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Abstract. Today’s software program enterprise uses web services to
construct distributed software systems based on the Service Oriented
Architecture (SOA) paradigm. The web service description is posted
by a web service provider, which may be observed and invoked by a
distributed application. Service-Based Systems (SBS) need to conform
themselves through years to fit within the new user necessities. These
may result in the deterioration of the quality and design of the software
systems and might reason the materialization of insufficient solutions
called Anti-patterns. Anti-pattern detection using object-oriented source
code metrics may be used as part of the software program improvement
life cycle to lessen the maintenance of the software system and enhance
the quality of the software. The work is motivated by developing an auto-
matic predictive model for predicting web services anti-patterns using
static evaluations of the source code metrics. The center ideology of this
work is to empirically investigate the effectiveness of different variants of
data sampling technique, Synthetic Minority Over Sampling TEchnique
(SMOTE), and the ensemble learning techniques in the prediction of web
service anti-patterns.

Keywords: Anti-pattern · WSDL · Ensemble techniques · Code
quality

1 Introduction

Service-Oriented Architecture (SOA) is a tiered structure that assists corpora-
tions in sharing information and logic between different applications and usage
modes. An excellent SOA solution leads to loosely coupled devices that empower
the readiness expected to align IT and the enterprise team. A wide variety of
technologies, particularly OSGi, SCA, and web services, are used for imposing
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the SOA structure. Various service-based systems (SBS), starting from busi-
ness frameworks to cloud-based frameworks, are built using SOA architectures.
The developing requirement of the customers forces the SBS’s to conform to
fit the new needs of the users. This evolving may additionally cause the dete-
rioration of the design and quality of the software-based systems, ensuing in a
systematic strategy to a repeating hassle, referred to as Anti-patterns [4]. Anti-
patterns are the structures in the design that suggests infringement of critical
design concepts and contrarily sway design quality [4]. These are not acciden-
tal but rather normal slip-ups and are nearly consistently accompanied with
sincere intentions. Anti-patterns makes it challenging for the advancement and
maintenance of the software program systems; however, they likewise will assist
in figuring out troubles within the design, the code, and the management of
software program initiatives. In this paper, we have developed models for the
detection of four unique anti-patterns, namely: AP1: Chatty Web Service(CWS);
AP2: Fine-Grained Web Service (FGWS); AP3: Data Web Service (DWS); AP4:
God Web Service (GWS).

The vital motivation of the work added in this paper is to investigate the
utilization of ensemble learning techniques in the detection of web-service anti-
patterns. This work is roused by the need to fabricate procedures and tools to
detect anti-patterns in web services automatically.

2 Related Work

Moha et al. [6] introduced a novel framework for specification and detection of
anti-patterns in Service-based systems to detect new patterns like Tiny Service
and Multiservice and achieved a precision of more than 0.9. Ouni et al. [8] intro-
duced innovative genetic programming to detect web services anti-pattern by
generating detection rules based on threshold values and a combination of dif-
ferent metrics. The validation of the above approach is done on 310 Web services
to detect the five anti-patterns. Dimitrios et al. [12] used the Protege platform, a
web-based environment, to facilitate collaborative ontology editing allowing mul-
tiple users to edit and enrich the anti-pattern ontology simultaneously. Palma
et al. [9] used a rule-based search to detect and identify BP anti-patterns in the
Business Process Execution Language (BPEL) processes generated via orches-
trating web services. Coscia et al. [7] proposed a statistical correlation analysis
on the WSDL-level service metrics and the number of traditional OO metrics
and found a correlation between them. SODA-W, an extension of the SOFA
framework, detects the SOAP and REST anti-patterns using the pre-established
DSL. Upadhyaya et al. [15] proposed an approach to detect 9 SOA patterns.
It is observed from the literature reviewed here that the research on SOA anti-
pattern detection still needs to be explored thoroughly. Dimitrios et al. [13] have
proposed a novel OWL ontology-based knowledge system, SPARSE, that helps
in detecting anti-patterns. The ontology provides documentation for the anti-
patterns, describing their relationship with other anti-patterns through their
causes, symptoms, and consequences. Jaffar et al. [3] argued in his paper that
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classes taking part in anti-pattern and patterns of software designs have depen-
dencies with other classes i.e., unvarying and mutating dependencies, that may
spread issues to other classes. In this paper, authors have empirically investi-
gated the consequences of dependencies in object-oriented system by focusing
and analysing the relationship between the presence of co-change and static
dependencies and change proness, fault proness and fault types that the classes
are exhibiting. Kumar et al. [5] proposed an approach for the automatic detec-
tion of anti-patterns by static analysis of the source code. In this paper, author
proposed that the aggregate values of the source code metrics computed at the
web-service level can be used as predictors for anti-pattern detection. Saluja et
al. [11] proposed a new optimized algorithm that uses dynamic metrics for execu-
tion in addition to the static metrics. The results obtained are further optimized
using genetic algorithms. The proposed results achieved better results than the
existing methods and had a recall rate of approximately 0.9

3 Dataset

The data set with 226 publicly available web services that are shared by Ouni
et al. on GitHub1 are used for experiments in this paper. Figure 1 shows the
distribution of the web services in which the anti-patterns exists (#AP) and
does not exist (#NAP).

Fig. 1. Distribution of anti-patterns in web services

4 Proposed Solution Framework

Figure 2 shows the detailed overview of the proposed framework. Figure 2 depicts
that the proposed framework is a multi−step procedure consisting of computing
CK metrics from the WSDL file, applying aggregation metrics for computing
1 https://github.com/ouniali/WSantipatterns.

https://github.com/ouniali/WSantipatterns
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metrics at file level, handling class imbalance problem using different variants
of SMOTE discussed in Sect. 4.2, removal of irrelevant features using techniques
such as PCA and RSA discussed in Sect. 4.3, and lastly the development of
anti-pattern prediction models using five different ensemble learning techniques.
First, the java files are extracted from each of the WSDL file, for which the
CK metrics discussed in Table 3 are computed using CKJM tool. To convert
the metrics computed at file level to system level, aggregation measures which
are discussed in Table 3 are applied. This forms the dataset using which the
anti-pattern prediction models are developed. Next, we used different variants
of SMOTE technique for handling the class imbalance problem. Further, we
compare the models trained using balanced data with the models developed
using original data. After this, we use features selected using three different
feature selection techniques namely, significant features using rank−sum test,
Rough Set Analysis (RSA), and Principal Component Analysis (PCA). Finally,
five ensemble learning techniques namely: Bagging Classifier (EST1), Random
Forest Classifier (EST2), Extra Trees Classifier (EST3), AdaBoost Classifier
(EST4), Gradient Boosting Classifier (EST5) are used to generate models for the
prediction of web service anti-patterns. We use performance measures such as:
AUC, F-measure, and accuracy for computing and comparing the performance
of the models generated for the prediction of web service anti-patterns.

Fig. 2. Proposed framework

4.1 Preprocessing of the Dataset

Preprocessing of the dataset involves the extraction of java files from the WSDL
files (raw data) from which the source code metrics are computed. The dataset
considered has a collection of 226 WSDL files. In this paper, A step-wise proce-
dure for preprocessing of data is detailed here.

Step-1: Source code metrics computation:
We used WSDL2Java tool in this work to extract java files from each of the
WSDL file, and the Chidamber and Kemerer metrics (CK metrics) along
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with other java metrics are computed for each of the java file using CKJM
extended tool2. The list of various CK metrics used in this paper are listed in
Fig. 3. The definition of each of the CK metric along with their computation
formula are documented in [2].
Step-2: Aggregation measures on the source code metrics:
In this study, our objective is to develop one model for predicting an anti-
pattern present in the WSDL file. Here, we have used CK metrics to measure
each java file and the metrics computed here are at the file level. Further a
total of sixteen aggregation measures are applied to the metrics computed at
the file level to obtain the metrics at the system level. The list of aggregation
measures used in this paper are given in Fig. 3.

Fig. 3. List of CKJM metrics and aggregation measures

4.2 Data Sampling Techniques

The selection of an appropriate sampling technique plays a critical role in the
research study, as it significantly impacts the quality of our results and find-
ings. As discussed in Sect. 3, the dataset considered is having a class imbalance
problem, and we are choosing the data sampling technique SMOTE and its vari-
ants to solve this problem [1]. In this paper, we are considering the five different
data sampling techniques namely SMOTE, Borderline Smote (BSMOTE), SVM-
SMOTE (SVMSMOTE), SMOTE- Edited Nearest Neighbour (SMOTEENN),
and SMOTETOMEK along with the original dataset (OD) to generate the pre-
dictive models.

4.3 Effectiveness of Metrics

A total of three models are considered in this study where the occurrence of an
anti-pattern is considered as the dependent variable, and the source code metrics
computed are taken as an independent variable for developing the relation.

Subset of Features Selected as Significant Features (SIGF): In our
previous work, We applied a set of feature selection techniques on original
source code metrics to obtain the significant source code metrics(SM). This

2 http://gromit.iiar.pwr.wroc.pl/pinf/ckjm/.

http://gromit.iiar.pwr.wroc.pl/pinf/ckjm/
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Table 1. Source code metrics selected using RSA: all anti-patterns

Anti-pattern Reduced set of metrics

GOWS Hoover index (WMC), Min (DIT), Mean
(DIT), Max (RFC), skewness (LCOM),
skewness (Ca), Q1 (DAM), Gini index (DAM),
Gini index (IC)

FGWS Median (CBO), Gini index (LCOM), skewness
(Ca), Mean (LCOM3), Std (LCOM3), Gini
index (CAM), Hoover index (CAM)

DWS Q1 (WMC), Var (NOC), Gini index (CBO),
skewness (LCOM), Median (MOA)

CWS Mean (DIT), Q1 (CBO), Generalized entropy
(CBO), Mean (RFC), skewness (Ca),
Generalized entropy (MOA), skewness (AMC)

features are used as input to develop the predictive models for various anti-
patterns prediction [14].

Anti-pattern predictability = f(Significant features) (1)

Subset of Features Selected Using RSA: In order to reduce the com-
plexity of the model developed, it is important to remove irrelevant features.
For this purpose, we use a feature reduction technique known as “Rough Set
Analysis (RSA)” to obtain a reduced set of features. Here the anti-pattern
predictability is defined as a function of a reduced set of metrics.

Anti-pattern predictability = f(Reduced set of features) (2)

RSA enables the developer to find the subset of the original source code met-
rics that are most illuminating removing all the irrelevant attributes with
minimal information loss [10]. Table 1 shows the reduced significant feature
set for all the anti-patterns considered in this study. For example, Hoover
index (WMC), Min (DIT), Mean (DIT), Max (RFC), skewness (LCOM),
skewness (Ca), Q1 (DAM), Gini index (DAM), Gini index (IC) are selected
features using RSA analysis for GOWS anti-pattern.

Subset of Features Selected Using PCA: A feature extraction technique
known as “Principle Component Analysis(PCA)” is used to develop a
model with less complexity using reduced set of features. PCA reduces the
dimensionality of the data. It helps in reducing the computational complexity
of the model. The primary idea of PCA is to diminish the dimensionality
of a dataset comprising of numerous features correlated with one another,
either vigorously or softly, while holding the variation present in the dataset,
up to the greatest degree. Table 2a illustrates the eigenvalue, % variance, %
cumulative for principal component (PC) domain metrics selected for GOWS
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anti-pattern. Similarly, 22, 21, and 21 PCs are selected for the FGWS, DWS,
and CWS anti-patterns, respectively.

Anti-pattern predictability = f(Extracted set of features) (3)

The same is done by transforming the features into a new set of features,
which are known as the principal components or simply, the pc′s.

4.4 Classifier Techniques

In this paper, we applied five ensemble techniques for training the predictive
models for the detection of web service anti-patterns. The ensemble techniques
we have used in this paper are: Bagging classifier (EST1), Random Forest clas-
sifier (EST2), Extra Trees classifier (EST3), AdaBoost classifier (EST4) and
Gradient Boosting classifier (EST5).

Table 2. Subset of features selected using PCA for anti-patterns

(a) GOWS

Eigen value Variance (%) Cumulative (%)

pc-1 32.87 20.81 20.81

pc-2 24.39 15.43 36.24

pc-3 20.40 12.91 49.15

pc-4 13.19 8.35 57.50

pc-5 10.22 6.47 63.97

pc-6 9.12 5.77 69.74

pc-7 8.23 5.21 74.95

pc-8 5.50 3.48 78.43

pc-9 3.27 2.07 80.50

pc-10 3.02 1.91 82.41

pc-11 2.89 1.83 84.24

pc-12 2.88 1.82 86.06

pc-13 2.60 1.64 87.70

pc-14 2.43 1.54 89.24

pc-15 2.32 1.47 90.71

pc-16 2.02 1.28 91.99

pc-17 1.84 1.17 93.15

pc-18 1.62 1.03 94.18

(b) FGWS

Eigen value Variance(%) Cumulative(%)

pc-1 30.37 20.38 20.38

pc-2 24.28 16.30 36.68

pc-3 19.59 13.15 49.83

pc-4 11.98 8.04 57.87

pc-5 10.98 7.37 65.24

pc-6 7.96 5.35 70.59

pc-7 5.07 3.40 73.99

pc-8 4.31 2.89 76.88

pc-9 3.47 2.33 79.21

pc-10 2.99 2.00 81.21

pc-11 2.44 1.64 82.85

pc-12 2.41 1.62 84.47

pc-13 2.38 1.60 86.07

pc-14 2.30 1.55 87.61

pc-15 2.03 1.36 88.97

pc-16 1.92 1.29 90.26

pc-17 1.87 1.25 91.51

pc-18 1.62 1.09 92.60

pc-19 1.23 0.83 93.43

pc-20 1.19 0.80 94.23

pc-21 1.07 0.72 94.94

pc-22 1.04 0.70 95.64

5 Experimental Results

In this work, five sampling techniques besides the original data set (OD), fea-
tures selected by three different feature selection techniques and five ensemble
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Fig. 4. Confusion matrix of EST1

techniques are applied for generating the models for the detection of four web
service anti-patterns. A total of 6 × 3 × 5 × 4 = 240 predictive models are built
for anti-pattern detection in this study. The predictive ability of these mod-
els are evaluated using Accuracy, and AUC performance values. Table 3 shows
the Accuracy values for all the models generated. Figure 4 shows the confusion
matrix obtained for the ensemble technique EST1 i.e. Bagging classifier. From
Table 3 and Fig. 4, we observed that the:

– The performance values of the models trained on data after applying sampling
techniques is better than models trained on the original data.
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Table 3. Accuracy of all models

Data Sampling Techniques Feature
Selection
Techniques

Antipatterns EST–1 EST–2 EST–3 EST–4 EST–5 DataSampling Techniques Feature
Selection
Techniques

Antipatterns EST–1 EST–2 EST–3 EST–4 EST–5

ORG SM AP1 90.27 92.04 91.59 92.48 91.15 SVMSMOTE SM AP1 90.73 94.39 95.37 90.98 91.95

ORG SM AP2 94.25 95.13 95.13 93.81 91.59 SVMSMOTE SM AP2 86.61 95.83 96.13 92.26 93.75

ORG SM AP3 96.46 96.02 97.79 97.35 97.35 SVMSMOTE SM AP3 93.13 99.40 99.70 98.81 98.81

ORG SM AP4 95.13 94.69 96.02 93.81 93.36 SVMSMOTE SM AP4 90.83 96.33 96.64 92.97 94.80

ORG PCA AP1 90.71 89.82 92.48 91.59 90.71 SVMSMOTE PCA AP1 91.46 94.39 95.85 90.49 90.98

ORG PCA AP2 94.25 95.13 95.58 93.36 92.48 SVMSMOTE PCA AP2 84.82 94.64 96.73 88.69 86.31

ORG PCA AP3 94.69 93.81 94.69 94.69 88.94 SVMSMOTE PCA AP3 97.41 99.06 98.82 97.64 96.46

ORG PCA AP4 91.15 93.36 92.92 93.36 87.17 SVMSMOTE PCA AP4 89.51 95.61 96.10 89.02 91.71

ORG RSA AP1 91.15 90.71 92.92 90.71 90.71 SVMSMOTE RSA AP1 93.17 94.39 96.10 93.90 91.71

ORG RSA AP2 94.25 94.25 95.58 94.69 94.25 SVMSMOTE RSA AP2 89.88 94.94 97.32 88.69 88.99

ORG RSA AP3 94.69 97.79 98.23 96.90 90.71 SVMSMOTE RSA AP3 98.11 99.29 100.00 97.88 97.88

ORG RSA AP4 91.59 96.02 95.58 95.13 93.81 SVMSMOTE RSA AP4 91.74 96.02 96.64 95.41 94.80

SMOTE SM AP1 88.78 93.41 96.10 91.46 90.24 SMOTEENN SM AP1 93.57 99.60 99.20 98.39 97.59

SMOTE SM AP2 86.15 95.77 98.36 91.08 94.13 SMOTEENN SM AP2 88.52 94.43 97.05 94.43 88.52

SMOTE SM AP3 94.10 99.53 99.76 99.53 98.82 SMOTEENN SM AP3 93.69 99.40 99.40 99.70 98.50

SMOTE SM AP4 87.32 97.32 98.05 95.61 94.63 SMOTEENN SM AP4 87.40 98.09 98.47 95.04 96.18

SMOTE PCA AP1 89.02 94.15 95.85 91.22 89.76 SMOTEENN PCA AP1 93.31 96.94 98.33 90.53 93.59

SMOTE PCA AP2 84.98 95.77 97.18 90.14 89.20 SMOTEENN PCA AP2 90.60 95.04 97.39 90.60 92.43

SMOTE PCA AP3 95.99 99.29 99.53 98.82 97.88 SMOTEENN PCA AP3 97.54 99.26 99.26 99.51 97.04

SMOTE PCA AP4 88.29 95.61 95.37 91.22 91.95 SMOTEENN PCA AP4 94.54 97.27 98.36 91.26 92.90

SMOTE RSA AP1 90.24 93.66 95.61 90.00 89.02 SMOTEENN RSA AP1 98.58 98.58 98.94 98.23 97.87

SMOTE RSA AP2 90.85 95.07 97.18 88.03 89.44 SMOTEENN RSA AP2 91.62 96.22 97.57 90.27 91.08

SMOTE RSA AP3 97.88 99.29 99.76 98.58 98.11 SMOTEENN RSA AP3 98.28 98.53 98.53 99.26 99.75

SMOTE RSA AP4 91.46 95.37 96.83 95.12 93.41 SMOTEENN RSA AP4 94.13 97.21 99.72 97.77 94.97

BSMOTE SM AP1 88.29 92.93 95.37 91.95 89.76 SMOTETOMEK SM AP1 88.25 93.44 95.36 94.81 92.62

BSMOTE SM AP2 84.51 96.01 97.89 92.96 91.55 SMOTETOMEK SM AP2 87.43 96.34 97.64 91.88 90.84

BSMOTE SM AP3 94.58 99.29 100.00 99.29 98.35 SMOTETOMEK SM AP3 94.06 99.50 100.00 99.26 98.27

BSMOTE SM AP4 90.24 96.83 97.80 95.12 96.34 SMOTETOMEK SM AP4 87.77 97.87 97.61 95.48 96.54

BSMOTE PCA AP1 90.98 95.85 96.34 93.41 91.71 SMOTETOMEK PCA AP1 90.49 94.15 95.85 91.22 89.76

BSMOTE PCA AP2 84.51 95.54 97.18 90.14 89.20 SMOTETOMEK PCA AP2 88.03 97.42 97.18 90.14 89.20

BSMOTE PCA AP3 96.93 100.00 99.53 98.82 97.17 SMOTETOMEK PCA AP3 95.75 99.29 99.53 98.82 97.88

BSMOTE PCA AP4 88.05 94.39 96.10 90.73 91.46 SMOTETOMEK PCA AP4 85.61 96.83 95.37 91.22 91.95

BSMOTE RSA AP1 88.29 90.73 94.88 89.76 90.00 SMOTETOMEK RSA AP1 92.27 94.33 95.36 89.18 90.98

BSMOTE RSA AP2 88.26 95.77 97.18 88.97 88.97 SMOTETOMEK RSA AP2 89.20 94.84 97.18 88.03 89.44

BSMOTE RSA AP3 99.06 98.82 100.00 98.35 98.11 SMOTETOMEK RSA AP3 99.05 98.58 99.05 98.82 98.58

BSMOTE RSA AP4 92.44 96.59 97.80 94.88 96.10 SMOTETOMEK RSA AP4 93.25 96.75 97.75 95.75 93.25

– SMOTEENN is showing the best performance, while the model developed
using the original data (ORG) is showing the worst performance.

– The model trained using features selected by PCA as input have better per-
formance.

– The performance of the model trained using EST3 i.e. Extra Trees classifier
with a mean accuracy of 97.13 is higher when compared to the models trained
using other ensemble techniques.

6 Competitive Analysis

In this section, we compare the performance of the various models generated
using Box-plots, Descriptive statistics and Wilcoxon ranksum test.

6.1 Data Sampling Techniques

Figure 5 depicts the performance values, i.e., Accuracy, AUC, and F-measure
of the models developed using different variants of SMOTE using Box-plot dia-
grams. Table 4 shows the descriptive statistics for the different SMOTE tech-
niques used in this study. From Fig. 5 and Table 4, we infer that the technique
SMOTEENN is showing the best performance, with 0.989 mean, 1.000 max,
0.986 Q1 and 0.999 Q3 AUC values. The model developed using the original
data(ORG) is showing the worst performance with the AUC value of 0.823. It is
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also observed that the model developed with the dataset after applying the data
sampling technique(any) is showing better performance when compared to the
model developed using the original data, as the sampling technique deals with
the class imbalance problem.

Table 4. Descriptive statistics of data sampling techniques

Accuracy

Max Min Median Mean Q3 Q1

ORG 98.23 87.17 93.81 93.60 95.13 91.59

SMOTE 99.76 84.98 95.10 94.11 97.60 90.54

BSMOTE 100.00 84.51 95.24 94.20 97.49 90.73

SVMSMOTE 100.00 84.82 94.80 94.20 96.68 91.59

SMOTEENN 99.75 87.40 97.33 96.00 98.53 93.64

SMOTETOMEK 100.00 85.61 95.36 94.37 97.70 91.10

Table 5. P-value: data sampling techniques

ORG SMOTE BSMOTE SVMSMOTE SMOTEENN SMOTETOMEK

ORG 1 0 0 0 0 0

SMOTE 0 1 1 0 0 1

BSMOTE 0 1 1 0 0 1

SVMSMOTE 0 0 0 1 0 0

SMOTEENN 0 0 0 0 1 0

SMOTETOMEK 0 1 1 0 0 1

Wilcoxon signed-rank test is used in this study for statistically comparing the
performance of the various web service anti-pattern prediction models developed
using different variants of smote sampled data and the original data. The main
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Fig. 5. Box-plot: data sampling techniques
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motivation of the wilcoxon signed-rank test is to find whether there is a signifi-
cant difference between the performance of the various models developed using
different Smote sampled data or not. The null hypothesis considered for this
paper is: “The web service anti-pattern prediction model trained using different
variants of smote sampled data are not significantly different”. The considered
null hypothesis is accepted, if the p-value obtained using the wilcoxon signed-
rank test is ‘1’. Table 5 shows the p-values obtained for the models developed
using all the data sampling techniques along with the original dataset. A close
inspection of Table shows that most of the comparison points are having p-values
as ‘0’, i.e., the considered hypothesis is rejected. Hence we conclude that there is
a significant difference between the performance of the models generated using
different variants of smote sampled data and the original data.

6.2 Feature Selection Techniques

Figure 6 depicts the performance values, i.e., Accuracy, AUC, and F-measure
of the models developed using the features selected by different feature selec-
tion techniques as input using Box-plot diagrams. Table 6 shows the descriptive
statistics for the various feature selection techniques used in this study. Table 6
show that the mean value of the model developed using the features selected by
PCA as input is higher than the models developed using the features selected by
rank-sum test, and RSA as input. From Fig. 6, we observe that the inter-quartile
range for AUC value for the model generated using PCA is compa ratively small
when compared to the other models. This indicates that the performance param-
eters obtained using multiple executions in PCA are showing less variation when
compared to other models.

The null-hypothesis considered in this section is: “The performance of the
anti-pattern prediction models developed using features selected by different fea-
ture selection techniques are significantly different.” The defined null-hypothesis
is accepted, if the p-value obtained using the wilcoxon signed rank test is ‘1’.
Table 7 shows the p-values of the models developed using various combination of
features as input. From Table 7, we observed that most of the comparison points
have p-value as ‘1’ i.e. the defined null-hypothesis is accepted. Therefore, there is
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Table 6. Descriptive statistics of feature selection techniques

Accuracy

Max Min Median Mean Q3 Q1

SM 100.00 84.51 95.13 94.71 97.80 92.15

PCA 100.00 84.51 94.20 93.72 96.83 90.85

RSA 100.00 88.03 95.25 94.84 97.88 91.61

no significant difference between the performance of the models builds utilizing
the features selected by using three different feature selection techniques.

Table 7. P-value: feature selection

SM PCA RSA

SM 1 0

PCA 0 1 0

RSA 1 0 1

6.3 Classifier Techniques

Figure 7 shows the box-plot diagram of the AUC, Accuracy and F-measure of
the classifier techniques. Table 8 shows the descriptive statistics for the models
trained using distinct ensemble techniques. From Table 8 and Fig. 7, we observed
that the performance of the model trained using EST3 i.e. Extra Trees classifier
is higher when compared to the models trained using other ensemble techniques.
The model trained using EST3 is showing good performance with a mean accu-
racy of 97.13, median accuracy 97.18 and min accuracy of 91.59.

ES
T1

ES
T2

ES
T3

ES
T4

ES
T5

84

86

88

90

92

94

96

98

100

A
cc

ur
ac

y

ES
T1

ES
T2

ES
T3

ES
T4

ES
T5

0.5

0.6

0.7

0.8

0.9

1

A
U
C

ES
T1

ES
T2

ES
T3

ES
T4

ES
T5

0.85

0.9

0.95

1

F-
M
ea

su
re

Fig. 7. Box-plot: classifier techniques
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Table 8. Statistical description for ensemble techniques

Accuracy

Max Min Median Mean Q3 Q1

EST1 99.06 84.51 91.31 91.67 94.25 88.41

EST2 100.00 89.82 95.93 96.11 97.98 94.41

EST3 100.00 91.59 97.18 97.13 98.50 95.85

EST4 99.70 88.03 93.61 93.88 97.49 90.85

EST5 99.75 86.31 92.55 93.27 96.50 90.71

The null-hypothesis considered in this work is: “The performance of the
anti-pattern prediction models trained using various ensemble techniques are
significantly different. ” The defined null-hypothesis is accepted, if the p-value
obtained using the wilcoxon signed rank test is ‘1′ and is rejected if the p-value
is ‘0’. Table 9 shows the p-values of the models trained using different ensemble
techniques. From Table 9, we observed that most of the comparison points have
p-value as ‘0’ i.e. the defined null-hypothesis is rejected. Hence we conclude that
there is a significant difference between the performance of the models trained
using various ensemble techniques.

Table 9. P-value: ensemble techniques

EST1 EST2 EST3 EST4 EST5

EST1 1 0 0 0 0

EST2 0 1 0 0 0

EST3 0 0 1 0 0

EST4 0 0 0 1 1

EST5 0 0 0 1 1

7 Conclusion

We present the empirical analysis on anti-pattern prediction models developed
using data sampling, feature selection and ensemble techniques. Five-fold cross
validation is used for validating the performance of the models built. We used
three performance parameters i.e. Accuracy, F-measure and AUC to compare
the performance of the models built. We observed that the performance values
of the models trained on data after applying sampling techniques is better than
models trained on the original data. Wilcoxon sign rank test suggested that
model trained using balanced data have significant improvement in predicting
anti-patterns. It is observed that the performance of the model trained using
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features selected by PCA as input have better performance. Wilcoxon sign rank
test suggested that there is no significant difference between the performance of
the models builds utilizing the features selected by using three different feature
selection techniques. We also observe that the model trained using EST3 i.e.
Extra Trees classifier is showing good performance with a mean accuracy of
97.13.
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