not satisfied with any source incentive offered by the system. Let N1 denote 
the number of unsatisfied users with no incentive, and let N2 denote the number of 
unsatisfied users with incentive. Then, the corresponding unserviced ratio is defined 
as (N1 − N2)/N1.

The second set of experiments focuses on the number of satisfied users. The 
number of satisfied users is proportional to the income of the BSS. We assume the 
BSS operator charges 1 for each user who rents the bike. Therefore, the profit of the 
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operator can be calculated by subtracting the budget spent for incentive from the 
overall income of a day.

We also test the influence of the initial bike amount. If the initial bikes are suffi-
cient enough, then each user can find a bike without a detour and the maximum 
service level is achieved. However, the number of bikes is limited in each region. 
Therefore, wisely spending the budget to achieve a better service level is important. 
The last set of experiments focuses on the rebalance performance across multiple 
days. Our first comparison algorithm is the source-incentive-only scheme [22], 
which is denoted as HRP. The second comparison algorithm is the DBP-UCB [24], 
which is one of the state-of-the-art bike rebalancing approaches based on user 
incentive. A randomized incentive scheme is used as a baseline.

Then, we tested our docked BSS rebalancing scheme. We compare our learning- 
based scheme with a fixed incentive scheme used by the operator of the NYC Citi 
bike. Specifically, the Citi bike launched the “Bike Angels” project and gave users 
fixed points if they would rent/return bikes at specific locations. Each point was 
worth about $0.1. During the experiment, we denote this rebalancing scheme as 
Fixed. Besides, we use the Random scheme, which assigns incentive prices to sta-
tions randomly, as the baseline.

5.3  Results

We illustrate our experiment results on decreased unserviced ration in Fig.  12a. 
From the figure, we can conclude that the performance of our hybrid approach 
achieves better performance than other approaches. Comparing with the HRL that 
just considers the source incentive, we can conclude that adaptively allocating 
incentive on source detour, and destination detour can bring additional benefits on 
the service level. It is reasonable since the source and destination incentives are 
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included in the action spaces of the hybrid incentive scheme. By comparing HRL 
and DBP-UCB, we can conclude that the reinforcement learning can greatly 
improve the service level since it considers further reward when choosing the action 
for each state. The performance trend of all approaches shows that more user 
requests can be satisfied with a higher budget, even for the randomized policy.

The additional profit brought by the incentive is illustrated in Fig. 12b. As stated 
in [22], the HRL can bring additional benefits to the BSS operator when the budget 
is not too large. The hybrid incentive scheme can also gain profits from the incen-
tive, which is arguably one of the most important features to BSS operators. 
However, as the budget increases, the profit decreases. It illustrates that the number 
of satisfied users increases more slowly with the increasing budget. That is to say, 
the BSS operator may not find it worthwhile to totally rebalance. The totally rebal-
anced system means that all user requests can be satisfied. The DBP-UCB and ran-
domized scheme can bring additional profits to the system with a budget less than 
1000 within the Mobike dataset.

Figure 13a shows the influence of the initial bike amount. With more initial bikes 
placed in the city, incentive schemes are more likely to achieve better performance. 
The increasing ratio in the figure is not as sufficient, and the reason for this could be 
that the initial bikes are uniformly distributed among the city, and adding bikes to 
regions with nearly no user requests may waste bikes. If the distribution of initial 
bikes could fit user requests, the increased initial bike amounts may greatly improve 
the service level.

Figure 13b shows the rebalance performance over multiple days. We count the 
decreased unservice events since it is additive. The difference between the HRL and 
the hybrid incentive increases as the number of days increases. It shows that the 
hybrid incentive scheme keeps a better distribution than the HRL.  As we have 
shown in the previous section, the destination incentive, to a certain extent, is eager 
to place bikes in regions with more requests. These bikes are more likely to be used 
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when the number of time slots increases. It may explain that the advantage of the 
hybrid scheme is more obvious with a larger number of time slots.

The experiment results on the docked BSS dataset—the NYC dataset is shown in 
Fig. 14. Figure 14a shows the performances of different schemes under different 
incentive budgets. Not surprisingly, all schemes could achieve a higher service level 
when a larger budget is provided. Among them, our hybrid incentive scheme makes 
better use of the budget and has the highest service level. It shows that the reinforce-
ment learning agent could learn a better way of allocating incentives among bike 
stations, compared with a fixed incentive scheme. Figure 14b shows the experiment 
results under different numbers of stations. The budget per station is fixed during the 
experiment. This result shows that our hybrid incentive scheme is robust when the 
scale of the docked BSS is expanded. The learning agent is still capable to allocate 
incentives wisely to keep the service level at a high level, and it outperforms the 
fixed incentive scheme by about 30.7%–35.3%.

6  Related Work

With the booming of BSSs, more and more researchers are devoting their efforts to 
related issues including user demand prediction [5, 16, 21, 26], bike rebalance strat-
egy [23, 19, 24, 28, 14, 11], station location optimization [18, 4], bike lane planning 
[1], and suggestion of user’s journeys [27, 29, 6]. We focus on the studies that have 
been conducted on rebalance strategy designing issues, which are closely related 
with our work.

Before designing efficient bike rebalancing scheme, accurately predicting user 
demands for BSSs is critical. The existing demand predication methods could be 
group as station level and cluster level prediction approaches. The station level pre-
diction is designed to predict the number of rent/return events at each bike station in 
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docked BSSs, such as [13, 15]. However, it ignores the potential depends among 
bike stations and may not generate inaccurate demand predictions [16]. To over-
come this, Li et al. [16] proposes to cluster similar stations. Specifically, they pro-
posed to use transition patterns and station locations to cluster bike stations first. 
Instead of predicting demand of each bike station, they predict the demand of each 
cluster. Chen et al. [5] further improve the prediction accuracy by considering more 
features such as traffic and social event. By adding those factors into consideration, 
the prediction accuracy is improved accordingly. Du et al. [8] adapt a convolutional 
neural network (CNN) for the demand prediction. Their algorithm could find virtual 
stations by using density peak–based clustering. Then, they use the CNN to predict 
the demand of each virtual station. By utilizing demand prediction, our approach 
aims to optimize the worker assignment during rebalancing.

Rebalancing strategies designed for docked BSSs have been widely studied. 
Typically, there are two major approaches, which are the truck-based and the user- 
based approach. The truck-based approach such as [3, 12] means the BSS operator 
hires a fleet of trucks to transport bikes from overflow stations to underflow stations. 
Chemla [3] proposed a single-vehicle rebalancing problem, where each station 
could be used as a buffer to temporarily store some bikes. Their rebalancing algo-
rithm is based on brand and bound, which can be used for small size BSS systems. 
When the number of stations exceeds 100, the time cost is significant. However, in 
real-world BSS systems, the number of stations in a large city could easily exceed 
100. Liu et al. [19] proposed a method that first clusters bike stations according to 
geographic information and station status and then assigns a truck to each cluster. 
They model the bike rebalancing as an integer programming problem and use inte-
ger programming solvers to optimize route for trucks used for bike rebalancing. The 
number of bikes that need to be moved within a cluster is usually small. Therefore, 
the integer programming solvers could solve the routing problem efficiently. 
Different from those works, we follow the user-based approach, which is more flex-
ible and cost-efficient. Specifically, we recruit a group of workers to rebalance the 
system instead of hiring a fleet of trucks.

The dockless BSSs becomes more and more popular in major cities. The advan-
tage of the dockless BSSs is that user could return bikes at their destination instead 
of finding a return station. However, it also brings challenges for rebalancing. The 
scale of the rebalancing problem is enlarged since each bike’s location should be 
considered. The rebalancing scheme designed for docked BSSs cannot be directly 
applied because of the enlarged solution space. New rebalancing approaches are 
required. For dockless BSS rebalancing, existing researches usually follow a user- 
based approach. As for the user-based approach like [25, 24], the BSS operator 
gives incentive to users and suggests them to rent or return bikes at certain stations. 
User-based approaches expect that the BSS can achieve self-balance. They improve 
the overall service level by controlling users’ dynamics through incentive. The user- 
based approach is more flexible. Unlike truck-based approaches, which could only 
apply a few rounds of rebalancing in a day, the user-based rebalancing lasts continu-
ously, only if the budget is sufficient.
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Designing the pricing mechanism is the key problem in these approaches since it 
directly affect the user dynamics. Waserhole [25] presented a dynamic pricing 
mechanism that incentivizes users to redistribute bikes by providing alternative 
rental prices. Singla et al. [24] proposed a pricing mechanism to incentivize users 
via crowdsourcing. For dockless BSSs, besides the source incentive scheme based 
on reinforcement learning proposed by Pan et  al. [22], there are many other 
approaches. Liu et al. [21] propose a demand prediction method. Their inference 
model combines convolutional neural network and factor analysis techniques. 
Based on an precise demand prediction, some docked rebalanced scheme may be 
extended to the dockless scenario. Caggiani et  al. [2] proposed a dynamic bike 
rebalance method including a prediction scheme of the number and position of 
bikes and a relocation decision system. Our hybrid scheme is an end-to-end system, 
and the incentive price can be given without demand prediction. Besides rebalanc-
ing, BSS operators usually set an electric fence [30] to restrict the mobility range of 
bikes, which helps to solve the imbalanced bike distribution. By applying the elec-
tric fence policy, users need to return bikes into designated zones. Adaptively adjust 
the capacity of each electric fence can avoid the case where too many users return 
bikes to a certain station. Through the adjustment of the capacity, the imbalanced 
issue of the system could be solved to some extent.

7  Conclusion

We investigate the bike rebalancing problem for both dockless and docked BSSs in 
this paper. We illustrate that the imbalanced bike distribution in BSSs might cause 
bike overflow and underflow events. Those events may bring congestion to the city 
or decrease the service level of BSSs, and rebalancing BSSs in a timely manner is 
necessary. We follow the user-based approach for rebalancing and propose to adap-
tively provide both source and destination incentives to users with the objective of 
maximizing the service level. We adapt a reinforcement learning framework in [22] 
to overcome the complex user dynamics for dockless BSSs. In addition, we extend 
the learning framework to the docked BSS rebalancing problem. The capacity of 
each station is added to the state space of the reinforcement learning agent, and the 
environment model is also updated to fit the docked BSS scenario. We use real- 
world trace data from Mobike and NYC Citi bike to test our dockless and docked 
rebalancing scheme, respectively. Experiment results show that providing both 
source and destination incentives could achieve a higher service level compared 
with the state-of-the-art source-incentive-only scheme. Our extended scheme out-
performs the fixed incentive scheme, which is currently implemented by the City 
bike in NYC. Besides bike-sharing, electric-car and e-scooter sharing become more 
and more popular nowadays. Those systems also have rebalancing issues. The 
scales of those systems are different from BSS. Although we can directly apply our 
rebalancing scheme to those systems, designing a new rebalancing system that 
makes full use of IoT sensors on those devices would be a more efficient solution.
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IoT-Driven Bayesian Learning: A Case 
Study of Reducing Road Accidents 
of Commercial Vehicles on Highways
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1  Introduction

Internet of Things (IoT) belongs to the pervasive computing paradigm. Its goal is 
enabling communication and relay of data between different devices across the 
Internet [7]. IoT is an innovation in which the data from the participating devices or 
entities are stored in the cloud where it could be easily accessed, processed, and 
managed. Typical participating devices include sensors and actuators, which are 
easily integrable into more complex systems and used for gathering data and trans-
mission to specified nodes on the Internet. The advancement of cloud computing 
has helped promote the relevance of IoT as cloud systems now provide requisite 
mechanisms for storing data, analysis, data gathering, and data visualization. 
According to Chamandeep [13], the characteristics of cloud include on-demand 
service provision, resource pooling and elasticity, and so on. In general, IoT offers 
highly developed connectivity of devices, systems, and services that are somewhat 
ahead of machine-to-machine communications, covering a variety of protocols, 
domains, and applications. IoT variants have applicability to nearly all fields of 
automation permitting advanced applications like smart home, smart traffic man-
agement, smart grid, etc. Other prominent applications include heart monitoring 
implants, biochip transponders on animals, automobiles with built-in sensors, and 
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field operation equipment that aid firefighters during search and/or rescue opera-
tions. Typical applications include thermostat systems and washer that utilize Wi-Fi 
for remote monitoring [4]. IoT is bringing the human civilization closer to direct 
communication between machines [62]. One of such areas that has attracted inter-
ests in the application of IoT is smart traffic control and vehicle management [58] 
including accident prevention and control. Road accidents can be fatal, resulting in 
the death of motorists and other road users. Some causes of road accident identified 
by Muthusamy et al. [50], George et al. [22], and Oluwaseyi and Gbadamosi include 
bad roads, stress of drivers, age of the vehicle, carelessness, using mobile phone 
while driving, ignoring the red signal in traffic signals, over speeding, poor weather 
conditions, dangerous bends, abandoned vehicles, animals not under control, 
obstruction on the road, driving while drunk, and insensitivity and irresponsibility 
on the part of state authorities. Awareness and knowledge of causes of these acci-
dents may help motorists to avoid them.

The effect of these accidents on the society has been discussed under economic 
and social perspectives.

Economically, road accidents are computed at a cost of about 3% of a country’s 
GDP globally [76]. WHO [76] also estimates that 93% of global road fatalities are 
associated with countries within the low and middle-income category, respectively. 
Research has shown that such accidents are a major economic challenge in develop-
ing countries, especially in Africa [39, 75, 77]. Economic costs of fatalities range 
from 2% to 5% of GDP in many countries [51]. These costs do provide requisite 
basis for local transport safety authorities to plan and undertake improvement proj-
ects including hazard profiling of locations, periodic road audits, and other preven-
tive steps that would help mitigate these accidents.

Socially, fatal traffic incidents lead to profound sorrow, death, and losses in 
developmental resources. Disabilities, loss of properties, sustainable property, 
safety, basic freedoms, and human right violations may result [23]. Researchers 
such as Abdelfatah et al. [2], Shahid et al. [67], Rusli et al. [64], and Usman et al. 
[73] have lamented the physical, social, economic, and psychological impact that 
result whenever there is a road accident. Presently, road fatalities is a global health 
concern. Nak and Mauricio [51] report that some 1.3 million people die yearly from 
such fatalities and up to 50 million injured globally. With the rising concerns, new 
approaches need be explored toward proffering solutions. This chapter aims at 
investigating road accident mitigation using an IOT-driven Bayesian system. The 
goal of this chapter is to discuss a system that could offer a forward adjustment on 
road status conditions through progressive updates and computation of risks associ-
ated with specific road segments using Bayesian learning. The risk is expressed in 
terms of criticality, i.e., the outlook of a road accident occurring as a function of 
likely road condition, fatality, and injury rates. The proposed system not only would 
present on real time the risk status information but also would provide audible alerts 
to the hearing of drivers and passengers in a vehicle plying that road at all times.
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2  IoT Strategies and Implementations

In this section, we provide brief but detailed background on IoT, machine learning 
concepts, useful sensor technologies in road and vehicle management, traffic mod-
els, and finally some relevant proposed and implemented solutions.

The IoT concept was initiated in 1999 by Kevin Ashton [25]. According to 
Hamid et al. [25], the concept had changed as technology evolves in the last decade, 
as its default goal was to evolve a digital communication device that does not require 
human intervention. With advances in Internet technologies, device connectivity is 
emerging at an unparalleled scale and pace [7]. With the ongoing success in the 
establishment of connectivity across buildings, household devices, vehicles, embed-
ded with hardware devices, software, sensors, and with resultant nonintrusive data 
exchange [40, 66], IoT is poised to emerge as the greatest contributor to big datasets 
with nearly unlimited use across various smart applications [31].

Quite a number of industries like agriculture, transportation, and mining are 
implementing IoT to enhance the overall efficiency of their processes and improve 
their control mechanism. The IoT concept is conceived as an extended machine-to- 
machine (M2M) communication. Remote systems such as sensors are connected to 
servers with little or no human involvement, whereas IoT advances M2M connec-
tivity by integrating web/mobile applications and cloud systems [20]. For instance, 
the adoption of IoT in traffic management could have several benefits including: 
remote monitoring of vehicles to improve fleet and road usage efficiency, safety, 
reduce accidents, and vehicle usage, to provide quick response service to customers, 
and to enable smart interaction between drivers and the environment [21]. A typical 
IoT system is an embedded system with capability to support several concurrent 
device connections to engender a large dataset to be transmitted, processed, and 
stored in the cloud. Javadi et  al. [31] stated four components of a typical IoT 
platform:

 (a) Sensors and other hardware devices: fundamental components that collect data 
from the environment

 (b) Communication network (Wi-Fi or cellular technologies – 3G, 4G, and 5G)
 (c) Big data
 (d) The cloud where the data are stored and processed

2.1  Machine Learning (ML)

ML produces and automates prescriptive, predictive, and numerical models and 
algorithms directed at process optimization and performance enhancement in differ-
ent aspects of the human. ML uses advancements from empirical methods, opera-
tions research, and statistics. It finds hidden knowledge in data without delay in 
looking for it [17]. Hamid et  al. [25] categorized ML into supervised, 
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reinforcement, and unsupervised learning. Unsupervised learning (UL) is a group of 
techniques, which are driven by input data alone. A major UL algorithm is cluster-
ing. In clustering, data points are grouped against a set of data values or domain 
points [20]. Supervised learning (SL) involves the use of a model to make prediction 
as a result of knowledge acquired from training dataset, which include both the 
input and expected output. There are two major SL approaches: regression and clas-
sification. In ML, regression is useful when predicting event outcomes based on 
variables characteristics in domain data obtained from the dataset, whereas classifi-
cation is used to identify a group to which a new instance belongs and for predicting 
the target class for each category of data [40].

Reinforcement learning (RL) involves an agent that learns via a participatory 
interaction with the environment through trial-and-error response from its own 
knowledge, experiences, and actions. RL attempts to determine a decent mapping 
that describes observations undertaken for actions addressing situations for the 
decision-maker collaborating with an environment. RL is an authoritative method to 
speed up preliminary learning with outstanding results [35]. RL has gain popularity 
in the field of computational science, computational neuroscience, computer sci-
ence, applied mathematics, control and automation engineering, and mechatronics. 
Recent advances in RL over the years have led to its application in addressing multi- 
agent problems.

SL finds usefulness in the following domains:

 (a) Bioinformatics – where biological information of people, such as fingerprints, 
iris texture, and earlobe, are manipulated to support intelligent reasoning like 
authentication and authorization [63].

 (b) Speech Recognition – here, the algorithm learns the human voice and is able to 
recognize it. Some applications are found in virtual assistants, e.g., Google 
Assistant and Siri.

 (c) Spam Detection.
 (d) Object-Recognition and Vision [56].
 (e) Control

However, SL has its downsides and these include:

 (a) Overfitting [43], hence complementary approaches should be used to reduce 
this effect on the developed model.

 (b) Relatively high computation time [44].
 (c) Reduction in accuracy due to incoherent data.
 (d) Preprocessing requirements.
 (e) Precision and usefulness are dependent on correctness of the dataset and the 

algorithm arising therefrom.

Similarly, UL is ideal in the following scenarios:

 (a) Automatic splitting of dataset into groups based on similarities [20].
 (b) Detection of anomalies in datasets. This is useful in spotting fraudulent 

connections.
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 (c) Association mining: This is useful in identifying associated dataset that occur 
together in a dataset.

Like SL, UL has its weaknesses too. These include:

 (a) Difficulty in getting precise details on data sorting and data output used in UL.
 (b) Unknown and unlabeled input data leads to less accuracy of the results.
 (c) Spectral classes hardly agree with informational classes.
 (d) More time is spent on interpreting and labeling the classes that correspond to 

the classification.
 (e) Spectral properties of classes change with time, making it impossible to have 

the identical class information while moving from one image to another [35].

In SL, classification is a very vital ML technique that finds practical applications 
to many problems such as: speech recognition, handwriting recognition, biometric 
identification, object-recognition for vision, spam detection, bioinformatics, docu-
ment classification, etc. [43]. Classification incorporate many vital algorithms. 
These have been categorized by Lakshmana and Ragupathy [36] to include: deci-
sion trees (DT), nearest neighbor (N-N), support vector machines (SVM), boosted 
trees (BT), random forest (RF), Naive Bayes (NB) classifier, and neural net-
works (NN).

Bayes Theorem and Bayesian Learning
Bayes’ theorem explains the probability of an event, founded on previous knowl-
edge of circumstances, which might be connected to the event under consideration. 
For instance, if the danger of coming up with health problems is directly propor-
tional to age, Bayes’s theorem would enable the danger of an individual of a known 
age to be assessed more precisely than simply presupposing that the individual is 
distinctive of the population as a whole [12]. Bayes’s theorem is useful in Bayesian 
inference application. When used, the probabilities involved in Bayes’ theorem may 
lead to a different understanding. With Bayesian probability interpretation, the theo-
rem conveys how a degree of belief, expressed as a probability, should rationally 
change to give evidence of the availability of related data ([36]; [46]; [78]). Bayesian 
learning is founded on the concept of Bayes’ theorem. Bayesian classification may 
be used to establish causal relationships. Thus, it can enable the understanding of a 
problem domain including the prediction of the intervention consequences. Two 
major forms are identified: the general Bayes classification and the Naïve Bayes 
(NB) classification (a more prominent classifier these days). In the traditional Bayes 
classification (Bayes nets or Bayesian belief networks), the user determines the con-
ditionally dependent and independent variables, respectively. NB is hinged on the 
primordial assumption of independence among predictors. That is, NB classifiers 
presupposes that a particular feature present in a class exhibits no relationship with 
another feature present or that all of these properties possess independent contribu-
tion to the probability. NB classifier is easy to build, scales well with large datasets, 
and can outperform other sophisticated classification algorithms [5]. The NB clas-
sifier uses prior, posterior, and class conditional probabilities for its computation 
[5]. The strengths of the NB algorithm as shown in Francois-Lavet et al. [20] and 
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Kusy and Zajdel [35] include: small training data, simple computing, ease of imple-
mentation, time efficiency, big data handling, compatibility with incomplete data or 
missing values, and insensitivity to irrelevant features and noise.

2.2  Transportation and Sensor Technologies

For decades, sensor technologies have emerged ubiquitous attracting a lot of inter-
ests. They find wide utilization in health care, agriculture and forestry, and vehicle 
and marine monitoring. Sensor technologies are embedded in devices for traffic 
control, entertainment, and safety [29, 71]. Lately, sensors for tire pressure and rear- 
view visibility are mandatory in the design of vehicles, and smart transportation 
components aimed at providing services that improve on the convenience and com-
fort of motorists and reduce road hazards and traffic congestion [74]. Vehicle manu-
facturers sometimes install various sensors for data gathering and monitoring of the 
vehicle’s performance and activity, which in turn provide higher effectiveness and 
help for drivers [33].

Classification of Sensors
Sensors may be categorized according to:

 (a) Location in a vehicle, e.g., powertrain, chassis, and body.
 (b) Functionality, e.g., diagnostics sensors, convenience sensors, environment 

monitoring sensors, driving sensors, motion detection, night vision sensor, 
safety sensors, and traffic monitoring sensors [16].

 (c) Mechanism of operation, e.g., proximity, ultrasonic, electromagnetic, and 
optical.

 (d) Nature of material used for manufacturing of the sensor.

In intelligent transport systems (ITS), identifying the sensors that address prob-
lems such as traffic bottleneck and parking hitches, longer travelling times, increase 
in gas emissions levels, and the menace of accidents is very relevant toward improv-
ing transport infrastructure and commuters’ experience [16].

Modern vehicles incorporate an array of sensors that capture data for use by the 
vehicle control unit in regulating specific functionalities in the vehicle. These sen-
sors include engine sensors, interior and exterior survey sensors, vehicle dynamics 
sensors, etc. A typical application is tire-pressure monitoring, which uses auditory, 
light, or vibration warning to alert the driver once the tire air pressure is low [15].

Electromagnetic, Ultrasonic, and Proximity Sensors
Electromagnetic, ultrasonic, and proximity sensors are employed in parking assis-
tance and reverse warning applications. Proximity sensors could detect closer 
objects; however, their accuracy is impaired by temperature and humidity. Ultrasonic 
sensors use sonar to identify distance of vehicle from an object and alert the driver 
once the vehicle approaches beyond a set distance. Electromagnetic sensors alert 
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the driver when an object is in the electromagnetic field created around the front and 
back bumpers.

Gyroscopes and Accelerometers
These sensors are used to discover a vehicle’s spatial and kinetic parameters, e.g., 
vehicle position, orientation, and velocity [33]. They are used with Global 
Positioning Systems (GPS) to advance accuracy [74]. Radar and speed sensors are 
used in applications that provide advice and decision support to drivers regarding 
potential danger when changing lanes or veering out of the appropriate lane. The 
driver is generally warned by a vibration in the seat or steering wheel or by the use 
of alarm [29].

Light Detection and Ranging (LIDAR)
LIDAR is incorporated in autonomous vehicles and enables self-driving cars to 
maintain a 360-degree view and depth. LIDAR sensors use beams of laser light and 
measure the period taken by the emitted light to hit the sensor [33].

Inflatable Road Tube Sensors
These are also called pneumatic/air-filled road tube sensors. The sensor-enabled 
tube is placed across the road traffic lanes to enable data collection about vehicles. 
When a vehicle’s tire moves over the inflatable tube, the sensor sends a burst of air 
pressure with a resultant electrical signal to a processor [16]. Vehicles count is done 
as well as classification based on the data captured by the sensor.

The Inductive Loop Detector (ILD)
This sensor finds common deployment in traffic management. It is used to merge 
traffic flow, vehicle’s occupancy, length, and speed. It has a long-coiled loop of wire 
that could be placed into or under the surface of the road. When a vehicle passes 
over the sensor, it produces an electrical signal, which is transmitted to a proces-
sor [41].

Magnetic Sensors
These detect vehicles whenever a change occurs in the earth’s magnetic field. They 
are used to sense occupancy, flow, speed, and vehicle length [60].

Piezoelectric sensors detect vehicles. When a vehicle traverses the sensor, a 
change in the sensor’s voltage occurs and is transmitted to a processor. These sen-
sors could be used on four lanes.

Video Image Processor System
This comprises computer, two or more video cameras, and intelligent software for 
image processing. The video cameras capture video images of traffic scenes that 
depict flow, volume, and occupancy. However, their performance is easily impaired 
by poor weather conditions [41].

Radar Sensors
These transmit low-energy microwave radiations reflected from objects or entities 
within the detection zone. Different radar systems exist. A prominent variant is the 
Doppler system that uses frequency shifts in tracking vehicles and computing 
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vehicle speed. The frequency-modulated continuous wave variant from radars radi-
ates continuous transmission power to quantity flow volume, speed, and presence. 
Generally, radar sensors exhibit good accuracy, ease of deployment, support for 
several detection zones, and continuous operation irrespective of time; however, 
their major setback is high susceptibility to electromagnetic interference [54].

Infrared Sensors
These sensors convert reflected energy into electrical signals. The converted signals 
are transmitted to the processor where they are used for computations. Two catego-
ries of infrared sensors are recognized: passive infrared (detects vehicles using 
emissions or reflections from vehicle presence, flow volume, and occupancy) and 
active infrared (uses light emitting or laser diodes to capture data on speed, flow 
volume, classification, and vehicle presence including traffic density) [37].

Ultrasonic Sensors
These sensors also capture data from traffic flows and vehicle speed. They compute 
the distance between vehicles depending on the elapsed time of a sound wave trans-
mitted at frequencies within 25–50 KHz and reflected to the sensor by an object. 
The received energy is translated to electrical signals then transmitted to processing 
unit (PU). However, their performance is constrained by environmental issues. They 
detect sound energy generated by a vehicle in motion within a coverage area. 
Acoustic sensors employ replacing magnetic induction loops to calculate traffic vol-
ume, occupancy, and average speed of vehicles [41].

Road Condition Sensors
This category utilizes combined laser and infrared technologies to examine road 
conditions prior to human interventions through traffic safety and road maintenance 
campaigns. It should be noted that these sensors are prone to regular intermittent 
maintenance requirements, otherwise their performance deteriorates [8].

Radio-Frequency Identification (RFID) Sensors
These are advanced sensors that uses radio frequencies to identify moving vehicles. 
The RFID sensors are very convenient to use and easily capture data from these 
vehicles automatically and exhibit wider range of integration [19].

2.3  Traffic Models

2.3.1  Collision Avoidance Model (CAM)

The CAM was introduced in 1959 through the work of Kometani and Sasaki [32]. 
They had attempted to describe the relationship in terms of distance between vehi-
cles. The CAM stipulates a safe distance that a driver following a vehicle should 
maintain to prevent any collision with an oncoming vehicle. A collision avoidance 
system is seen as an automobile safety system designed to either prevent or mitigate 
a collision impact. The model would ensure that the speed and distance between the 
two vehicles are kept under check. The goal is to afford the driver a precautionary 
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measure always and to engage appropriate reaction to avoid possible collision with 
the vehicle behind or ahead of it. The CAM is prescriptive [57] and identify useful 
technologies such as camera, radars, and GPS sensors [38].

2.3.2  The Action Point Model (APM)

The APM is a psychophysical model used to explain the car-following behavior in 
terms of thresholds and action points. The APM contemplates the inability of driv-
ers in tracking arbitrarily small changes in stimuli, such as relative speed, thus, a 
driver’s driving behavior is expected to be adjusted only if a certain threshold is 
attained. The commands defined by these thresholds show in what circumstances 
the driver would respond [59].

2.3.3  Intelligent Driver (ID) Model

Considered a microscopic model, the ID model is a nonmathematical model that 
provides a reference when assessing an individual’s traffic behavior in relation to an 
oncoming vehicle. IDM is easy to adapt during tasks involving adaptive cruise con-
trol system [24].

2.3.4  Latent Class (LC) Model

The LC model is a framework that separates longitudinal driving behavior into dif-
ferent driving characteristics, e.g., car following, free flowing, and emergency brak-
ing [47]. The driver’s decision qualities in each system is related to the strength of 
different stimuli around the immediate environment. These decisions are probabilis-
tic, for instance, the possibilities in a car-following system may be expressed in three 
states: increased acceleration (A), deceleration (D), and neither accelerate nor decel-
erate. These three states are dependent on the stimuli from the leading vehicle(s). 
Similarly, in a free-flow system, a driver’s behavior may assume same states as in 
car-following state; however, the stimulus differs and may be under the perfect con-
trol of the driver. The emergency system exhibits one major state, i.e., deceleration 
in contemplation of a possible collision [47]. The driver may be in one of three dis-
crete states: deceleration, acceleration, and neither accelerate nor decelerate.

2.4  Review of Relevant Developments

Maria [42] presented a use case and system components that could be used to evalu-
ate and report accident-prone areas to elicit increased response rates from the 
authorities mandated to oversee traffic and road incidents. The system defines 
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usability components and harps on portability and use of the tool on different 
devices such as tablets, mobile phones, and desktops. User-friendliness is empha-
sized to promote further accessibility and utility to the global community of motor-
ized. The system also captures information on optimized routes to nearby support 
station. Occurrence of accidents can be reported easily and get alerts, while the 
support station would carry out the review of the reported incidence, determine the 
geographical location and coordinates of the accident area, and trigger neces-
sary action.

Babitha et al. [11] implemented an automated system for road safety surveillance 
using a Hybrid CNN-LSTM approach. In the study, drowsiness and underage driv-
ing were identified as two major contributory factors to accident. The study pro-
posed a face image descriptor-based combination using convolution neural network 
and the ResNet50 architecture to forecast age. The other aspect of the system uti-
lizes a persistent neural network and the LSTM architecture to sense when a driver 
is drowsy and provide useful alerts that prevents sleepiness when driving. They 
developed face recognition algorithms using image processing to enable to predict 
ages of drivers, thereby preventing underage drivers. In addition to differentiating 
drivers of different ages, the system could detect fatigue in drivers. The system’s 
accuracy in prediction was rated at 96%.

Truong [72] adopted a systematic approach for the analysis of self-organization 
possibilities of flows and situational modeling of heterogeneous transport systems 
using fuzzy logic. The study was aimed at predicting and preventing transport acci-
dents. The author investigated and formalized fuzzy-multiple and fuzzy-logical 
problems for prediction of accidents and also considered the task of developing an 
expert system that would help assess and classify risks. The result yielded a struc-
tured approach with tools especially for transport tasks that are poorly formalized 
and in conditions where little or no awareness in respect of the transport system or 
changes in the transportation environment.

Maria et al. [43] developed a system architecture with activity diagrams for sys-
tem for emergency response and intended to improve the communication and coor-
dination processes of emergency response units, thus offering increased community 
awareness in respect of the various factors leading to traffic incidents. The system 
used a system architecture to aid in analyzing traffic accident profiles of Legazpi 
City associated with recklessness leading to homicide, physical injury, and damage 
to property, respectively. The study attempted to integrate spatial analysis to aid 
in  localizing accidents. It incorporates user-friendly mobile application through 
which traffic accident data could be submitted. Through the system, users could also 
report the incidents and their locations to the nearby emergency response units.

Maria et al. [44] utilized three algorithms jointly: NB, DT, and k-nearest neigh-
bor (KNN), respectively, to perform a heart disease classification and prediction. 
Naive Bayes yielded 86% accuracy, which is adjudged higher than that recorded in 
previous works where other algorithms are used.

Ayman [10] proposed a cost-effective and simple novel vehicle speed identifica-
tion electronic system. His method was based on the image processing using vehicle 
plate numbers captured using camera, as inputs. The experiment is intended to 
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provide a validation and reliability assessment of the approach proposed. The results 
obtained demonstrated that the proposed system could offer some efficiency in 
speed detection at lesser cost. Kulwant et al. [34] employed image processing prin-
ciples in the design of an IoT-based pothole detection system. The system was an 
embedded component and placed in a vehicle to continuously scan the road surface 
while in motion. It identifies potholes, bumps, etc. and alerts the driver on time to 
enable him avoid the bumps or pothole. Their emphasis was on detection tasks espe-
cially bad spots on the road. Image processing algorithms were applied to process 
data captured from ultrasonic sensor in the vehicle. The device uses GPS module to 
pothole positions. The data on potholes may be relayed to the local data store via a 
GPRS or Bluetooth module. The locally stored data may be transferred to the cloud 
via Wi-Fi or a compatible higher network technology connected to the system. The 
cloud data are accessible to the authorities including road maintenance agencies and 
the general public. This would help drivers to avoid roads that are rated unsafe or 
adopt safe driving techniques should they decide to ply such roads.

Swetha et al. [70] proposed a system that comprises an ultrasonic sensor, micro-
controller, and GPS, respectively. The sensors capture the distance between the 
vehicle and the pothole. The captured data are relayed to the microcontroller. 
Depending on the computed distance, the driver is alerted through voice commands. 
The GPS captures the geographical coordinates of the potholes, humps, and other 
bad spots. The captured data are relayed to the ThingSpeak cloud for analysis and 
maintenance authorities to take necessary action. Lakshmana and Ragupathy [36] 
designed and implemented a hybrid probabilistic stock sentiment prediction model 
based on the real-time market data and integrated real-time stock data. Captured 
dataset include news on stocks and stock momentum to forecast investors’ disposi-
tion toward stock buying or selling. They also implemented a novel stock sentiment 
score and data conversion procedures to normalize the market trend for intraday 
data. They used an enhanced Bayesian network method on their clean data to pre-
dict and test the stock trend on the clean data. Their results from the experiment 
showed that their anticipated system might be more efficient in terms of its accuracy 
and its error rate when compared with other models for classification.

Christy et al. [14] proposed a technology to automatically control a decelerating 
system by proactively sensing the accident-prone zones and averting accidents. In 
their experiment, they deployed Arduino microcontroller, L293d motor driver, and 
ultrasonic sensors while adopting machine learning approach with RFID protocols 
for the control of the decelerating system. The machine learning enabled system, 
which is reinforced by a secured RFID, was mounted to a vehicle’s dashboard in 
order to effectively control the decelerating system of the vehicle. Pattern of driving 
of the driver was also monitored under several circumstances in order to minimize 
traffic incidents. This was achieved with the aid of Car Trips data log and acelero-
linear_terra dataset. A mobile app was developed based on the machine learning 
model created from the dataset collected. The mobile app can help the driver in 
controlling the decelerating system and averting accidents and rash driving when 
fitted into the windshield of the car.
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Aaron et al. [1] integrated vision sensors and NN for traffic control system. The 
captured data are processed and utilized for traffic flow optimization. The NN was 
trained through simulation and optimized to intercept the data from each stoplight.

Hussein et al. [28] studied the influence of technology essentials on the achieve-
ment of big data analytics and IoT-enabled transportation system implementations. 
The data utilized for the study was gathered through systematic survey of available 
literature and in-depth interview. Their findings showed that technology has signifi-
cant role to play in any implementation of successful big data and IoT-enabled sys-
tem for transportation, which should not be undermined.

Supriyono et  al. [69] developed an Arduino-based (nano-microcontroller) 
manipulator for a motorcycle engine controller (EC). Their goal was to generate 
more power and torque compared with the available standard variant. The research-
ers deployed an oxygen (O2) sensor (narrow band variant) to detect O2 in the exhaust 
manifold and maintain air–fuel ratio (AFR) at a level comparable with the approved 
stoichiometric level. The manipulator was positioned between the O2 sensor and the 
EC. They utilized two sets of source codes for the experiment. The two code sets 
were for combustion maintenance under high O2 and low O2 conditions, respec-
tively. They evaluated the power and torque produced by the test engine using dyna-
mometer and emission tests, respectively. The experiment recorded a success in that 
the manipulators showed increased power and torque output in the engine. 
Statistically, the manipulator when applied to the EC maintains AFR at a ratio 
of 14:2:1.

Aditya [3] designed pothole detection and identification system using a micro-
controller. The author’s focus was on the development of a prototype that comprises 
a microcontroller, ultra-violet (UV) sensor, and a WI-FI Modem that processes the 
data. The system alerts the two-wheeler driver using an interface by developing a 
software application in android. Amitha et al. [6] introduced a low cost economic 
solution for a continuous road monitoring system to detect the potholes and to 
inform the concerned authority about the pothole. The real-time pothole detection 
and road monitoring system used ultrasonic sensor and accelerometer to measure 
the depth of the pothole and jerking, respectively. The GPS module captures the 
pothole location, which is subsequently stored in the cloud database (DB). The DB 
provides the authorities, experts, researchers, and vehicle operator with valuable 
data. The public could access information in the cloud through a web server. It is 
believed that this solution would enable precautionary measures to be taken to pre-
vent and/or control future incidences.

Pathan and Khan [62] designed a detection and alert system. The system detects 
potholes and also alerts the driver when the computed value from the GPS exceeds 
the preset threshold value. The detection component comprise two ultrasonic sen-
sors. The GPS is used for localization of potholes. The alert system comprises a 
buzzer and vibrator (attached to the steering). The detection algorithm computes 
and localizes bumps and potholes as the vehicle moves.

Jackelou et al. [30] designed a road accident case status prediction system that 
integrates a modified C4.5 algorithm. The DT ensemble approach was used to ana-
lyze traffic incidents. A total of 25 variables were used, and the dataset comprises 
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799 records of road accidents. Their experiment showed that alcohol intake by 
motorists was the commonest cause of road accidents.

Partha et al. [61] proposed a cost-effective fever detection prototype. The system 
integrates a NB classifier into NodeMCU microcontroller and a web server. The 
users (patients) are required to submit their responses (Yes or No format) on eight 
symptoms (cough, sore throat, fatigue, headache, chills, fever, sneezing, and mus-
cular pain) through a website. The NB classifier would then predict whether or not 
the fever is connected to common cold or flu. Following data submission, the patient 
undergoes checks by a doctor. The computed values following diagnosis were inde-
pendently classified under common cold and flu patients. In a voluntary experiment 
involving 22 patients, the computed statistics, p (0.068 > 0.05) and p (0.089 > 0.05), 
were not considered significant in the classification.

Marimuthu et al. [45] designed a system that automatically detects potholes and 
bumps. The system alerts vehicle drivers to drive safely. A mobile application was 
used to provide timely alerts on potholes and bumps while ultrasonic sensors are 
used to identify the potholes, bumps, and bad sectors including the measurement 
their height and depth, respectively. The system uses a GPS receiver to compute the 
location coordinates of bumps, potholes, bad sectors, etc. on the road. The data 
captured include bump height, geographic location, and pothole depth. The data are 
stored in a database. The system generated audio alerts to the driver.

Shubham et al. [68] designed pothole detection system for monitoring road using 
IoT. The authors propose a non-noisy technique that utilizes sensors present on cell 
phones. Accelerometer, GPS sensor readings for traffic, and street conditions loca-
tion were used. The system was able to identify potholes and had two vital function-
alities: distinction of potholes, which is done through a multisensor subsystem 
comprising of accelerometer and gyrator, and driver advising. Data generated in the 
process are stored on a cloud base, which could be retrieved and used by other road 
users. Knowledge about the location and position of the pothole would enable 
appropriate concerned authorities to take relevant action.

Hossain and George [27] proposed a system for monitoring the eye closure ratio 
of the driver and detects the drowsiness of the driver by using Pi camera. If the eye 
closure ratio is less than the standard ratio, the driver gets an alert from a buzzer. 
The study focuses on building an alert system to mitigate drowsiness of a driver. 
There is no speed control mechanism of the system.

Nanda et al. [52] conceived a system that could detect accidents via accelerom-
eters and vibration sensors. Accident location is computed through a GPS and 
relayed through the GSM module. Through the system, nearby authorities and/or 
hospitals could be informed by way of text messages. The prosed system would also 
integrate drowsiness (by monitoring eye blink) and alcohol detection components, 
respectively. This system is limited in that it would mandate a driver to wear glasses 
at all times to be connected to the system, and this is considered quite uneasy for 
drivers especially those who are not used to wearing glasses.

Wadhahi et al. [74] proposed a system with accident prevention and detection 
mechanisms. It uses IR sensors to detect accidents. Predefined GSM numbers are 
provided through which text alerts containing location address may be sent through 
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the GSM module. Warning signals are also conveyed to the driver once the distance 
between vehicles is beyond a certain threshold. However, the system neither incor-
porated a speed-limiting mechanism nor any intelligence component such as predic-
tion model.

Navod and Bindu [53] designed and implemented a system for vehicle tracking, 
control, and status reporting. In the system, vehicle door, parking lights, and side 
mirrors were monitored and controlled by a mobile phone.

Sarasvathi et al. [66] proposed an alert system either for an accident or theft by 
providing the accident location using microcontrollers, embedded sensors, and 
cloud services. However, no mechanism was incorporated to prevent accidents.

Mohd et al. [49] proposed an integrated smartphone-oriented system that enables 
a driver with a smartphone to view the road condition while driving. The goal of the 
proposed device was to ensure safety while driving. They designed a mobile app 
(Android) through which data from a vehicle are relayed to a proximal IoT-Fog 
server for further processing. The intelligent component of the system was the 
k-means clustering model. With the algorithm, location of bad road sectors and 
accident-prone zones could be computed. The driver could use his smartphone’s 
Google map for display. The data generated are stored in the cloud for remote access 
by other users. The proposed system was evaluated using statistical and experimen-
tal simulation. The simulated result shows that the system could offer better perfor-
mance when compared with existing approaches.

The Bayesian network theory has been applied to risk and causation analysis for 
road accident analysis [78]. The case study was Adelaide Central Business District 
(CBD) in South Australia. The implemented model uses Netica platform and inte-
grates a K2 algorithm with expert knowledge into the network structure, with 
Expectation–maximization algorithm as parameter learning algorithm.

Das et al. [18] anticipated an accident monitoring system, which tracks and mon-
itor accident location. The system offers a device to reduce catastrophes by monitor-
ing driver’s eye blinking, an indicator for drowsiness, obstacles on the road, and the 
drunken state of the driver. Accident and the location of the vehicle are sensed by 
this system.

Anusha et al. [9] implemented a system using LPC2148. The system integrates a 
database, GPS, and GSM modules. The engine temperature and alcohol consump-
tion were also detected by the prototype. The detected values could be viewed from 
a website, thus providing safety travelers in the vehicle.

Mayuresh [48] proposed a system which adopts open-source platform to collect 
data and track vehicle location in real time. The system monitors the rate of fuel 
consumption, temperature of the vehicle engine, and the speed of the vehicle at vari-
ous time. Communication module deployed in the system has capabilities for GPS, 
GPRS, and GSM, thereby ensuring smooth data transmission. The captured data are 
stored in the web server database for further processing and necessary action.

Harum [26] suggested a framework based on Raspberry Pi. It is connected to a 
3G/4G dongle. The component is designed to receive signals from a mobile tower. 
It may be attached to a vehicle from where it could transmit data to a web server. 
The vehicle location could be accessed from remote stations in real time.
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Data mining approach was deployed by Sachin and Durga [65] in identifying 
specific locations where accidents occur regularly in order to isolate contributory 
factors to the accident occurrences through the analysis of resulting dataset. Their 
approach involved segmenting of the location of incidence into k groups with the 
aid of k-means clustering algorithm depending on incidence frequency counts. 
Following the segmentation, they applied association rule mining to discover how 
distinct attributes in incidence dataset relate to established location characteristics. 
The extent of damage during an accident can be simulated with the aid of various 
algorithms like neural networks (NN) trained with hybrid learning, decision tree 
(DT), support vector machines (SVM), and synchronized mixed models of NNs and 
DT.  The result of Sachin and Durga [65] measured through experiment favored 
hybrid method of NNs and DT, which offered superior accuracy than a single algo-
rithm used alone.

Aishwarya et al. [4] developed an accident-prevention system that incorporates 
IoT for tracking incidences during night trips. They integrated a component for 
monitoring eye blink of drivers. The system alerts drivers once a threshold indicat-
ing drowsiness is reached. The embedded component explores some ideal psycho-
logical states, which a driver may exhibit while driving. In addition to blinking, eye 
and head movements which are indicators during an initial phase of sleep are also 
utilized. Two devices are employed: an infrared sensor to monitor the blinking rate 
of drivers and an accelerometer for detecting head movement. The data from both 
devices are used to estimate the physiological sleep state. Analysis and computa-
tions ensured that a normal blink rate is disregarded as a factor in computing the 
system output. In an extreme state of sleep, the infrared sensor would receive an 
abnormal blinking rate, and this would trigger an alarm, which subsequently awak-
ens the driver. The sensors used are IoT-enabled allowing the transmission of cap-
tured or sensed data across the network for further uses such as emergency response. 
Netica was used to compute posterior probabilities and descriptive and inferential 
investigation. The study demonstrated that Bayesian networks might be success-
fully utilized in solving complex issues like road accident analysis and prediction by 
establishing variables and the various interrelationships they exhibit in a contempo-
rary accident domain. The model was applied to predict incidence probabilities on 
certain road conditions, identify reasons, and generate state(s) that result to acci-
dents. Consequently, their results provide hypothetical backing for urban road 
administrators to do critical analysis of contributory issues against road accidents 
cases, thereby improving safety measures on urban road system and minimizing 
road accidents.

3  Case Study

We adopted a case study approach to reflect specificity. The case study is a popular 
trunk “A” road, the Benin-Auchi Highway. This highway is a major segment of the 
A2 highway, one of the major highways in Nigeria. It begins from Warri to Benin 
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City to Lokoja to Abuja to Kaduna to Zaria to Kano and terminates at Kongolam, 
Niger Republic border.

The data on accidents over a 40-month period (first quarter of 2017 to the first 
quarter of 2020) are used for analysis and prediction. The data originate from the 
office of the federal road safety in Benin City, Edo State Nigeria. The road is seg-
mented into 12 sections (locations) using marked similarities such as height above 
sea level, width of road, traffic density, and distance from a reference point (Benin 
city). The traffic density per road segment is computed as the total number of vehi-
cles within a segment of the road in an hour. The location where accidents occurred, 
road condition, and the number of lives lost (male and female) are extracted from 
the source data and used to map each segment of the road to a degree of vulnerabil-
ity to accidents. The degree of vulnerability is rated either low or high. This vulner-
ability is contextually regarded as the risk value and is represented with red (high) 
and low (green) in the prototype implementation [55].

The risk associated with a vehicle plying the road at each point of the road con-
stitutes the target variable that would be predicted using the Bayesian system.

3.1  Materials

The materials used in this study are: Breadboard and jumper wires, ESP8266-12E 
(see Table 1) development board, sim900 GSM, GPS (uBlox Neo 6 M), 16 × 2 I2C 
LCD, Buzzer, Relay, Arduino IDE, server-grade PC (HP elite 2.8Ghz core i7 PC 
@16GB RAM), and USB cables. For the prototyping, the ThingSpeak open IOT 
prototyping platform is used. However, a road safety coordinating base station 
incorporating a 170 m radio tower is recommended around the Ekpoma axis of the 
highway where a central analytics server system would reside for live deployment.

Table 2 shows the interfacing between the NodeMCU with the GPS module. 
Uploading of data from the development system to the board is through RXD0 and 
TXD0 and is reserved.

Table 1 ESP8266-12 Microcontroller features

Processor L106 32-bit ESP-12E @ 80-160 Hz
Firmware NodeMCU
Data pins 16 GPIO for interfacing with sensors, switches, LEDs, 

etc.
ADC channel 1(10-bit) accessible through A0
Communication UART, SPI, I2C, SPI
RAM 4 MB
SPI pins 4 (SCK, CS, MISO, MOSI) for SPI communication
I2C pins Available
UART pins 2.
Power supply 3.3 V (max)
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3.2  Description of the Case Study

The Benin-Auchi highway in Edo State is popular for its linkages. Figure 1 shows 
the road. This highway is a major segment of the A2 highway, one of the major 
highways in Nigeria. It is connected as follows: Warri → Benin City → Lokoja → 
Abuja → Kaduna → Zaria → Kano → Kongolam, Niger Republic border. The 
road’s socioeconomic relevance is judged by its connection of the nation’s south to 
its northern counterpart. The road is roughly 110 km in length and spans through the 
following major landmark local councils in Edo State: Ikpoba-Okha, Uhunmwode, 
Esan West, Esan Central, and Etsako West, respectively, and covering the following 
12 landmarks: Eyean axis of Benin City, Idokpa, Idumwunha, Urhokuosa, Ehor, 
Iruekpen, Ekpoma, Ewu, Irrua, Agbede, Aviele, and Auchi. It is one of the busiest 
highways in Nigeria with some peculiarities, i.e., of the nature of vehicles that ply 
it. Commercial vehicles, heavy trucks, and trailers conveying petroleum products 
(from South) and livestock (from the North) are common sights at all hours of 
the day.

Table 2 Component interfacing with ESP8266-12

NEO-6 M GPS ESP8266-12 16 × 2 I2C LCD GSM Sim900A Buzzer

VCC (2.7–5 V) 3.3 V Uses separate power input
4.7–5 V (5 V adapter is needed)

RX(receive) D1(GPIO5) SCL
TX(transmit) D2(GPIO4) SDA
GND GND GND GND SG1

VIN VCC
D3 TX
D4 RX
D0 SG2

Fig. 1 Map showing Benin-Auchi Highway
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3.3  Design Approach

The system is divided into two components: the client device and the server. The 
client device resides in the vehicle and communicates with the server through the 
WIFI and/or GSM and GPS. It also incorporates a register for storing manifest data 
and an audio device. The data is transmitted to the server (at a coordinating location) 
where a radio tower (mast) is available to provide a long-distance connectivity along 
the highway. An LTE-compliant 5-20GHZ omni-radio resides on the tower and con-
nects through a gateway to a web/analytics server, and all communications from the 
recipient devices are sent to the server through the radio tower. Figure 2 shows the 
logical model of the design. Figure 3 shows the schematic of the client device.

3.4  Data Preprocessing and Feature Selection

The accident dataset description and attributes are show in Table 3. The preprocess-
ing addresses missing values and inconsistencies arising from out-of-range values 
(e.g., location, between Iruekpen and Ekpoma, and number of injured male, unsure). 
Feature selection was done to establish a correlation relationship between the target 
variable (risk) and the inputs in Table 3, and only variables adjudged to exhibit the 
strongest correlation were selected. The “date” attribute was disregarded owing to 
its loose relationship with the target variable (see Fig. 4). In Fig. 4, road segment 
condition is highly correlated with female and male injured and female and male 

Fig. 2 Logical model of the proposed system
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fatalities. The above plot can be helpful in feature selection. It can help to prevent 
multicollinearity in linear models. However, the attributes, injured_male, injured_
female, male_fatality, and female_fatality, are not considered feasible attributes that 
could be easily computed in a nonchaotic system (free moving vehicle under no 
accident), hence not be used as inputs for the actual Bayesian prediction. The other 
attributes such as number_of_ motrists, male and female could be preset into the 
device from the passenger manifest at the commencement of a trip.

Fig. 3 Schematic of the client device

Table 3 Description of selected variables in the cybercrime dataset

S/N Label Description

1 Risk Target variable

2 Date Predictor representing day of accident e.g., 
Sunday

3 Number_motorists Number of motorists in a commercial vehicle
4 Male Number of males
5 Female Number of females
5 Injured_male Injured males
6 Injured_female Injured females
7 Male_fatality Number of male fatalities
8 Female_fatality Number of female fatalities
9 Road_segment_condition Road status condition
10 Location Location on the road at any time
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3.5  Bayesian Model Building and Testing

The Naïve Bayes algorithm is considered appropriate for this problem in that the 
various predictors appear naturally independent; for instance, there is no overt rela-
tionship between the males and females in commercial bus. The same appears true 
for injured males and females and fatality rates. The primary Bayesian rule there-
fore is to predict a risk of accident: P(R|X), given the feature domain X (number_
motorists = N, male = M, female = F, road_segment_condition = S, location = T).

Mathematically,
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The algorithm implemented to compute P(R|X) is:

• Divide the dataset into the training set (80%) and test set (20%).
• Determine attribute probabilities conditional on the class value.
• Compute joint conditional probability for the attributes using the product rule.
• Neglect attribute with missing values.
• Where an attribute value does occur regularly with the class value, insert a prob-
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• Use Bayes rule to calculate the conditional probabilities for the class variable.
• Compare the probabilities.
• Compute the mean and standard deviation of the set.
• Return class with the highest probability.
• Apply results to a testing dataset.

4  Results

4.1  Bayesian Model

The result of the Bayesian model building using Django and Python are summa-
rized in Table 4 while Table 5 shows the confusion matrix from the analysis. The 
NB model performance showed produced an accuracy of 98.1395% with 211 
instances classified accurately and 1.8605% (i.e., 4 instances) of incorrect classifi-
cation with 0.9559 learning capacity (Kappa statistic). The mean absolute error 
(MAE), RMSE, relative absolute error, and root relative square error (RRSE) are: 
0.2339%, 0.2535%, 54.4335%, and 54.7352%, respectively. Figure  5 shows the 
scatter plot of the risk profile against the number of injured motorists based on gen-
der. Figure 6 presents more information on the relationship that exists among acci-
dent victims in respect of injured victims and fatalities. It appears that females are 
more predisposed to higher risks during accidents.

4.2  The Remote Server and Its Operation

The proposed implementation server (not the ThingSpeak cloud platform) would 
perform multiple functions, and as shown in Fig. 2, it would incorporate the follow-
ing: database server (for storing data generated within the system and that received 

Table 4 Detailed accuracy by class

Class TP rate FP rate Precision Recall F-measure MCC ROC area PRC area

HIGH 1.000 0.060 0.974 1.000 0.987 0.957 1.000 1.000
LOW 0.940 0.000 1.000 0.940 0.969 0.957 1.000 0.999
Weighted avg. 1.000 0.981 0.041 0.982 0.981 0.981 0.957 1.000

TP true positive, FP false positive, MCC Matthews correlation coefficient

Table 5 Confusion matrix

N = 215 Predicted low Predicted high

Actual high 0 148
Actual low 63 4
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from the client through the web and the SMS gateway), web server (to provide 
public access through the web), analytics server (to analyze inputs from remote 
vehicles housing the client using the developed model), messaging and polling (to 
relay text and voice messages to vehicles plying the highway in response to receiv-
ing the geographical coordinates of the vehicle), and API to enable extensive con-
nection with other surveillance systems.

HIGH_RISK
LOW_RISK

14

12

10

8

6

4

2

0

0 5 10 15 20 25 30 35

Number of Injured Male Number of Male Motorist

N
um

be
r 

of
 In

ju
re

d 
F

em
al

e

HIGH_RISK
LOW_RISK

14

16

12

10

8

6

4

2

0

N
um

be
r 

of
 In

ju
re

d 
F

em
al

e

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
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Operationally, road status conditions would be updated at the server end, and this 
may be through human intervention (i.e., following road maintenance of particular 
sections, the status is updated, which would elicit a forward adjustment in the 
model) or through the integration of ultrasonic or laser sensors in the client device. 
The server stores data on the 12 road segments (stated above) in a database table 
with the following schema:

 

F Location Schema location name begin cordinate x

begin

� � � ( _ , _ _ ,

_

1

ccordinate y end cordinate x end cordinate y road statu_ , _ _ , _ _ , _1 2 2 ss)  

When a location coordinate is received from the client, the server checks the 
compares it with the stored references and translates it to the equivalent location 
identifier, which is subsequently added to the existing variable list (male, female, 
number_motorists, etc.) used for prediction. The server also retrieves the updated 
value of the road segment corresponding to the location coordinate received. 
Following execution of the prediction model using the inputs, the server polls the 
client device through the sms gateway and returns an encoded voice message that 
details the risk profile of the location including warnings on the likelihood of acci-
dents and fatalities should the driver fail to adhere to safety rules. The server only 
polls the client device when the prediction involves a high-risk level. This would 
reduce the stress on the server.

5  Conclusion

Various developments in the IoT as applied to the domain of road safety and acci-
dent prevention campaigns have been discussed. It is stressed that while profound 
theorization, propositions, prototyping, and integration have been made; machine 
learning and AI are reforming these developments. This adopts a case study 
approach and proposes an integration of a Bayesian model into a real-time and cen-
tralized road safety infrastructure. The requirements and procedures are captured 
and prototyping explained. In conclusion, IoT could be extensively applied to criti-
cal infrastructure (at national, regional, and local council levels) including road traf-
fic sensitization and safety campaigns. The incorporation of MLMs into existing 
and future accident control and prevention infrastructure has significant prospects 
and could reduce losses connected with road accidents.
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1  Introduction

Recent advances in Internet of Things (IoT) and artificial intelligence (AI) technolo-
gies have revolutionised many areas of our lives, including infrastructure and trans-
portation. For example, organisations responsible for managing cities have started 
using a large number of cameras to capture the flow of traffic across cities every day. 
This resulted in a huge amount of data, which if can be processed efficiently, will 
allow the efficient use of the city transportation infrastructure, quickly disperse and 
avoid traffic jams and mitigate/prevent accidents and crimes. In recent years, AI 
technologies have played an important role in processing this type of data, for 
example, counting cars and people crossing intersections [16, 52], identifying vehi-
cle licence plates [15, 50] and searching for parking space [5, 38].

While IoT devices are characterised by the ability to collect and transfer data 
over a network without requiring human-to-human or human-to-computer interac-
tions, AI brings life to these devices by enabling them to learn and take actions 
based on the data they have already collected from various sources. The combina-
tion of AI and IoT technologies allows researchers and industry experts to create 
intelligent/smart machines, which can perform human-like tasks, or even mimic 
human behaviours. These two technologies, therefore, usher in the concept of 
“smart devices” starting from smartphones and smart cameras to smart houses and 
smart cities. The concept of smart parking has also emerged in this context.
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In the area of smart parking, researchers and engineers have been actively work-
ing on solving a wide range of parking problems, from providing customers with 
information about parking slots’ availability in real time to maximising the utilisa-
tion of parking facilities and developing smart parking systems using IoT and AI 
[3]. Although the technology for addressing individual technical challenges in this 
area is currently available, the integration of these technologies under a unified sys-
tem to address the parking problem in general and airport parking in particular still 
presents some substantial challenges. For instance, it is necessary to address the 
trade-off between the high demand in computational power of AI algorithms and the 
low computational capability of IoT devices, the high communication bandwidth 
requirement of imagery data and the low power consumption of IoT devices and the 
interoperability and inconsistent technology ecosystem issues caused by variations 
in hardware and software of IoT devices [39]. In addition, data privacy and security 
[25], energy consumption [17] and environmental sustainability [46] are other 
issues to be addressed.

This chapter, therefore, discusses the system integration issues through a case 
study of airport smart parking. It demonstrates how existing AI, IoT and Cloud 
computing technologies can be integrated into a unified system to solve the airport 
parking problem. In particular, a system that integrates IoT parking sensors, the 
IBM IoT management platform and OpenALPR library was developed to tackle 
technical challenges, such as the automatic detection of plate number, model and 
colour of the vehicle in each parking slot in both indoor and outdoor parking envi-
ronments. This functionality enables the system to provide managers and users with 
real-time analytics about each parking area. It will also discuss important issues 
related to the system design, including the system architecture, hardware and soft-
ware, sensing and network technologies and detection accuracy and errors, just to 
name some of them. Although the proposed system was developed for the airport 
parking problem, the discussion around it is relevant to problems in other domains 
from the system design and integration perspective.

The rest of the chapter is organised as follow. Section 2 reviews the related 
works. Section 3 introduces the airport parking problem and specifies requirements 
for an airport smart parking management system. In Sect. 4, the design solution 
with the focus on the system architecture and design considerations for the airport 
smart parking problem is presented. Section 5 presents some experimental results 
and discusses lessons learnt from a practical system deployment. Finally, conclud-
ing remarks and directions for future works are provided in Sect. 6.

2  Related Work

IoT is a paradigm where myriads of interconnected objects with sensing and actuat-
ing devices provide the ability to collect and share data through the Internet to 
enable innovative applications [23]. Artificial intelligence, especially machine 
learning (ML) techniques, can be used to gain knowledge from data generated by 
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IoT devices. Thus, the combination of IoT and ML enables the development of valu-
able services for the society in various domains and especially in infrastructure and 
transportation [3, 63, 27].

The idea of smart parking was initially introduced to solve the problem of park-
ing management in megacities, in which IoT and ML algorithms were used to, for 
example, track parking slot’s availability, maximise utilisation of parking facilities 
and minimise customers’ searching time for available parking spaces [3].

Tracking the parking slot’s availability is the foundation of any smart parking 
management system. This problem has been addressed in both the literature and in 
practice using a wide range of sensing techniques, which can be classified into two 
groups: techniques using occupancy sensors and techniques based on computer 
vision. In the first group, small, sturdy, low power and low-cost occupancy sensors 
with different sensing technologies, including magnetic, ultrasonic, infrared, and 
loop sensors, were used to detect occupancy of each parking space [42, 43]. The 
advantage of this group of occupancy tracking techniques is the simplicity, reliabil-
ity and accuracy of occupancy detection algorithms. On the other hand, scalability 
is a major issue with this group, as a huge number of sensors are required to be 
deployed and maintained for any tasks. In addition, these sensors do not provide any 
other information apart from vehicle occupancy, hence limiting their applications.

The second group of occupancy tracking techniques relies on advances in com-
puter vision technology to process data collected from vision-based sensors, such as 
CCTV cameras, to detect the availability of parking spaces. ML algorithms, espe-
cially deep learning, are the core component of these occupancy tracking techniques 
[4, 28, 59, 62]. The main advantage of this group of techniques is the scalability and 
deployability, as cameras are relatively easy to deploy and a single camera can cover 
a large parking area. In addition, vision-based sensors provide richer data compared 
with other types of sensors. For instance, the video stream collected from CCTV 
cameras can be processed by ML algorithms to obtain vehicle plate numbers [6, 40], 
makes and models [10, 11, 53]. This provides managers with greater support for 
their management and decision making. However, the computer vision-based tech-
niques are sensitive to weather and operating environments as the image quality of 
vision-based sensors, e.g., CCTV cameras, is greatly affected by lighting condition, 
dust and humidity. Moreover, vision-based sensors often generate a huge volume of 
data, which causes higher costs of data transmission and storage. ML algorithms 
also require high computational power, which may not be available in IoT devices. 
Furthermore, machine/deep learning techniques often need annotated data for train-
ing and verification, which may not be available in some smart parking applications.

Beside tracking parking slot’s availability, ML algorithms were used to maxi-
mise utilisation of parking facilities, minimise customers’ searching time for avail-
able parking space [19, 35, 48] and create efficient smart parking pricing systems 
[32, 45, 51]. For example, Aydin et al. [9] proposed a smart parking system that can 
assist users in finding an available parking space and to minimise the time spent 
in locating the nearest available car park using the genetic algorithm. Shoeibi and 
Shoeibi [49] introduced an automated valet parking based on hybrid robotic valets 
and Deep Q-Learning algorithm to optimise the usage of parking space. More 
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recently, Tekouabou et al. [57] proposed an ensemble-based model to optimise the 
prediction of the availability of parking spaces in smart parking. Moreover, Saharan 
et al. [45] introduced a machine learning-based approach to predict the occupancy 
of parking slots, which in turn deduced occupancy-driven prices for arriving 
vehicles.

Research works have also been carried out in developing architectures for smart 
parking applications. A smart parking architecture based on cloud computing was 
initially a common idea to utilise the advantage of cloud computing for storing and 
processing big data [29, 44]. However, as vision-based sensors are increasingly 
used in smart parking, the data transmission process from sensors to cloud services 
becomes the bottleneck of the cloud-based architectures. In addition, this type of 
architectures is not suitable for real-time data processing due to communication 
latency. More recently, fog computing [14, 37, 56] and edge computing architec-
tures [13, 33, 47] were proposed to address the limitation of the architectures based 
on cloud computing. The main idea behind the proposal of these new architectures 
is to process data as close to the location where the data were obtained as possible 
to reduce the time and amount of data transmission. However, not all data process-
ing algorithms, especially ML algorithms, can run at the fog level and especially, at 
the edge devices due to the limitation of the device computational power [36]. 
Therefore, the selection of suitable architectures for smart parking should take into 
account problem-specific requirements as no architecture is one size fits all.

Despite the significant amount of works that have been carried out in the domain 
of smart parking design and development, there is a lack of research work address-
ing specials needs and characteristics of the airport parking problem [12]. Although 
few works have been done on studying the integration of AI and IoT, several design 
factors, such as system architectures, sensing and network technologies, hardware 
and software platforms, security and other application-specific requirements, could 
influence the performance and design of smart parking systems in practice [3]. 
Moreover, weather conditions and operating environments are critical factors to be 
considered in any smart parking system design. This chapter, therefore, is written to 
discuss this knowledge gap and provide readers with a practical solution. In the next 
section, the airport smart parking problem is thoroughly discussed to better under-
stand its requirements.

3  Airport Parking Problem and Its Requirement Analysis

Parking income is a major contributor to the operating income of many airports 
around the world occupying around 40% of the non-aeronautical revenue or 25% of 
the commercial revenue [22, 61]. For example, in Australia, Sydney Airport recorded 
an operating profit of $97 million from car parking operations in 2016–2017, and 
this represented an operating profit margin of 71.9% of revenue [7]. However, the 
service quality in many airport car parks remains an issue [7]. A study of the 
Melbourne airport suggested that the airport parking is among those services that 
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caused concerns for passengers and should urgently be addressed by airport man-
agements [26]. Moreover, airport parking businesses have been looking for techno-
logical solutions to improve the efficiency and security of the airport parking 
facilities and to reduce the management cost to compete with the rise of the ride-
hailing services offered by the transportation network companies, such as Uber, 
Lyft, Didi-Chuxing, Ola and Grab [60].

Smarter parking management systems have been an active research incentive of 
researchers in recent years, often done through the integration of IoT technology. 
Research in this domain primarily focuses on solving various technical challenges, 
such as finding the closest available parking space [31, 44], and achieving optimum 
usage out of parking facilities [49, 55]. These objectives were all achieved whilst 
taking into considerations the advantages of IoT technology. Additionally, works 
were also carried out in the development of various architectures and frameworks 
for smart parking [8, 24]. From the literature, it can be noted that numerous system 
architectures and frameworks were designed to address the issues related to smart 
parking in general, yet the specific issues regarding airport smart parking have not 
been adequately addressed. Although airport parking shares many similarities with 
other parking problems, it has different objective functionalities and constraints.

Currently, many parking management systems are operational in big airports and 
shopping complexes. However, most existing systems suffer from the following 
limitations:

• Customers are only able to see available parking spots in a small local area and 
will often compete for these spots. There is a lack of information about available 
spots in neighbouring areas and a mechanism to quickly reserve a free park-
ing spot.

• Current systems are not designed with the ability to obtain detailed information 
about the current vehicle parked in each slot. Thus, customers are not able to 
ascertain the current status of their vehicles within the parking facilities. In the 
context of airport parking, it is also important to assist customers in retrieving 
their vehicles in a quick and timely manner upon their return trips. At the current 
stage, none of the existing airport parking management systems has this 
capability.

• Current systems are mostly designed to work within an indoor environment, 
while many (airport) parking facilities are of outdoor.

From an airport management perspective, product differentiation is the key to 
winning any competition. Real-time information about the vehicle, environment 
temperature and humidity in each parking slot would help to develop efficient sys-
tems for real-time vehicle monitoring, parking guidance, signage, way finding and 
real-time booking. The availability of such information would also help to quickly 
identify threats and hazards to the security of the parking facilities. Finally, real- 
time information of the parking facilities would allow solving parking optimisation 
problems, such as minimising terminal travel time for customers.

Considering the limitations of the existing airport parking systems, a set of func-
tional and non-functional requirements for an airport smart parking management 
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system were proposed. In particular, the smart parking system should have the fol-
lowing functional requirements:

• Real-time information about the parking slot occupancy and vehicle details 
including make, model, colour, plate number, parking duration and status.

• Turn-by-turn assistance for customers navigating inside the parking facility to 
their reserved parking slots or their vehicles on their return.

• Online and real-time booking, reservation and payment.
• Function to allocate available parking slots to customers in real-time subject to 

optimisation objectives, such as minimum walk time to terminals.

Concerning the non-functional requirements of an airport parking management 
system, it is important that airport parking is operational 24/7 in both indoor and 
outdoor environments. The system should also be scalable, as the parking capacity 
of a regional airport like the Gold Coast airport in Australia is already around 5000 
parking slots. Besides scalability, interoperability and security are other important 
features since the system stores customers’ data and interacts with other informa-
tion systems, such as the payment, booking and flight information systems. Another 
important requirement of airport parking system is the simplicity of system deploy-
ment. The system should not require significant modification to the existing parking 
infrastructure since most airports already have operational parking facilities. Finally, 
the system should be cost-efficient.

4  System Design

This section discusses the design considerations, constraints and architectures as 
well as the selection of sensing technologies, IoT platforms and vehicle identifica-
tion framework for the proposed airport smart parking system.

4.1  Design Considerations

4.1.1  Energy Consumption

IoT devices are characterised by low-energy hardware architecture with limited 
computational power. Many IoT devices are designed to operate on batteries. Typical 
IoT hardware devices, such as Raspberry Pi 3 Model B, are based on a Quad Core 
ARM Cortex-A53 1.2 GHz 64-bit CPU running on a Broadcom BCM2837 System 
on a Chip (SoC) with a Broadcom Video Core IV Graphical Processing Unit (GPU). 
The ARM processor works at frequencies ranging from 700 MHz to 1.2 GHz. When 
the system is idle, it consumes around 1.3 W, but the consumption increases when it 
performs heavy computation tasks, such as vehicle identification.
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AI algorithms, on the other hand, often require significant computational power, 
which is proportional to energy consumption [18]. Computational power is often 
measured in floating-point operations per second or FLOPs. Table  1 shows the 
amount of computation required by common deep neural networks (DNNs) for a 
single pass in a typical image recognition task. As indicated in Table 1, even a small 
deep neural network like MobileNet would need 579 MFLOPs while larger neural 
networks like GoogleNet would require around 2GFLOPs of computational power.

The trade-off between energy consumption and computational power indicates 
that running AI algorithms directly on IoT devices will cause the device battery to 
drain quickly. To give a better estimation in terms of energy consumption and run-
ning time, common AI algorithms and frameworks were tested in a simple image 
classification task on Raspberry Pi 3 platform operating on a 10,000 mAh battery. 
Figure 1 shows the average energy consumption of the tested algorithms and frame-
works. As shown in Fig. 1, OpenCV consumed less energy among the tested frame-
works, and it is more suitable for IoT integration. Tensorflow also performed 
relatively well, especially on the Squeeznet architecture.

The integration of AI algorithms on IoT platforms, therefore, should take into 
account the requirement of computational power and energy consumption when 
choosing the algorithms, ML frameworks and the location of their deployment.

4.1.2  Network Technology

Network technology is featured with various characteristics, such as communica-
tion range, data rate, energy consumption and cost. Unfortunately, there is always a 
trade-off between these characteristics. Long communication range and high data 
rate also mean high energy consumption and high cost. IoT devices often operate on 
low-power and low-energy hardware, which also means IoT applications have to 
communicate in a lower data rate or a shorter distance. Figure 2 shows the classifi-
cation of network technologies by their data rate, energy consumption, communica-
tion range and cost.

As shown in Fig.  2, low-power wide-area network (LPWAN) technologies 
designed specifically for IoT, such as NB-IoT. Sigfox and LoRa operate at a very 

Table 1 The required computational power of common DNNs [2]

DNN architecture Input size Param size FLOPs

MobileNet 224 × 224 16 MB 579 MFLOPs
AlexNet 227 × 227 233 MB 727 MFLOPs
CaffeNet 224 × 224 233 MB 724 MFLOPs
VGG-F 224 × 224 232 MB 727 MFLOPs
SqueezeNet 224 × 224 5 MB 837 MFLOPs
GoogleNet 224 × 224 51 MB 2000 MFLOPs
ResNet-18 224 × 224 45 MB 2000 MFLOPs
SENet 224 × 224 440 MB 21,000 MFLOPs
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low data rate (50–100 Kbps) and are only suitable for IoT applications that send and 
receive a very small amount of data, i.e., tens or hundreds of bytes per day. The 
advantages of these technologies are the long communication distance (5–50 km), 
extremely low-energy consumption and low cost that make them suitable for sensor 
networks.

On the other hand, short-range technologies like NFC, BLE and Bluetooth oper-
ate at a much higher data rate, i.e., up to 1Mbps, but in a much shorter distance, i.e., 
less than 100 m. Among the short-range technologies, BLE has the best data rate to 
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energy ratio with the energy consumption from 10 to 30 mA while it operates at 
1–3 Mbps. An important advantage of these technologies is the cost as they operate 
without the need for supporting infrastructure.

Finally, cellular network technologies have a good balance between energy con-
sumption, communication range and data rate. However, the cost of deploying and 
operating these technologies is high due to the need for supporting infrastructure.

In summary, as IoT applications are generally data-centric, the selection of net-
work technologies for an IoT platform should be based on the amount and charac-
teristics of data that need to be exchanged between devices in the platform while 
considering other factors, such as communication range, level of energy consump-
tion and cost.

4.1.3  Data Volume, Processing Time and Location

While many IoT devices, such as smart smoke detectors, only send and receive a 
very small amount of data every day, there are IoT devices, such as smart cameras, 
that need to send a large amount of data over networks. AI algorithms are often used 
to process such data to reduce the amount of data that are sent over networks. For 
example, instead of sending a photo of a vehicle for identification, AI algorithms 
can be used in smart cameras to recognise the vehicles make, model and plate num-
ber. This information will be sent over networks, enabling the use of low-energy and 
narrow-band network technologies, e.g., LoRa and NB-IoT.

For IoT applications that need to process data in real-time, the processing needs 
to occur near the site of data generation, i.e., the edge. However, most AI algorithms 
demand a huge amount of processing power, which is not always available in edge 
devices. Although the computation capability of edge devices has increased tremen-
dously during the past decade, it is still challenging to perform sophisticated AI 
algorithms in these resource-constrained environments. Therefore, consideration 
should be taken on the selection of an AI algorithms and data processing location 
for delay sensitive IoT applications like the airport smart parking.

4.1.4  Weather and Environment

Other critical factors, which must be considered, in the design of any IoT applica-
tions are weather conditions and operating environments. Variations in the lighting 
condition, temperature and humidity greatly affect the camera photo quality, stabil-
ity and accuracy of IoT sensors. As a result, the performance (accuracy and process-
ing time) of AI algorithms when dealing with such data is also affected. Therefore, 
it is important to train AI algorithms with data collected from IoT sensors in differ-
ent weather conditions and operating environments.
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4.2  Design Architectures

4.2.1  Design Architecture for Generic IoT Applications

IoT applications are characterised by heterogeneous technologies, where the inte-
gration of technologies often suffers from interoperability problems [21]. The lay-
ered architecture design is often used to ensure the interoperability of different 
technologies.

Figure 3 illustrates the five-layer architecture commonly used by IoT applica-
tions [20, 27]. The five-layer architecture generally contains sensor–actuator, edge, 
fog, cloud, and application layers. In addition, the security layer is common to all 
five layers. The functionalities of each layer are provided in the following:

• The sensor–actuator layer, which is composed of sensor and actuator nodes, is 
responsible for environmental data acquisition and manipulation. Sensor nodes 
acquire data by converting physical, chemical or biological variables into read-
able digital signals or numerical properties. Actuator nodes manipulate the phys-
ical environment by turning control signals into some kind of physical actions, 
e.g., triggering an alarm if a high temperature is detected. In this layer, an impor-
tant requirement is IoT sensor nodes that should be of low cost with very low 
power consumption and robust to noise, so that they can be deployed in a large 
scale, in unprotected environments and without a frequent battery change or with 
energy harvesting facilities.

• The edge layer provides a low-level interface to the sensor nodes. It is responsi-
ble for receiving data from sensor nodes and performing simple data processing, 
e.g., sampling, scaling, and compressing data, before sending the compressed 
data to the upper fog layer. This intermediate data processing step is necessary to 
significantly reduce the amount of data transmitted over communication net-
works in a large-scale deployment. The edge layer also provides a standardised 
software interface to configure and manage sensor nodes from the upper layers. 
AI algorithms can be deployed at the edge layer for processing delay-sensitive 
data or performing data compression tasks. However, it is common that only 
trained computational models are used at the edge layer due to the limited com-
putational power in edge devices.

Fig. 3 The five-layer architecture of generic IoT applications
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• The fog layer acts as a local hub for collecting data from local edge devices in a 
large-scale deployment. It is responsible for data preprocessing (e.g. filtering) 
and providing gateway, which connects IoT to the Internet. This layer is also 
responsible for implementing local data policy. AI algorithms can be deployed at 
the fog layer for data analysis tasks that are subject to the local data policy.

• The cloud layer is responsible for performing data analytics. It consists of cloud 
servers that provide different services, including global data storage, big data 
analysis, and IoT device management. Depending on the application, specific 
cloud services can additionally be implemented. This layer also provides mecha-
nisms, such as graphical user interface (GUI) and application programming 
interface (API) for external applications to access IoT data, perform data analyt-
ics and manage IoT devices. AI algorithms are deployed at the cloud layer for 
complex data analysis tasks.

• The application layer is responsible for data visualisation and system-user inter-
action. It consists of desktop, mobile and web applications that consume services 
provided by the cloud layer to manage IoT devices and perform data analytics as 
requested by end-users and finally to visualise the results in user-friendly formats.

• The security layer is liable for providing security to all layers by implementing 
various security mechanisms, such as encryption, authentication, authorisation 
and auditing.

4.2.2  Proposed Architecture for the Airport Smart Parking

The specific requirements of the airport smart parking problems suggest the need 
for modification to the abovementioned five-layer architecture. In particular, due to 
the airport security requirement, several data analytics tasks need to be done locally. 
Therefore, the fog and cloud layers were combined to create a layer called the infor-
mation aggregation layer to increase the data manageability. Furthermore, thanks to 
the availability of low-cost hardware platforms, such as Raspberry Pi Zero, it is 
more economical to combine the sensor and the edge layers in a single hardware 
platform to perform the functionalities of both layers. As a result, a three-layer 
architecture composed of the information sensing layer, the information aggrega-
tion layer and the application layer was proposed to address the airport smart park-
ing problems. The proposed architecture is depicted in Fig. 4 and the details of each 
layer are discussed in the following subsections.

• The information sensing layer.

Data required for identifying the vehicle in each parking slot are collected in this 
layer. In addition, data of the surrounding environment, such as the humidity, tem-
perature and carbon dioxide level can also be obtained. From the sensing technol-
ogy perspective, there are several options to design this layer. Different types of 
sensors, including ultrasonic, magnetic, infrared, laser and CCTV, can be used to 
detect parking slot occupancy. Table 2 compares the common sensing technologies 
used for parking occupancy detection. As presented in Table 2, CCTV sensors are 
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among the most accurate sensors for occupancy detection in the literature of 
IoT. However, they have a higher cost and energy consumption compared with other 
sensors. Meanwhile, ultrasonic sensors are one of the best occupancy detection sen-
sors offering a good balance between the cost, accuracy and deployability.

In addition to the accuracy and cost, an important requirement for selecting a 
parking sensor is its ability to reliably operate in both indoor and outdoor environ-
ments, during the day and at night and in different weather conditions. The industry 
variant of the HC-SR04 ultrasonic sensor was selected to use in the proposed smart 
parking system for this reason. The sensor provides 2–400 cm noncontact measure-
ment function with the ranging accuracies of up to 3 mm. Apart from occupancy 
detection, the information sensing layer is also responsible for taking photos of the 
vehicle in each parking slot. A 5MP auto-IR camera was chosen for the task of the 
photo collection. The built-in auto-IR function is required to allow the camera to 
take photos at both day and night.

Fig. 4 The three-layer architecture of the airport smart parking system

Table 2 Comparison of sensing technologies used for smart parking occupancy detection [3, 43]

Sensor type
Intrusive 
deployment

Average 
power 
consumption

Speed 
detection

Multi- 
lane 
detection

Weather 
sensitive Accuracy Cost

Passive IR – 74.35 mW – – Yes ** $$
Active IR Yes 106.03 mW Yes Yes Yes ** $$
Ultrasonic – 89.21 mW – – – *** $
LDR – 103.11 mW – – Yes ** $
Magnetometer Yes 82.54 mW Yes – – **** $
RFID – 0.1–2 W – – – ** $
CCTV – 1.0–10 W Yes Yes Yes **** $$$$
Inductive loop Yes 0.7–1.0 W Yes – Yes **** $$
Microwave – 1.0 W Yes Yes – *** $$

More stars indicate higher accuracy and cost
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To manage the sensors, the Raspberry Pi 3 platform was selected, although the 
Raspberry Pi Zero-W was sufficient for the task. Compared with other IoT hard-
ware platforms, the Pi 3 platform provides better support for computer vision and 
machine learning at a relatively low cost. A pair of HC-SR04 ultrasonic sensors 
were integrated into the platform to increase the system redundancy and measure-
ment accuracy. The integration of the ultrasonic sensors and the IR camera in a 
single hardware platform allow the development of algorithms to control the camera 
activation and ensure that vehicle photos are always taken at the right distance, 
increasing vehicle recognition accuracy and reduced energy consumption. To get a 
better idea about the hardware platform developed for detecting vehicles in the 
information sensing layer, a prototype of the system is shown in Fig. 5.

Another important function of the information sensing layer is to perform data 
compression, especially for imagery data, i.e., vehicle photos in this case. A possi-
ble solution to this problem is to perform vehicle identification in the information 
sensing layer to avoid sending vehicle photos to the information aggregation layer 
for the identification task. However, the limit in the computational power of the 
Raspberry Pi 3 platform suggests that further testing is necessary to confirm the 
solution feasibility. Some experimental results and discussions in regard to the pro-
posed solution are provided in Sect. 5.

• The information aggregation layer.

This layer is responsible for collecting and aggregating data of each parking slot 
received from the edge devices, performing data processing and storage and under-
taking data analytics. It also provides mechanisms to access data and manage edge 
devices subject to data management policies. Currently, there are several competi-
tive cloud-based IoT platforms, including AWS IoT, Google Cloud IoT and the IBM 
Watson IoT Platform, which can be used in the information aggregation layer. All of 
these platforms support the various functionalities, including IoT device connectiv-
ity and management, data processing and data storage, required in the information 
aggregation layer. However, each platform supports different levels of data analyt-
ics, data security and edge computing solutions, which make them suitable for 

Fig. 5 The hardware prototype of the IoT smart parking device
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different IoT applications. The key features of the common IoT platforms are sum-
marised in Table 3.

Considering different aspects of the IoT platforms presented in Table 3, the IBM 
IoT platform was chosen for our proposed airport smart parking system. Our choice 

Table 3 Key features of common IoT platforms

IoT platforms
Communication 
protocols

Key offering 
and its main 
functions Security

Edge 
computing 
solutions Top-3 use cases

Amazon AWS IoT 
Core

HTTP
MQTT
WebSockets

Connectivity
Authentication
Rules engine
Development 
environment

Transport layer 
security (TLS)
Authentication 
(X. 509)

FreeRTOS 
edge 
operating 
system
IoT 
GreenGrass 
edge 
computing 
platform

Smart city
Connected 
home
Agriculture

The Cisco IoT 
Operations 
Platform

MQTT Mobile 
connectivity
eSIM as a 
service
Machine 
learning to 
improve 
security

Transport layer 
security (TLS)

Cisco iOX 
edge 
development 
platform
Cisco Edge 
intelligence

Smart city
Manufacturing
Connected 
vehicles

Google Cloud IoT 
Platform

HTTP
MQTT

Connectivity
Device 
management

Transport layer 
security (TLS/
SSL)

Edge TPU 
chip enabling 
deployment 
AI at the 
edge

Smart parking
Energy
Transportation 
and logistics

IBM Watson IoT 
Platform

HTTP
MQTT

Connectivity
Device 
management
Real-time 
analytics
Blockchain

Transport layer 
security (TLS)
Authentication 
(SSO)
Identity 
management
(LDAP)

IBM Edge 
Application 
Manager 
platform

Smart buildings
Manufacturing
Agriculture

Microsoft Azure 
IoT Platform

HTTP
MQTT
WebSockets
AMQP over

Connectivity
Authentication
Device 
management
Device 
monitoring
IoT Edge

Transport layer 
security (TLS)

IoT Edge as 
an integral 
part of IoT 
Hub

Manufacturing
Retail
Healthcare
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of the platform is also supported by the literature, as the IBM IoT platform was 
selected for the airport smart parking application in the system introduced by Ullah 
et al. [58]. In addition, the IBM IoT platform supports the integration with the IBM 
blockchain security technology, which has the capability of working with IoT 
devices, to track payment histories and automatically fulfil invoices and payments 
requirements [1]. Furthermore, the IBM IoT platform can also be deployed in pri-
vate clouds, which is an airport security requirement.

• The application layer.

Several applications can be developed for airport parking management by using 
the information provided by the aggregation layer. To improve the customer experi-
ence, a web app or mobile app can be developed to allow customers to access real- 
time information about the parking facilities, provide booking and reservations 
facility and make payments for their booking. The application can also remind cus-
tomers where their vehicles were parked and provide instruction to help customers 
find their vehicles in the parking facilities. Figure 6 illustrates an example of the 
information provided by the airport smart parking application.

To improve the security and the manageability of the parking facilities, a visuali-
sation of the real-time parking information can be fed into the airport security and 
management team. Data about the parking environment, e.g., temperature, humidity 
and carbon dioxide level can further be used for early detection of fire hazard in the 
car park. Parking data and the analytics performed in the information aggregation 
layer are made available to the application layer via a set of RESTful API. Two sets 
of API, the local and global APIs, are implemented in the proposed framework to 
enhance system security. The local API provides functions to access all available 
features of the data, while the global API only provides access to some analytics of 
the data, such as the availability of parking facilities as shown in Fig. 6.

• The network connectivity.

The proposed platform relies on the IEEE 802.11n/ac technology for network 
connectivity, as most airports already have good Wi-Fi coverage. Other IoT network 
technologies, such as NB-IoT, Sigfox, and Lora, are inferior to Wi-Fi in this situa-
tion as the main strength of these technologies lies in their low-energy consumption 
rather than the data transfer rate, which in this case is insufficient. The MQTT 

Fig. 6 Example of information provided by the airport smart parking application
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protocol was used in the proposed smart parking system for exchanging data 
between the information sensing and the aggregation layer of the proposed system.

• The security layer.

In this layer, the connection between the sensor nodes and devices in the aggre-
gation layer through the MQTT protocol is encrypted by using the standard 
Transport Layer Security (TLS). In addition, the IBM IoT platform also provides a 
set of security services, including device authentication, certificate provisioning and 
verification, secure booting and firewalls to enhance the proposed platform security.

4.3  Vehicle Identification Framework

An important functionality of the proposed smart parking system is the ability to 
perform automatic vehicle identification, including the recognition of the plate 
number, model and colour of the vehicle parked in each parking slot. The existing 
literature suggests several frameworks, both commercial and open-source that can 
be used to fulfil this function [6, 30]. Traditional pattern matching using local binary 
pattern (LBP) and histogram of oriented gradient (HOG) features and machine 
learning techniques such as k-nearest neighbours (KNN), support vector machine 
(SVM) and more modern deep learning have been used in these frameworks for the 
identification task [30]. Overall, these frameworks were reported to achieve good 
performance (i.e. >95% accuracy) in their testing environments [6]. To select a vehi-
cle identification framework for this airport smart parking project, besides accuracy, 
additional selection criteria including computational complexity, processing time, 
robustness and cost were also considered.

To give a better idea about performance, processing time and robustness of dif-
ferent frameworks, Table 4 compares existing character recognition methods, which 
plays an important part in the vehicle identification frameworks. Considering the 
results provided in Table 4 and available vehicle identification frameworks in the 
literature [41], OpenALPR was selected to fulfil the task in the proposed frame-
work. OpenALPR is an automatic licence-plate recognition library distributed with 
a commercial licence and an open-source version [41]. OpenALPR was developed 
on two important computer vision libraries, OpenCV and Tesseract OCR. The local 
binary pattern (LBP) feature extraction algorithm from the OpenAPLR was used to 
detect vehicle number plates, while the Tesseract’s optical character recognition 
algorithm was used to recognise the plate numbers from the detected number plates. 
OpenALPR is capable of processing 5–7 frames, i.e., photos, per second using the 
Raspberry Pi 3 hardware platform. To detect vehicle’ make and model, the approach 
based on residual SqueezeNet neural network proposed by Lee et  al. [34] was 
implemented. The model was trained using the Vehicle Make and Model Recognition 
dataset [54]. For testing the proposed system, data collected from the sensors used 
in the proposed framework were considered.
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5  Experiment Results and Discussion

Several experiments were conducted to evaluate the AI-IoT integration process, 
using the developed IoT smart parking device in a practical deployment scenario, 
with the focus on the level of energy consumption, the processing time and the 
detection accuracy at different times of the day and in various weather and lighting 
conditions. Details of each experiment are presented in the following subsections.

5.1  Energy Consumption

The first experiment was conducted to evaluate the level of energy consumption of 
the developed smart parking device. The device was tested in two AI integration 
modes: on edge and on fog. In the first case, OpenALPR framework was deployed 
directly on the smart parking device to perform vehicle identification task. 
Meanwhile, in the latter case, the device needed to make a Rest API call to a local 
network server that runs OpenALPR as a vehicle identification service. The device 
was powered by a standard 10,000 mAh power bank in both day and night time. The 
maximum temperature at the day time was 30 °C and the minimum temperature at 
the night time was 7 °C. The energy consumption of the device was tested in two 
operation regimes: normal and exhaustive. In the normal regime, the device per-
formed one vehicle identification process every hour, while in the exhaustive regime, 
the device repeatedly performed the vehicle identification process. An experiment 
was also conducted on the use of energy harvesting technology to power the device. 
This is important for the deployment of the device in outdoor parking facilities, 
which may not have access to the main power supply. In this experiment, a 12,000 

Table 4 Relative comparison of the existing character recognition methods [6]

Methods Convenience Inconvenience
Accuracy 
(%)

Pattern 
matching 
features

More competent for recognising 
non-broken, fixed size, single 
font characters. Simple and 
straight forward technique

Higher processing time for 
processing all the pixels, not robust 
to the scale and rotation of the 
characters, noise, multi-font, 
broken characters, etc.

95.6–95.7

Extracted 
features

Faster recognition, capable of 
extracting salient features, 
robust to different noises

Recognition performance might get 
decreased by non-robust features, 
requires time for extracting features

98.3–98.6

Machine 
Learning 
e.g. ANN

Relatively simple 
implementation, high efficiency 
in the case of the huge volume 
of data

Additional processing time for 
training the network, processing 
complexity

96.9–98.5

Statistical 
classifiers

Capable of learning the 
differences and the uniformities 
of the multiple characters

Relatively complex, high 
processing time

95.7– 
99.5
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mAh power bank with a solar charger was used to power the device. The level of 
energy consumption was measured through battery life. The results obtained at dif-
ferent scenarios are presented in Table 5.

The results reported in Table 5 clearly indicate that the device consumed less 
energy in the on-edge AI integration mode. This implies that energy spending on 
Wi-Fi communication was significant, even greater, in comparison with the energy 
spending on running AI algorithms for the vehicle make, model, colour and plate 
number recognition. In addition, when the device was powered using a 12,000 mAh 
power bank with the solar charger, it could work for more than 24 h in both the 
normal and exhaustive regimes. This indicates that the proposed device can operate 
continuously using energy harvesting technologies, such as the solar-powered bat-
tery. This finding suggests the developed device suitable for outdoor deployment.

5.2  Detection Accuracy

Weather and lighting conditions could greatly affect the performance of the smart 
parking device camera. Therefore, the second experiment was conducted to evaluate 
the impacts of weather and lighting condition on the detection accuracy of the pro-
posed smart parking device. Six vehicles from different manufactures, including 
Audi, Ford, Holden, Kia, Mazda and Toyota, were used in this experiment. The 
vehicles were registered in three different states (Victoria, New South Wales and 
Queensland) of Australia. The experiment was carried out during the day and at 
night and in sunny, cloudy, and rainy weather. Each vehicle was tested in the front 
and reverse parking directions. For each direction, three photos were taken by the 
parking device. In total, 180 vehicle images (i.e. six vehicles x two directions x 
three photos per direction x five conditions) were taken by the device. This means 
the vehicle identification algorithm was tested 180 times. The results of the experi-
ments are summarised in Table 6. Sample vehicle photos taken by the device as part 
of the experiment are shown in Fig. 7.

From the results presented in Table 6, it can be noted that the lighting and weather 
conditions have no significant impact on the plate number recognition algorithm as 
reflected through a small variation in the algorithm detection accuracy. The algo-
rithm achieved as high as 98.9% accuracy in a good, daytime condition and 96.7% 
at the night-time of rainy days.

Table 5 The device energy consumption measured through battery life

Mode

Regime

Battery/power bank
Normal Exhaustive
Min Max Min Max

On edge 10,000 mAh 9 h 17 m 9 h 19 m 7 h 21 m 7 h 23 m
On fog 10,000 mAh 8 h 12 m 8 h 18 m 6 h 17 m 6 h 20 m
On fog Solar 12,000 mAh 24 h+ 24 h+ 24 h+ 24 h+
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In contrast, both algorithms for the recognition/identification of the vehicle 
makes and models were greatly affected by the variations of lighting conditions. 
The accuracy of the vehicle-make recognition algorithm reduced from 99% during 
the day to around 50% at night. Meanwhile, these figures went down from 57.1% to 
42.8% for the vehicle model identification algorithm. It is worth mentioning that the 
vehicle colour recognition was 100% accurate in the daytime. In the night time, the 
camera was switched to the black-and-white mode, and the colour information was 
not available. Hence, the algorithm was not evaluated in this scenario.

Further investigation into the identification accuracies suggests that the errors in 
the plate number recognition were mainly due to the camera exposure, which was 
saturated by either the direct sunlight or the front light beam as seen in Fig. 7 (top-
right) photo. The same issue was observed in the vehicle make recognition at night. 
Often, important features, such as the manufacture logo, were not visible in the 
front parking direction due to the impact of the direct light beams from the vehicle 

Table 6 The accuracy of the smart parking device in different operating conditions

Vehicle

Condition
Day Night
Rainy Cloudy Sunny Rainy Clear

Plate number 97.8% 98.9% 98.3% 96.7% 97.8%
Make 99% 99% 99% 48.9% 50.1%
Model 57.1% 57.1% 57.1% 42.8% 42.8%
Colour 100% 100% 100% N/A N/A

Fig. 7 Sample photos captured by the device in different conditions
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headlights. As a result, the algorithm failed to recognise the vehicles’ make from the 
front parking direction. Reverse parking did not suffer from this issue, as there was 
no strong light beam at the vehicle rear. This explained the decrease of the vehicle 
make identification accuracy from 99% during the day to around 50% at night. The 
vehicle model recognition was the least accurate with only around 50% accuracy. 
This is due to the SqueezeNet model used for vehicle model identification that was 
trained using the Vehicle Make and Model Recognition dataset. The dataset did not 
contain vehicle images taken at the night time and vehicle models after 2016. In 
addition, there was not a sufficient number of training samples in the dataset for 
some vehicle makes, such as Holden and Kia.

5.3  Processing Time

The third experiment was conducted to compare the processing time of the on-edge 
and on-fog deployment modes of the proposed vehicle identification algorithms. We 
were also interested in evaluating the impact of the operating environment, e.g., the 
temperature and weather conditions on the processing time. Table 7 shows the aver-
age processing time of the two deployment modes in different time and weather 
conditions. As it is evident from the results provided in Table 7, in overall, the on- 
edge deployment mode has a notable smaller processing time, i.e. 3.62–3.77 s, com-
pared with 4.53–4.72 s of the on-fog deployment mode. This is understandable if we 
take into account the time required to upload a 5 Mpx (2592 × 1944) photo over a 
100Mbps Wi-Fi connection, which was approximately 1.2 s. There was not a nota-
ble difference in the processing time between day and night. However, the process-
ing time can be significantly reduced by reducing the size of the captured photos. In 
particular, the processing time was reduced by approximately 40% when the image 
size was reduced by 20%. It is worth noting that when the photo resolution was 
decreased by a factor of two in both dimensions, the recognition accuracy was 
decreased by 16% on average.

5.4  Discussion

The results of the conducted experiments confirmed the deployability and advan-
tages of the on-edge integration solution in the proposed smart parking design. The 
on-edge deployment of the AI algorithms for vehicle identification provided a better 
processing time and consumes less energy compared with the on-fog deployment. 
The level of energy consumption of the developed smart parking device was small 
enough to allow the device to be powered using an energy harvesting source, e.g., 
solar batteries. There was a notable impact when the proposed system was operated 
at different environmental and weather conditions. Training datasets also played a 
significant role in the success of AI algorithms integrating on IoT devices, 
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especially if AI algorithms were deployed for computer vision tasks. The experi-
ments have shown that the accuracy of such algorithms can be reduced as much as 
50% in certain conditions.

6  Conclusion and Future Avenue

In summary, the process of AI–IoT integration was discussed through a case study 
of smart airport parking in this chapter. A number of issues related to the integration 
of AI and IoT technologies from the system analysis and design perspectives, 
including requirement analysis, identification of design constraints, selection of 
system architectures and hardware and software technologies are addressed to han-
dle the problems of the airport smart parking.

A prototype of the smart parking device was also built using a Raspberry Pi 3 
platform integrating with industry-standard parking sensors, auto-IR camera, 
OpenALPR and the IBM IoT cloud platform to study the feasibility of the proposed 
design architecture. Moreover, the impact of operating environments and weather 
conditions on the performance of the smart parking device were evaluated. A series 
of experiments were conducted to evaluate the energy consumption, recognition and 
identification accuracy and processing time of the smart parking device at different 
times of the day and in different weather conditions. The experiment results indi-
cated that the developed smart parking system is capable of providing real-time 
information about the parking facilities. It is also easy to deploy and cost-efficient. 
The developed smart parking device can detect vehicle plate numbers and vehicle 
colours with high accuracy. The accuracies of the vehicle make and model recogni-
tion algorithms have, however, been greatly impacted by the training dataset and 
lighting conditions.

Future works will be carried out on improving the vehicle make and model rec-
ognition algorithms by addressing the camera overexposure problem, enriching 
vehicle make and model datasets and improving the robustness of the identification 
algorithms. From the AI–IoT integration perspective, it is important to continue 
addressing the trade-off between high demand for the computational power of AI 
algorithms and the low-energy, low-computational power nature of IoT hardware 
platforms. This can be done by proposing innovative architectures for AI deploy-
ment, improving the efficiency of AI algorithms and developing low-energy but 
high-performance IoT hardware platforms.
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1  Introduction

The Internet of Things (IoT) systems have grown and become an essential part of 
everyday lives. Originated from simple and interconnected sensors, the ubiquitous 
presence of IoT is now indispensable for smart cities, smart factories, etc. Traditional 
IoT devices are usually equipped with very limited processing power since they are 
designed to perform simple identification, sensing, actuation, and networking tasks. 
The more complex data processing and decision making are usually done at the 
remote server.

This IoT model however inevitability introduces latency between sensing and 
actuation, which makes it less suitable for latency-sensitive applications, such as 
autonomous things that are expected to interact with the physical environment 
autonomously in real time [1]. Furthermore, sensor information exchange incurs 
heavy network traffic, which hinders the system scaling up in the current network 
infrastructure [2].

The next-generation IoT devices are expected to deliver intelligent knowledge 
and adaptive controls beyond simple sensor information processing. They will 
behave as autonomous or semiautonomous devices that both generate and consume 
information, evolving into the Internet of Autonomous Things (IoAT) [3]. The 
autonomous vehicle is an example of IoAT; it is an evidence of the emergence of the 
next-generation IoT, or IoAT, era.

Autonomous driving has received increasing attention in recent years. With the 
rapid development of artificial intelligent (AI) and IoT, autonomous driving evolves 
from a concept that exists in science fiction to concrete IoAT systems that are ben-
eficial to society in numerous aspects.
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First and foremost, autonomous driving improves road traffic safety. According 
to the National Highway Traffic Safety Administration (NHTSA), 94% of serious 
crashes are caused by human factors. Autonomous driving removes human factors 
from road traffic, which reduces road accidents to prevent injuries and save lives [4].

Second, autonomous driving reduces economic loss due to road traffic accidents. 
NHTSA suggests that billions of dollars have been lost each year because of road 
traffic accidents, in the form of lost workplace productivity, loss of life, and 
decreased quality of life. Since autonomous driving improves road traffic safety, it 
can greatly reduce such economic loss.

Third, autonomous driving reduces traffic congestion. Humans do not drive per-
fectly. For instance, in dense traffic, a small driver mistake can get amplified to 
cause traffic congestion. Autonomous driving can provide smoother vehicle control 
and help the vehicles drive at an optimized speed, which can ease the traffic conges-
tion in the current road infrastructure. And eventually, with the help of IoAT net-
works, autonomous driving vehicles will be able to share their driving information 
with the network to enable global traffic optimization for better routing and facili-
tate coordination between vehicles to further improve safety and reduce congestion.

Finally, autonomous driving enables new applications for vehicles, which brings 
convenience to daily life. Fully autonomous driving requires no human interven-
tion. This makes self-parking possible that passengers can be picked up and dropped 
off without worrying about finding a parking spot. Also, it allows the vehicle to be 
shared by multiple family members as the vehicle can be remotely summoned. 
Furthermore, it provides people who are not fit to drive, especially, the elder people, 
and visually impaired people a way for mobility.

The early attempt at autonomous driving dates to the 1930s, where an electric 
vehicle was designed to trace the electromagnetic fields generated by devices 
embedded under the road surface. This vehicle indicates a concrete effort toward 
autonomous driving. However, it did not generate the intelligence needed for the 
vehicle to interact with a dynamic physical environment. Its feasibility is also in 
doubt as it relies on a whole new road infrastructure.

In 1986, Ernst Dickmanns’ VaMoRs Mercedes van pioneered in using computer 
vision approaches for autonomous driving. Multiple generations of autonomous 
driving systems had been tested in this vehicle, which not only demonstrated the 
capability of computer vision methods but also provided valuable experience in 
building a small yet powerful autonomous driving system. In 1994, the experience 
acquired from the 5-ton VaMoRs van was transferred into a VaMoRs-P sedan. The 
VaMoRs-P is also a computer vision-based autonomous driving system that drives 
like a human who takes both vision and inertial information into account [7]. 
Furthermore, a 4-D approach is used in the VaMoRs-P, which utilizes spatial- 
temporal information. The VaMoRs-P is not simply state of the art at its time; its 
design ideas have found their way into today’s deep learning (DL)–based autono-
mous driving systems, such as using multiple cameras for visual perception, 3-D 
object detection, and object tracking. Most importantly, it explores temporal infor-
mation in the input sequence, which has been underutilized in many modern 
systems.
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In 2004, the Defense Advanced Research Projects Agency (DARPA) held the 
first DARPA Grand Challenge where 15 teams with their autonomous driving vehi-
cles competed to finish an off-road route [5]. Although no team finished the whole 
route in 2004, this contest and the contests in the following years are an early push 
in accelerating the development of modern autonomous driving technology. With 
decades of advancement in sensor technologies, computing hardware, and deep 
learning methods, significant progress has been made toward autonomous driving 
on public roads, especially the ones utilizing deep learning.

Although we are on the edge of entering the era of autonomous driving, numer-
ous vehicle manufactures, and autonomous driving solution providers have revised 
their roadmap and postponed the deployment of their fully autonomous driving sys-
tems. The roadblocks exist in both ethical and technological aspects. Ethically, there 
are moral dilemmas such as the trolly problem, which is not only difficult for the 
machine to solve but also hard for humans to reason with. If we cannot create a set 
of human acceptable moral standards for the machine, the fully autonomous driving 
vehicles might never be accepted by the public. Technologically, the current autono-
mous driving vehicles do not meet the criteria of being low cost, low latency, high 
accuracy, and high reliability.

Currently, we are still at a stage that human attendance and attention is needed 
when using autonomous driving functions in case the vehicle makes a mistake or 
needs to fall back to human control. Furthermore, current autonomous vehicles are 
generally designed to work individually without collaboration within the IoAT net-
work. Each autonomous vehicle will make a reactive decision that is the most suit-
able for itself based on the information it directly precepts without taking any global 
information into account, which makes autonomous driving less effective. With 
IoAT networks, autonomous vehicles can make proactive decisions based on both 
the direct precepted and remotely provided information from the network to provide 
safer and smoother vehicle control and better navigation.

The rest of the chapter will be focusing on using vision-based end-to-end deep 
learning technologies to achieve autonomous driving. We will briefly discuss the 
ethics of autonomous driving, and then describe the autonomous driving paradigm 
and deep learning methodologies for autonomous driving. We finally propose a 
vision-based end-to-end deep learning model that is compatible with the next gen-
eration IoT system, accepts navigational command for controllable routing, utilizes 
temporal information for better vehicle control, and incorporates transfer learning 
for better generalization. We then compare and analyze its feasibility, strengths, and 
weakness against existing models.

2  Ethics of Autonomous Driving in IoAT

Technology is a double-edged sword; autonomous driving is no exception, which 
distributes both well-being and harm [6]. When under situations where harm cannot 
be avoided, how to distribute the harm becomes a moral dilemma that both the 
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developer of autonomous driving systems and the policymakers are struggling with. 
Since the moral principle varies in different regions, religions, genders, ages, and 
even social status, it is difficult to find a set of unified moral standards. Although 
these scenarios are rare, we need to consider the difference and commonality in 
ethical preference to design a socially acceptable autonomous driving system.

The Moral Machine Experiment is a research carried out by MIT trying to expose 
such ethical preferences in both the global level and in the different subpopulation 
levels to guide in designing such a socially acceptable autonomous driving system. 
To achieve this goal, the experiment is designed into the form of a website that can 
be accessed globally by different groups of people. There are nine attributes to be 
considered, namely, intervention, relation to autonomous vehicles, gender, fitness, 
social status, law, age, number of characters, and species. The website presents the 
users with life-threatening moral dilemmas in scenarios created with the nine attri-
butes where the autonomous vehicle needs to make the less evil decision and lets the 
users judge how the vehicle should react.

With 39.61 million decisions collected from 233 countries, there are multiple 
levels of findings through the experiment [6]. The first level of findings concerns the 
preference on a global level. The result shows, in general, that people prefer to save 
humans over other animals, more characters over fewer, younger over older, lawful 
over unlawful, and higher social status over lower [6]. The result at the global level 
points the autonomous driving system designers in a general direction of how the 
public prefers the autonomous driving systems to be. The second level of finding is 
about preference based on the individual characteristics of respondents. It finds 
there is no significant variation in preference between subpopulations, although the 
tendency to the same preference might be different [6]. The third level of findings 
suggests in the same culture clusters, such as countries sharing the same cultural 
origin, people have a closer tendency for the preference. And finally, the preference 
is highly related to the country the users come from as there are differences in the 
law, economy, human rights, and health system.

However, other than the preference of the public, we also need to take other fac-
tors, such as local regulations, into consideration. For instance, in 2017, the German 
Ethics Commission on Automated and Connected Driving provided a guideline for 
autonomous vehicles. Rule number 7 suggests, when facing a dilemma, protecting 
human lives has a higher priority over other animals, which is consistent with the 
result of the Moral Machine. However, rule number 9 states that it is prohibited to 
make decisions based on personal attributes, such as gender and age. This rule con-
flicts with the preference of the public. Since the variations exist, the designer will 
need to take both the general preference and local regulations into account.

We find it necessary to consider the ethical preferences and local regulations dur-
ing the future design phase; however, improving the performance and reliability of 
the current autonomous vehicle under normal driving circumstances remains a chal-
lenge and should be prioritized in research. For the rest of the chapter, we will focus 
on the technical aspects of the autonomous vehicle.
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3  Autonomous Driving Paradigms in IoAT

There are two major paradigms in deep learning-based autonomous driving, namely, 
the modular pipeline paradigm and the end-to-end learning paradigm. Although the 
performance of models in both paradigms has been greatly improved with the help 
of deep learning, each paradigm still has its strength and weakness.

3.1  Modular Pipeline Paradigm

The modular pipeline paradigm follows the divide-and-conquer principle, which 
has been widely used in robotic fields. Such a model divides the complex autono-
mous driving problem into clearly defined stages and subproblems that are easier to 
solve. Then, each subproblem is solved and optimized separately. Finally, the related 
subproblems are connected through pipelines with the assumption that the optimal 
output from the previous stage will be the optimal input for the next stage [7]. It is 
the most widely adopted approach since the early attempts on autonomous driving, 
including the VaMoRs-P mentioned above.

Since each module is only responsible for a well-defined subproblem, the mod-
ules can be distributed to developers with different expertise and tackled indepen-
dently. Because the subproblems are well defined, it is easier to understand and 
explain the inner working and behaviors of the system. This approach also allows 
each module to be easily modified to meet specific requirements without affecting 
the performance of unrelated modules. However, human-defined subproblems and 
features may not be optimal for the overall system. Developing such a system often 
requires expert knowledge in the field of each subproblem, and the system may get 
very complex.

A generalized modular pipeline model is shown in Fig. 1. Four major modules 
are residing in four stages in this model. In the first stage, the perception module 
performs tasks such as objection detection, objection tracking, and semantic seg-
mentation on inputs from a fusion of sensors including LiDARs, cameras, and ultra-
sonic radars. In the next stage, the localization module performs its tasks with input 
from GNSS, IMU, HD Maps, and the output of the perception module. The plan-
ning module is in the next stage, which consumes the outputs from both the percep-
tion module and localization module for tasks such as trajectory planning. Finally, 
in the last stage, the control module will turn the output from localization and plan-
ning modules into vehicle control signals of steer, accelerate, and brake.

Multiple works fall into the modular pipeline paradigm [8–13]. However, due to 
the high complexity of modular pipeline models, much of the works reviewed only 
focus on improving upon a specific subproblem, rather than providing a complete 
pipeline to drive a vehicle.

Nevertheless, [8] proposed a computer vision-based direct perception model, 
which falls in the modular pipelined paradigm but with part of it being like the 
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end-to-end learning paradigm. Instead of recognizing and tracking all driving- 
related objects to create a representation of its surrounding environment and make 
decisions based on all the information, [8] argues that a subset of this information is 
sufficient for the driving task and computing all the information increases the com-
plexity. Therefore, a direct perception approach is proposed where meaningful indi-
cators such as the angle of the car, distance to lane mark, and distance to adjacent 
cars are generated from the input image using convolutional neural networks (CNN) 
following end-to-end learning fashion. Then, based on the indicators, a closed-form 
controller is used to drive the vehicle. The model is mainly tested on recognizing 
and predicting the indicators, as well as generating steer control accordingly. The 
results indicate the model is relatively capable in evaluations with the KITTI dataset 
and the simulator. However, the major flaw is that the indicators this model predicts 
are handcrafted; in situations where the handcrafted indicators do not exist in the 
input, the proposed approach cannot work properly.

Both camera and LiDAR have been used as the main perceptual source for auton-
omous driving. Compared with cameras, LiDAR is considered expensive, which 
makes the autonomous vehicle less affordable. However, LiDAR-based 3-D object 
detection has higher accuracy compared with image-based 3-D object detection. 
The performance gap has been a roadblock that hinders the development of low-cost 
imaged-based autonomous driving. Generally, the performance gap between the 
two approaches is considered caused by the error of depth estimation grows qua-
dratically with distance in the image-based approach while it only grows linearly 
with the LiDAR-based approach.

However, [9] suggests differently that the representation of data is a major cause 
of the performance gap. By converting the image-based depth estimation, which is 
usually represented as an additional channel of the image into a 3-D point cloud 
pseudo-LiDAR representation, the result of pseudo-LiDAR data is considered very 
similar to the ground truth LiDAR data. Furthermore, with the pseudo-LiDAR 
method, any 3-D object detection method designed for point cloud can be applied to 
image data, which provides more flexibility. The test results confirm the 

Fig. 1 A modular pipeline model
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pseudo-LiDAR approach combined with point cloud-based 3-D detection methods 
outperforms the baseline state-of-the-art image-based 3-D detection methods, espe-
cially in the bird-eye-view format. However, LiDAR-based methods still outper-
form pseudo-LiDAR-based methods, especially in the far distance cases.

The work [10] proposed a flexible pipeline that applies any existing 2-D object 
detection method to 3-D object detection tasks. The state-of-the-art 2-D object 
detection methods have achieved very high accuracy. This proposed pipeline enables 
us to transfer the success in 2-D object detection into 3-D object detection. The 
pipeline is a LiDAR and camera fusion approach where one branch of the pipeline 
performs 2-D object detection on an image to produce a 2-D bounding box. Then, 
the 2-D bounding box is projected into the 3-D point cloud to select a subset of the 
points. Since a 2-D bounding box in 3-D space can contain points from different 
distances and different objects, the model proposes multiple 3-D bounding boxes to 
be fitted on three generalized vehicle models. The proposal with the highest fitting 
score will be further fine-tuned by another CNN to form the final bounding box. 
This pipeline ranks second among the 3-D object detection algorithms in the KITTI 
benchmark at its time. Although the performance is good on the KITTI dataset, 
there are many more types of vehicles and objects related to driving in the real 
world. The generalized vehicle model is handcrafted using a 3-D CAD dataset; this 
implies that to make the model able to detect other objects in the real world, we will 
need to manually create 3-D CAD models for many more objects. This will make it 
difficult to apply this pipeline in a more general term.

In [11–13], the research focuses on improving the speed of point cloud-based 
object detection. Both [12, 13] use bird-eye-view (BEV) representation of the point 
cloud data to better explore the depth information. In [11], it proposes to run a fully 
convolutional network on a 2-D projection of the frontal-view point cloud with 
dilated convolution to increase the receptive field. However, in [12], the work sug-
gests a different approach that using dilated convolution will cause checkerboard 
artifacts in a higher-level feature map, which will decrease performance. Instead, 
[12] increases the number of convolutional layers and combines the residual of dif-
ferent convolution layers to reduce the detail loss. The work [13] suggests, directly 
performing 3-D convolution on dense data, is slow. Only certain parts of the data 
need to be processed, such as we only care about objects on the road. Therefore, the 
work proposed to divide the input into voxels and use a computation mask to make 
the model focus on objects on the road, which reduces the amount of computa-
tion needed.

3.2  End-to-End Learning Paradigm

On the other hand, models in the end-to-end paradigm use one single deep neural 
network that handles the complete self-driving task without any intermediate step. 
Such models directly map the inputs from sensors to vehicle control signals, with-
out the need to understand any human-defined steps, such as objection detection, 
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path planning, etc. The assumption is that, with the appropriate deep learning model 
and training method, end-to-end learning will learn the internal features that are 
most suitable and optimize all the processing steps simultaneously, which will even-
tually lead to better performance. With the advancement of deep learning, end-to- 
end learning models can be much simpler in structure compared with modular 
pipeline models while maintaining comparable performance. Moreover, end-to-end 
learning models are also very flexible; the structures can be easily modified for 
improvement and adaption for new features.

A generalized end-to-end learning model is shown in Fig. 2. The model uses 
LiDARs, cameras, and ultrasonic radars as the main perceptual sensors. The inputs 
are directly mapped to vehicle control signals using a deep neural network.

Ever since Nvidia demonstrated that their image-based end-to-end deep learning 
autonomous vehicle can successfully drive itself on public roads in long-distance, 
the end-to-end learning paradigm has received an unprecedented amount of atten-
tion. Compared with modular pipeline models, end-to-end models are usually much 
simpler, and it is easier for small research groups to work on. Furthermore, most 
end-to-end models are paired with cameras rather than LiDARs; this makes such 
systems more affordable and easier to implement. Here, we are focusing on models 
using end-to-end deep learning technologies for computer vision in autonomous 
vehicles [14–25]. Even with simpler structures and lower sensors cost, the models 
surveyed achieve performance improvement in different ways.

Before we dive into the models, we need to understand another important com-
ponent of the end-to-end approach, that is how the models are trained. Most end-to- 
end learning models in this section are trained with imitation learning, including our 
proposed models. Imitation learning is a type of supervised learning where the 
model focuses on imitating expert demonstrations. This training method is very 
intuitive and effective that, since humans can drive, if the model can mimic human 
actions, it will also be able to drive. In terms of autonomous driving, the expert 
demonstrations used as training data are easy to collect and label. We can collect the 
training data by recording the observations from the cameras, the corresponding 
control signals from the vehicle, and optionally, the navigational intentions from the 
driver. By syncing these data, the observations are implicitly labeled. Another way 
to train the end-to-end model is by using reinforcement learning. However, the 

Fig. 2 An end-to-end learning model

D. Guo et al.



453

action space for autonomous driving is continuous and large; it is inefficient to train 
the models using this way as it takes too long to converge [25].

With the recent advancement in computing hardware and labeled dataset, CNN 
has been widely adopted in pattern recognition tasks. In 2016, Nvidia published the 
research [14] to demonstrate that by using imitation learning, CNN can also be 
extended to autonomously steering a vehicle based on RGB images efficiently and 
effectively. In 2017, Nvidia published follow-up research [15] providing more 
details and internal feature analysis of their previous model. The visualization of the 
activations in the intermediate layer shows that the model not only implicitly learns 
to recognize driving-related objects that are included in training data, such as traffic 
signs, road lanes, vehicles, and unmarked road boundaries, but also recognizes 
driving- related objects that are not included in the training data, such as a construc-
tion vehicle exiting a construction site. Research [14] and [15] help shape the recent 
research trend in autonomous driving as we see an increasing number of researchers 
are utilizing end-to-end approach trained with imitation learning.

Although the following works improve end-to-end autonomous driving in differ-
ent ways, oftentimes, they are improved upon each other and share much in com-
mon. For instance, the core structures are very similar as they all use variations of 
CNN as the main perceptual network and utilize imitation learning as part of the 
training process [14–25]. Furthermore, in [14] and [15], the authors proposed to 
collect training images by placing three front-facing cameras: left, middle, and right 
on top of the vehicle. The images captured by the left and right cameras are used to 
augment the training set. By offsetting the steering angles, such data teaches the car 
how it should recover itself when driving off-center. This method is also widely 
adopted in other research works [14, 15, 17–21, 23–25] and is critical in improving 
online performance [19]. Early research works mostly focus on autonomously lane 
keeping; the models proposed do not accept external navigational commands, where 
the vehicles will be roaming on the street and make random turns at intersections 
[14–16, 22]. In [18], the author suggests that autonomous vehicles need to accept 
external navigation commands and make meaningful turns at the intersections to get 
to a destination. Therefore, a high-level command is used to indicate the navigation 
intention, which is either integrated as the input to the model or as a switch to select 
a corresponding action branch [17–21, 23–25].

In an end-to-end learning model, we cannot precisely divide the model into dif-
ferent functional modules. However, by feature analysis, we know certain parts of 
the network are mainly learning image-related features and we refer to this part of 
the model as the perceptual module [14, 15]. And we also refer to the parts of the 
network that consumes the output of the perceptual module and mainly be used to 
generate control signals or other types of predictions as the prediction module. The 
performance of the model is decided by if the perceptual module can correctly and 
precisely capture the driving-related features, and if the prediction module is capa-
ble of reason with the features captured. In [14] and [15], the author proposed a 
perceptual module consisting of six convolutional layers, and a prediction module 
with three fully connected layers. The variation of this structure is widely used in 
the following works.
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Testing is an important step in delivering reliable autonomous driving vehicles. 
Before an autonomous driving system can be road tested, the system is usually 
required to be tested in a simulated environment. By letting the model interact with 
the simulator, which creates a realistic imitation of the real world, we not only can 
evaluate how well the model performs, but also avoid the risk of running an imma-
ture system on the road. In [14], a rather primitive simulation method is used. The 
simulator takes prerecorded video clips and feeds the first frame into the end-to-end 
model, then transforms the following frame of the video and the ground truth con-
trol signals according to the predicted control signals to simulate vehicle move-
ments. Since the image synthesized is simply shifting and rotating the image, there 
is no simulation of the physics such as object collision, inertia, or friction; therefore, 
it cannot accurately simulate the vehicle driving dynamic. Furthermore, we cannot 
customize the simulation configuration to change parameters such as weather, light-
ing, or traffic, as the simulation is limited to prerecorded videos only.

Autonomous driving powered by deep learning also requires a large amount of 
training data. How to collect large amounts of high-quality training data with high 
variety and how to test the system in a realistic yet safe environment becomes a 
problem every autonomous driving project needs to deal with. CARLA is an open- 
source driving simulation platform specifically designed for the development, train-
ing, and validation of autonomous driving systems [17]. It supports customizable 
environment and road layouts where users can test both urban and highway driving. 
It provides a flexible set of sensors including RGB images, LiDAR point clouds, 
semantic segmentation cameras, and depth sensors to enable more types of autono-
mous driving systems. It also allows the users to dynamically change the weather 
and lighting conditions, which helps the model better generalize in the dynamic 
environment. CARLA simulator has been successfully utilized in work [17–21, 
23–25] to train and validate autonomous driving models with both imitation learn-
ing and reinforcement learning.

In [17], the work not only introduces the CARLA simulator and its functions, 
more importantly, but also presented a baseline performance comparison of three 
image-based models, namely, the modular pipeline (MP), imitation learning (IL), 
and reinforcement learning (RL) models. This research briefly introduces each of 
the three models where the MP model uses a semantic segmentation network based 
on ResNet pretrained on ImageNet and a waypoint planner. The IL model uses a 
CNN model like [14, 15] with the addition of a speed measurement module concat-
enated to the output of the image network. There are four control signal prediction 
branches selectively activated by navigational high-level commands (HLC). The RL 
uses A3C style training methods. The result suggests that when comparing the IL 
with MP, the performance of the two approaches is similar in most testing condi-
tions. However, the IL performs better in lane-keeping, especially in a new testing 
environment, while the MP performs better in avoiding collision with obstacles. 
When comparing IL with RL, IL largely outperforms RL in most of the cases even 
if the RL is trained for 12 days. The work suggests this is due to urban driving with 
continuous action space is much more difficult than problems previously solved by 
RL; thus, the model training does not converge well.
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The research [18] is a follow-up study of [17], focusing on the imitation learning 
method used in [17], which is referred to as conditional imitation learning (CIL). 
This paper also focuses on incorporating the navigational command into the model 
so the vehicle will follow a specific route in driving. Following navigational com-
mands is an important feature in real life as we do want the vehicle to be able to get 
from a specific point A to point B rather than randomly cruising in the city. Two 
network structures are being compared in this work, namely, the command input 
model and the command conditional model.

There are three input modules in the command input model, for instance, the 
image perceptual module, the measurement module, and the command module. In 
both networks, the image perceptual modules are the same, which is a CNN utiliz-
ing dropout and batch normalization to reduce overfitting. The measurement mod-
ules used in the two models are also the same. It is a fully connected network that 
takes the speed of the vehicle and concatenates the output with the flattened output 
of the image module.

In the command conditional model, the control module consists of four control 
branches of fully connected networks, one for each of the HLC.  The high-level 
navigational command is used as a switch to choose, which control branch to train 
or to make predictions on. While in the command input model, the HLC is fed as an 
input in the form of one-hot encoding vector into a fully connected command mod-
ule, and the output is concatenated with the output of the image module and mea-
surement module. Then a single control prediction module is used to produce a 
control signal.

To improve generalization, image data augmentation is used for both networks 
where a subset of image transformations including changes in contrast, brightness, 
tone, and the addition of Gaussian blur, Gaussian noise, salt-and-pepper noise, and 
region dropout are performed with randomly sampled magnitude. The two models 
are trained with imitation learning on human driving data collected in the CARLA 
simulator. Since human driving is mostly driving in the centerline, the authors intro-
duce motion drifts during the data collection process and only records the recovery 
process of the human driver to make the dataset more balanced and helps the model 
to learn how to recover from mistakes. After the two models are trained with static 
images, they are tested in an unseen map during the simulation. The average dis-
tance per infraction and the success rate of finishing the route is recorded. The result 
suggests, the two models utilizing HLC proposed in this work perform much better 
than models that do not use the HLC or only use the direction of destination as 
input. The result also suggests the command conditional model follows the HLC 
better and achieves a higher route success rate while the command input model 
makes less driving mistakes and performs better in distance per infraction met-
ric [18].

Evaluation of an end-to-end autonomous driving system trained by imitation 
learning is tricky. Since imitation learning can be categorized as supervised learn-
ing, the most natural way to evaluate such a model is by using its validation loss, 
which in most of the time; its mean squared error (MSE). However, [19] suggests, a 
model with excellent offline evaluation results may still perform poorly in an online 
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simulation. The insight is that MSE has a very weak correlation with online perfor-
mance results; thus, it is not a good metric to evaluate a model. Through the experi-
ment, there are two methods found to improve offline evaluation effectiveness. The 
first is to carefully select the evaluation data used, where the data should contain 
examples of recovery from multiple kinds of mistakes. The other takeaway is that 
we need to choose the evaluation metric wisely; for example, the mean absolute 
error (MAE) has a stronger correlation to online performance; it might be a is choice 
when compared with MSE.

4  Proposed Model for Autonomous Driving in IoAT

In this work, we propose a vision-based end-to-end autonomous driving model that 
utilizes long short-term memory (LSTM) network to explore temporal information 
for better vehicle control, accepts HLC for meaningful navigation and incorporates 
speed regularization to better learn speed related features. The proposed model, 
namely, the temporal conditional imitation learning model is a low-cost system that 
focuses on improving the accuracy and reliability, while maintaining low latency 
and enabling global optimization in the IoAT network.

The structure of the temporal conditional imitation learning model is shown in 
Fig. 3. The model is based on the CNN-LSTM network structure, which is often 
used in sequence prediction tasks such as video sentiment classification, but with 
multiple modifications and improvements.

First, in terms of input handling, the proposed model is similar to the CIL com-
mand input model where three input modules are used, and the only perceptual 
sensor is the RGB camera [18]. Instead of a shallow CNN used in the CIL models, 

Fig. 3 Temporal conditional imitation learning model
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the image perceptual module uses MobileNet, which is significantly deeper and 
more complex to better learn the image features. Furthermore, the MobileNet is 
pretrained on ImageNet, which allows us to take advantage of transfer learning to 
further improve the generalization ability of the image perceptual module.

A more complex and deeper network, however, does not imply that we will sac-
rifice the model’s inference speed. By using depth-wise convolution, MobileNet is 
specifically designed to run on low computation power devices efficiently; there-
fore, it is suitable for IoAT applications where relative limited computing power is 
equipped. In this way, we run a more capable model on the vehicle itself to improve 
the reliability, without the need for extremely high-performance computing hard-
ware, or offload the work to the cloud, which will add a significant amount of 
latency.

The measurement module and the command module are kept the same as the 
CIL command input model, where two fully connected layers are used for each 
module and with the HLC input being one-hot encoded. The HLC is organized into 
four types, each corresponding to a navigational option: following the lane, turn left 
at the intersection, turn right at the intersection, and go straight. The HLC is a way 
for humans and other systems to communicate the navigational intention to the 
autonomous driving system.

In our model, the HLC can be generated from both inside the vehicle or the 
cloud. From inside the vehicle, we have a local path planner when given a destina-
tion, it generates a route and the turn-by-turn HLCs to guide the vehicle to the des-
tination. From outside the vehicle, we have a global traffic optimizer on the cloud, 
which analyzes all vehicle locations in the IoAT network and the traffic states, it can 
optimize the vehicle’s route by sending turn-by-turn HLCs and alter the route in real 
time. Unlike observation inputs, which need to be processed dozens of times every 
second, HLCs can be updated in much longer intervals; thus, the network delay will 
not affect the vehicle performance as long as the HLC arrives in time before 
the turns.

The outputs of three input modules are concatenated, then fed into the action 
prediction module. In addition to the improvements in the image perceptual mod-
ule, we also replace the fully connected action prediction module with an LSTM 
network, which allows us to explore the temporal information that exists in input 
sequences [23]. As we stated, the action from a previous time step has an impact on 
the next time step, and there is information that can only be retrieved from input in 
a sequence of time steps, such as the sense of relative movement and sense of speed. 
By exploring temporal information, the model will be able to understand the 
dynamic environment better and make a better decision.

To further improve vehicle performance in the dynamic world, we incorporate 
speed prediction regularization [24]. We jointly trained an LSTM speed prediction 
module connected to the image perceptual module, which forces the image percep-
tual module to learn speed-related features, thus the overall model will not overly 
rely on the speed measurement from the input, and it will learn a better sense of 
speed, which is extremely useful in avoiding accidents. For our proposed model, it 
is trained with imitation learning and mean absolute error (MAE) as the loss 
function.
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5  Analysis of Deep Learning Models 
for Autonomous Driving

In this section, we provide a qualitative analysis and comparison of several main 
models that have been proposed for autonomous driving, including the one we pro-
posed model, as presented in Sect. 4. Detailed experiments, including dataset and 
training, and performance results have been reported in another publication [26].

5.1  The Autonomous Driving Paradigm

In [9–13], the works follow the modular pipeline paradigm where each work only 
solves a subproblem of the whole driving task. And in our case, models in [9–13] 
mostly focus on achieving efficient object detection by using deep learning models. 
Research [8] falls in between the modular pipeline paradigm and the end-to-end 
learning paradigm. The deep learning part of the model can be considered as end- 
to- end learning, as it uses one single deep learning network like the one in [14, 15] 
to predict driving-related affordance. Then, a closed-form controller is used to con-
trol the vehicle according to the affordance predicted, which makes the overall 
model modular. For [14–25], the models follow the end-to-end learning paradigm; 
the autonomous driving system is represented by one single model that directly 
maps the perceptual and measurement inputs to vehicle control signals. For instance, 
in [14–16], a simple CNN network is used, and the only input is an RGB image. In 
[17–22, 24, 25], the models add more input branches on top of [14–16] to incorpo-
rate measurement of speed, depth, and HLC.

Our proposed model also follows the end-to-end learning autonomous driving 
paradigm. In this work, we improved upon [17, 18] where a CNN-LSTM network 
is used to map image, speed, and HLC inputs directly into vehicle control signals. 
Compared with modular pipeline models, the complexity of the proposed end-to- 
end approach is more manageable, thus more suitable for individual research. 
However, it is difficult to understand what the model has learned; thus, it might be 
helpful to visualize the activations of the inner layers of the model and analyze what 
kind of features have been learned.

5.2  The Perception Source

Multiple types of sensors have been used as the perception source in the previous 
works, including LiDAR, RGB camera, and depth camera. LiDAR uses laser light 
to illuminate the target and measures the reflection. By calculating the time differ-
ence, LiDAR can estimate the distance between the sensor and the target points, 
therefore, create a 3-D representation of the environment it surveyed. The LiDAR 
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data is commonly represented by a point cloud, and it is often used in models that 
require an accurate 3-D representation of the world. For instance, in [10–13], 
LiDAR is used for 3-D object detection where driving-related objects are marked in 
bounding boxes. However, autonomous driving requires real-time 3-D objection 
detection on the high-resolution point cloud, which requires many computing 
resources onboard the vehicle which is expensive and hard to achieve. This explains 
why [10–13] focus on both accuracy and efficiency when performing 3-D objection 
detection.

The other common perception sensor is the RGB camera which has been used as 
the main perception source in all end-to-end learning models surveyed [14–25]. The 
camera technology has been developed and tested for decades, and the cameras 
feature high resolution, high frame rate images that are closer to how humans see 
the world and are massively available on the market. Compared to LiDAR and mul-
tisensor fusion models, monocular camera-based models have a simpler hardware 
structure, which results in lower implementation costs for both development and 
deployment.

The model proposed in this work is computer vision-based where the primary 
perception source is a center-mounted RGB camera. Since we are imitating human 
driving behaviors, we would like the model to perceive the world as close as to the 
way a human does. By using RGB cameras, we can keep sensor cost and complexity 
low, which makes the model more feasible to deploy in the real world. Furthermore, 
processing 2-D RGB images require less computing power compared with 3-D 
point cloud data, which makes the model more suitable in IoAT applications that 
have relatively limited computing power compared to the cloud.

However, the RGB cameras are easily affected by weather and lighting condi-
tions compared with LiDAR. It requires large amounts of image augmentation in 
the training process to help the model generalize. There is also information that is 
difficult to be extracted from monocular RGB images, such as depth information. 
Therefore, research [20] uses a depth camera as a supplement to improve perfor-
mance. Finally, the proposed model and other end-to-end models surveyed use only 
one center-mounted camera as the perceptual source during driving. Since the field 
of view is fixed, the blind spot may limit the models’ ability to avoid crashes dur-
ing turns.

5.3  The Training Method

Imitation learning is the most popular training method used in the end-to-end learn-
ing paradigm, where the models try to imitate expert demonstrations. The models in 
[14–24] are all trained with this method. To help the model better generalize with 
imitation learning, we need to provide a training dataset with as many varieties of 
driving scenarios as possible, including different weather, lighting, road type, and 
vehicles. Besides, we also need the dataset to be balanced on driving actions includ-
ing demonstrations for the four HLC types and recovery from mistakes. In [25], the 
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work combines imitation learning with reinforcement learning to further improve 
the driving performance and reduce training time for reinforcement learning. The 
work uses imitation learning to pretrained the deep neural network to achieve auton-
omous driving, then uses the trained weight as the initial weight in reinforcement 
learning to fine-tune the model, especially for the driving scenario not included in 
the imitation learning training data.

The proposed models are trained with imitation learning, where the models try to 
imitate expert demonstrations recorded in the CARLA simulator. In our case, the 
expert demonstrations are recorded from both the human driving and a built-in auto-
pilot function that drives the vehicle in the center of the lane. The human data is 
mainly used to show the model how to recover from a mistake, while the autopilot 
data is used to teach all other normal driving situations.

In our work, we choose to use imitation for its simplicity and efficiency. 
Compared with reinforcement learning, we only need to collect driving footage, 
then simply trained the deep learning model in a supervised way. And since the 
action space for autonomous driving is continuous and large, it may take a very long 
time in training, and it is not guaranteed to converge well. However, the perfor-
mance of models trained by imitation learning is limited by the training data quality. 
In the best case, the model can be as good as the expert demonstrations. If there are 
cases not covered in the training data, the model may perform poorly.

5.4  Controllable Routing

Accepting navigational command is a key part to achieve autonomous driving. 
Although we intuitively describe end-to-end autonomous driving is a mapping from 
the observation of camera images and measurements to control signals that drive the 
vehicle, this mapping does not hold if we want to build a model that will meaning-
fully navigate the road and drive from a specific starting point to a specific endpoint 
on map. It not only requires a model to generate one set of control signals to operate 
the vehicle safely, more importantly, for the same observation, but also requires the 
model to generate different sets of control signals corresponding to different navi-
gational intentions. Early works like [14–16] do not take navigation command into 
account, and the model will make random turns at intersections. To help guide the 
vehicle meaningfully navigate the road, [18] proposed to use HLC to communicate 
the navigational intention. In [18], the author proposed two ways to incorporate 
HLC. The first one is a branched network using HLC as a switch, where corre-
sponding prediction branches in the network are activated by HLC to guide the 
vehicle. The results indicate such a branched network performs the best in their test. 
This branched approach is adopted in most of the following research [19–21, 24, 
25]. The other way is to use the HLC as an input, which is adopted in [23].

From our test, we find the input approach, which uses the HLC as an input to the 
model results in a more table trained model. Our proposed model takes HLC as an 
input in the form of one hot vector and use the same prediction branch for all HLCs. 
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In this input approach, the prediction branch is trained with a more variety of driv-
ing data, which helps it generalize better to unfamiliar scenarios. By incorporating 
HLC, it not only allows the human or local planner to communicate the navigational 
intention to the vehicle, but also allows the traffic optimization servers in IoAT net-
works to alter the route of the vehicle to avoid or reduce traffic.

5.5  Exploring Temporal Information

In [8], the author claims that end-to-end models that map input from a single time 
step to the output cannot understand the driving task well as the action in the previ-
ous time step has an impact on the action for the next time step. Although the per-
ceptual inputs for the current time step may be similar in different scenarios, the 
action for the next time step can be very different; thus, it is hard to make a corre-
spondent decision without knowing the previous states. For instance, when follow-
ing a vehicle, we need to know the relative movement between the agent vehicle and 
the other vehicle to better control the speed. In [23], this problem is partially 
addressed that a CNN-LSTM structure is used, which will generate control signals 
based on five previous states.

Our proposed model also utilizes the LSTM network to explore the temporal 
information, which only exists in a sequence of observations. Our model uses five 
previous states to make one prediction. Temporal information is critical to improv-
ing the reliability of the models as it helps the model to learn the sense of speed and 
relative movement. The proposed model takes this idea one step forward by incor-
porating speed regularization, which forces the perceptual module to learn features 
about speed. Both features help the model to make a better judgment in a dynamic 
environment, especially avoiding crashing.

However, using LSTM also incurs more computation in both the training stage 
and testing stage. For instance, we use five previous observations, the training time 
is approximately five times that when using one observation. The increased compu-
tation also affects inference speed; slightly more powerful computing hardware is 
needed. Furthermore, since the five observations are sampled from a buffer with an 
equal time interval, we need to make sure the sampling time interval remains 
unchanged in testing.

5.6  Image Perception Network

In [14–23, 25], the image perception networks are mainly variations of CNN trained 
from scratch. And the depth of such image perception networks is usually shallow, 
and the size is small. Although it is easy and fast to train such networks, it is also 
easy to reach their limitation, especially they do not generalize well to unfamiliar 
environments. To improve the performance of an image-based end-to-end 

Vision-Based End-to-End Deep Learning for Autonomous Driving in Next-Generation…



462

autonomous driving model, a more capable image perception network is needed. In 
[24], a ResNet34 pretrained on ImageNet data is used as the perception network; 
together with speed regularization, the models outperform most models that use 
self-trained shallow CNN in CARLA benchmark at its time.

Our proposed model uses MobileNet pretrained on ImageNet as the main per-
ceptual network. MobileNet is a lightweight and efficient variation of CNN, which 
has about four million parameters compared with 22 million parameters in 
ResNet34. MobileNet is designed to run on low-powered devices such as mobile 
devices with little impact on accuracy. Since we are combining a deeper and more 
capable image perception network with LSTM, we strive to keep the computation 
requirement of the image perception low. The high efficacy and accuracy of 
MobileNet make it a suitable choice for our autonomous driving model.

5.7  Flexibility

As we have seen in a series of research in end-to-end autonomous driving systems, 
a core structure [14] has been evolved into multiple forms to incorporate HLC [18, 
21], depth information [20], temporal information [22, 23], and pretrained image 
network [24]. Our proposed model follows the same core structure and already 
incorporates HLC, temporal information, and a pre-trained image network. It has 
the flexibility and can be easily modified to accept new features, such as depth infor-
mation from the sensor, traffic information from the IoAT network, and even 
vehicle- to-vehicle information in the future. With more information we get from 
IoAT networks, the model will be able to make proactive decisions based on inputs 
that cannot be directly perceived by the onboard sensors, which will further improve 
the reliability of the system.

6  Conclusion and Future Research Directions

This chapter puts together several missing pieces when autonomous driving models 
were previously developed. We first provide an overview of research in autonomous 
driving, specifically on the use of end-to-end, computer vision-based deep learning 
methods. The ethics of autonomous driving has been briefly presented, followed by 
major autonomous driving paradigms and end-to-end deep learning methods. 
Besides, we have proposed a vision-based, end-to-end deep learning model that is 
high reliable, high accuracy, low latency, and low cost, suitable to be deployed in 
IoAT networks. The model accepts external HLC from a local planner or a remote 
server, which takes advantage of the global traffic optimization provided by IoAT 
network. Detailed analysis and comparison of major models of deep learning for 
autonomous driving have been described. Comparing with the previous works, the 
proposed model uses a deeper and yet more efficient image perceptual network. The 
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perceptual network is pretrained on ImageNet, and we take advantage of transfer 
learning to convert the previously learned knowledge to help the model better cap-
ture the driving-related features. It explores temporal information in a sequence of 
inputs to capture the temporal dependency in the dynamic environment, together 
with speed regularization, the model can learn a sense of relative movement and 
speed, which helps the model make a better judgment in a dynamic environment.

Many improvements may be applied to the existing research in end-to-end learn-
ing for autonomous driving. Firstly, a model trained by imitation learning can only 
be as good as its expert demonstration. This prevents us from further improving the 
model performance, even if the model is still capable of learning. In the future, we 
can adopt the idea of using transfer learning to transfer the knowledge learned from 
imitation learning to reinforcement learning [25]. By using the trained network 
weights from imitation learning as the initial weights, there would be a great chance 
to reduce the time for the model to converge in reinforcement learning; therefore, 
the performance can be future improved or fine-tuned.

Also, we can incorporate depth information into the proposed model, by either 
using the depth as an input or jointly train a depth prediction module, to allow the 
perceptual network to pay attention to depth-related features. Furthermore, there are 
other ways to explore temporal information, such as using ConvLSTM or 3DCNN 
networks. Additionally, the model can take advantage of more information provided 
by the IoAT network. For instance, it might be difficult to recognize traffic light 
states in certain weather or may be due to the camera’s view being block by other 
vehicles. If the traffic light states are provided by the IoAT network, we would be 
able to make correct decisions to improve the reliability even when we cannot 
directly perceive such information.
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1  Introduction

Agriculture as a major player in national economies globally is threatened by 
serious challenges at the various production stages especially in postharvest preser-
vation, translocation of harvested produce, and storage [8]. As the world population 
increases drastically toward the 9 billion mark in the year 2050, several interna-
tional agencies and authorities have expressed fears on the possible threats of star-
vation, hunger, and poor living and health standards [39]. It has been documented 
that majority of agricultural produces in the developing countries are prone to post-
harvest losses [4–7]. Postharvest losses are a function of several factors. Some of 
the striking factors are: inadequate postharvest storage techniques, poor handling, 
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the incidence of pests and diseases, and lack of basic amenities (road network, por-
table water, and lack of electricity) [1–8].

Consequently, postharvest challenges have been identified as a major threat to 
global food supply and a potential predictor of starvation and hunger especially in 
Africa with Nigeria as a major focal point, and according to the UN [50] apart from 
India and China, Nigeria’s population is projected to be the third largest in the world 
by the year 2050 with the three nations accounting for 35% of the world’s urban 
population growth from 2018 to 2050. This places Nigeria and jurisdictions with 
geometric birthrates and poor agricultural facilities in dare risk.

With the increasing pressure on local agricultural systems and the inadequate 
processing and postharvest storage infrastructure, which might be linked to the con-
sistent and almost uncontrollable birthrates leading to contention, new measures, 
techniques, procedures, and innovative means for agricultural production are advo-
cated to forestall near reality of global food shortage.

In response to the global awakening, modern agricultural systems are evolving, 
and emphasis is being made toward automated and smart agriculture also termed 
precision agriculture. Precision agriculture (PA) entails the deployment of informa-
tion technology and allied devices in agricultural processes, procedures, and prod-
ucts (PPPs) in order to ensure optimum product yield, maximize profit, conserve the 
environment, and guarantee sustainability. PA has been adjudged as one of the best 
solutions that reduce losses arising from conventional agricultural operations, which 
is a major setback in agriculture. Through technologically enhanced observation, 
measurement and objective analysis could be undertaken to guide agro processes 
and procedure management for optimum performance.

PA is dependent on data. The data derived from interdisciplinary fields have been 
found useful and could drive innovations in agricultural productivity. These data 
could augment the historical data on agricultural processes over the years and data 
on ongoing operations. For instance, data on agricultural activities are easily avail-
able through semiautomated means, and in recent times, sensors, which could per-
mit capturing of biological, agricultural, and environmental (an interface of weather 
conditions dynamic soil, crop) characteristics vis-à-vis the performance of agricul-
tural machinery, have been found very useful in agricultural technology.

AI and machine learning (ML) have been identified as evolving and sustainable 
agricultural modernization technology alongside high-performance computing, big 
data, and IoT technologies that could be integrated into smart agricultural opera-
tions at different levels. The application of ML have been documented in several 
fields, which entails climatology [56, 57], economic sciences, bioinformatics [28, 
35] agriculture, food security, biochemistry, robotics, medicine, aquaculture, and 
meteorology.

Therefore, ML and AI could play a significant role in the discovery and develop-
ment of useful models and systems that could help in mitigating the aforementioned 
challenges. Hence, this chapter intends to provide a detailed discussion on the appli-
cation of Bayesian learning and decision tree IoT-enabled system in postharvest 
storage of agricultural produce especially fruits.
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2  Technology and Postharvest Management of Vegetables 
and Fruits

The natural sources of essential vitamins such as vitamins A and C in the daily meal 
of people across different jurisdictions are vegetables, root crops, and fruits. The 
nutritional elements from these vital food sources may be unintentionally reduced, 
impaired, or destroyed soon after the harvest. Experience has shown that many per-
ishable food crops such as vegetables and fruits lose their organoleptic (color, taste, 
smell, texture, etc.) and physicochemical characteristics (e.g., enzyme actions, 
essential nutrients, etc.) on exposure over a period to the air, sunlight, microorgan-
isms, water, etc.

Postharvest operations are directed toward the preservation of harvested food 
crops. Common strategies may include traditional preservation methods such as 
heating, drying, freezing, fermentation, chemical application (salting, oiling, vine-
gar juice, etc.), etc. Advances in agricultural technology has also led to the invention 
and use of hybrid preservation approaches such as evaporative cooling system [51]; 
evaporative technology variants such as, zero energy brick cooler, evaporative char-
coal cooler, and pot-in-pot cooler [37]; subzero temperature preservation[33]; edi-
ble coatings including lipids, hydrocolloids, and composite coatings [53]; canning; 
chemical inhibitors such as ethylene scavengers [52]; ultrasonic treatment to elimi-
nate pesticide remains, deactivation of enzymes (ascorbic acid oxidase, lipoxygen-
ase, polyphenol oxidase, and pectic enzyme peroxidase), sterilization, stabilization 
of polysaccharides in cell walls, and elimination of putrefying microbes on har-
vested fruits and vegetables [27]; green technologies such as high-pressure process-
ing, UV-radiation, cold plasma, acid electrolyzed water, and gamma irradiation 
[44]; hydrostatic and biological agents [38]; and nanocomposites ([31]) and other 
nanodevices[29].

Each method of preservation may have its peculiarities, which is connected to 
some physical and/or biochemical factors. For instance, a hybrid vegetable preser-
vation that employs drying the vegetable may be treated with a gas such as sulfur 
(IV) oxide (SO2) prior to drying to curtail enzymatic browning [22, 47]; vitamin C 
breakdown, and disinfection or elimination of susceptible putrefying microbes [11, 
12, 29]. Note that the two major factors in the aforesaid drying process are the SO2 
level and temperature. In some cases, the pre-drying application of SO2 may be 
regarded as a prestorage action. In any case, these factors may be detected, mea-
sured, and consequent upon the measurement, it is possible to optimize the relevant 
factors that would enable reduction of losses due to damages and losses posed by 
extreme or unwanted physicochemical and/or biological elements [15, 22, 48]. This 
section discusses majority of the relevant factors. The perspective of the discussion 
is tilted toward relevance, detectability, and measurability. The essence is to appre-
ciate these factors in physical terms since the relevance of IoT in this context is 
directed toward detecting the relevant and changing parameters (e.g., relative 
humidity, temperature, and CO2 level) in a postharvest storage system, transmitting 
the changes in real time as live data to the remote or proximal and online data 
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analysis server computer, which utilizes the data to effect some intelligent predic-
tion that results in a feedback. The feedback is relayed back to the automated pres-
ervation system for optimization of parameters or for the execution of a definite 
control action other than optimization such as routine examination of the stored 
produce.

2.1  Environmental (Abiotic) Factors Affecting Fruit 
and Vegetable Preservation

Generally, agricultural activities including storage of harvested produce and the 
environment are interconnected and influence each other. Changes in the environ-
mental conditions affect agricultural food storage in several ways. These environ-
mental parameters are discussed briefly.

2.1.1  Temperature

Like agricultural production, storage of agricultural produce is dependent on opti-
mum temperature and relative humidity. Changes in temperature affects biochemi-
cal activities in food crops, and any departure causes a decline in production output 
and food storage systems, hence optimum temperature is often canvassed [39]. Fruit 
preservation and storage are affected by the environmental elements such as tem-
perature, relative humidity, chemicals such as ethylene, and ambient light [36]. 
Mahajan et al. [36] had identified temperature as the ultimate factor in the preserva-
tion of vegetables and fruits. However, this does not undermine the relevance of 
biotic factors such as putrefying microbes and cellular physiochemical reactions 
involving enzymes within the cells of the harvested produce [12, 44]. It is important 
to stress that even the enzymatic reactions brought about by normal cell functions, 
chemicals, and those engendered by biotic agents all require temperature as an 
important catalyst in such processes hence are bound to regress in the absence of 
optimum temperature. Vegetable and fruit storage are highly influenced by water 
losses. Temperature is a major controlling factor for water losses in postharvest 
vegetables and fruits [34]. According to Liu [32], ethylene synthesis is directly pro-
portional to the temperature level; hence, postharvest fruits and/or vegetables should 
be maintained at low temperature, low O2 level, high humidity, high CO2 level, low 
ethylene level, and sterile environments.

High temperatures cause increased respiration rates, water loss [17], and deterio-
ration in fresh produce [23]. The water loss rate, however, varies from one fruit to 
another owing to surface-area-to-volume ratio, surface structure, size and number of 
lenticels and stomata, and the cuticular thickness and composition [34]. Application 
of cold stress to vegetables and fruits restricts further growth and development, as 
well as distribution of biochemical matter [46].
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2.1.2  Relative Humidity

Like temperature, relative humidity is a factor that may either promote the freshness 
of vegetables and fruits or impair it. The resultant effect of relative humidity on the 
freshness of a fruit or vegetable varies from fruit to fruit and from vegetable to veg-
etable [18]. According to the Food and Agricultural Organization, the main causes 
of losses in fresh agriculture produce including vegetables and fruits are high tem-
perature, suboptimal relative humidity, and injury to harvested produce [20].

2.1.3  pH

Another interesting environmental factor is the pH of the environment. The reduc-
tion of pH impacts the growth of putrefying microbes. Many of these microbes are 
incapacitated and killed by low or extreme high pH values of the storage environ-
ment. Majority of the microbes associated with fruit spoilage grow well at near 
neutral pH.

Following the harvest of vegetables and fruits, some enzymes continue their 
intracellular activities. The continued catalysis of biochemical processes within the 
harvested produce lead to ripening and subsequent decay. Oxidative enzymes would 
continue to drive cellular respiration, i.e., oxygen-driven metabolism of glucose to 
produce energy. If this cellular respiration is not prevented, the shelf life of these 
fresh produce are shortened, and spoilage sets in. Cellular respiration and enzymatic 
catalysis are all driven by an optimum pH. Distorting this pH impairs cellular activi-
ties, thus enhancing the stability of stored harvested produce.

Application of some gases and acid solutions for the preservation of fruits and 
vegetables has been documented [55]. The most relevant gases are briefly discussed.

2.1.4  Nitrogen Oxide (NO)

First among the gases for preservative use is nitrogen oxide (NO). This gas is often 
derived from a donor compound such as sodium nitroprusside (SNP). Exogenous 
NO is noted for the following:

 (a) Inhibition of ethylene biosynthesis [24].
 (b) Enhancement of antioxidant system [9, 43].
 (c) Induced defense system.
 (d) Activation of the C-repeat binding factors (CBFs) pathway [46].
 (e) Regulation of energy and sugar metabolisms [55].
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2.1.5  Chlorine Dioxide (ClO2)

It has been noted that controlled release of chlorine dioxide (ClO2) gas in a vegeta-
ble and fruit storage system is effective as a sanitizer for the storage environment 
and also for the control of pathogenic and putrefying microbes that are responsible 
for the spoilage of most fruits and vegetables [49]. The researchers also did not 
undermine the negative effects the excessive use of such chemicals could have on 
the consumers of the vegetables hence due diligence must be done during the use of 
these chemicals to reduce any detrimental effect their use may have on the end 
consumers.

2.1.6  Carbon (IV) Oxide (CO2)

CO2 is a major player in the life cycle of majority of edible crops. Photosynthesis 
attests to the relevance of CO2 in crop growth and development. Postharvest storage 
is influenced by the amount of CO2 in the storage environment. CO2 at higher con-
centrations lowers the metabolic rate of the produce, thus decreasing the senescence 
process. For desirable results, the CO2 pressure and volume must be carefully con-
trolled in which case an appropriate threshold is set to and maintained throughout 
the storage cycle. At appropriate levels, CO2 has been found to:

 (a) Retard growth of microbes and fungi [19].
 (b) Reduce synthetic reactions in fruits [19].
 (c) Influence some organic acid metabolism.
 (d) Act as an ethylene scavenger and inhibitor [52].
 (e) Reduce discoloration of fruits and vegetables.
 (f) Inhibition of enzymatic actions in the produce [12].
 (g) Increased retention of firmness [14].

2.1.7  Oxygen (O2)

O2 is notable for respiration in plants. Like CO2, a postharvest fruit and/or vegetable 
storage system should operate optimally under optimized O2 limits. The implication 
is that O2 levels need be routinely modified as high O2 concentrations generally 
favors growth in majority of microbes known to cause vegetable and fruit spoilage. 
Some results documented against modified O2 concentrations by various research-
ers include:

 (a) Elongation of the fruit/vegetable storage life [55].
 (b) Inhibition of ethylene gas that promotes fruit ripening [52].
 (c) Decreased rate of respiration in the stored produce [23].
 (d) Inhibits ethylene gas production.
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 (e) Decreased degradation of soluble pectin.
 (f) Decrease oxidation rates.

2.1.8  Arachidonic Acid

Exogenous arachidonic acid has been demonstrated as a good preservative for 
cherry tomatoes at 20°C.  According to a study, arachidonic acid decreased the 
decay and loss of weight in the tomatoes; reduced the accumulation of malondial-
dehyde (MDA); increased the polyphenol oxidase (PPO) activity, catalase, and per-
oxidase (POD); delayed membrane permeability; sustained the cell membrane 
integrity; and decreased the total soluble solids and titratable acidity loss during 
later phases of storage [54]. They noted that using a 2.5 mg L−1 of the compound 
provides an optimum concentration to maintain the quality of the cherry tomatoes. 
Unlike other chemicals used for preservation, it was stressed that arachidonic acid 
is purely a green preservative and does not exhibit any detrimental aftereffects on 
the consumers of the stored produce.

2.1.9  Y-Aminobutyric Acid (GABA)

Gamma-aminobutyric acid (GABA) in combination with NO has shown to be effec-
tive in the preservation of cherry fruits [9, 43]. According to the studies, 5  mM 
GABA mixed with 500μM of sodium nitroprusside (donor of NO) and used to treat 
cherry fruits exhibited greater firmness. The result suggests that the chemicals when 
applied and the fruits subsequently stored at 4 °C reduced the enzymatic degrada-
tion of the cell wall hence the marked reduction in the browning of cherry fruits 
(through decreased H2O2 accumulation). The study presupposes that the chemicals 
induced increased activity of phenylalanine ammonia lyase enzyme while decreas-
ing the enzymatic action of the polyphenol oxidase enzyme, which resulted to 
increased phenols, anthocyanins accumulation, flavonoids, and superior 
2,2-Diphenyl-1-picrylhydrazy (DPPH) scavenging capacity [9]. Research has 
shown that the regulation of these biochemical activities and the modulation of the 
chemical agents introduced for preservation is done by temperature. The implica-
tion is that temperature remains a common denominator in every vegetable and fruit 
preservation program or facility. Prior to eventual storage, freshly harvested fruits 
would require precooling using a mixture of cold water, sodium hypochlorite, thia-
bendazole [13], or other safe disinfectants. Other prestorage activities include sort-
ing of the fruits (to separate mechanically injured or unwholesome ones from the 
whole fruits) and grading to segment the fruits into various classes depending on 
firmness determined using a texture analyzer.
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2.2  IoT as a Machinery for Relaying Data from Postharvest 
Storage Sites

IoT is a pervasive computing paradigm that potentially changes how computers and 
humans communicate, compute, and coordinate with each other. IoT systems 
largely involve the integration of sensing devices such as sensors, actuators, and 
processors that interact with each other to serve a significant purpose [40]. The IoT 
technology has developed in several domains including animals, hospitals, smart 
cities, airplane, computers, plants, offices, cars, etc. Consequently, the number of 
IoT devices is growing every day, as they provide comfort in human life and work 
and may provide much better results than humans [16, 45]. In order to deliver the 
functionality of the IoT effectively, the following elements, which include identify-
ing, sensing, communication, computing, services, and semantics, are needed. 
However, there is no single consensus on architecture for IoT, which is agreed 
universally.

IoT, as a pervasive computing platform, offers unlimited support for real-time 
control and monitoring of experiments, production, and similar events that are sub-
ject to eventual fluctuations that may result to critical and undesirable conditions. It 
has been shown that controlled environments produce better results compared with 
uncontrolled environments [30]. It is noteworthy that there are three critical intrinsic 
parameters in an IoT-enabled postharvest storage instrumentation. These are tem-
perature, relative humidity, and pH of the environment [23]. These intrinsic factors 
are critical to the operation of other parameters such as gases, enzymatic actions, 
and microbes. For instance, a fruit or vegetable storage chamber or environment 
should constantly be subjected to the optimal temperature, relative humidity, envi-
ronmental oxygen, etc. otherwise the fresh produce would deteriorate. Similarly, the 
pH of the environment would also affect the stability of the stored produce in a simi-
lar way as temperature. Putrefying microbes thrives well at different pH as some are 
acidophiles (requiring acidic media), some neutrophiles (need relatively neutral 
pH), while some are alkaliphiles (growing best at pH 8-10.5), hence the identifica-
tion of the major microbe(s) that are responsible for causing the putrefaction of a 
specific freshly harvested vegetable or fruit is very important and should be made 
prior to the selection of an appropriate pH for storage of the produce. Consequently, 
a monitoring and control solution should be in place in any of these instrumenta-
tions. As site monitoring may be highly inconvenient in high-risk environments, the 
use of IoT would simplify the entire process. Thus, pH, humidity, temperature, O2, 
and CO2 sensors may be used in the storage facility, and such IoT-enabled devices 
could relay continuous measurements to remote analytics centers where the trans-
mitted data are analyzed and feedback sent immediately to the storage plant for 
requisite control action. This would greatly aid the optimal performance of the veg-
etable or fruit storage plant.
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2.3  IoT Requirements for Postharvest Vegetable and Fruit 
Storage Instrumentation

The IEC 30141 standard categorizes the IoT platform into six domains [26] namely: 
user, sensing and controlling, physical entity (PE), management and operations, 
application/service, and communication and access domains, respectively. The user 
domain is at the top of the hierarchy, whereas the PE sits at the bottom and include 
the environment incorporating the terminal devices to which the sensing and con-
trolling domain relates with.

Simply, an IoT implementation is a conglomerate of devices that interoperate to 
deliver a solution. The IoT is an emerging technology that enable the interconnec-
tion of buildings, household devices, vehicles, manufacturing plants, storage facili-
ties, etc. using embedded devices such as sensors, software, and network connectivity, 
providing a platform for the data collection and exchange without human 
intervention.

A typical IoT platform can be seen as integrated system, which is able to support 
millions of concurrent device connections to generate a large volume of data to be 
transported and processed by cloud systems. Four vital components in a typical IoT 
platform have been identified: sensors and hardware devices, communication net-
work (Wi-Fi; cellular technologies, 3G, 4G, 5G; Li-Fi; etc.), data, and the cloud 
(where the data are stored, processed, and accessed). IoT applications on cloud 
platforms can provide feedbacks and decisions to the cyberphysical systems.

An IoT implementation would require a careful analysis of the project for which 
IoT is a critical component. Requirements engineering includes specification of the 
data requirements, sensing technologies, network connectivity requirements, remote 
processing site (analysis server), and hardware specifications [42]. The data require-
ments revolve around the data items to be captured by the sensors including the 
format and types, the source, endpoint, necessary control feedbacks from the end-
point servers, and the nature of data transmitted back to the control devices such as 
dehumidifiers, heaters, O2/CO2 monitors, etc. The sensing technologies include the 
various embedded sensors such as pH sensors, gas sensors (oxygen/CO2), humidity 
sensors and temperature sensors, chemical, and biosensors, respectively.

The choice of sensing technologies is based on features ranging from sensitivity, 
durability, versatility, and ease of integration. The network requirements are very 
critical to the success of the IoT implementation. The factors that are considered 
prior to network device selection include: distance, climatic factors, location (indoor 
or outdoor), market availability, integrability, and compatibility with the micro inte-
gration platform such as the microcontroller board. The remote processing site may 
be cloud-based and may require medium to high-end servers with appreciable com-
putational power including software, speed, and storage resources. Later in this sec-
tion, a prototype implementation of an IoT solution using cost-effective hardware 
would be presented.
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2.4  Supervised Learning

Supervised learning (SL) develops and uses models to make predictions. The model 
is often developed using existing data. Two SL approaches exist: regression—an 
approach to find the correlation between variables and classification—is used to 
identify which set a new observation of data belongs, i.e., making a forecast target 
class for an observed instance or occurrence. The SL algorithms discussed in this 
chapter are the classification algorithms. Classification algorithms are grouped into: 
Bayes classifier, nearest neighbor, support vector machines, boosted trees, decision 
trees, random forest, and neural networks. The Bayesian classification and decision 
trees would be discussed.

Bayes’ theorem explains the probability of an event, based on prior knowledge 
of conditions that might be related to the event under consideration. For example, if 
the risk of developing health problems is certain to increase with age, Bayes’ theo-
rem would enable the risk of an individual of a known age to be assessed more 
accurately than simply presupposing that the individual is typical of the population 
as a whole. One of the many areas of applications of Bayes’ theorem is Bayesian 
inference. When used, the probabilities involved in Bayes’ theorem may lead to a 
different understanding. Bayesian learning is based on the Bayes’ theorem. Bayesian 
classification may be used to establish causal relationships. Thus, it can enable the 
understanding of a problem domain including the prediction of the intervention 
consequences. Two major forms are identified: the general Bayes classification and 
the naïve Bayes classification (a more prominent classifier these days). In the tradi-
tional Bayes classification (Bayes nets or Bayesian belief networks), the user deter-
mines the conditionally dependent and independent variables, respectively. 
However, the Naïve Bayes is guided by the assumption of independence among 
predictors. That is to say that, Naive Bayes classifiers (NBC) assumes that the pres-
ence of a particular feature in a class is not related to the presence of any other 
feature or that all of these properties possess independent contribution to the prob-
ability. This family of classifiers is relatively easy to build, particularly useful for 
very large datasets, and it is highly scalable. Along with simplicity, Naive Bayes is 
known to outperform even highly sophisticated classification methods [10]. The 
NBC is constructed around three components: posterior, prior, and conditional 
probabilities. The strengths of the NBC, according to Francois-Lavet et  al. [21] 
include:

 (a) Small training data.
 (b) Simple computing.
 (c) Easy to implement.
 (d) Time efficiency.
(e)    Handle big data, incomplete data, or missing values.
(f)    Insensitive to irrelevant features and noise.

Decision tree (DT) classifiers are useful in solving regression and problems involv-
ing the classification of categorical and numerical variables [41]. Using DT, data 
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assortment is divided into small sets while each connected to the DT. The DT has 
decision nodes (DN) and root nodes (RN). The DN may have two or three segments. 
The leaf node is a judgment, whereas the highest DN that corresponds to the RN 
becomes the highest predictor. The decision tree has the following merits:

 (a) Easy understand, interpret, visualize, and require less training period.
 (b) Handles nonlinear parameters efficiently.
 (c) Robust to outliers and can handle them automatically.

Some of the limitations of this algorithm includes overfitting, affected by noise and 
not suitable for very complex and robust datasets. In order to overcome these limita-
tions, random forest model was adopted too since it does not depend on a single 
tree, as it creates a frets of trees and takes the decision based on the vote count.

2.5  Control of Storage Processes Using Classification Models

Bayesian models play critical role in the groups of algorithms for classification of 
high dimensional dataset. They are generally fast and could be used to implement 
intelligent decision making seamlessly. Naïve Bayes classification is a simple form 
of supervised learning directed toward identifying all data points with a label. Data 
points with similar labels are considered members of same class. The labels can be 
greater than or equal to two (2). Postharvest datasets on environmental and biologi-
cal conditions could be measured using sensor-based IoT-enabled devices deployed 
in a warehouse, store, or transportation van where farm products are kept after har-
vest. The data may include temperature(°C), relative humidity (%), oxygen level 
(%), CO2 level (%), water loss rate (mg/m2 h), nitrogen oxide (NO), etc.

Bayesian learning and decision trees may be integrated into a postharvest storage 
system to provide intelligent interventions for the control and monitoring of fluctua-
tions in environmental parameters around the storage facility. They could provide 
the following functionalities:

 (a) Optimization of environmental conditions such as temperature, relative humid-
ity, O2/CO2 levels.

 (b) Detection of onset of microbial activity using feedback from sensors.

3  Methodology for the Design of an Intelligent IoT-Driven 
Postharvest Fruit Storage Facility

The methodology follows the evolutionary prototyping approach and depicted in 
the conceptual diagrams in Figs. 1, 2 and 3, respectively. The phases are divided into 
two: pre-prototyping and the actual prototyping phases. The pre-prototyping 
includes the prestorage activities and the building of prediction models. A very 
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Fig. 1 Prestorage actions on freshly harvested tomato fruits
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important part of the model building process is the evolution of the water-loss data-
set. The dataset is derived from previous studies involving the measurement of tran-
spiration rates of freshly harvested tomatoes under various temperature, humidity, 
CO2, and O2 levels. The models would be built to predict the water-loss rate, a major 
factor in the preservation of postharvest fruits and vegetables. The dataset com-
prises 2500 instances with the following variables: temperature (T), relative humid-
ity (H), CO2(C) level and O2 (O) level, and water loss rate (WLR). The WLR is the 
dependent variables, whereas all others are independent. For each of the indepen-
dent variables, the values are categorized as low or high and encoded as 1 or 0.

The materials used for prototyping include: breadboard and jumper wires, 
BME680 sensor pack (4 in 1 module for temperature, humidity, pressure, and gases) 
or DHT22 AM2302 Module (for temperature and humidity sensor combo), 
ESP8266-12 integrated board module (see Fig. 4), Arduino IDE, Server-grade PC 
(HP elite 2.8Ghz core i7 PC @16GB RAM), and USB cables.

Figure 1 shows the prestorage activities on freshly harvested cherry tomatoes 
from locally cultivated crops from South–South Nigeria. The prestorage activities 
are fundamental to both automated and nonautomated tomato fruit storage facilities. 
In most scenarios, sorting and grading are done manually but may be automated 
using machine learning model (MLM) wherein models are created to enable image 
analysis and classification. Prior to the use of MLM, the grading of uninjured fruits 
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(see Fig. 4) would be done using the texture analyzer and in this study the samples 
(analyzed and classified into grades 1, 2, and 3, respectively) comprises 2000 fruits. 
The images of the fruits are also captured and stored as “GIF” formats. The grades 
1, 2, and 3 represent the degree of firmness and “1” is the highest grade. The IoT 
prototyping system is built around the NodeMCU ESP8266 microcontroller (with 
built-in WIFI), a very low-cost prototyping chip compatible with the Arduino 
IDE. Notable is the BME680 sensor suite (see Fig. 5) that provides a digital multi-
purpose sensing function for humidity, pressure, temperature, and gases. However, 
the BME680 sensor by reason of its applicability is not tied to any particular gas 
such as CO2 hence must be calibrated with a specific gas and concentration where 
such gas may include CO2, O2, etc. The communication between the sensor and the 

Fig. 4 A section of 
uninjured tomato fruits

Fig. 5 Schematic of the IoT-enabled client device
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microcontroller may be established using a serial peripheral interface (SPI) or Inter- 
Integrated Circuit (I2C) protocols.

Figure 2 shows the conceptual IoT platform design. In the diagram, a hypotheti-
cal physical entity represents the enclosed storage chamber, which may adopt dif-
ferent technologies and sizes. The chamber is connected to through air vents to 
humidifier/dehumidifier, CO2 and O2 generators, then to the environmental sensors, 
which are attached to microcontroller. Two processing endpoints are used: an edge 
computer, which performs immediate processing of the sense data, and the remote 
server located on the Internet. In this prototyping, the ThingSpeak server was used 
as the endpoint from the IoT-enabled client device. It provides an easy IoT prototyp-
ing with various development platforms like ESP8266 and Arduino. The essence of 
the edge computer is to foster high speed processing of data transmitted to by the 
sensors and to enable faster response times to critically changing environmental 
parameters.

Figure 3 is a logical diagram of the analytics subsystem. The function of the 
analytics subsystem are twofold: provision of access to other components of the 
IoT-based system, data gathering from sensors (through the ESP8266 microcon-
troller), analysis, prediction, relay of data to the remote server, and assisted control 
of the storage facilities. The ESP8266 specification and interfacing are presented in 
Tables 1 and 2.

3.1  Microcontroller Interfacing and Specification

The important characteristics of the ESP8266 are presented in Table 1. Figure 5 
shows the schematic of the client IoT-enabled device. Table 2 provides the various 
interfacing requirements.

Table 1 ESP8266-12 microcontroller features

Processor L106 32-bit ESP-12E @ 80-160 Hz
Firmware NodeMCU
Data pins 16 GPIO for interfacing with sensors, switches, LEDs, 

etc.
ADC channel 1(10-bit) accessible through A0
Communication UART, SPI, I2C, SPI
RAM 4 MB
SPI pins 4 (SCK, CS, MISO, MOSI) for SPI communication
I2C pins Available
UART pins 2.
Power supply 3.3 V (max)

A Study on the Application of Bayesian Learning and Decision Trees IoT-Enabled…



482

3.2  Data Specification and Model Development

Table 3 shows a sample specification of the dataset used for building the prediction 
models. The water loss rate is the dependent variable, hence the value to be pre-
dicted in both models. Table 4 shows a subset of the sample dataset comprising 
2500 occurrences.

Prior to integration into the IoT system, the performance of the MLMs was eval-
uated using the following computational parameters: prediction accuracy, false 
positive rate, false negative rate, true negative rate, true positive rate, precision/
recall, and ROC curve.

The Bayes probability theorem describes the probability of a feature as a func-
tion of prior knowledge of states connected to that feature. It is an equation that 
describes relationship of conditional probabilities of statistical quantities. For 
instance, if the probability of high rate of water loss in a postharvest store is con-
nected to oxygen level in the store, then Bayes probability theorem can be handy to 
water loss rate accurately using the oxygen level data. Bayes probability theorem is 
the basis for several strands of Bayes algorithms in supervised machine learning 
algorithms. The basic assumption of the Naive Bayes algorithms is that no correla-
tion exists between features in the dataset used in model training. Naïve Bayes has 
an advantage of performing efficiently well on small number of training dataset 
compared with competing classifier algorithms like decision trees, support vector 

Table 2 Component interfacing with ESP8266-12

ESP8266-12 16 × 2 I2C LCD GSM Sim900A BME680

3.3 V Uses separate power input
4.7–5 V (5 V adapter is needed)

VCC

D1(GPIO5) SCL
D2(GPIO4) SDA
GND GND GND GND
VIN VCC
D3 TX
D4 RX
D5 SCL
D7 SDA

Table 3 Dataset description

S/N Variables Sub-label

1 Temperature(°C) Low(0), high(1)
2 Relative humidity (%) Low(0), high(1)
3 O2 level(%) Low(0), high(1)
4 CO2 level(%) Low(0), high(1)
5 Water loss rate(mg/m2 s) Low(1), high(1)
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machine, random forest, logistic regression, etc. The word “naïve” suggests that 
every pair of features in the dataset is independent of each other. The continuous 
values associated with each class are distributed according to a normal distribution, 
which assumption by Gaussian. The interest is the determination of the probability 
of a label based on measured features from IoT-enabled sensors using Bayesian 
classification algorithm. This may be written as 𝑃(𝐿 | features) .

The theorem is useful in projecting this in terms of quantities that could be com-
puted directly:

 

P L features
P features L P L

P features
|

|
� � � � � � �

� �  (1)

The features under consideration are temperature (°C), relative humidity (%), O2 
level (%), and CO2 level (%), while the label is the rate of water loss within the 
postharvest storage environment. The water loss label can be LOW or HIGH at 
every instance. We consider the two labels as WLHIGH and WLLOW for HIGH and 
LOW water losses instances, respectively. In taking the decision, we compute the 
compute the ratio of the posterior probabilities for each label:

Table 4 Sample dataset from ThingSpeak cloud server

Date
Temperature 
(°C)

Relative humidity 
(%)

O2 level 
(%)

CO2 level 
(%)

Water loss rate (mg/
m2 h)

6/25/2019 6 90 4 20 0.4
6/29/2019 10 97 3 19 0.25
7/4/2019 7 96 5 13 0.5
7/5/2019 11 96 2 15 0.2
8/25/2019 9 95 5 14 0.4
8/26/2019 10 94 4 16 0.4
9/5/2019 10 96 2 17 0.3
9/8/2019 10 96 2 18 0.15
9/15/2019 11 97 2 14 0.35
9/21/2019 11 93 5 18 0.5
10/7/2019 11 96 2 16 0.2
10/11/2019 12 93 6 15 0.4
10/26/2019 12 97 7 19 0.5
10/28/2019 12 96 3 22 0.2
11/3/2019 13 96 5 14 0.4
11/16/2019 17 94 6 20 0.6
12/19/2019 17 96 3 15 0.5
1/21/2020 20 95 2 14 0.7
1/25/2020 20 96 5 16 0.8
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Then, there is need for model that computes P(features | WLi ) for each label where 
i = HIGH, LOW ). The model is generative in that it specifies the hypothetical ran-
dom method that produces the data. Training of the Bayesian classifier deals with 
setting up each label for the generative model. Though the general version of such a 
training step is a herculean task, however several assumptions are used to ameliorate 
this. The Naïve Bayes adequately provides for such assumptions.

4  Results

4.1  DT and NBC Modeling Results

Figure 6 shows the boxplot grouped by water loss label with temperature and rela-
tive humidity, respectively. The boxplot is a useful graphical tool for viewing the 
continuous unimodal dataset distribution. It displays the details on the location, 
spread, and skewness of the data [25]. In Fig. 6, temperature and relative humidity 
are biased toward high water loss.

Figure 7 shows the 2-D scatter visual exploration plot of measure data for tem-
perature, relative humidity, O2, and CO2 level from the sensor attached to the post-
harvest store. Scatter plots show the variation of data points based on different 
features relatively to water loss labels HIGH and LOW. The correlation plot of the 
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measured features as shown in Fig. 8 indicates that the relative humidity is highly 
correlated with oxygen and CO2 levels, respectively. The figure is supportive in 
feature selection during model creation and prevention of multicollinearity in linear 
models. Figure 9 is the decision tree classification model for measured features. 
Importance of variables as computed is given as 0.378639 for O2 level, 0.260233 for 
temperature, 0.238828 for relative humidity, and 0.122300 for CO2 level. From 
Fig. 9, it obvious that O2 level is the preferred feature. The feature plot indicates that 
O2 level is the most important feature for splitting the data followed by temperature, 
relative humidity, and CO2 level, respectively.
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 Decision tree (DT) classification model base on the important features is shown 
in Fig. 9 while Fig. 10 shows the Decision Tree (DT). Table 5 shows the summary 
of the model for the decision tree and Naive Bayes (NB). NB performs better on the 
dataset with 78.95% of correctly classified instances when compared to the DT with 
63.16% correctly classified instances. The model may be improved for better accu-
racy as the number of dataset instances increases.
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4.2  Proposed Implementation

The prototype developed in this chapter is designed to communicate with 
ThingSpeak cloud platform, however, storage facilities may require a private cloud 
server or a leased platform for required functions such as data analysis and predic-
tive analytics as well as remote messaging capabilities for cellular interconnectivity. 
The proposed server infrastructure would have the following components: database 
server (for storing data generated within the system and data received from the envi-
ronmental sensor through the web), web server functions (for easy access via the 
web), and analytics functions (to analyze inputs from remote storage facility.

Going forward, the sensor deployed is considered effective for small storage site 
deployments. Large infrastructure installations would require more efficient sen-
sors. From the site, temperature, oxygen, CO2, and relative humidity values would 
be captured and transmitted to remote sites without human intervention. These val-
ues would be used to predict the water loss rate, which is a major determinant in 

Table 5 Summary of models’ test performance

Classifiers
Naïve Bayes Decision tree

Correctly classified instances (%) 78.9474 63.1579
Relative absolute error (%) 58.8174 96.88%
Root mean squared error 0.4487 0.5416
ROC area WLHIGH 0.803 0.745

WLLOW 0.773 0.3
Weighted average 0.797 0.652

Fig. 10 Decision tree with J48 algorithm
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postharvest fruit damage. When the remote system (server) receives the data, it uses 
it to make a prediction on the water loss rate using the Bayesian model. If the pre-
dicted value is beyond a certain threshold, it sends a message to the ESP8266 micro-
controller. The message would contain the action to be performed, for instance, a 
high-water loss rate could trigger an action to lower the temperature and increase 
the humidity through a relay switch that turns on the humidifier. The control would 
involve a cycle of periodic (hourly) monitoring, messaging, analysis, and feedback 
control.

5  Conclusion

This chapter presents a study on the application of Bayesian learning and decision 
trees toward enhancing the control of environmental variables such as temperature, 
relative humidity, CO2, and O2, which have been described as very fundamental to 
the preservation campaigns on freshly harvested tomatoes in the tropics. Several 
researches and investigations have revealed that significant proportions of harvested 
produce including vegetables and fruits perish soon after harvest owing to lack of or 
poor storage facilities. Postharvest fruits are very sensitive to environmental condi-
tions, and their preservation have been found to be dependent on these factors. A 
multidisciplinary approach is undertaken in this study to examine the implications 
of infusing machine learning technology into existing storage fruit storage infra-
structure. Requirements analysis on hardware and software for prototyping pro-
vided a direction toward understanding the construction of workable prototype. 
With the prototype, the study concludes that IoT could be extensively be applied to 
critical postharvest storage infrastructure. More so, the application of Bayesian 
learning to provide intelligent control during the instrumentation and operation of a 
postharvest storage site is likely to offer more reliability and accuracy compared 
with the decision trees.
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