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Abstract. Deep learning models have become increasingly popular for analysis
of optical coherence tomography (OCT), an ophthalmological imaging modal-
ity considered standard practice in the management of diabetic macular edema
(DME). Despite the need for large image training datasets, only limited number
of annotated OCT images are publicly available. Data augmentation is an essential
element of the training process which provides an effective approach to expand
and diversify existing datasets. Such methods are even more valuable for segmen-
tation tasks since manually annotated medical images are time-consuming and
costly. Surprisingly, current research interests are primarily focused on architec-
tural innovation, often leaving aside details of the training methodology. Here,
we investigated the impact of data augmentation on OCT image segmentation
and assessed its value in detection of two prevalent features of DME: intrareti-
nal fluid cysts and lipids. We explored the relative effectiveness of various types
of transformations carefully designed to preserve the realism of the OCT image.
We also evaluated the effect of data augmentation on the performance of simi-
lar architectures differing by depth. Our results highlight the effectiveness of data
augmentation and underscore themerit of elastic deformation, for OCT image seg-
mentation, reducing the dice score error by up to 23.66%. These results also show
that data augmentation strategies are competitive to architecture modifications
without any added complexity.

Keywords: Deep learning · Data augmentation · Elastic deformation · OCT ·
DME

1 Introduction

Diabetic retinopathy (DR) and one of its major sight-threatening complications, diabetic
macular edema (DME), are the leading causes of vision loss in individuals with diabetes
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mellitus. Early diagnosis and prompt treatment of DME are critical to prevent permanent
vision loss [1]. The clinical features of DME include retinal thickening or fluid retention,
sometimes with a cystic pattern, which may be accompanied by deposition of protein or
lipid within the central retinal tissue.

Optical coherence tomography (OCT) is an ophthalmological imaging modality
based on optical reflectivity, which can provide cross-sectional images and three-
dimensional volumetric data of the retina [2]. Because of its simplicity, availability,
and ability to provide abundance of information, OCT has become essential in the clin-
ical practice, enabling better diagnosis and management of various retinal conditions,
including DME.

Interpretation ofOCT images requires trained retina experts and can be complex even
for experienced clinicians. Moreover, human readings are notably time-consuming, with
variable repeatability and interobserver agreement [3]. The application of computer-
aided diagnosis (CAD) systems to medical imaging can significantly facilitate their
interpretation, including detection of ophthalmic diseases such as DME. In the past few
years, the use of deep-learning models in CAD has greatly improved the ability to detect
clinical abnormalities in medical imaging, resulting in improved results [4]. To date,
however, no retinal CAD system has become commercially available for routine clinical
use, largely due to methodological challenges [5].

A major obstacle to the implementation of deep-learning algorithms for medical
image analysis is the absence of large, annotated datasets required for training of neural
networks. This partly stems from the level of expertise and extent of effort required for
proper data interpretation and labeling, but also from ethical considerations required by
data protection laws. Consequently, there are only a few publicly available OCT datasets
collected from multiple imaging devices, most of which often comprise a relatively
limited number of scans and represented pathologies [6].

The performance of deep-learning models in computer vision depends on the neural
networks training, architecture andmodel scaling [7].Moreover, architectural innovation
is broadly regarded as the main focus of research interest, leaving aside critical details of
the training methodology [8]. Specifically, only a few studies investigated the efficiency
of data augmentation in convolutional neural network training for image classification
and segmentation. The data augmentation type is often stated, but little is explained
about the method, range, and frequency of the process [9].

Presently, for most computer vision problems, basic transformations such as random
flipping, rotating, scaling, shifting or adjusting contrast are valuable regularizers which
can generalize the model and reduce overfitting by expanding and diversifying datasets
without acquiring new images [10].

Elastic deformation is a more complex approach for data augmentation, introducing
higher-order transformation. Utilization of elastic deformation for training of convo-
lutional neural networks was first introduced on the MNIST handwritten digit dataset
[11] where after deformation the image still appeared sufficiently plausible to repre-
sent a real digit. Along with basic transformations, elastic deformation is particularly
suitable for non-rigid objects, yet at the same time it is complicated to construct since
it alters the inner elements of the image. Medical images deal with objects which can
inherently undergo natural transformations that can be described as elastic deformations.
Indeed, different methods of elastic deformation have been applied for medical image
registration [12]. Yet, due to the difficulty of achieving elastic deformation methods
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for images with complex morphology, and perhaps also due to the indeterminate value
of this approach thus far, elastic transformation for data augmentation has been less
commonly used. A previously reported elastic deformation technique for data augmen-
tation was applied on OCT scans of the optic nerve head to render the network invariant
with atypical morphology [13]. Recently, an elastic deformation method was clinically
validated for OCT images of patients suffering from DME [14]. However, to date, the
impact of transformations on neural network performance for OCT image analysis, and
particularly the benefit of elastic deformation, has been relatively understudied.

Here, to provide a systematic approach for OCT data segmentation for DME, we
explored the benefits of data augmentation with a particular examination of the added
value of elastic deformation. We first investigated the impact of diverse data augmenta-
tion methods on an established neural network for segmentation of OCT images from
subjectswithDME, and determined the relative effectiveness of the different approaches.
We then evaluated the impact of data augmentation in relation with the depth of the neu-
ral networks by comparing the performance of two similar architectures differing by
depth in OCT image segmentation.

2 Methods

2.1 Data Augmentation

Basic transformations are augmentation techniques commonly applied to most learn-
ing algorithms, as they are intuitive, easy to understand, and straightforward to imple-
ment. The inner composition of the image is essentially unaffected, but represents a vari-
ation in the image acquisition process such as the subject position or a physical property
of the photographic system. Several basic transformation methods were evaluated on
OCT scans and are described in Table 1.

Table 1. Description of the augmentations applied during neural network training

Augmentation Description

A No transformation Original OCT scan

B Horizontal flip Horizontally flip the OCT scan

C Rotation Randomly rotate the OCT scan in the range ±15°

D Shift Randomly translate horizontally and vertically by up to 10% of
the image height and width

E Scale Randomly scale sampled from the interval [0.9,1.1]

F Brightness, contrast,
saturation

Modify the brightness, contrast and saturation by a random
factor [0.75, 1.25]

G Noise Add gaussian noise with a variance of 0.07

H Basic transformations Combine and apply transformations A to G together

I Elastic deformation Apply elastic transformation with an intensity σ = 9

J All transformations Combine and apply transformations B to G and I together
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Elastic deformation is a higher level of data augmentation that modifies the inner
elements of the image, thus potentially affecting its intrinsic pattern and altering its
realism. OCT retina images often represent anatomically complex features and thus
following the introduction of additional distortion to the inner structure, practicing retina
specialists highly-familiar with typical features of clinical OCT images can evaluate
their authenticity to avoid potential bias. A recent study reported a process of clinical
validation of the degree of elastic deformation that can be applied to OCT scans with
DME while preserving their realistic value [14].

Fig. 1. Elastic deformation process (a) Generate a displacement grid; (b) then a smooth displace-
ment field is interpolated using spline interpolation on the grid displacement; (c) Superimposing
the displacement field on the mask and OCT scan by using bilinear interpolation; (d) Result:
deformed OCT scan and mask

The outline of the elastic deformation method is as follow. First, a uniform 2D grid
of 3 × 3 control points is generated from a normal distribution of mean μ = 0 and
standard deviation σ (Fig. 1(a)). Then a displacement field is created by using spline
interpolation between values of the 3× 3 grid (Fig. 1(b)). Finally, the displacement grid
is applied on the original OCT scan and on the mask by using bilinear interpolation
(Fig. 1(c)), resulting in a deformed OCT image and mask (Fig. 1(d)). To keep the elastic
deformation realistic for OCT images with DME, the maximum deformation intensity
σ is equal to 9 [14].

2.2 Segmentation Network

To assess the impact of various types of transformations on segmentation tasks, we use
a convolutional neural network (CNN) based on U-net architecture [15]. We choose the
U-net model since it has gaineds tremendous recognition and popularity in recent years
in medical image segmentation. Indeed, most of segmentation neural networks of OCT
scans, rely on its encoder decoder design removing or adding layers [16], adding skip
connection [17], modifying convolution [13] or pooling [18].

The segmentation network receives as input anOCT scan, and outputs a segmentation
map that predicts for each pixel if it belongs to intraretinal fluid cysts (IRF), intraretinal



152 D. Bar-David et al.

lipid (IRL) or background. The symmetric structure of the network is shown in Fig. 2
including the contracting path for analyzing context information, the expanding path
for synthesizing the output of the contracting and merging path that transfers local
and accurate information. The proposed architecture differs from the original U-net in
the following manner: batch normalization is added after each block of convolution,
conv-transposed is used instead of up-convolution and filters are resized.

Fig. 2. Illustration of the auto encoder for segmentation based on u-net. Each blue block corre-
sponds to a multi feature map. The model gets an OCT scan and the output is a mask. (Color
online figure)

A common used metric for medical image segmentation is the Dice coefficient that
compares the pixel wise agreement between a segmentation model prediction and their
corresponding ground truth. The formula for Boolean data is defined as follow:

Dice = 2TP

2TP + FP + FN
(1)

Where (TP) is True positive, (FP) False positive and (FN) False negative. The best
segmentation is reached when dice = 1 while dice = 0 refers to a wrong segmentation.
The dice loss function is defined as follow:

Lossdice = 1− 1
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Where y is the ground truth, ŷ is the predicted segmentation, l is the total number of
labels and N is the number of pixels. ε avoids the division by zero.

2.3 Comparison of Shallow Network Versus Deep Network

Following Alexnet architecture [19], researchers have mostly created deeper and more
complex networks to increase performance [20–22]. These architectural expansions are
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beneficial for improving performance but make the network less efficient by increasing
complexity and decreasing speed. Recently, studies have emphasized model efficiency
by optimizing training methods and scaling strategies [8, 9, 23]. Here, a comparison of
two segmentation networks differing by their depth is presented, where the objective
is to determine if architectural differences can be overshadowed by data augmentation.
The “deep network” refers to the segmentation network presented in Sect. 2.2 (Fig. 2)
and consists in 22,807,617 parameters. To provide an objective comparison, the “shallow
network”was constructed by removing the last level of the deep network (supplementary
Table 1). As a result, the number of parameters for the shallow network drop by 35% to
14,940,737 parameters.

3 Evaluation

3.1 Dataset and Training Process

OCT scans were obtained from patients treated at the Retina service of the department
of Ophthalmology, Rambam Health Care Campus, Haifa, Israel from 2016 to 2019. B-
scans were extracted from the Heidelberg Spectralis device using a 49-line raster macula
scan. The size of each OCT image used in this study consists of 352 × 496 pixels and
no subsampling is applied.

OCT volume-scans of 120 subjects affected byDMEwere randomly extractedwhere
only a single cross-section image of the macula was selected per each scan. Two of the
most prevalent clinical features associated with DME, namely intraretinal fluid cysts
(IRF) and intraretinal lipid (IRL) deposits, were manually segmented by a trained oph-
thalmologist and reviewed by a retinal expert. The data was randomly split into three
sets: 60% for the training, 20% for the validation and 20% for the test set.

The network was trained with a batch size of 8 using Adam optimizer. Data aug-
mentation was performed online at each epoch during the training session to remove
memory constraints. The probability that an image undergoes a transformation is 0.5.
We used pytorch library on a single NVIDIA Titan V GPU.

3.2 Evaluation of Data Augmentation Impact on Segmentation

To evaluate the impact of data augmentation on OCT segmentation, the dice score,
sensitivity (Se) and specificity (Sp) metrics were calculated.

Table 2 summarizes results obtained for each transformation on the test set for the
shallow and deep network. Specificity is close to one because there are many more back-
ground pixels than object pixels. Sensitivity is the true positive rate and measures the
proportion of object pixels that are correctly identified. When each basic transforma-
tion (B-G) is applied separately, the dice score is only slightly improved compared to
the baseline (A). However, when they are combined together (H) there is a significant
increase over the baseline (A). Paradoxically, even applied alone, elastic deformation (I)
performs as well as all basic transformations (H). Best performances are obtained with
a combination of all transformations (J).
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Table 2. Performance of the shallow and deep segmentation models on IRF and IRL

Augmentation Shallow network Deep network

Dsc (%) Se (%) Sp (%) Dsc (%) Se (%) Sp (%)

A No transformation IRL 50.14 56.73 99.86 53.17 56.25 99.88

IRF 70.2 73.46 99.58 75.2 79.13 99.62

B Horizontal flip IRL 57.32 61.81 99.88 58.1 57.45 99.91

IRF 70.97 76.39 99.57 75.64 80.44 99.49

C Rotation IRL 56.18 57.86 99.88 57.36 59.43 99.89

IRF 72.06 80.91 99.54 76.68 80.06 99.61

D Shift IRL 52.62 54.78 99.89 54.61 57.7 99.88

IRF 72.51 71.07 99.74 75.22 79.51 99.54

E Scale IRL 56.57 58.76 98.87 57.57 59.86 99.88

IRF 71.82 70.5 99.68 76.63 78.26 99.69

F Brightness, contrast,
saturation

IRL 50.28 59.74 99.82 54.6 56.23 99.9

IRF 72.66 74.08 99.6 76.45 80.78 99.59

G Noise IRL 53.33 50.39 99.92 55.69 55.44 99.89

IRF 70.43 78.73 99.54 75.7 79.66 99.62

H Basic
transformations

IRL 58.47 59.15 99.9 60.25 60.69 99.9

IRF 76.02 82.08 99.51 78.05 81.8 99.63

I Elastic deformation IRL 58.69 57.74 99.92 60.2 59.17 99.91

IRF 76.1 81.34 99.57 78.64 82.75 99.63

J All transformations IRL 60.23 61.06 99.9 62.03 67.07 99.87

IRF 77.25 81.94 99.55 79.36 82.48 99.61

The chart presented in Fig. 3 compares our shallow and deep network for IRF and
IRL. For both features and with the same transformations applied during the training, the
deep network (in red) is always greater than or equal to the shallow network (in blue).
But with all transformations (J) the shallow network succeeds to perform better than the
deep network with each single basic transformation (A–G) and is comparable to elastic
deformation and all basic transformations performance (H, I).

To get a quantitative sense of the effect of basic transformations (H), elastic defor-
mation (I) and all transformations (J), the improvement in the test set accuracy was
calculated in Table 3. Improvement over baseline is greater for shallow than deep net-
work for IRF and IRL. Data augmentation has resulted by a reduction of 23.66% in the
dice score error (IRF, shallow network). All transformations (J) reduced the dice score
error by up to 3.9% compared to basic transformations and elastic deformation.

Figure 4 illustrates an example of segmentation outputs of the IRF and IRL features
for the deep network with no augmentation (A) and with all transformations (J).
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Fig. 3. Dice score values for distinct transformations on IRL and IRF. Each color represents a
segmentation network: in blue the shallow and in red the deep. (Color figure online)

Table 3. Improvement when transformations are added. Difference of the dice score error (%).

Index Augmentation IRF � (%) IRL � (%)

Shallow Deep Shallow Deep

A No transformation 0 0 0 0

H Basic transformations 9.53 11.49 16.7 15.1

I Elastic deformations 19.8 13.87 17.1 15

J All transformations 23.66 16.77 20.2 18.9

Fig. 4. Examples of IRF and IRL segmentation results with no transformation (A) and with all
transformations (J) during the training for the deep network.
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4 Discussion

This work investigated the contribution of data augmentation methods on OCT images
from subjects with DME for improving model performance, and showed their competi-
tiveness to CNN architecture modification. Recent works, using deep-learning for auto-
mated segmentationofOCTscans have shownpromising results, but thus farmost studies
prioritized architecture modification over training methods. Moreover, even when data
augmentation methods have been applied, studies generally briefly mention or describe
them putting more emphasis on architecture modifications [24–26]. Whereas architec-
tural improvements are indeed essential, the paucity of annotated datasets makes data
augmentation crucial in the field of deep-learning of medical images. The results of our
study highlighted the positive impact of data augmentation on OCT image segmentation
when the transformations applied are carefully designed to preserve the realism of the
images and to avoid bias.

Best results for IRF and IRL segmentation were achieved when all transforma-
tions were applied. Yet, sometimes transformations may add less value depending on
the segmentation task. Moreover, as IRL features are smaller than IRF, manual and
computational segmentation are less accurate, resulting in a lower dice score.

Each basic transformation applied separately improved much less performance than
elastic deformation (I). Also, all basic transformations (H) applied together yielded sim-
ilar results as elastic deformation (I). Its complexity compared to basic transformations
has probably limited its application to OCT scans, but these results showed that they
should be more commonly apply.

The comparison of two similar architectures differing by depth showed that archi-
tecture improvements can be overshadowed by data augmentation. Indeed, the shallow
network using all transformations (J) for training outperformed the deep network with-
out transformation (A) and with each basic transformation (B-G). Moreover, the perfor-
mance was very tie for the shallow network using all transformations (J) and the deep
network using all basic transformations (I).

Further studies will determine the proper balance between training methodology and
architecture modification to reduce complexity and increase efficiency.
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