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Abstract. An anti-pattern is defined as a standard but ineffective solu-
tion to solve a problem. Anti-patterns in software design make it hard
for software maintenance and development by making source code very
complicated for understanding. Various studies revealed that the pres-
ence of anti-patterns in web services leads to maintenance and evolution-
related problems. Identification of anti-patterns at the design level helps
in reducing efforts, resources, and costs. This makes the identification of
anti-patterns an exciting issue for researchers. This work introduces a
novel approach for detecting anti-patterns using text metrics extracted
from the Web Service Description Language (WSDL) file. The frame-
work used in this paper builds on the presumption that text metrics
extracted at the web service level have been considered as a predictor
for anti-patterns. This paper empirically investigates the effectiveness of
three feature selection techniques and the original features, three data
sampling techniques, the original data, four word embedding techniques,
and nine classifier techniques in detecting web service anti-patterns. Data
Sampling techniques are employed to counter the class imbalance prob-
lem suffered by the data set. The results confirm the predictive ability
of text metrics obtained by different word embedding techniques in pre-
dicting anti-patterns.

Keywords: Web service · Word embedding techniques · Machine
learning · Classifier techniques · Class imbalance · Anti-pattern · Text
metrics

1 Introduction

Service-Oriented Architecture (SOA) is defined as: “a style of multi-tier comput-
ing that helps organizations share logic and data among multiple applications
and usage modes [6]”. SOA is an architecture used to create systems based
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on autonomous coarse-grained and loosely coupled interactions between com-
ponents called services. Each service bears behavior and processes through con-
tracts, including messages sent to recognizable addresses (called endpoints). The
software industry has considered SOA as a structure to improve the ordering
between the IT industry and the business models to adapt more flexibly to the
businesses’ ever-changing requirements, increasing the business agility. The ever-
changing requirement of the business makes many modules introduced into the
initial software design, evolving it over time and making it very complicated to
maintain and understand. The evolution of software design to fit user and busi-
ness demands degrades the software’s quality. It leads to an ineffective solution to
a frequently occurring problem, called Anti-Pattern. In this work, We considered
the following four web service anti-patterns, namely: AP1: GOWS(God Object
Web Service), AP2:FGWS(Fine-Grained Web Service), AWS: Ambiguous Web
Service, AP4: CWS(Chatty Web Service). Various studies revealed that the pres-
ence of anti-patterns in web services leads to maintenance and evolution-related
problems. Identification of anti-patterns at the design level helps in reducing
efforts, resources, and costs. This makes the identification of anti-patterns an
interesting problem for the researchers.

Segev et al. [7] in their work analyzed two methods, namely: Term Fre-
quency/Inverse Document Frequency (Tf-IDF) and context analysis for process-
ing text. The authors have explored WSDL files and free textual descriptors
publicly available in service repositories for analyzing the services. By analyzing
the WSDL and free text descriptions, authors proved by their approach that web
service usage can be broadened by exploiting the data present in the web for
building rich context for client queries rather than burdening users to marginal-
ize their services with formal concepts and explanations. This work motivated
us to utilize the TF/IDF approach and three other word embedding techniques
to generate text metrics from the WSDL description files, which are further
used as input for building autonomous models to detect anti-patterns in web
services. In our previous work [8–10], We have build web service anti-pattern
detection techniques using the object-oriented metrics and the WSDL metrics
that are generated from the web service description language (WSDL) files as
input. This paper empirically investigates the effectiveness of three feature selec-
tion techniques and the original features, three data sampling techniques, the
original data, four word embedding techniques, and nine classifier techniques in
detecting web service anti-patterns. Data Sampling techniques are employed to
counter the class imbalance problem suffered by the data set.

2 Literature Survey

Pietrzak and Walter [5] defined and analyzed various relationships among the
smells and provided hints on how they could be exploited to reduce anti-patterns
detection. Authors performed experiments in the Jakarta Tomcat code to prove
that knowledge about identified smells improves detecting other smells existing
in the code. Jaafar et al. [3] argued in his paper that classes taking part in anti-
pattern and patterns of software designs have dependencies with other classes,
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i.e., unvarying and mutating dependencies, that may spread issues to different
classes. In this paper, the authors have empirically investigated the consequences
of dependencies in the object-oriented system by focusing and analyzing the rela-
tionship between co-change and static dependencies and change proness, fault
proness, and fault types classes are exhibiting. The hypothesis is validated on six
design anti-patterns and ten anti-patterns in 39 releases of XercesJ, JFreeChart,
and ArgoUML. Experimental results showed that the classes with anti-patterns
are more prone to fault proness when compared to other classes. The limitations
of this work are 1. Authors have conducted their experiments on a limited set of
anti-patterns and design patterns. 2. The metrics used in the study are also lim-
ited. Velioglu and Selcuk [11] developed a Y-CSD tool that detects and reduces
anti-patterns and code smells in the software project. The proposed tool is used
to detect two anti-patterns, namely Brain Method and Data Class. Y-CSD uses
structural analysis for the detection of code smells and anti-patterns. Kumar and
Sureka [4] proposed an approach for the automatic detection of anti-patterns
by static analysis of the source code. In this paper, the author proposed that
the aggregate values of the source code metrics computed at the web-service
level can be used as predictors for anti-pattern detection. In this paper, the
author has empirically investigated the application of eight machine learning
algorithms, i.e., Bagging, Multilayer Perceptron, Random Forest, Naive Bayes,
Decision Tree, Logistic Boost, AdaBoost, Logistic regression, four data sampling
techniques, namely: Downsampling, Random Sampling, and Synthetic Minority
oversampling Technique (SMOTE) and four feature selection techniques, i.e.,
Information Gain, Symmetric Uncertainty, Gain Ratio and OneR in the pre-
diction of anti-patterns. Borovits et al. [2] proposed technique for the detection
of linguistic anti-patterns in infrastructure as code (Iac) scripts. The authors
employed deep learning and word embedding techniques for the proposed app-
roach. Further, the authors build the abstract syntax tree of Iac code units to
create their code embedments. Authors validated their approach on the dataset
extracted from open source repositories, and experimental results showed an
accuracy ranging from 0.78–0.91 in detecting linguistic anti-patterns in Iac.

3 Proposed Framework and Research Background

In this work, experiments were carried on a downloaded dataset from GitHub
repository1. Figure 1 shows the quantity of web services in which each of the
anti-patterns exist (%AP) and does not exist (%NAP) in the dataset.

Fig. 1. Percentages(%AP) and number(#AP) of anti-patterns in dataset

1 https://github.com/ouniali/WSantipatterns.

{https://github.com/ouniali/WSantipatterns}.
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Figure 2 shows the proposed framework for the experimental work. The
experimental dataset has WSDL description files collected from various domains
like weather, education, finance, etc. The first step comprises generating text
metrics from the WSDL file by applying four word embedding techniques,
namely: Term frequency-inverse Document Frequency (Tf-IDF), Continuous Bag
Of Words (CBOW), Global Vectors for Word Representation (GloVe), and SKip
Gram (SKG). Each of these techniques is producing around 450–1200 features
for each of the WSDL files. There is a chance that some of these features are irrel-
evant in the detection of anti-patterns. To remove such features, we used three
feature selection techniques to select the significant features in the next step. As
we have discussed in Sect. 3, the dataset considered for the experiment is suffer-
ing from the class imbalance problem. Therefore, we used three data sampling
techniques, namely: Synthetic Minority Oversampling Technique (SMOTE),
BSMOTE (Borderline SMOTE), and ADASYN (Adaptive Synthetic), to over-
come the class imbalance problem. Further, We used nine different classifier
techniques to generate models for the prediction of web service anti-patterns.
Finally, we did the comparative analysis of various models developed to predict
web service anti-patterns using performance measures such as Accuracy, Area
under Curve (AUC), and F-measure.

Fig. 2. Proposed framework

3.1 Word Embedding Techniques for the Generation of Text
Metrics

In this work, we use four different word embedding techniques to generate text
metrics that are later used as input for generating the models for detecting
web service anti-patterns. As discussed in Sect. 3, the considered dataset has
a collection of WSDL description files. All the word embedding techniques are
applied on each of the WSDL files in which each line of code is considered text
to generate the text metrics. A brief of each of the word embedding technique
used in this work are given below:

– Term frequency- Inverse Document Frequency (Tf-IDF): is a numer-
ical approach that shows the importance of a word in a file. Tf-IDF value
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increases in proportion with the number of times a word surfaces in a file and
is balanced by the number of files in the corpus that has the word.

Tf(w) =
(no. of times w surfaces in a file)

(total no. of words in the file)

IDF (w) = loge(
total no. of files

no.of files with w in it
) (1)

– Continuous Bag Of Words(CBOW): CBOW model predicts the center
words based on the context of the surrounding words. CBOW predicts the
center word based on the context window words.

– SKip Gram(SKG): Skip-gram model computes the probability of the cen-
ter word appearing with the context words by computing the similarity with
the dot product, then it converts the similarity into probability by passing it
through the soft-max functions.

– Global Vectors for Word Representation(GLOVE): Glove uses matrix
factorization techniques on the word-context matrix. In this technique, we
construct a matrix of co-occurrence information, in which we count each word
shown in rows and the frequency of occurrence of the word in a particular
context shown in the column. For each word, we search for the context terms
within a specified range defined by the window size before the word and a
window size post the word.

3.2 Feature Selection Techniques

As discussed in Subsect. 3.1, we applied four different word embedding techniques
individually on each of the WSDL description files for generating text metrics
as features. Each of the techniques produced around 450–1200 features for every
WSDL file. All the features generated may not be significant in the detection
of anti-patterns. Hence, it is vital to remove all the irrelevant and insignificant
features from the data before generating the models. Firstly, we applied a set of
feature selection and ranking techniques used in previous work [9] to select the
significant features (SIGF). Then we applied two other techniques, Compact-
ness Centroid based Average(CCra) [1], Principal Component Analysis(PCA)
for selecting the relevant and significant features. We use the features selected
by different feature selection techniques and the original features as input for
building the models to detect web service anti-patterns.

3.3 Data Sampling Techniques

As discussed in Sect. 3.1, the dataset considered for experiments is suffering from
the class imbalance problem. To counter this problem, We used three differ-
ent sampling techniques in this work, namely: Synthetic Minority Oversampling
Technique (SMOTE), BSMOTE (Borderline SMOTE), and ADASYN (Adap-
tive Synthetic). We developed the models to detect anti-patterns using the data
after applying different sampling techniques and the original data.
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3.4 Classifier Techniques

We apply various classifiers such as Naive Bayes classifier with different ker-
nels, i.e., Multinomial (MNB), Bernoulli (BNB) and Gaussian (GNB), Decision
Tree (DT), Bagging classifier (BAGC), Random Forest (RF), Extra Randomized
Tree classifier (EXTR), AdaBoost (AdaBST) and Gradient Boost (GRBST) for
training the models for the detection of various anti-patterns considered in this
study. Furthermore, while training the models, we split the data in the ratio of
80:20 for training and testing.

4 Experimental Results

This paper empirically investigates the effectiveness of three feature selection
techniques and the original features, three data sampling techniques, the original
data, four word embedding techniques, and nine classifier techniques in detecting
web service anti-patterns. The total number of predictive models built to detect
web service anti-patterns using text metrics as input are 4× 4 × 4 × 9 × 4 = 2304.
Performance metrics such as accuracy, Area Under Curve (AUC) are used for
evaluating the predictive ability of the models generated for the detection of
web service anti-patterns. Table 1 shows the accuracy values for all the models
generated to detect GOWS anti-pattern. From Table 1, we observed that the:

– We observed that the models trained on data after applying sampling tech-
niques show good performance compared to the models trained on the original
data.

– It is observed that the model developed by data after applying the data
sampling technique SMOTE shows better performance.

– We observed that the anti-pattern prediction model developed using the fea-
tures generated by applying the word embedding technique Tf-IDF shows the
best performance with the mean accuracy value of 91.93.

– It is also observed that the mean accuracy value of the model developed using
the features selected as significant features(SIGF) as input is higher than the
models developed using the features selected by CCra, and PCA as input.

– We observed that the model trained using ensemble technique Extra Trees
classifier with a mean accuracy of 95.35 is higher when compared to the
models trained using other classifier techniques.

5 Comparative Analysis

This section compares the models’ performance using various word embedding
techniques, data sampling techniques, feature selection techniques, and classifier
techniques to detect multiple anti-patterns using box-plots, descriptive statistics,
and statistical hypothesis testing.
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Table 1. AUC Value of GOWS anti-pattern

Feature selection Data sampling
technique

Word embedding
technique

MNB BNB GNB DT BAGC RF EXTR AdaBST GrBST

AF OD tf-idf 0.55 0.91 0.89 0.89 0.91 0.91 0.91 0.90 0.86

AF OD cbow 0.62 0.87 0.66 0.88 0.91 0.90 0.91 0.85 0.88

AF OD skg 0.62 0.86 0.64 0.88 0.91 0.91 0.93 0.90 0.86

AF OD Glove 0.76 0.84 0.65 0.84 0.92 0.92 0.91 0.88 0.84

AF SMOTE tf-idf 0.98 0.99 0.98 0.92 0.95 0.97 0.99 0.95 0.90

AF SMOTE cbow 0.77 0.53 0.82 0.92 0.81 0.90 0.92 0.90 0.88

AF SMOTE skg 0.76 0.52 0.81 0.90 0.83 0.94 0.95 0.93 0.93

AF SMOTE Glove 0.77 0.52 0.80 0.91 0.81 0.93 0.96 0.93 0.90

AF BSMOTE tf-idf 0.98 0.99 0.97 0.94 0.96 0.98 0.99 0.93 0.91

AF BSMOTE cbow 0.79 0.53 0.85 0.95 0.84 0.96 0.94 0.93 0.93

AF BSMOTE skg 0.80 0.52 0.84 0.94 0.86 0.96 0.96 0.94 0.95

AF BSMOTE Glove 0.80 0.52 0.83 0.88 0.83 0.96 0.96 0.92 0.93

AF ADASYN tf-idf 0.98 1.00 0.98 0.92 0.92 0.99 0.99 0.95 0.86

AF ADASYN cbow 0.73 0.53 0.76 0.82 0.74 0.85 0.85 0.86 0.86

AF ADASYN skg 0.71 0.53 0.78 0.88 0.79 0.88 0.87 0.87 0.87

AF ADASYN Glove 0.72 0.52 0.74 0.83 0.73 0.89 0.93 0.82 0.82

SIGF OD tf-idf 0.93 0.99 0.72 0.92 0.91 0.91 0.91 0.91 0.89

SIGF OD cbow 0.62 0.87 0.64 0.89 0.91 0.90 0.89 0.90 0.88

SIGF OD skg 0.63 0.86 0.62 0.87 0.91 0.91 0.92 0.89 0.85

SIGF OD Glove 0.77 0.85 0.65 0.87 0.92 0.92 0.91 0.86 0.82

SIGF SMOTE tf-idf 0.99 0.99 0.96 0.92 0.96 0.97 0.99 0.96 0.91

SIGF SMOTE cbow 0.77 0.52 0.82 0.92 0.82 0.94 0.93 0.90 0.88

SIGF SMOTE skg 0.76 0.52 0.81 0.90 0.84 0.94 0.95 0.92 0.91

SIGF SMOTE Glove 0.77 0.52 0.80 0.91 0.82 0.93 0.94 0.89 0.92

SIGF BSMOTE tf-idf 0.99 0.99 0.96 0.93 0.98 0.97 0.98 0.92 0.92

SIGF BSMOTE cbow 0.79 0.52 0.85 0.96 0.84 0.96 0.96 0.93 0.93

SIGF BSMOTE skg 0.80 0.52 0.84 0.94 0.86 0.96 0.96 0.94 0.94

SIGF BSMOTE Glove 0.80 0.52 0.83 0.90 0.84 0.96 0.96 0.91 0.90

SIGF ADASYN tf-idf 0.99 0.99 0.96 0.91 0.89 0.97 0.99 0.90 0.87

SIGF ADASYN cbow 0.73 0.53 0.75 0.84 0.76 0.83 0.85 0.86 0.84

SIGF ADASYN skg 0.71 0.53 0.78 0.89 0.80 0.87 0.89 0.87 0.87

SIGF ADASYN Glove 0.72 0.52 0.75 0.84 0.75 0.91 0.91 0.84 0.74

CCRA OD tf-idf 0.95 0.97 0.90 0.90 0.91 0.91 0.91 0.92 0.92

CCRA OD cbow 0.91 0.89 0.65 0.87 0.91 0.89 0.91 0.88 0.86

CCRA OD skg 0.91 0.88 0.63 0.88 0.91 0.90 0.92 0.90 0.89

CCRA OD Glove 0.91 0.87 0.66 0.87 0.91 0.91 0.92 0.88 0.87

CCRA SMOTE tf-idf 0.97 0.98 0.96 0.93 0.96 0.96 0.99 0.89 0.90

CCRA SMOTE cbow 0.76 0.11 0.81 0.87 0.82 0.89 0.89 0.84 0.86

CCRA SMOTE skg 0.77 0.13 0.81 0.90 0.85 0.94 0.93 0.90 0.91

CCRA SMOTE Glove 0.77 0.52 0.80 0.93 0.81 0.94 0.95 0.90 0.90

CCRA BSMOTE tf-idf 0.97 0.98 0.96 0.93 0.98 0.98 0.99 0.93 0.92

CCRA BSMOTE cbow 0.79 0.12 0.86 0.93 0.83 0.94 0.93 0.89 0.88

CCRA BSMOTE skg 0.80 0.12 0.84 0.94 0.85 0.96 0.97 0.94 0.93

CCRA BSMOTE Glove 0.81 0.52 0.83 0.93 0.85 0.94 0.96 0.90 0.90

CCRA ADASYN tf-idf 0.96 0.97 0.97 0.89 0.90 0.96 0.98 0.89 0.80

CCRA ADASYN cbow 0.72 0.11 0.76 0.78 0.73 0.78 0.84 0.71 0.76

CCRA ADASYN skg 0.71 0.13 0.78 0.84 0.80 0.90 0.87 0.83 0.82

CCRA ADASYN Glove 0.72 0.52 0.76 0.78 0.78 0.86 0.90 0.88 0.78

PCA OD tf-idf 0.91 0.91 0.85 0.85 0.91 0.91 0.89 0.90 0.89

PCA OD cbow 0.91 0.90 0.81 0.84 0.91 0.90 0.92 0.92 0.89

PCA OD skg 0.91 0.91 0.75 0.85 0.91 0.92 0.89 0.89 0.90

PCA OD Glove 0.91 0.91 0.79 0.83 0.91 0.90 0.91 0.87 0.89

PCA SMOTE tf-idf 0.67 0.10 0.78 0.87 0.84 0.88 0.90 0.79 0.81

PCA SMOTE cbow 0.36 0.11 0.84 0.88 0.84 0.88 0.91 0.79 0.81

PCA SMOTE skg 0.38 0.11 0.82 0.90 0.85 0.93 0.94 0.91 0.90

PCA SMOTE Glove 0.29 0.11 0.79 0.86 0.84 0.90 0.94 0.81 0.85

PCA BSMOTE tf-idf 0.71 0.09 0.83 0.90 0.88 0.91 0.93 0.86 0.88

PCA BSMOTE cbow 0.41 0.10 0.87 0.92 0.86 0.93 0.94 0.86 0.87

PCA BSMOTE skg 0.53 0.10 0.86 0.93 0.85 0.94 0.94 0.91 0.90

PCA BSMOTE Glove 0.31 0.10 0.82 0.89 0.88 0.93 0.95 0.86 0.88

PCA ADASYN tf-idf 0.53 0.11 0.73 0.82 0.77 0.85 0.84 0.78 0.76

PCA ADASYN cbow 0.36 0.11 0.77 0.81 0.77 0.80 0.86 0.70 0.73

PCA ADASYN skg 0.39 0.12 0.77 0.80 0.80 0.84 0.89 0.77 0.82

PCA ADASYN Glove 0.28 0.10 0.71 0.83 0.76 0.83 0.86 0.78 0.72
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5.1 Word Embedding Techniques

Figure 3 shows the performance values, i.e., Accuracy and AUC of the models
developed using text metrics generated by applying different word embedding
techniques as input using Box-plot diagrams. Table 2 shows the descriptive statis-
tics for different word embedding techniques used in this work. From Fig. 3 and
Table 2, we infer that the performance of the model developed using the text
metrics generated by applying the Tf-IDF technique as input is showing better
performance, with 91.93 mean, 96.44 median, 91.45 Q1, and 98.07 Q3 accuracy
values. On the other hand, the model developed with the CBOW technique’s
metrics shows the worst performance with a mean accuracy value of 83.21. Fur-
ther, We used Wilcoxon signed-rank test for statistically comparing the perfor-
mance of the various web service anti-pattern prediction models developed using
text metrics generated by applying different word embedding techniques as input
and the original metrics. The null hypothesis considered in this paper is: “The
web service anti-pattern prediction model trained using text metrics generated
by applying different word embedding techniques as input are not significantly
different”. The considered null hypothesis is accepted if calculated p-values as
≥ 0.05. Table 3 shows the p-value obtained for the models developed using met-
rics generated by applying various word embedding techniques. A closer look at
Table 3 showed that most of the comparison points have the p-value as ‘0’, i.e.,
the considered hypothesis is rejected. Hence, we conclude a significant difference
between the models’ performance developed using the text metrics generated by
applying different word embedding techniques as input.
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Fig. 3. Box-plot for word embedding techniques

Table 2. Descriptive statistics: word embedding technique

Min Max Mean Median Q1 Q3

tf-idf 4.79 100.00 91.93 96.44 91.45 98.07

cbow 4.79 99.47 83.21 89.90 81.82 94.72

skg 5.05 99.46 83.73 90.88 82.07 94.95

Glove 4.52 99.20 84.26 89.90 82.27 94.81



A Novel Approach for the Detection of Web Service 225

Table 3. Statistical hypothesis: word embedding technique

tf-idf cbow skg Glove

tf-idf 1 0 0 0

cbow 0 1 0 1

skg 0 0 1 0

Glove 0 1 0 1

5.2 Data Sampling Techniques

Figure 4 shows the performance values, i.e., Accuracy and AUC of the models
developed using the data after applying the data sampling techniques along with
the original data using Box-plot diagrams. Table 4 shows the descriptive statistics
of various data sampling techniques used in this study. From Fig. 4 and Table 4,
we conclude that the performance of the models developed after applying data
sampling techniques is better when compared to the performance of the models
developed using the original data. We also observed that the model developed
using SMOTE shows the best performance value with the mean accuracy value
of 85.95. On the other hand, the model developed using actual data (OD) deliv-
ers the worst performance with the mean accuracy value of 79.71. Further, We
used Wilcoxon signed-rank test to statistically compare the performance of the
web service anti-pattern prediction models developed using the data after apply-
ing various data sampling techniques and the original data. The null hypothe-
sis considered in this paper is: “The web service anti-pattern prediction model
trained using the data after applying various data sampling techniques are not
significantly different”. The considered null hypothesis is accepted if calculated
p-values as ≥ 0.05. Table 5 shows the p-value obtained for the models developed
using data after applying various data sampling techniques. From Table 5, We
observed that most of the comparison points have the p-value of ‘0’. Therefore,
we conclude that the null hypothesis is rejected and that there is a significant
difference between the performance of the models developed using the data after
applying various data sampling techniques.
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Fig. 4. Box-plots for data sampling techniques
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Table 4. Descriptive statistics: data sampling techniques

Min Max Mean Median Q1 Q3

OD 44.44 100.00 79.71 88.41 78.38 93.94

SMOTE 4.52 99.73 85.95 94.01 84.96 97.41

BSMOTE 4.79 99.73 85.80 93.88 84.81 97.33

ADASYN 4.80 100.00 82.52 88.66 79.59 96.34

Table 5. Statistical hypothesis: data sampling techniques

OD SMOTE BSMOTE ADASYN

OD 1 0 0 0

SMOTE 0 1 1 0

BSMOTE 0 1 1 0

ADASYN 0 0 0 1

5.3 Feature Selection Techniques

Figure 5 depicts the performance values, i.e., Accuracy and AUC of the models
developed using the features selected by different feature selection techniques as
input using Box-plot diagrams. Table 6 shows the descriptive statistics for the var-
ious feature selection techniques used in this study. Table 6 show that the mean
accuracy value of the model developed using the features selected as significant
features (SIGF) using various feature selection and ranking techniques as input is
higher than the models developed using the features selected byCCra, and PCA as
input. Furthermore, Fig. 5 shows that the inter-quartile range for the AUC value
for the model generated using PCA is comparatively tall compared to the other
models. This indicates that the performance parameters obtained using multiple
executions in PCA are exhibiting more variation when compared to other mod-
els. Next, we compare the models’ performance using the features selected by dif-
ferent feature selection techniques by using the Wilcoxon signed-rank test. The
null hypothesis considered here is: “The performance of the anti-pattern prediction
models developed using features selected by different feature selection techniques
are not significantly different”. The defined null-hypothesis is accepted if the p-
value obtained using the Wilcoxon signed-rank test is ≥ 0.05. Table 7 shows the
p-values of the models developed using various combinations of features as input.
From Table 7, we observed that most of the comparison points have the p-value as
‘0,’ i.e., the defined null-hypothesis is rejected. Therefore, there is a significant dif-
ference between the models’ performance utilizing the features selected by using
three different feature selection techniques and the original feature set (AF).

5.4 Classifier Techniques

Figure 6 shows the box-plot diagram of the AUC and the Accuracy of the classifier
techniques. Table 8 shows the descriptive statistics for the models trained using
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Fig. 5. Box-plots for feature selection techniques

Table 6. Descriptive statistics: feature selection techniques

Min Max Mean Median Q1 Q3

AF 44.44 99.73 87.93 92.12 84.38 96.97

SIGF 51.80 100.00 88.72 92.85 84.93 97.22

CCRA 5.85 100.00 86.89 92.42 85.22 96.46

PCA 4.52 99.47 79.60 90.40 82.08 94.44

Table 7. Statistical hypothesis: feature selection techniques

AF SIGF CCRA PCA

AF 1 0 1 0

SIGF 0 1 0 0

CCRA 1 0 1 0

PCA 0 0 0 1

classifier techniques along with the ensemble techniques. From Table 8 and Fig. 6,
we observed that the performance of the model trained using the Extra Trees clas-
sifier (EXTR) is higher when compared to the models trained using other classifier
techniques. The model trained using the Extra Trees classifier (EXTR) shows good
performance with a mean accuracy of 95.35, median accuracy of 96.06, Q1 93.09,
and Q3 of 98.36. For Wilcoxon signed rank-sum test, we considered the hypothesis
as: “The performance of the anti-pattern prediction models trained using various
classifier techniques is not significantly different”. The defined null-hypothesis is
accepted if the p-value obtained using the Wilcoxon signed-rank test is ≥ 0.05 and
is rejected if the p-value is ‘0’. Table 9 shows the p-values of the models trained
using various classifier techniques. FromTable 9, we observed thatmost of the com-
parison points have the p-value as ‘0’, i.e., the defined null-hypothesis is rejected.
Hence we conclude that there is a significant difference between the performance
of the models trained using various classifier techniques.
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Fig. 6. Box-plots for classifier techniques

Table 8. Descriptive statistics: classifier techniques

Min Max Mean Median Q1 Q3

MNB 8.24 99.20 74.47 79.72 66.49 91.41

BNB 4.52 100.00 56.48 52.55 11.99 91.16

GNB 62.12 99.45 85.37 84.57 81.22 91.15

DT 77.78 99.46 92.99 93.65 90.03 96.81

BAGC 53.72 99.73 87.93 89.10 84.41 91.93

RF 78.33 99.73 94.72 95.91 92.42 97.85

EXTR 83.70 100.00 95.35 96.06 93.09 98.36

AdaBST 69.72 99.19 93.00 93.94 90.18 96.97

GrBST 71.75 98.39 91.75 92.50 88.89 96.14

Table 9. Statistical hypothesis: classifier techniques

MNB BNB GNB DT BAGC RF EXTR AdaBST GrBST

MNB 1 0 0 0 0 0 0 0 0

BNB 0 1 0 0 0 0 0 0 0

GNB 0 0 1 0 0 0 0 0 0

DT 0 0 0 1 0 0 0 0 0

BAGC 0 0 0 0 1 0 0 1 0

RF 0 0 0 0 0 1 0 0 0

EXTR 0 0 0 0 0 0 1 0 0

AdaBST 0 0 0 0 1 0 0 1 0

GrBST 0 0 0 0 0 0 0 0 1



A Novel Approach for the Detection of Web Service 229

6 Conclusion

In this work, we empirically investigated the correlation between the occurrence
of anti-patterns and the text metrics. We also investigated the effectiveness of
applying fourword embedding techniques, three feature selection techniques, three
data sampling techniques, and nine classifier techniques to detect web service anti-
patterns. Our main findings in this study are:

– Our analysis proved the relationship between anti-patterns in WSDL files and
the text metrics generated from the WSDL file.

– We observed that the models trained on data after applying sampling tech-
niques show good performance compared to the models trained on the original
data.

– It is also observed that the mean accuracy value of the model developed using
the features selected as significant features(SIGF) using various feature selec-
tion and ranking techniques as input is higher than the models developed using
the features selected by CCra, and PCA as input.

– It is observed that the model developed by data after applying the data sam-
pling technique SMOTE shows better performance.

– We observed that the anti-pattern prediction model developed using the fea-
tures generated by applying the word embedding technique Tf-IDF shows the
best performance.

– We observed that the model trained using the ensemble technique Extra Trees
classifier is better than the models trained using other classifier techniques.
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