
An Analytical Bound for Choosing Trivial
Strategies in Co-scheduling

Ruslan Kuchumov(B) and Vladimir Korkhov(B)

Saint Petersburg State University, 7/9 Universitetskaya nab.,
St. Petersburg 199034, Russia

st058444@student.spbu.ru, v.korkhov@spbu.ru

Abstract. Efficient usage of shared high-performance computing
(HPC) resources raises the problem of HPC applications co-scheduling,
i.e. the problem of execution of multiple applications simultaneously on
the same shared computing nodes. Each application may have differ-
ent requirements for shared resources (e.g. network bandwidth or mem-
ory bus bandwidth). When these resources are used concurrently, their
resource throughputs may decrease, which leads to performance degra-
dation.

In this paper we define application behavior model in co-scheduling
environment and formalize a scheduling problem. Within the model we
evaluate trivial strategies and compare them with an optimal strat-
egy. The comparison provides a simple analytical criteria for choosing
between a naive strategy of running all applications in parallel or any
sophisticated strategies that account for applications performance degra-
dation.

Keywords: High performance computing · Co-scheduling · Scheduling
theory · Linear programming

1 Introduction

Commonly used job schedulers in HPC do not allow to oversubscribe the same
computational resources with multiple jobs. The main reason for that is job
performance degradation due to simultaneous access to shared resources, such
as CPU cores, shared cache levels, memory bus. Requirements for such resources
may depend on job input parameters, on external factors and may change over
time, so it is difficult to provide them at jobs start time.

Applications may have different requirements for resources, and some
resources may not be fully utilized by one application, but for others they would
be a bottleneck. As schedulers in HPC do not allow over-subscription and allo-
cate a whole cluster node to a single job, underutilized resources will be wasted
even if there are jobs waiting in the queue for them.

The scheduling strategy of assigning multiple jobs to the same computational
resources so that their interference with each other and the degradation of per-
formance is minimal, in the literature is usually referred to as co-scheduling. It
c© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12956, pp. 381–395, 2021.
https://doi.org/10.1007/978-3-030-87010-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87010-2_28&domain=pdf
http://orcid.org/0000-0002-8927-2111
http://orcid.org/0000-0003-2458-3194
https://doi.org/10.1007/978-3-030-87010-2_28

382 R. Kuchumov and V. Korkhov

has started to gain interest recently, due to advances in hardware and operating
systems support [13].

In this research we are mostly focused on modelling part of co-scheduling. In
our previous work [8] we have shown which metrics can be used to estimate appli-
cation processing speed in co-scheduling environment. We have shown how they
can be measured and how they relate to total processing time of the application.

In this paper we focus on the problem of scheduling applications on shared
resources. In particular, we have defined application behavior model in co-
scheduling environment and formalized a scheduling problem. An optimal strat-
egy for this problem can be found by solving corresponding linear programming
problem. Using the optimal solution as a reference we have evaluated two trivial
strategies – a round-robin (RR) strategy and naive parallel (NP) strategy. The
comparison allowed us to obtain boundaries on application processing speed that
can be used for choosing between these strategies.

2 Related Work

Problem of co-scheduling started to gain interest in the scientific community
recently in the context of HPC work scheduling. For example, there is a series
of workshop proceedings papers [13,14] dedicated to co-scheduling problem of
HPC applications. Overall, these publications are mostly focused on the practical
aspects, such as feasibility of this approach in general.

There is also a few publications on modelling HPC applications for co-
scheduling. For example, in [1–3] author focuses on solving static scheduling
problem with cache partitioning. Models in these papers are based on appli-
cation speedup profile (that must be known in advance) as function of cache
size.

Dynamic co-scheduling strategies in the context of HPC schedulers are not
covered abundantly in scientific literature. Among few publications, there is
[15], where authors provide supervised machine learning approach for estimat-
ing applications slowdown based on performance counters. Nevertheless, authors
used this model for solving static scheduling problem. Another machine learning
approach (with reinforcement learning) was used in [9] for dynamic collocation
of services and HPC workloads.

Dynamic co-scheduling problem, on the other hand, is covered vastly in the
context of thread scheduling in simultaneous multithreading (SMT) CPUs. There
are [7,10–12] to name a few. The general theme of approaches in these papers is
to measure threads instruction-per-second (IPC) values when they were running
alone on a core and when they were running in parallel with other threads. Then
the ratio of these two values was used for making scheduling decisions.

In the paper [6] authors showed that optimal co-scheduling algorithm does
not produce more than 3% gain in throughput (on Spec benchmarks) when
compared to a naive strategy of running all threads in parallel in FCFS order.
This was shown by gathering slowdown values for all threads combinations and
solving linear programming problem for finding an optimal schedule that was
later compared to a naive strategy.

An Analytical Bound for Choosing Trivial Strategies in Co-scheduling 383

In this paper we have done the similar work but in the context of HPC appli-
cations. Additionally, we have also provided theoretical boundaries for slowdown
values when naive parallel strategy can not be applied and showed the form of
deviation from the optimal strategy. These results were evaluated on numerical
experiments.

3 Benchmarks

In the experiments below we have used benchmarks from NAS Parallel Bench-
mark (NPB) [4], Parsec [5], and a few of our own benchmarks. This set of
benchmarks cover different examples of HPC applications as it includes CPU-,
memory- and filesystem-intensive benchmarks, different parallelism granulari-
ties, data exchange patterns and workflow models. Datasets for all benchmarks
were tuned to have approximately the same processing times.

Among these benchmarks we have selected only those that have constant
or periodic processing speed profiles. This requirement comes from the model
assumption that we will introduce later. The resulting list of benchmarks is
shown in Table 1

Table 1. List of benchmarks used in experiments.

Name Suite Description

bt NPB Block Tri-diagonal solver

ft NPB Discrete 3D fast Fourier Transform

lu NPB Lower-Upper Gauss-Seidel solver

ua NPB Unstructured Adaptive mesh

sp NPB Scalar Penta-diagonal solver

freqmine Parsec Frequent Pattern Growth algorithm

swaptions Parsec HJM algorithm for pricing swap options

vips Parsec Image processing pipeline

streamcluster Parsec Online clustering problem in data mining

ffmpeg Decoding of video file

raytracing Ray tracing algorithm on CPU

We’ve run our benchmarks on a single Intel Xeon E5-2630 processor with 10
cores and 2 threads per core. Each benchmark was limited to any of 4 threads,
and threads were assigned by Linux scheduler (they were not pinned manually).
In some experiments we used only a half of all available cores by pinning threads
to same 5 CPU cores (but within those cores threads were assigned by the
Linux scheduler as well). In all of the experiments, each application had enough
memory and swap was never used.

384 R. Kuchumov and V. Korkhov

4 Application Processing Speed Metric

Degradation of application performance due to co-scheduling can be explained
by concurrent use of shared resources, such as last level cache, memory bus, cpu
time, network card etc. During application execution instructions that access
shared resources may take more cycles to complete when underlying resources
are preforming operations for other applications. For example, instructions that
require memory access may take more cycles, if required addresses are not in the
cache as CPU would access memory bus. In turns, if memory bus is busy, that
instruction would take ever more cycles to complete.

To define metric of application performance, we used amount of work per
unit of time. We used CPU instructions as a unit of work as its rate is affected
by all of the resources simultaneously, unlike resource-specific metrics (e.g. bus
access rate or transmitted bytes to network card). As for the time unit, we have
to take into account that CPU frequency is not constant and that application
may be preempted from CPU core and suspended by OS scheduler.

CPU performance counters allow to measure cumulative values of the exe-
cuted instructions (inst(t)) and completed cycles (cycl(t)) when application was
running in the user space (as opposed to system space). Also, OS scheduler
provides values for amount of time the processes was using CPU core (cpu(t)).
Dividing instructions by cycles during time period Δt would give processing
speed during application active time (cpu(t) − cpu(t − Δt)), commonly denoted
in the literature as IPC (instructions per second). To be able to scale this value
to the whole period we would assume that CPU cycles rate did not change
when the application was not running. This gives us the formula for estimating
application performance:

ν(t) =
inst(t) − inst(t − Δt)
cycl(t) − cycl(t − Δt)

cpu(t) − cpu(t − Δt)
Δt

For our purposes we do not need absolute values of ν(t), but rather we need
its change due to scheduling decisions that we make (between t1 and t2 time
points):

f(t1, t2) =
ν(t2)
ν(t1)

Assuming Δt is the same for all measurements, and that the number threads
in the application do not change between measurements, this value can be com-
puted as a ratio of product of IPC and cpu-time before and after scheduling
decision. We will call this ratio as performance speedup value. When this value
is less than 1, then it measures performance slowdown.

4.1 Evaluation on Experimental Data

To evaluate the defined metric we have compared it with change of application
processing time in ideal and co-scheduling conditions. To do that we measured

An Analytical Bound for Choosing Trivial Strategies in Co-scheduling 385

application processing time when it was running alone in the server and when
it was running simultaneously with different combinations of other applications.
In the second case, we made sure that the application that is being measured
was the first one to finish, otherwise its conditions would change before comple-
tion and comparison would not be fair. For the same reason we had to select
benchmark applications with constant or periodic (with a small period) speed
profiles.

To collect the data we run all possible combinations with different number
of applications in parallel. Each application required 4 threads, we run up to 5
applications on 10 CPU cores, so each CPU core was oversubscribed with up to
2 applications. Application threads were not pinned to the core and the OS
scheduler could migrate them between cores dynamically.

Results for some benchmarks are shown in the scatter plots in the Fig. 1 and
the Table 2 contains linear regression model for all benchmarks. Good fit of the
linear model with coefficients close to 1, shows that changes in processing speed
(measured as described above) matches exactly with changes in total processing
time.

2 4 6 8

2
4

6
8

ffmpeg

Speed change

Ti
m

e
ch

an
ge

1 2 3 4 5

1
2

3
4

5

freqmine

Speed change

Ti
m

e
ch

an
ge

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7

vips

Speed change

Ti
m

e
ch

an
ge

1 2 3 4 5 6 7

1
2

3
4

5

bt

Speed change

Ti
m

e
ch

an
ge

1 2 3 4 5 6

1
2

3
4

5

ft

Speed change

Ti
m

e
ch

an
ge

1 2 3 4 5 6

1
2

3
4

5

sp

Speed change

Ti
m

e
ch

an
ge

Fig. 1. Total time change vs processing speed change for different combinations of
parallel tasks relative to ideal conditions

386 R. Kuchumov and V. Korkhov

Table 2. Linear regression model parameters for processing time change as function
of processing speed change (relative to ideal conditions)

Coefficient Intercept R squared

ffmpeg 0.9791 0.0234 0.9999

freqmine 0.9976 0.0141 0.9947

vips 0.9491 0.0514 0.9999

bt 0.8217 0.1551 0.9199

ft 0.9387 −0.0627 0.9844

sp 0.8335 0.0187 0.9232

raytracing 1.0240 −0.0994 0.9999

streamcluster 0.6914 1.1861 0.7651

ua 1.7214 0.2477 0.6991

swaptions 1.0700 −0.1288 0.9928

5 Scheduling Problem

To formalize a scheduling problem, we introduce the assumption about applica-
tion behaviour that the speed of processing is constant during application execu-
tion in ideal conditions. This implies that application do not have distinguished
processing stages and its processing speed depends only on other applications
running in parallel. In future work we plan to consider more general case without
this assumption.

Let’s introduce the following notation for problem definitions. There are n
applications (or tasks): T = {T1, . . . , Tn}. Each task requires pi, i = 1, . . . , n
amount of work to be completed. Tasks can be executed simultaneously in any
combination. Denote each combination as Sj ∈ 2T , j = 0, . . . , (2n −1) – a subset
of task indices. |Sj | is number of tasks in Sj combination, and |S0| = |∅| = 0.

Denote processing speed (amount of work done per unit of time) of Ti task
when it is executed in combination Sj as fi,j = fi(Sj) ≥ 0. For all tasks not
belonging to Sj processing speed is zero (fi,j = 0 ∀Ti /∈ Sj). We will define
processing speed of a combination of tasks as the sum of all tasks’ processing
speed in the combination (

∑n
i=1 fi,j).

A sequence of assigned processing times to combinations of tasks
xj1 , . . . , xjm , 0 ≤ jk ≤ (2n − 1) will be called a schedule when each tasks com-
pletes its required amount of work, i.e.

∑m
k=1 fi,jkxjk = pi ∀i = 1, . . . , n. Tasks

in a schedule can be preempted at any time, i.e. a tasks combination may repeat
in a schedule.

The scheduling problem is to find a schedule that has a minimal makespan
value (Cmax). Makespan is a completion time of the last task in a schedule.

An Analytical Bound for Choosing Trivial Strategies in Co-scheduling 387

5.1 Optimal Strategy

Makespan of a schedule can be written as a sum of assigned processing times to
each tasks combination: Cmax =

∑m
k=1 xjk . Since in the we can reorder terms in

makespan sum and work amount sum without affecting their values, it allows us
to consider only the schedules with non-recurring tasks combinations.

The problem then reduces to finding distribution of processing time among
non-empty tasks combinations. Instead of a sequence of task combinations we
will consider xj ≥ 0, j = 1, . . . , (2n − 1) – a total processing time of combination
Sj . This allows us to solve scheduling problem as linear programming problem:

minimize
∑2n−1

j=1 xj

subject to
∑2n−1

j=1 fi,jxj = p, i = 1, . . . , n

xj ≥ 0, j = 1, . . . , 2n − 1

By solving this problem, we will find values x∗
1, . . . x

∗
2n−1 that produce a

minimum makespan. A schedule can be reconstructed from these values simply
by running each task combination Sj for x∗

j time (if x∗
j �= 0) in any order without

interruptions. We will denote an optimal makespan value as CLP
max.

This approach produces optimal solution but it can not be used in schedulers
as it requires all a priory information about each application. Instead it can be
used as a reference for evaluation of other scheduling strategies.

5.2 Heuristic Strategies

We will consider two heuristics strategies (naive parallel and round-robin) and
compare their solutions with the optimal strategy.

Naive parallel (NP) strategy disregards all information about applications
and runs all available applications in parallel. This strategy does not require
any a priory information about applications and thus its implementation is the
simplest.

Another heuristic strategy that we consider is round robin (RR). It works
by finding subsets of active tasks with the maximum speed and running each
subset one after another in a loop until one of the tasks finishes. Each subset is
run continuously for at most one unit of time (denoted as T). Time unit may
be smaller only when a task in a subset finishes earlier. We will call a sequence
of subsets with the same speed executed in a single loop in RR strategy as a
round. Round, in turn, consists of individual units of subset execution.

Unlike NP, RR strategy requires slowdown values for each subset of applica-
tion. But, unlike the optimal strategy, it does not require amounts of works (pi)
of each application.

6 Strategies Comparison

In this section we will compare RR and NP heuristics strategies with the opti-
mal strategy and provide bounds on slowdown function parameters when NP
performs not worse than RR strategy.

388 R. Kuchumov and V. Korkhov

6.1 Additional Assumptions on the Application Behaviour

There we will introduce additional assumptions about application behaviour in
order to obtain analytical solutions. The first assumption is that the processing
speed decreases linearly with an increase of the number applications running in
parallel. We have seen this dependency in our experiments (as shown in Fig. 2
and Table 3). This assumption is introduced as linear dependency is the simplest
non-trivial form of speedup function. The results that are obtained below will
also hold for convex functions as well.

Another assumption is that each application has the same slowdown function.
This is equivalent to claiming that each application is the same. This is very
restrictive assumption, but by choosing slowdown functions with minimum or
maximum slope value, we can obtain lower or upper limits for the slope value
for switching strategies.

With these two assumptions we can write speedup function as fk = 1−α(k−
1) which only depends on k = 1, . . . , n – a number of tasks in the combination.
α is a slope of slowdown function such that 0 < α < 1

n−1 (since fk should be
0 < fk ≤ 1, k = 1, . . . , n).

1 2 3 4 5 6 7

1
2

3
4

5
6

7
8

vips

Number of tasks

Pe
rfo

m
an

ce
 s

lo
w

do
w

n

1 2 3 4 5 6 7

1
2

3
4

5
6

ft

Number of tasks

Pe
rfo

m
an

ce
 s

lo
w

do
w

n

1 2 3 4 5 6 7

1
2

3
4

5
raytracing

Number of tasks

Pe
rfo

m
an

ce
 s

lo
w

do
w

n

1 2 3 4 5 6 7

2
4

6
8

ffmpeg

Number of tasks

Pe
rfo

m
an

ce
 s

lo
w

do
w

n

1 2 3 4 5 6 7

1
2

3
4

5
6

swaptions

Number of tasks

Pe
rfo

m
an

ce
 s

lo
w

do
w

n

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

ua

Number of tasks

Pe
rfo

m
an

ce
 s

lo
w

do
w

n

Fig. 2. Processing speed slowdown (relative to ideal conditions) as a function of the
number of parallel applications

An Analytical Bound for Choosing Trivial Strategies in Co-scheduling 389

Table 3. Parameters of linear model of processing speed acceleration (relative to ideal
conditions) vs. the number of parallel applications.

Intercept Coefficient R squared

vips 0.7902 0.4483 0.8008

ft 0.6141 0.2133 0.7942

raytracing 0.6356 0.1496 0.9046

ffmpeg 0.8028 0.9821 0.7892

swaptions 0.7464 −0.3225 0.8771

ua 0.3239 0.4755 0.8215

bt 0.7315 0.5002 0.7941

freqmine 0.7315 0.5002 0.7941

sp 0.7315 0.5002 0.7941

streamcluster 0.7315 0.5002 0.7941

6.2 Comparison of Round-Robin and the Optimal Strategy

Since there’s no analytical solution for linear programming problem, we ran
numerical experiments to compare RR strategy with optimal strategy. We per-
formed parameter sweeps on the number of tasks (n) and slowdown slope values
(alpha). For each set of number of tasks and slope values we have generated 100
cases of differential amounts of works (qi = pi+1 − pi) that were drawn from
uniform distribution (from 0 to 80 units bounds). For each case we solved linear
programming problem (using lpsolve library) to find an optimal solution and
found solution with RR strategy (with time unit T = 2).

Figure 3 shows boxes and whiskers plots with competitive rations of RR strat-
egy for each slope value (alpha) containing results for 100 sets of random qi
values. Competitive ratio is computed as ratio of RR makespan value to optimal
makepsan value. It can be seen that RR produces less than 15% deviation from
the optimal strategy for 10 tasks.

6.3 Comparison of Round-Robin and Naive Parallel Strategy

Since RR makespan value is close to the optimal and we can derive analytical
formula for it, we will use it as a reference for evaluation of NP strategy.

Lets consider that applications are sorted in increasing order of pi, i.e. pi ≤
pi+1, i = 1, . . . , n − 1. Denote qi as:

q1 = p1
qk = pk − pk−1, k = 2, . . . , n

NP strategy runs all tasks in parallel, as they finish in the increasing order
of pi, the first task, will finish after q1 of work is completed, the second one after
q2 of work is completed and so on. The processing speed would also increase
as tasks complete from fn to fn−1 and so on until f1. Using this, we can write
makespan value for this strategy:

390 R. Kuchumov and V. Korkhov

0.00833333 0.1 0.15 0.2 0.25 0.3

1.
00

1.
02

1.
04

1.
06

1.
08

RR competitve ratio for 4 tasks

Slowdown slope (alpha)

R
R

 o
ve

r L
P

m
ak

es
pa

n
ra

tio

0.00416667 0.05 0.0875 0.125 0.1625

1.
00

1.
04

1.
08

RR competitve ratio for 7 tasks

Slowdown slope (alpha)

R
R

 o
ve

r L
P

m
ak

es
pa

n
ra

tio

0.00277778 0.0361111 0.0666667 0.0972222

1.
00

1.
05

1.
10

1.
15

RR competitve ratio for 10 tasks

Slowdown slope (alpha)

R
R

 o
ve

r L
P

m
ak

es
pa

n
ra

tio

4 5 6 7 8 9 10

1.
08

1.
10

1.
12

1.
14

Maximum competitive ratio

Number of tasks

M
ax

. c
om

pe
tit

iv
e

ra
tio

Fig. 3. Ratio of RR makespan to LP makespan as a function of slowdown slope value
(alpha) for 4, 7 and 10 tasks. Bottom right plot shows max ratio value (across all
alphas) for different number of tasks

CNP
max =

n∑

k=1

qk
fn−k+1

Now, let’s derive an estimate for makespan of RR strategy. We will do that
by finding the sequence of tasks completion and number of rounds required to
complete each task. This will allow us to derive exact makespan value, but it
would contain rounding and modulo operations. To get rid of them, we will
provide an upper bound instead. The deviation of the upper bound from the
exact value would depend only on the time unit parameter (T), so after limit
transition (T → 0) we will get a close approximation for RR makespan value.

Denote s as the size of tasks combination with the maximum speed, i.e.
s = arg max1≤k≤n{kfk}. RR strategy at first will choose combinations with
s tasks and will ran each combination consequently for a single time unit (T).
These combinations will be executed until the task with smallest amount of work
(q1 = p1) will finish.

An Analytical Bound for Choosing Trivial Strategies in Co-scheduling 391

There are
(
n
s

)
combinations with s tasks, so until the first task finishes, each

round would contain the same amount of time units. In a single round, each task
would run

(
n−1
s−1

)
times. Since the first task requires q1 amount of work and Tfs

of work is completed per unit (processing speed of s tasks is fs). This gives us
an upper bound of processing time until the first task finishes as:

g1 ≤
⌈

q1
(
n−1
s−1

)
Tfs

⌉(
n

s

)

T

After the first task finishes, we would be left with s − 1 tasks and the next
smallest task would require q2 = p2 − p1 amount of work before completion. If
s was less than n, reaming tasks would still run in combinations of s tasks, or if
s = n, then remaining tasks would run in combinations of s − 1.

Let’s consider the first case (s < n) when RR still chooses combinations with
s tasks. Since one task is finished, there are now

(
n−1
s

)
available combinations

and each task would run
(
n−2
s−1

)
times per round. This gives us the following

upper bound for the second task:

g2 ≤
⌈

q2
(
n−2
s−1

)
Tfs

⌉(
n − 1

s

)

T

The second case (s = n) or case when there are no combinations left with s
tasks are similar, because in both cases RR chooses combinations with less than
s tasks. Since RR chooses combinations with the fastest speed to run next, it
would always run the same (fastest) combination until the next task finishes.
There’s only such combination as there is only one way of choosing s − 1 tasks
from the subset of s − 1 tasks. If this case occurs for the third task, the upper
bound would be:

g3 ≤
⌈

q3
Tfn−s

⌉

T

We can now write general formulae for all tasks:

gk ≤
⌈

qk

(n−k
s−1)Tfs

⌉
(
n−k+1

s

)
T, k = 1, . . . , (s − 2)

gk ≤
⌈

qk
Tfn−k+1

⌉
T, k = (s − 1), . . . , n

Using the fact that
⌈
a
b

⌉
b < a+b for a, b > 0 and that

(
n−k+1

s

)
= n−k+1

s

(
n−k
s−1

)

we can simplify the bounds as

gk < n−k+1
s

(
T

(
n−k
s−1

)
+ qk

fs

)
, k = 1, . . . , (s − 2)

gk < T + qk
fn−k+1

, k = (s − 1), . . . , n

392 R. Kuchumov and V. Korkhov

Which gives us the upper bound of makespan value:

CRR
max <

n−s+1∑

k=1

n − k + 1
s

(
T

(
n − k

s − 1

)

+
qk
fs

)
+

n∑

k=n−s+2

(
T +

qk
fn−k+1

)

As the difference between each gk and its upper bound is O(T) by using very
small time unit, we will get an approximation (CRR∗

max) of an exact value. After
limit transition T → 0 we’ll get:

CRR
max ≈ CRR∗

max =
n−s+1∑

k=1

n − k + 1
s

(qk
fs

)
+

n∑

k=n−s+2

qk
fn−k+1

We can notice that the last sum in CRR∗
max upper bound matches exactly with

the one in CNP
max for k > n− s+1 and when s = n these two value are the same.

Because of that, we can claim that when the largest subset is the fastest, then
round-robin strategy performs the same as naive parallel strategy.

Assuming that slowdown function is linear (fk = 1 − α(k − 1), k = 1, . . . , n)
we can find the slope threshold (α∗) after which round-robin produces smaller
makespan:

n = s = arg max
0≤k≤n

{kfk} =
[
α∗ + 1
2α∗

]

=
⌊

α∗ + 1
2α∗ +

1
2

⌋

Which gives the following bounds to α∗:

1
2n

< α∗ ≤ 1
2(n − 1)

So, when fk slope is greater than α∗ = 1
2(n−1) the difference between CNP

max

and CRR∗
max is non-zero. We can estimate the first term in makespan difference:

CNP
max − CRR∗

max =
q1
fn

− nq1
sfs

= · · · = −q1
(2n − 1)2α2 + (2 − 4n)α + 1

(n − 1)α3 + (2n − 3)α2 + (n − 3)α − 1

Other non-zero terms will be similar, with the only difference in the first
coefficient (qk). Each term is a ratio of two polynomials with α variable and
the polynomial in denominator has a larger degree and the one in numerator.
Because of that, with increase of α value the difference in makespan values has
hyperbolic growth.

The results obtained here can be seen on numerical to simulations. In the
Fig. 4 there are plots corresponding to CNP

max −CRR
max (brown line), CRR∗

max −CRR
max

(blue line) and CLP
max − CRR

max (black line). Red line show threshold value α∗. As
it can be seen, blue line is almost zero for all slopes values, which shows that
approximate formulae match with exact value. NP makespan value also matches
with RR strategy exactly until for α < α∗ and after threshold value (red line) it
starts to increase significantly. Deviation of RR from the optimal strategy (black
line) is negligible, when compared to NP strategy.

An Analytical Bound for Choosing Trivial Strategies in Co-scheduling 393

0.00 0.05 0.10 0.15 0.20 0.25

0
20

0
60

0
10

00

Makespan difference,
 full scale

Slowdown slope (alpha)

R
R

 m
ak

es
pa

n
di

ffe
re

nc
e,

 ti
m

e
un

its

0.09 0.11 0.13 0.15

−1
00

0
50

15
0

Makespan difference,
 0.09 < alpha < 0.16

Slowdown slope (alpha)

R
R

 m
ak

es
pa

n
di

ffe
re

nc
e,

 ti
m

e
un

its
NP makespan RR estimate LP makespan Threshold

Fig. 4. Difference of makespan values of NP, LP, RR estimation with RR makespan for
different slowdown slopes value (alpha). Vertical line shows threshold valued computed
from derived formula. Both plots show the same data, but in different scales

7 Conclusion

In this paper we have defined application behavior model in co-scheduling envi-
ronment, when applications can be executed simultaneously on shared resources.
We have proposed to use application processing speed (measured based on IPC
and cpu time) as a metric of performance degradation and have validated it on
HPC benchmarks applications.

Based on that we have formalized a scheduling problem and found an opti-
mal solution by reducing it to a linear programming problem. Optimal solution
can not be implemented in schedulers as it requires a priory information about
application performance slowdown values for all possible combinations of par-
allel applications. Besides that, linear programming problem does not have an
analytical solution, it can only be solved iteratively.

To obtain more practical solution, we have considered two heuristic strate-
gies, round-robin (RR) and naive parallel (NP). The first one (RR), takes into
account application slowdown values and iterates over combinations of applica-
tions with the lowest slowdown in RR fashion. The second one (NP) simply runs
all available applications in parallel disregarding slowdown completely. We have
showed using numerical experiments that RR produces results very close to the
optimal strategy and NP strategies matches with RR until some point.

We have derived an analytical bound for applications performance degrada-
tion value until which NP strategy matches exactly with RR strategy, and thus
it is very close to the optimal strategy. When this threshold values is reached, the
difference between an NP and RR starts to increase significantly (with hyperbolic
growth).

394 R. Kuchumov and V. Korkhov

The threshold value has a very simple analytical formula and ti depends
only on the number of jobs (given model assumptions), so can be computed
easily in practice. Possible scheduler implementation may be based on online
version of RR strategy (that was described in the paper) solving multi-armed
bandit problem [9,12]. This strategy would periodically probe multiple applica-
tions combinations to evaluate their processing speed, then it would pick one
combination and would run it for some amount of time. Results from this paper
allow to probe only the largest combination one time and then to run it imme-
diately, if its speed is below a threshold value. In this case, this decision would
be a part of an optimal schedule.

Acknowledgements. Research has been supported by the RFBR grant No. 19-37-
90138.

References

1. Aupy, G., et al.: Co-scheduling Amdahl applications on cache-partitioned systems.
Int. J. High Perform. Comput. Appl. 32(1), 123–138 (2018)

2. Aupy, G., Benoit, A., Goglin, B., Pottier, L., Robert, Y.: Co-scheduling HPC work-
loads on cache-partitioned CMP platforms. Int. J. High Perform. Comput. Appl.
33(6), 1221–1239 (2019)

3. Aupy, G., Benoit, A., Pottier, L., Raghavan, P., Robert, Y., Shantharam, M.: Co-
scheduling high-performance computing applications. In: Big Data: Management,
Architecture, and Processing, May 2017. https://hal.inria.fr/hal-02082818

4. Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., Yarrow, M.:
The NAS parallel benchmarks 2.0. Technical report, Technical Report NAS-95-020,
NASA Ames Research Center (1995)

5. Bienia, C.: Benchmarking Modern Multiprocessors. Ph.D. thesis, Princeton Uni-
versity, January 2011

6. Eyerman, S., Michaud, P., Rogiest, W.: Revisiting symbiotic job scheduling. In:
2015 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 124–134. IEEE (2015)

7. Jain, R., Hughes, C.J., Adve, S.V.: Soft real-time scheduling on simultaneous mul-
tithreaded processors. In: 23rd IEEE Real-Time Systems Symposium, RTSS 2002,
pp. 134–145. IEEE (2002)

8. Kuchumov, R., Korkhov, V.: Collecting HPC applications processing characteris-
tics to facilitate co-scheduling. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS,
vol. 12254, pp. 168–182. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58817-5 14

9. Li, Y., Sun, D., Lee, B.C.: Dynamic colocation policies with reinforcement learning.
ACM Trans. Architect. Code Optim. (TACO) 17(1), 1–25 (2020)

10. Parekh, S., Eggers, S., Levy, H., Lo, J.: Thread-sensitive scheduling for SMT pro-
cessors (2000)

11. Snavely, A., Mitchell, N., Carter, L., Ferrante, J., Tullsen, D.: Explorations in
symbiosis on two multithreaded architectures. In: Workshop on Multi-Threaded
Execution, Architecture, and Compilers (1999)

https://hal.inria.fr/hal-02082818
https://doi.org/10.1007/978-3-030-58817-5_14
https://doi.org/10.1007/978-3-030-58817-5_14

An Analytical Bound for Choosing Trivial Strategies in Co-scheduling 395

12. Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for a simultaneous multi-
threaded processor. In: Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
234–244 (2000)

13. Trinitis, C., Weidendorfer, J.: Co-scheduling of HPC Applications, vol. 28. IOS
Press (2017)

14. Trinits, C., Weidendorfer, J.: First workshop on co-scheduling of HPC Applications
(COSH 2016)

15. Zacarias, F.V., Petrucci, V., Nishtala, R., Carpenter, P., Mossé, D.: Intelligent
colocation of workloads for enhanced server efficiency. In: 2019 31st International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), pp. 120–127. IEEE (2019)

	An Analytical Bound for Choosing Trivial Strategies in Co-scheduling
	1 Introduction
	2 Related Work
	3 Benchmarks
	4 Application Processing Speed Metric
	4.1 Evaluation on Experimental Data

	5 Scheduling Problem
	5.1 Optimal Strategy
	5.2 Heuristic Strategies

	6 Strategies Comparison
	6.1 Additional Assumptions on the Application Behaviour
	6.2 Comparison of Round-Robin and the Optimal Strategy
	6.3 Comparison of Round-Robin and Naive Parallel Strategy

	7 Conclusion
	References

