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Abstract. Learning human visual attention into a deep convolutional network
contributes to classification performance improvement. In this paper, we propose
a novel attention-guided architecture for image quality assessment (IQA) of slit
lamp images. Its characteristics are threefold: First, we build a two-branch classi-
fication network, where the input of one branch uses masked images to learning
regional prior. Second, we use a Forward Grad-CAM (FG-CAM) to represent the
attention of each branch and generate the saliency maps. Third, we further design
an Attention Decision Module (ADM) to decide which part of the gradient flow
of both two branch saliency maps will be updated. The experiments on 23,197
slit lamp images show that the proposed method allows the network closer to
human visual attention compared with other state-of-the-art methods. Our method
achieves 97.41%, 84.79%, 92.71% on AUC, F1-score and accuracy, respectively.
The code is open accessible: https://github.com/nhoddJ/CSRA-module.
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1 Introduction

Convolutional neural network has been widely used in image fusion, object detection
and image classification and has achieved widespread success. In the field of medical
image analysis, it also achieves performance close to human experts and beyond [1–4].
Recent research shows that learning human visual attention into a convolutional network
can help improve classification effect [5]. This is because the introduction of clinical
prior knowledge (e.g., the shape and size of the Lesion area) allows the network to learn
more and becomes more robust.

Learning human visual attention into a deep convolutional network contributes to
classification performance improvement [6–10]. Huang et al. [8] utilized masks between
the internal limiting membrane (ILM) layer and the retinal pigment epithelium (RPE)
layer to guidemacular disease diagnose.Wang et al. [9] utilized iris regionmasks to assist
image quality assessment (IQA) in the iris region. He et al. [11] proposed a multi scale
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feature extractor to get deep features of fovea region masks to assist diabetic macular
edema (DME) grading. These researches show that the clinical semantic region attention
mechanisms often lead performance improvement of the classification task.

In this work, we focus on the task of slit lamp image quality assessment. Slit lamp
images are mainly used to observe ocular surface diseases, which is one of the common
clinical ophthalmology diseases. The common clinical manifestations include dry eye
disease (DED), blepharitis, seasonal allergic conjunctivitis, etc. For DED, its ocular
surface irritation and ocular surface damage have a significant impact on the visual
acuity between blinks. In severe cases, it can cause ocular surface inflammation, lacrimal
glands inflammation and vision loss. The latest epidemiological data survey shows that
DED and new cases that occur with environmental changes account for about 20% of
the population [11]. As an important tool to judge ocular surface inflammations and
elevated intraocular pressure [12], bulbar conjunctiva hyperemia grading needs high-
quality image to analyze morphological features of blood vessels. Lesions analysis and
feature quantification also needhigh-quality images. Therefore, it is necessary to evaluate
the image quality of the slit lamp images to screen high-quality images.

In this work, we propose a novel attention-guided architecture for image quality
assessment of slit lamp images. Our key insight is to let the attention of the classification
network focus on the region marked by human experts, so that the network learns human
visual attention. To this end, we build a two-branch classification network, where the
input of one branch uses masked images to learning regional prior. Second, we use a
Forward Grad-CAM (FG-CAM) to represent the attention of each branch and generate
the saliency maps. Third, we further design an Attention Decision Module (ADM) to
decide which part of the gradient flow of both two branch saliency maps will be updated.

This paper makes contributions as follows:

(1) We propose a novel attention-guided architecture for image quality assessment of
slit lamp images. Experimental results show that it achieves visual attention closer
to human experts than state-of-the-art baselines.

(2) We design a Forward Grad-CAM and an attention decision module. The FG-CAM
is used to represent the network attention and can participate in network training,
while ADM is used to update the branch gradients.

2 Dataset

The dataset we use contains 47095 slit lamp images taken from clinical purposes among
several hospitals between 18/3/2015 and 05/10/2019. The dataset contains a variety
of diseases, e.g., pterygium, trichiasis, pinguecula, hemorrhage, edema and cases of
different degrees of conjunctival hyperemia. Further, the dataset also contains a variety
of lighting conditions, e.g., Retro-illumination and indirect illumination, while the cases
with ocular fluorescein staining are excluded in this analysis.

We select 11831, 2000 and 9367 images as training set, validation set and test set,
respectively. Note that, the training set and test set are patient-independent. All the
images are resized to 224× 224. To evaluate the image quality of the bulbar conjunctiva
area in these images, 9 trained graduate students annotated three types of labels that
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illumination (‘Good’, ‘Medium’, ‘Bad’), blur (‘Slight’, ‘Medium’, ‘Sever’) and image
quality (‘Accept’ or ‘Refuse’) for the train and validation dataset, while only image
quality (‘Accept’ or ‘Refuse’) for the test dataset. 2 experienced experts finally determine
the category of image quality. To obtain the bulbar conjunctiva mask, the two experts
performed pixel-level annotations on 1045 additional slit lamp images. A U-Net [13]
model was trained to acquire bulbar conjunctival region masks for the above train,
validation and test dataset. The final dataset, called SLIQA, contains slit lamp images,
image quality labels, and bulbar conjunctival region masks.

3 Method

Fig. 1. The proposed attention-guided architecture for slit lamp image quality assessment.

Overview: Our proposed architecture as shown in Fig. 1 contains three parts: (1) Basic
two-branch CNN. (2) Trainable Forward Grad-CAM. (3) Attention Decision Module.
The two-branch CNN with different inputs is introduced in Sect. 3.1. The trainable
Forward Grad-CAM (FG-CAM) used to obtain the saliency maps of two branches is
introduced in Sect. 3.2. The Attention Decision Module (ADM) used to update the
branch gradients is introduced in Sect. 3.3.

3.1 Multi-task Two-Branch Architecture

We denote the original slit lamp image as X and the bulbar conjunctiva region mask
X̃ . We firstly build a two-branch CNN, where the backbone we used is VGG [14],
and the two branches are concatenated at the first length 512 fully connected layer.
The inputs of two branches are X and X · X̃ respectively, where · denotes pixel-wise
multiplication. Then after two fully connected layers, the final fully connected layer
output is length 11 category score vector relative to 4 classification tasks, including
levels of illumination, blur, image quality and bulbar conjunctiva region area level.
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The image quality classification is the main task while the others are auxiliary
classification tasks. Level of the area LArea is calculated as:

LArea =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, A
(
X̃

)
< 0.15

1, 0.15 ≤ A
(
X̃

)
< 0.3

2, 0.3 ≤ A
(
X̃

)
(1)

where A(•) indicates the area ratio of the bulbar conjunctiva area to the total area.
This multi-tasking design is to extract more effective features while accelerating the
convergence of the network.

3.2 Trainable Forward Grad-CAM

In this work, we seek a CAM that can participate in network training, not just for
visualization. Inspired by [15], we use a trainable Forward Grad-CAM (FG-CAM) to
describe the saliency of attention. It is expressed as:

A = conv(f ,w) (2)

where f is the feature map of the convolutional layer, and w represents the neuron
importance weights obtained by the gradients flowing back through a global average
pooling layer. Different from [15], we remove the ReLU operation, which is designed
for visualization in the work of Selvaraju et al. [16].

3.3 Attention Decision Module

Fig. 2. Our proposed attention decision module. GCAMc
1 , GCAM

c
2 denote two outputs of FG-

CAM modules in Fig. 1. DSRM denotes down-sampled semantic region mask. We compare the
cosine distance of these three inputs one to one, and we make final decision which gradients flows
will be frozen by Table 1.
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We further propose an attention decision module (ADM) as shown in Fig. 2. For ADM
with respect to class c, FG-CAM module outputs GCAMc

1 , GCAM
c
2 are obtained by

Eq. (3) from two branch final convolutional layer features of our CNN respectively:

GCAMc
i = ∑

k

∂yc

∂Ak
Ak

(3)

where Ak denotes kth feature map at the final convolutional layer, yc denotes score of
class c, ∂yc

∂Ak
denotes gradient matrix that contains derivative of function yc with respect

to Ak by forward propagation. The DSRM is calculated as:

DSRM = DownSample
(
X̃

)
− f

(
X̃

)
(4)

whereDownSample(•) denotes mean pooling module in this paper, and f
(
X̃

)
is a scalar

to adjust pixel value distribution of DSRM. Once three inputs are prepared, and then we
calculate their cosine distances Lc

cos13, Lc
cos23, Lc

cos12 with respect to the class c by:

Lc
cosij = 1 − vi ·vj

‖vi‖‖vj‖ (5)

where vi, vj denote two vectors to be calculated cosine distance, Lc
cosij ∈ [0, 2], v1, v2,

v3 are flattened by GCAMc
1 , GCAM

c
2 , DSRM respectively. After that we make a final

decision of the output Lc
f by the following algorithm in Table 1:

Table 1. The decision algorithm of ADM with input1, input2, input3 in Fig. 2.

th1 is a threshold to describe the tolerability of disimilarity between GCAMc
i and

DSRM. Lc
f will be set to 0 when GCAMc

i is similar to DSRM enough. GCAMc
i is

expected to tend to be different from DSRM to some extend, because we believe that
the weight distribution of the neural network attention regionGCAMc

i is not necessarily
similar to that of semantic region DSRM, and the specific extent is decided by the neural
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network itself. th2 is a threshold to describe the tolerability of maximal angle between
v1 and v2. Lc

f will be set t 0 when the angle is small enough. GCAMc
1 , GCAM

c
2 are

expected to tend to focus on different regions, because we believe more information
tends to mine when attention regions on the final convolutional layer features of two
branches are different.

Combining Fig. 1, frozen the gradient flow of GCAMc
i denotes that in backpropa-

gation the gradient backflow of GCAMc
i with respect to class c does not be optimized,

whichmeans the one that has a bigger difference with respect to down-sampled semantic
region mask will learn to the other one but not learn with each other. Note that the last
fully-connected layer parameters are shared betweenGCAMc

1 ,GCAM
c
2 , so the gradients

of these parameters will not be frozen.
Overall, the total loss of our model is:

Ltotal = LCE + β · 1
l · ∑l

c Lc
f (6)

where l denotes the number of classes, and β is a coefficient to adjust the contribution
between cross entropy loss and the ADM loss.

4 Experiments

4.1 Implementation Details

All Experiments in this paper obey the following rules: The Adam optimizer is adopted
with the learning rate of 0.0001 firstly. When the average training accuracy of the multi-
task classification is above 85%, the learning rate is set to 0.00001. It will be early stopped
when the training accuracy of task image quality is above 98%, which is judged to be
overfitting. The mini-batch size is set to 8 and all the experiments run on an NVIDIA
GTX 1080Ti GPU.

4.2 Parameter Influence

The th1 and th2 in Table 1 will affect the tolerability of dissimilarity among Grad-CAM
maps and the semantic region mask, and the β in Eq. (6) will affect the balance between
cross-entropy loss and ADM loss. As shown in Table 2, we can see different th1 and th2
have little effect on AUC, F1, Accuracy, which shows our proposed method has good
robustness. When β is set to 0.03, it will have an obvious performance deduction on the
metrics. The reason is that our ADM loss accounts too small proportion to guide neural
network attention to the goal region.

4.3 Comparison with Other Methods

Our method is compared with other similar methods as shown in Table 3. All the inputs
of the compared methods are the original images. The AFN [1] and LACNN [5] are
designed for lesion region mask attention, so there are not any improvement on our task
compared with baseline [14]. AFN has long train time because extra structure is added
on fully connected layer. The GAIN proposed by Li et al. [15] first utilized forward
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Table 2. Parameter influence. Each experiment is repeated three times. The basic combination
of the parameters is th1 = 0.8, th2 = 0.4, β = 0.1. We change one of these parameters, and the
other two parameters remain unchanged for one experiment.

Parameter AUC (%) F1-score (%) Accuracy (%)

th1 = 0.7 97.30 ± 0.10 84.29 ± 0.39 92.67 ± 0.09

th1 = 0.8 97.42 ± 0.09 84.81 ± 0.55 92.65 ± 0.16

th1 = 0.9 97.32 ± 0.04 84.34 ± 0.55 92.36 ± 0.33

th2 = 0.3 97.37 ± 0.07 84.60 ± 0.61 92.65 ± 0.17

th2 = 0.5 97.29 ± 0.08 84.44 ± 0.79 92.76 ± 0.16

β = 0.03 97.18 ± 0.09 83.75 ± 0.77 92.20 ± 0.48

β = 0.3 97.37 ± 0.08 84.41 ± 0.28 92.52 ± 0.06

Grad-CAM to guide CNN’s attention, and it has slightly improvement on AUC and F1-
score comparedwith baseline, but its serial repeat feature extractors take big cost of time.
The DFS proposed by Wang et al. [9] is designed for semantic region mask attention,
and it has a little improvement compared with baseline, but its added segmentation head
attention takes long time. Our proposed method has obvious improvement on AUC,
F1-score and accuracy, and also takes short training time because our architecture has
not any extra structures or serial repeat parts.

Table 3. Comparison with other similar methods, where each experiment is repeated six times.
We denote the train time of the baseline as one unit time.

Method AUC (%) F1-score (%) Accuracy (%) Train time

Baseline [14] 96.99 ± 0.13 83.31 ± 0.41 92.10 ± 0.28 1

AFN [1] 96.97 ± 0.15 83.07 ± 0.48 91.87 ± 0.26 3.115

GAIN [15] 97.07 ± 0.20 83.46 ± 0.77 91.96 ± 0.33 3.067

LACNN [5] 96.99 ± 0.18 83.21 ± 0.52 91.92 ± 0.33 1.308

DFS [9] 97.16 ± 0.13 83.58 ± 0.48 92.00 ± 0.17 3.719

Ours 97.41 ± 0.14 84.79 ± 0.42 92.71 ± 0.28 1.966

The FG-CAM visualization results of each method is shown in Fig. 3. For column A,
AFN has a deviation while other methods focus on the overexposure region. For column
B, AFN and our proposed method focus on the left underexposure region in column
B2 while baseline and LACNN focus on the error region of the cornea in column B1.
For column C, all the methods focus on the overexposure region in column C2, but the
semantic region masked image has many black holes in the overexposure region which
will impede semantic comprehension. Only baseline and our proposed method focus
on the whole overexposure region in column C1. For column D, baseline, LACNN and
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our proposed method focus on the pterygium region in D1, and our proposed method
pays more attention to the bulbar conjunctiva region, while baseline and LACNN pay
more attention to the angulus oculi medialis region which is out of the bulbar conjunc-
tiva region. Overall, our proposed method not only focuses on the bulbar conjunctiva
region, but also notices the specific abnormality regions. Moreover, our method also
notices the whole abnormality region on the original image branch, while the semantic
region masked image has obvious black holes that have a big influence on semantic
comprehension.

Fig. 3. Grad-CAM visualization results of each method. Column A1, B1, C1, D1 are four exam-
ples with different original inputs respectively. A2, B2, C2, D2 are bulbar conjunctiva regions
masked image with respect to A1, B1, C1, D1 respectively. The first row contains the original
images of four pairs of examples. The second row contains eight marked images, where yellow
marks in the odd column show reference bulbar conjunctiva regions while green marks in even
column show reference abnormality regions. The third row to the eighth row are the visualization
of each method. (Color figure online)
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5 Conclusion

We proposed an attention-guided architecture with two-branch CNN for the slit lamp
image quality assessment. Experimental results show that it achieves visual attention
close to human experts and thus improves classification performance. Compared with
the-state-of-art methods, our proposed method has a better performance on AUC, F1-
score, Accuracy metrics. Moreover, our method has the potential to migrate to other
attention-dependent tasks.
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