®

Check for
updates

A Cost Estimating Method for Agile Software
Development

Shariq Aziz Butt! ™ Sanjay Misra?, Gabriel Pifieres-Espitia’, Paola Ariza-Colpas?,
and Mayank Mohan Sharma*

I The University of Lahore, Lahore, Pakistan
2 Covenant University, Ota, Nigeria
sanjay.misra@covenantuniversity.edu.ng
3 Universidad de la Costa, CUC, Barranquilla, Colombia
{gpineresl,parizal}@cuc.edu.co
4 Zillow Inc, San Francisco, USA

mayankmohans@zillowgroup.com

Abstract. In every software development project, the software effort estimat-
ing procedure is an important process in software engineering and always criti-
cal. The consistency of effort and timeline estimation, along with several factors,
determines whether a project succeeds or fails. Both academics and profession-
als worked on the estimation approaches in software engineering. But, all these
approaches have many problems that need to be addressed. One of the most dif-
ficult aspects of software engineering is estimating effort in agile development.
This study aims to provide an effort estimation method for agile software develop-
ment projects. Because in software engineering, the agile method is widely used
for the development of software applications. The development and usage of the
agile method are described in depth in this study. The framework is configured
with empirical data gathered by projects from the software industry. The test find-
ings reveal that the estimation method has great estimation accuracy in respect of
mean magnitude of relative error (MMRE) and Prediction of Error PRED (n). The
suggested approach achieves more accuracy for effort estimation as compare to
others.

Keywords: Software effort estimate - Agile development - User stories - Metrics
and measurement - Maintainability

1 Introduction

Since the 1940s, when the software era began, estimating software costs has been a
critical but challenging task. Because the scale and significance of software applications
have increased, so has the accuracy of software cost estimation. Software development
professionals and academics are now working on developing techniques to measure
development costs and schedules throughout the early 1950s. In the last 3 decades,
software effort estimation techniques have been reported in the existing research. On the
other hand, the domain of software effort estimation is still in its infancy [1, 2].

© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12955, pp. 231-245, 2021.
https://doi.org/10.1007/978-3-030-87007-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87007-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-87007-2_17

232 S. A. Butt et al.

Despite the introduction of various software cost estimation approaches that are suc-
cessfully used in conventional software development, the complexity of modern software
development techniques has resulted in a circumstance in which the usefulness of cur-
rent effort prediction techniques tends to be limited [3]. One major challenge is agile
software development. This approach is focused on a completely different definition of
application development which can be measured using the FP analysis approach, nor
can traditional effort estimation approaches that were designed primarily for sequential
application development methods be used. As a modern software engineering approach,
that is, agile development has received a lot of attention. It emphasizes good developer
communication, fast product delivery, and change on request as the core components of
agile development. For industrial applications, agile development practices are becom-
ing more prevalent. The usage of effort estimation techniques in these types of projects is
achallenging but essential process. Traditional estimation techniques necessarily require
well-defined specifications. Agile methodologies do not support this activity. Changing
demands, on the other hand, is viewed as a significant problem. Both of these factors
are rendering estimation difficult in agile development. This paper provides an overall
view of the current estimation methods and explains how to estimate agile development
projects in depth [4, 5]. We are also proposing an estimation technique in this paper and
used it for a case study. We also use a case study in this study and explain the outcomes
in detail.

The paper contains 5 sections. Next, Sects. 2 and 3 summarize the works on cost
estimation techniques and agile methodologies—Sects. 4, 5, and 6 present the proposed
work, experimentations and conclusion, and future work.

2 Cost Estimation Techniques

To measure project costs, cost estimation methods, also known as model-dependent
estimation methods that integrate statistics from previous projects with mathematical
equations. As an input, these methods include the size of the system. COCOMO, SLIM,
RCA PRICE-S, EER-SEM, and ESTIMACS are the most popular model-based tech-
niques. Regression-based models, learning-oriented models, expert-based approaches,
and composite Bayesian methods are some of the current effort estimation techniques.
The regression methodology is used in the majority of software estimation models.
Regression models are typically built using previously collected data from completed
projects and the development of regression equations that describe the relationships
between various variables. The mathematical method is based on the new project scope.
To make predictions, this model is assessed using regression data. In such methods, the
effort for efficient software development is merely a dependent variable for regression
equations involving some expected variables such as size, effort adaptation factor, scale
factor, and so on [6]. In certain cases, therefore, regression models require the fulfill-
ment of specific requirements. Boehm and Sullivan (1999) addressed these conditions,
which are focused on their experience with regression-based methods. These standard
conditions contain the availability of a considerable dataset, with the absence of miss-
ing data objects, the absence of outliers, and the absence of correlation between the
predictor factors. Ordinary least-squares regression (OLS), classification and regression

A Cost Estimating Method for Agile Software Development 233

trees (CART), step-wise examination of variance for inconsistent data sets (stepwise
ANOVA), configuration of CART with OLS regression and comparison, multiple linear
regression, and stepwise regression are all examples of regression models [7].

Other kinds of models, known as Learning-oriented methods, are focused on prior
estimation knowledge and learning. These approaches aim to automate the estimat-
ing process through training themselves to create automated models based on existing
experiences. These methods are able to incremental learning and refinement as new
data is presented with time. Artificial intelligence methods, artificial neural networks,
particular scenario analysis, machine learning techniques, decision-tree learning, fuzzy
logic approaches, content knowledge, and linear regression are all examples of learning-
oriented modeling techniques. COCOMO, SLIM, RCA PRICE-S, SEER-SEM, and
ESTIMACS are the most popular model-based approaches. Depending on criteria like
the size and required functionality of the application, these calculation approaches pro-
vide an estimated cost, effort, or time of a project. “Comparative analysis with previous
related projects depending on individual memory” was discovered to be an effective
expertise-based method. Where neither quantified quantitative evidence is available,
expertise-based methods are beneficial [8].

They offer a simple, low-cost, and extremely productive method. Analogy-based
estimation is another estimation method of estimating software effort. The method looks
at previous projects and is using the details obtained as a rough approximation for the
current project. The Checkpoint approach is a representation of a software estimation
technique dependent on analogy. Heuristics are extracted from real project data or a
formalization of expert analysis in this method. Some type of project data and details
is being used to extracting these heuristics. The performance of these heuristics can
then be used to estimating efficiency, quality, and scale. Expert opinion estimation is
another common estimation method within software effort estimate and it is focused
on the collective expertise of teams of expertise to generate project estimates. Where
the estimation method is largely focused on “non-explicit, non-recoverable reasoning
mechanisms,” such as observation and experience, this method has been used.

Experts have chastised expert judgment methods regarding their dependency on
human memory and the absence of replicability of these memory-based methods. Still,
studies reveal that it is the most popular method for application development and estima-
tion. Expert decision methods include the Delphi method and job breakdown structure
(WBS), top-down and bottom-up estimation, and thumb rule [9].

The advantages of expertise-dependent estimation approaches are merged to imple-
ment a new semiformal estimating approach known as the Bayesian approach. The
bayesian analysis considers that almost all estimation methods require datathat is either
of limited quality or incomplete. This approach incorporates expert judgment to man-
age missing data and enables a better rigorous estimation method. The COCOMO I
model was developed using Bayesian analysis, which is used in multiple scientific
fields. A hybrid estimation method is Cost Estimation, Benchmarking, and Risk Analysis
(COBRA) [10].

234 S. A. Butt et al.

3 Agile Software Development

Agile software development is a set of iterative and gradual application development
approaches in which specifications and ideas emerge from collaboration within self-
organizing, cross-functional teams. Evolutionary planning, evolutionary growth and exe-
cution, a time-boxed iterative strategy, and fast and scalable responsiveness to change are
encouraged. It has a theoretical model that encourages foreseen experiences during the
creation process. In 2001, the Agile Manifesto invented the term. Scrum, Crystal Clear,
Extreme Programming, Adaptive Software Development, Features Oriented Develop-
ment, and Dynamic Systems Development Process are examples of earlier lightweight
approaches. Following the publication of the Agile Manifesto in 2001, these are now
commonly pointed to as agile methodologies. Methods vary from adaptive to predictive.
In this continuum, agile strategies are on the adaptive side. Adaptive approaches con-
centrate on rapidly adjusting to changing circumstances. When a project’s requirements
change, an agile team must respond as well. Predictive strategies, on the other hand,
concentrate on meticulously planning the future. For the duration of the development
phase, a predictive team may disclose precisely what functionality and activities are
expected. Predictive teams have a hard time modifying functionality [10].

Agile Software Processes Features
Modularity: it is a significant aspect of the agile software development process since it
enables a process to be split down into modules called activities.

Iterative: Agile software systems are iterative, based on short intervals. A specific
collection of tasks is performed during each loop.

Time-Bound: Each iteration and scheduling has a time limit. Sprint is the name given
to this period.

Parsimony: is a key component of agile software development. That is, they only
need a limited number of activities to reduce risks and accomplish their objectives.

Adaptive: The agile process adapts to new threats that are discovered through any
iteration. Likewise, agile processes can handle any new operation or changes to existing
ones [11].

Incremental: Agile processes are incremental, rather than trying to construct the
whole system at once. Instead, it divides the complex structure into increments that can
be worked on in sequence, at various times, and at different speeds.

Convergent: The central tenet of agile development is to get the structure closer to
reality. This aim is attained by using all available strategies to achieve performance as
quickly as possible [12].

People-Oriented: Agile methods emphasize people over processes and technologies.
They change organically as a result of adaptation. Motivated developers increase their
efficiency and performance. After all, they are the most skilled people in the industry to
create these improvements.

Collaborative: Agile methods enable team members to interact with one another. Any
software development project needs effective communication. Collaboration is needed
to quickly integrate a large project, although increments are now being created in parallel.

A Cost Estimating Method for Agile Software Development 235

3.1 Effort Estimation in Agile Modeling

In waterfall, the manager calculates a team member’s productivity potential by calculat-
ing how long those activities may take and then assigning work depending on the team
member’s maximum time available. In regard to evaluating a team member’s ability,
agile methodology provides a specific method. To begin with, it assigned work to an
overall team rather than a single person. This stresses the importance of group effort
from a theoretical perspective. Second, it declines to calculate work in terms of effort
due to doing so would adversely affect the self-organization necessary for the method-
ology’s effectiveness. This is a substantial departure from the waterfall: rather than a
boss, calculating time on behalf of others and setting priorities based on conjecture,
Scrum team members determine their own tasks based on commitment and degree of
complexity [13].

There is no only method for teams to quantify their work in Agile Methodology. It
recommends that teams cannot calculate effort in terms of time but rather use a much
more obfuscated measure. Numeric scaling, t-shirt size, the Fibonacci series are all
common estimation approaches. The most significant thing is that the team has shared
knowledge of the scale it employs. Therefore each team member is familiar with the
scale’s values.

The team gathers for the Sprint Planning Session to quantify their commitment to the
user stories in the backlog. The product client requires these forecasts in order for him
or her to efficiently priority products in the backlog and, as a response, predict delivery
depending on the team’s velocity. This necessitates an accurate evaluation of the work’s
complexity by the Product Owner. To avoid forcing a team to decrease its commitment
evaluation and bring on new work, it is suggested that the Product Owner does not follow
the estimations. And when a team determines itself, measures must be taken to decrease
the cost of influencing those results. As a result, it is suggested that all team members
reveal their predictions at the same time. This method parallels a game of poker in that
everyone “shows their hands” at the same time [14].

And when teams have a common interpretation of their size, they cannot help but
make various estimates. It also takes several rounds of calculation to conclude in a sin-
gle effort estimate which represents the entire team’s perception of a story’s complex-
ity. Experienced teams, on the other hand, should be able to reach an agreement after
merely a few sessions of planning poker. Usually, effort calculation occurs throughout
Release Preparation at the start of the new iteration. The figure depicts a part of the
XP-Project [15].

Research Problem

The majority of current effort estimation methods were designed to help conventional
sequential application development methodologies, while Agile Software Development
is an iterative process. If conventional methods are used to estimate the commitment
of agile software projects, the findings would almost certainly be unreliable. The exist-
ing practice of effort estimation for agile development projects, on the other hand, is
focused on a complete iteration. As a result, an effort estimation method is required to
estimate the development effort for agile software projects depending on Agile Software
Development features [13].

236 S. A. Butt et al.

4 Proposed Model

The majority of Software Effort Estimating Models estimate a project’s budget, length,
and resources. In the case of Agile Development, however, this will not be the case.
There are some main distinctions within the agile and conventional approaches to team
organization.

4.1 Agile Teams Are Whole Teams

The whole team is an Extreme Programming (XP) activity that suggests getting enough
expertise inside the team to complete the mission. The idea is that the software team
possesses the necessary testing, databases, user interface, and other expertise and does
not depend on external experts or specialists’ teams.

4.2 Agile Teams Are Formed (Mostly) of Generalized Specialists

A generalizing professional, also known as a craftsperson, is someone who has one
or even more technological skill sets to which they can directly contribute to the team
has had at least a basic understanding of the software development and the application
domain wherein they operate, and most significantly consistently tries to learn new
expertise in both their current professions and other fields. Evidently, new IT specialists
and experienced IT professionals will have to work for this objective because they have
often experienced just one field. The sweet spot among the two extremes of expertise is
generalizing with experts.

4.3 Agile Teams Are Stable

Agilests realize that shifting team composition can be counterproductive to a project’s
progress.

A performance we work hard to maintain our team as stable as possible, which is
much simpler to do when people are generalizing experts.

Since there is no requirement to measure the project’s manpower needs, the suggested
approach is designed to measure the Agile Software ‘project’s delivery time and expense.

Agile professionals, particularly Scrum professionals, have suggested a range of
scales for measuring project expected effort, such as:

e On alevel of one to three, we rate the effort, with one being the minimum and three
being the maximum.

e The Fibonacci series [1, 2, 3,5, 8.... ... so on] is used. So, for example, a Story rated
as eight is one that is too big to measure accurately and must be graded as an epic and
broken down into shorter stories.

Other approaches exist, but these are two widely prominent. In both cases, the calcu-
lations are not formulated in terms of time modules; instead, they are simply measures of
Relative Effort, that is, a reasonable yardstick for comparison. Both of these approaches

A Cost Estimating Method for Agile Software Development 237

are successful and commonly used, but they ignore the fundamental factors that influ-
ence effort and uncertainty. As a result, we created a new model which we think is
very successful. This method is also consistent with how to build Plot, defect, and risk
rankings [16].

4.4 Determining the Effort

A number of factors influence our potential to calculate effort precisely. To produce
reliable and efficient estimates, precise prediction requires a multivariate model. The
problem is deciding which dimensions to calculate. Suppose we use a SWOT analysis to
category the scenarios based on internal vs. external factors. In that case, we can exclude
several possibilities by concentrating our focus on the factors we can control and paying
little consideration to the factors we cannot. We restrict the vectors to two to make the
method as easy as practicable so that we use it and do not try to avoid it because ‘it’s too
complicated. The use of two vectors is also consistent with the rest of the technique.

4.5 Story Size

The project size is a rough approximation of the work’s relative size in terms of real
development time. Tablel displays 5 elements that have been allocated to various types
of user stories based on their scale. The team has the potential to adjust the wording of
the Guideline summary and redefine the requirements.

Table 1. Scaling of stories.

Value | Rules

5 * An incredibly long story

* Moreover broad to estimation correctly

* Almost definitely could be divided into a series of minor stories
* Could be separated into a new project

4 * A huge size of story
* Needs a developer’s concentrated effort over a prolonged period of time (think and
over a week of task)

Try splitting it up into a series of shorter stories

3 * Abstemiously huge stories
» Consider working for two to five days
2 ¢ Plan on putting in a day or two of effort
1 * A very short tale with a very low effort amount

* Imagine working for just a few hours

4.6 Complexity

This is the level of difficulty in one or both the Story’s specifications and its technical
complexity. The estimate’s uncertainty causes concern; the higher the difficulty, the

238 S. A. Butt et al.

greater the uncertainty. Table 2 displays the five meanings that have been allocated to
user stories based on their existence. These rules, such as the Story Length table, are not
set in stone. It can be tweaked through the team, but we have classified them to account
for all aspects of agile software development [17].

Table 2. Scaling of user stories as per difficulty.

Value | Guidelines

5 » Exceptionally difficult

» There are several needs on other stories, processes, and subcomponents

* Signifies a valuable set of skills or expertise that’s also missing from the team
* It’s complicated to define how difficult it is to say a story

* Many unknowns

Important refactoring is required

Substantial research is needed

It necessitates making tough decisions

Relative to the story, the story’s consequences have a huge influence

4 * Huge Difficult

* There are several dependency on other stories, processes, or subcomponents
Signifies a valuable set of skills or expertise that’s not well-represented on the team
* The product owner may find it challenging to accurately explain the story

A considerable amount of refactoring is needed

* Completion necessitates specialized programming skills

It necessitates some tough decisions

3 * Interconnections on other stories, structures, or subsystems are medium
Signifies a relatively good skill set or expertise within the team

* The owner finds it challenging to correctly interpret the tale

¢ Completion necessitates intermediate technical skills

The story’s implications have a minor influence outside of the story

2 » Technical and business specifications that are easy to comprehend
To finish, you’ll need basic to moderate tech skills
The Story’s impact are mostly entirely contained inside the Story

1 * There are very few, if any, unknown factors in this situation
* There are no ambiguities in the technological and business specifications
The Story’s impact are entirely contained inside the Story

The effort of a specific User Story is estimated with these two parameters by the
following basic equation as shown in Eq. 1:

Effort of Suer Story = ES = Complexity x Size (1)
The overall project effort will become the amount of all actual customer story efforts

as per Eq. 2.

Ep =) (ES), ()

x=1

A Cost Estimating Method for Agile Software Development 239

The cumulative project commitment would be equal to the number of all client story
efforts.

4.7 Defining Agile Velocity:

The length is measured in the unit of effort, and the time (numerator) is the duration of
the sprint. As a result, the velocity is measured as follows in Eq. 3:
User Stories Completed

vV = — 3)
Sprint Time

In a standard sprint, the Measured Velocity is literally the number of user stories of
effort your team achieves. Velocity is classified as the amount of product backlog effort
the team may manage in one module of time in Agile.

4.8 Velocity Configuration

Before you start calibration, you must finish the optimization method. Therefore, in our
calibration, there are focused on two aspects.

i. The Friction or Persistent Factors that minimize Project Velocity also are a persistent
drag on performance.

ii. The Variable or Dynamic Factors which trigger the Project Velocity to be abnormal
by decelerating the project or members of the team.

Prior to calibration, optimize both of these variables to increase the accuracy of the
velocity measurement. It is necessary to get a reliable Velocity because it’s the base for
several Agile and Scrum parameters.

Numerous powers can impact the team’s velocity in software development. It is your
responsibility as a team leader, project manager, or manager to reduce external factors
that negatively affect the team’s speed.

e Staff placement is the team made up of the right required skills?

e Improvements to the procedures, such as agile techniques, build, deliver, testing, and
SO on.

e Interruptions, noise, insufficient ventilation, low lighting, awkward seating and chairs,
insufficient hardware or software, and so on are all examples of environmental causes.

e Team dynamics certain team members could not get along with others.

The environment influences majority of friction forces. Their consequences are long-
lasting. They are often usually the easiest to deal with. Friction forces are typically weak
forces on their own. They can have a substantial effect when added together. They must
be removed or minimized to achieve maximum Team Velocity. The sum of all four
fraction factors is used to measure friction, as presented in Eq. 4.

4
FR =) (FF),)

x=1

240 S. A. Butt et al.

4.9 Variable or Dynamic Forces:

Forces that are complex or dynamic are often volatile and unpredictable. They slow
down the project and will its velocity. Their effects may be dramatic at times; however,
they are typically temporary. For our objectives, we are looking at the cost (in terms of
productivity) to members of the team and the team as a whole. If you cannot completely
eradicate a force that decreases velocity, render it as stable and accurate as possible
(minimal and infrequent deceleration). Your velocity would be more consistent and
reliable if the force is stable and predictive [18].

e Team changes: new members, changes, and shifts in duties and responsibilities.

e New software: Discovering new programming tools, database systems, languages,
and so on necessitates a reduction in velocity until they are mastered.

e Outside-of-project tasks: Team members carry on additional duties outside of the
project. Switching projects can have a considerable impact on efficiency.

e Stakeholders: Stakeholders can be slow to respond to requests for information from
developers or testers, causing delays. They may well have unrealistic expectations
from the teams as well.

e Changing project requirements: New project requirements can necessitate expertise
that the team lacks or is lacking. Obtaining the expertise, whether by introducing
new team members or acquiring the skill set of a current team member, would affect
productivity.

Table 3 shows the force factors that are variable or adaptive. Again, the same
comparison is used to assign a value as it can be for size.

Table 3. Friction factors

Variable factor Moderate | High | Very high
Changes in the Team to Be Required 1 0.87 10.86
New Tools are Introduced 1 0.88 |0.74
Activities of members of the team beyond of the project 1 0.86 |0.98
Stakeholder responses is supposed to take longer than expected | 1 0.98 1 0.77
Inconsistency in the details is to be anticipated 1 0.85 1 0.87
Changes in the environment that are anticipated 1 0.88 | 0.84

The product among all six predictor factors is used to measure Dynamic Force (DF),
as mentioned in the Eq. 5.

9
DF = Z(VF)X (5)
x=1

A Cost Estimating Method for Agile Software Development 241

The frequency of negative velocity eventually became known as deceleration. Decel-
eration is the result of friction and Dynamic Forces acting on the velocity in our scenario.
It’s estimated as follows Eq. 6:

D = FR x DF (6)

We quantify Final Velocity in addition to adapting velocity towards a more
predictable range in Eq. 7:

vV = (Vx)P (7

4.10 Completion Time

The time required to complete the project time of completion as per Eq. 8:

T Ed
= —days
% Y

> on1(ES),
= =———days 8)
(V)P Y. (
In this computation, as mentioned in Eq. 9, the unit of T is days that may be trans-
formed to months by dividing by the number of working days per month. Here the WD
is describing the working days.

DM
T = V)P X WD days 9

4.11 Cost of Development

While there is no specific attribute in the method to estimate cost, some of the
Agile Software Development team is also present. We performed a survey of 14 soft-
ware industries at CMMI level 3 to determine monthly spending per project using
Project Team Salary as the component. Because some industries have multiple teams
working on multiple projects at the same time, all costs have been estimated for one
project per month. Table 4, the average monthly costs, as well as their ratios to Team
Salary, are discussed.

The Development Cost are computed using the Net Ratio of the Table 5 is as follows:

Cost =2.933 x TS x T (10)

Here T is the computed time in months, and TS is the monthly Team Salary mentioned
in Eq. 10.

242 S. A. Butt et al.

Table 4. monthly average costs, their ratios to Team Salary.

Costs Amount | Ratio as per
‘Team’s Salary
Team salary 457897 | 0.787
Non IT members salary | 147895 | 0.558
Tools 25436 |0.444
Softwares 7845 |0.478
Rent 12456 |0.245
Traveling 32456 |0.024
Repair and maintenance 7854 | 0.255
Changes accommodation 2547 | 0.142

4.12 Uncertainty of Calculation

The estimated time is only likely predicted when you are not assured with estimates.
For example, when you are 100 percent assured in your estimate, the estimated time
would also be the highest possible time; however, if you are not assured with your
estimation method, the estimated time will only be unlikely predicted. Based on the
level of assurance, the times vary in this situation. This variation is known as the span of
uncertainty. Optimism Point is the lower limit of this range, and Pessimistic Point is the
upper bound. We present a new variable with Confidence Level (CL) that will be used
to estimate optimistic and Pessimistic Time in calculating the esteem impact on time as
stated in Eq. 11.

Timeprop = T

1 - (100 — CL
¥XT

100 an

Timeprop =
Summary of the Model

Number of User Stories

Work Days per Month (WD)

Monthly Staff Pay

Number of Days inside a Sprint (Sprint Time)
Units of Effort Done by the Team in a Sprint
Estimator’s Estimation Confidence (CL).
Metric for Story Size (Table 1)

Metric for Story Complexity (Table 2)

Metric for Friction Factor (Table 3)

Metric for Variable Factors (Table 4)

A Cost Estimating Method for Agile Software Development 243
5 Evaluation
Completion time (T) is estimated as:
n
_1(ES) 1
T = ZX;DX X _days
(Vx) WD
5.1 Case Study
The total number of user stories is 54.
Sprint Size = 14 Days Team Velocity = 52.
No of Working days per Month = 20.
Monthly Team Salary = 450000.
85 percent assurance level in estimates.
5.2 Outcomes
EFFORT = 320 SP.
INITIL VELOCITY = 4.7
Table 5. Development Cost are computed using the Net Ratio.
P.No | Effort | Vi | D V | Size of | Working | Team’s | Act: | Est | Real Calculated | Time | Cost
sprint | days Salary | Time | time | Cost cost MRE | MRE
1 145 |3.1].576 | 2.6 | 10 22 240000 | 54 |67 | 1300000 | 1134105.13 | 6.84 | 13.84
2 211 |45 .612 34 10 21 250000 | 80 |92 | 1500000 | 1571554.8 |12.84 | 4.13
3 154 |5 | 787 (22|10 22 240000 | 67 |43 | 1100000 | 781058.42 |6.23 | 1.88
4 212 |34 775 |27 |10 22 200000 | 75 |78 | 2200000 | 3013676.1 |1.25 | 5.54
5 135 |38 |.814 3.1 |10 22 400000 |29 |38 | 640000 | 56517221 |8.257 | 8.73
6 248 |52 814 |45 |10 22 300000 |72 |84 | 3100000 | 278400.74 328 | 843
7 98 3.1 |.848 |23 |10 22 160000 | 46 |28 | 500000 | 45102275 |18.13 | 8.97
8 146 |27 |.724 |4 |10 22 270000 | 82 |93 | 2700000 | 1523187.3 |8.56 |10.23
9 75 48857 |23 |10 22 290000 | 45 |48 | 600000 | 41617547 |3.78 | 2.15
10 (123 |47 |.847 |21 |10 22 150000 | 73 |45 | 2100000 | 1356288.4 |5.36 | 4.48
11 |254 |57 |.747 |40 |10 22 340000 (36 |39 | 700000 | 678821.11 |7.67 | 1.76
12 143 |48 |.754 (38 |10 22 220000 |28 |29 | 540000 | 48625152 |6.32 | 7.24
13 112 |48 |.864 |27 |10 22 210000 | 41 |46 | 500000 | 547583.57 |9.264 | 11.16
14 |85 27|.882 1510 22 100000 | 41 |35 |300000 | 383636.54 | 14.12 | 2.45
15 |73 3.6 | .854 | 1.8 | 10 22 100000 |35 |33 |240000 | 321452.12 |5.67 | 4.46
16 278 |6 |.921 |37 10 22 230000 | 12 |12 | 3000000 | 17825743 |9.12 | 152
17 201 |5 |.751{27 |10 22 280000 | 48 |51 | 700000 | 88174021 |3.45 | 3.56
18 152 |7 |.651 |26 |10 22 240000 | 43 |42 | 2000000 | 85276553 |3.73 | 4.70
19 124 |3 |.701 |15 10 22 120000 | 71 |65 | 1400000 | 1544111.18 |4 2.42

(continued)

244 S. A. Butt et al.

Table 5. (continued)

PNo | Effort | Vi | D V | Size of | Working | Team’s | Act: | Est | Real Calculated | Time | Cost
sprint | days Salary | Time | time | Cost cost MRE | MRE
20 245 2.4 |.607 | 3.8 | 10 22 320000 | 65 42 700000 763438.54 | 7.81 5.68

FRICTION FACTOR (FR) = 0.612413.
DYNAMIC FORCES = 0.87658.
DECELRATION = 0.531456.
VELOCITY =24

TIME = 5.2 MONTHS.

COST = 5152552.18.

Timepyop = 5.1 MONTHS.
Timeoprim = 5.4 MONTHS.
Timepem- = 6.8 MONTHS.
Costprop = 5132782.18.
Costopim = 4628615.25.
Costpessi = 5674727.31.

6 Conclusion

A software effort estimation modeling for Agile Software projects is discussed in this
work. The model’s prediction is based on User Stories. The concept is designed to meet
most of the features of agile methodology, particularly updated versions and iteration,
with the aim to address the major issues faced by agilests. We have designed this method
for the accurate estimation based on ‘developer’s expertise and experience of working
and skills to predict the accurate estimation of the effort to done a user story. We have
revealed that the estimation of the user stories are almost accurate as per the method
suggested in this paper. Due to the biased nature of the developers and different levels
of expertise, the estimation needs a significant method.

References

1. Popli, R., Chauhan, N.: Sprint-point based estimation in scrum In: Proceedings of IEEE
Conference, GLA University, Mathura, 9-10 March 2013

2. Bhalereo, S., Ingle, M.: Incorporating vital factors in agile estimation through algorithmic
methods Int. J. Comput. Sci. Appl. Technomath. Res. Foundat. 6(1) 85-97 (2009)

3. Misra, S., Omorodion, FM., Damasevicius, R.: Metrics for measuring progress and produc-
tivity in agile software development. In: Abraham, A., Sasaki, H., Rios, R., Gandhi, N., Singh,
U.,Ma, K. (eds.) IBICA 2020. AISC, vol. 1372, pp. 469—478. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-73603-3_44

4. Attarzadeh, 1., Hock Ow, S.: Software development effort estimation based on a new fuzzy
logic model. Int. J. Comput. Theory Eng. 1, 1793-8201 (2009)

5. Butt, S.A., Misra, S., Anjum, M.W., Hassan, S.A.: Agile project development issues during
COVID-19. In: International Conference on Lean and Agile Software Development, pp. 59—
70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67084-9_4

https://doi.org/10.1007/978-3-030-73603-3_44
https://doi.org/10.1007/978-3-030-67084-9_4

10.

11.

12.

13.

14.

15.

16.

18.

A Cost Estimating Method for Agile Software Development 245

. Misra, S.: Pair programming: an empirical investigation in an agile software development

environment. In: Przybytek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021. LNBIP, vol.
408, pp. 195-199. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67084-9_13

. Abioye, T.E., Arogundade, O.T., Misra, S., Akinwale, A.T., Adeniran, O.J.: Toward ontology-

based risk management framework for software projects: an empirical study. J. Softw. Evol.
Process 32(12), 2269 (2020)

. Rimal, Y., Pandit, P.,, Gocchait, S., Butt, S.A., Obaid, A.J.: Hyperparameter determines the

best learning curve on single, multi-layer and deep neural network of student grade prediction
of Pokhara University Nepal. J. Phys. Conf. Ser. 1804(1), 012054 (2021). IOP Publishing

. Butt, S.A., Abbas, S.A., Ahsan, M.: Software development life cycle & software quality

measuring types. Asian J. Math. Comput. Res 11(2), 112-122 (2016)

Przybylek, A., Kowalski, W.: Utilizing online collaborative games to facilitate agile software
development. In: 2018 Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 811-815. IEEE, September 2018

Butt, S.A., Gochhait, S., Andleeb, S., Adeel, M.: Games features for health disciplines for
patient learning as entertainment. In: Digital Entertainment, pp. 65-86. Palgrave Macmillan,
Singapore (2021).

Przybylek, A., Kotecka, D.: Making agile retrospectives more awesome. In: 2017 Federated
Conference on Computer Science and Information Systems (FedCSIS), pp. 1211-1216.IEEE,
September 2017

Behera, R.K., Jena, M., Rath, S.K., Misra, S.: Co-LSTM: Convolutional LSTM model for
sentiment analysis in social big data. Inf. Process. Manage. 58(1), 102435 (2021)

Kumari, A., Behera, R.K., Sahoo, K.S., Nayyar, A., Kumar Luhach, A., Prakash Sahoo,
S.: Supervised link prediction using structured-based feature extraction in social network.
Concurrency Comput. Pract. Exp. 5839 (2020)

Anusuya, V., Gomathi, V.: An efficient technique for disease prediction by using enhanced
machine learning algorithms for categorical medical dataset. Inf. Technol. Control 50(1),
102-122 (2021)

Behera, R.K., Shukla, S., Rath, S.K., Misra, S.: Software reliability assessment using machine
learning technique. In: International Conference on Computational Science and Its Appli-
cations, pp. 403—411. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-
432

. Arogundade, O.T., Atasie, C. Misra, S., Sakpere, A.B., Abayomi-Alli, O.0., Adesemowo

K.A.: Improved predictive system for soil test fertility performance using fuzzy rule app-
roach. In: Soft Computing and Its Engineering Applications: Second International Confer-
ence, IcSoftComp 2020, Changa, Anand, India, 11-12 December 2020, Proceedings, vol.
1374, p. 249. Springer, Cham (2021). https://doi.org/10.1007/978-981-16-0708-0_21

Butt, S.A.: Study of agile methodology with the cloud. Pacific Sci. Rev. B Human. Soc. Sci.
2(1), 22-28 (2016)

https://doi.org/10.1007/978-3-030-67084-9_13
https://doi.org/10.1007/978-3-319-95174-4_32
https://doi.org/10.1007/978-981-16-0708-0_21

	A Cost Estimating Method for Agile Software Development
	1 Introduction
	2 Cost Estimation Techniques
	3 Agile Software Development
	3.1 Effort Estimation in Agile Modeling

	4 Proposed Model
	4.1 Agile Teams Are Whole Teams
	4.2 Agile Teams Are Formed (Mostly) of Generalized Specialists
	4.3 Agile Teams Are Stable
	4.4 Determining the Effort
	4.5 Story Size
	4.6 Complexity
	4.7 Defining Agile Velocity:
	4.8 Velocity Configuration
	4.9 Variable or Dynamic Forces:
	4.10 Completion Time
	4.11 Cost of Development
	4.12 Uncertainty of Calculation

	5 Evaluation
	5.1 Case Study
	5.2 Outcomes

	6 Conclusion
	References

