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Abstract. The early screening of glaucoma is important for patients
to receive treatment in time and maintain eyesight. Deep learning (DL)
based models have been successfully used for computer-aided diagno-
sis (CAD) of glaucoma. However, a DL model pre-trained on certain
dataset from one hospital may have poor performance on other hospital
data, therefore its applications in the real scene are limited. In this paper,
we propose a self-adaptive transfer learning (SATL) strategy to fill the
domain gap between multi-center datasets. Specifically, the encoder of a
DL model that is pre-trained on the source domain is used to initialize
the encoder of a reconstruction model. Then, this reconstruction model is
trained using only unlabeled image data from the target domain, which
makes the encoder in the model adapt itself to extract useful features
both for target domain images encoding and glaucoma classification,
simultaneously. Experimental results on a private and two public glau-
coma diagnosis datasets demonstrate that the proposed SATL strategy
is effective. Also, it meets the real scene application and the privacy
protection policy due to its independence from the source domain data.

Keywords: Glaucoma diagnosis · Transfer learning · Multi-center
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1 Introduction

Glaucoma is one of the most primary leading causes of blindness [10]. The loss
of sight due to glaucoma is irreversible while some other eye diseases such as
myopia and presbyopia are not. Thus, early diagnosis of glaucoma for effective
treatment and vision conservation matters a lot for patients.

However, the symptoms of glaucoma in the early stage are difficult to per-
ceive. One of the standard methods widely used by eye specialists nowadays is
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the optic nerve head (ONH) assessment [10] in fundus retina images. Whereas,
mastering the tricks of performing ONH assessment remains challenging. There-
fore, some automatically calculated parameters were presented and popularized
as quantitative clinical measurements, such as cup to disc ratio (CRD) which
means the ratio of vertical cup diameter to vertical disc diameter in the fundus
retina image. Generally, a larger CRD represents a higher possibility of glau-
coma and vice verse. However, manually labeling the mask of the cup or disc
region is labor-consuming, which makes image-level category labels necessary
and reasonable for automatically screening glaucoma.

In the past several years, Deep Learning (DL) based methods have received
unprecedented attention and achieved state-of-the-art performance in many
fields, including medical image analysis [14]. Glaucoma can be screened from
fundus retina images by DL models which are well trained on sufficient data
and precise image-level labels [4]. However, DL models trained on one single site
cannot be directly generalized and applied to other sites. The distributions of
training and testing data are partially different so the pre-trained model may
fail to fulfill the diagnosis task.

Commonly, the difference between datasets can be seen as a domain gap. For
Example, the discrepancy between images from different dataset can be reflected
in many image statistical traits, such as color style, contrast, resolution, and so
on. Also, the joint distributions of images and labels may be quite different
between the source and the target domain, i.e., P (xs, ys) �= P (xt, yt). This is
mainly because the margin distributions are different, i.e., P (xs) �= P (xt) even
if the conditional distributions, i.e., P (ys|xs) and P (yt|xt) are similar. Many
methods have been proposed to solve this problem. Fine tuning [19] is most
widely used in real practical applications. However, fine-tuning is unable to apply
when the dataset from a new target domain is completely unlabeled.

To solve the domain adaptation problem, a novel self-adaptive transfer learn-
ing (SATL) framework is proposed in this paper for glaucoma diagnosis. Specif-
ically, we train a convolutional neural network in the source domain with suffi-
cient labeled data. Then, the feature extraction layers of this trained model is
shared as the encoder of a reconstruction network. The reconstruction network is
trained in the target domain using only unlabeled data. The encoder is adapted
to fit the distribution of target data while maintains the ability for glaucoma
diagnosis. The contributions of this paper can be concluded as follows:

(1) To the best of our knowledge, our work is the first to investigate the study
of transfer adaptation learning for the classification of glaucoma with mul-
ticenter fundus retina images.

(2) Our framework only uses unlabeled date in the target domain and is inde-
pendent from source domain data, so it has great potential for real scene
applications and can meet privacy protection policy for medical data.

(3) Experimental results shows that our framework can preserve most of the
classification ability of the off-shelf model and meanwhile improve its classi-
fication performance in target domain data. Even totally independent from
source domain data, it outperforms other state-of-the-art domain adaptation
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methods such as CycleGAN, which heavily relies on source domain data in
adaptation stage.

2 Related Works

Transfer adaptation learning (TAL) [20,22] is the most relevant area with the
proposed method. It is a combination of transfer learning (TL) and domain adap-
tation (DA) and can be categorized into three classes, which will be introduced
respectively.

Instance Re-weighting Adaptation Learning (IRAL). Methods in this
area assign weights to the source domain instances based on their similarity to
the target domain instances [13,24]. Via re-sampling or importance weighting,
the performance of the trained source classifier in the target domain can be
enhanced. However, the estimation of the assigned weights is under a prior-
decided parametric distribution assumption [22], which may differ from the true
parametric distribution.

Feature Adaptation Learning (FAL). For adapting datasets from multiple
domains, methods in this category are widely proposed to find a feature rep-
resentation space where the projected features from target and source domain
follow similar distributions [15,21]. In the past few years, the most famous FAL
methods are GAN-based domain adaptation models. However, finding a general
feature space for most domains remains challenging. Also, training a GAN-based
domain adaptation model needs both source and target domain data, which is
more and more impractical in the real scene due to the privacy protection policy
for medical data.

Self-supervised Transfer Learning (SSTL). Algorithms in this category
focus on training a supervised classifier on the source domain and then transfer
its knowledge to the target domain via self-supervised learning [2,3,5,17]. For
example, Cheplygina et al. [3] investigated a Gaussian texture features-based
classification model of chronic obstructive pulmonary disease (COPD) in multi-
center datasets. These methods integrate the data information from different
domains by extracting some manually designed features from images, which
limits the generalization ability of model. Ghifary et al. [5] is the most rela-
tive literature with our framework. Our method differs from [5] mainly in the
network structure. Moreover, we explore application in glaucoma diagnosis in
several datasets.

3 Method

The framework of the proposed method is illustrated in Fig. 1. The proposed
SATL framework can transfer a pre-trained source classification model to a target
domain without using neither source images nor labels.
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Fig. 1. Illustration of the self-adaptive transfer learning (SATL) strategy, which is
independent of the source domain data and more suitable for the real scene applications.

Let fs : X s → Ys be the source pre-trained classification model and f t :
X t → X t

rec be the target reconstruction model. The feature encoder is denoted
as fenc : X → F and the lightweight classification function fcls : F → Y. We
denote one more function: an decoder fdec : F → X in f t. Then, given an input
sample x, fs and f t can be formulated as:

fs(x) = fs
cls(f

s
enc(x)); f t(x) = f t

dec(f
t
enc(x)) (1)

Once f t(x) is trained, we can build the self-adapted classification model
f t
SA(x) for target domain image classification by f t

SA(x) = fs
cls(f

t
enc(x))

As shown in Fig. 1, the reconstruction model f t
dec is implemented as a vari-

ational auto-encoder (VAE), which can compress the image information and
sample a latent vector z. The encoder of it f t

enc is initialized by the pre-trained
source encoder fs

enc.
The loss function used to optimize the proposed self-adaptive reconstruction

model can be represented as:

L(f t
enc, f

t
dec, x

t) = α · LKL + β · Lrec, (2)

LKL = −KL(f t
enc(z|xt)|f t

dec(z|xt)), (3)

where the first term in the loss function LKL is the KL divergency of
the latent vector distribution and the true data distribution. The second term
Lrec is the reconstruction loss between the output image and the input image.
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Instead of using a single MSE loss, we perform a new designed combination of
two loss functions following [9]. We argue that the self-adaptive reconstruction
model should be guided to reconstruct high-level style information in the target
domain images rather than just the pixel-wise texture. Thus, the reconstruction
loss function designed in this paper is as:

Lrec = β1 ·
∑

i,j,k

(Boutput
ijk − Binput

ijk )2 + β2 ·
∑

m,n

(Goutput
mn − Ginput

mn )2, (4)

where Boutput and Binput denote the output and input of the reconstruction
model, respectively. i, j, k and m,n represent the position indexes. Goutput and
Ginput are the Gram matrices of Boutput and Binput. The gram matrix can be
calculated as:

G =
1

ni × nj × nk
vvT, (5)

where v is the flattened column vector of Boutput or Binput.

4 Experiments and Results

4.1 Datasets

Table 1. The statistical difference between three datasets

Dataset Domain Samples Pos vs. Neg Avg of image size

LAG (public) Source/Target 4854 3143:1689 300 × 300

pri-RFG (private) Source/Target 1881 1013:868 989 × 989

REFUGE (public) Target only 400 40:360 1062 × 1062

We used two public datasets and one private dataset to validate the pro-
posed SATL framework on glaucoma diagnosis task. The first public dataset is
large-scale attention-based glaucoma (LAG) dataset [8] established by Li et al..
The second is from the REFUGE challenge [12]. Moreover, we also collected
1881 retina fundus images from one collaborated hospital and built a private
dataset (pri-RFG) via labeling all the images by experienced ophthalmologists.
The details of the above-mentioned three datasets (LAG, REFUGE, pri-RFG)
are summarized and tabulated in Table 1. We can observe that the scales, the
average size of images and the ratio of samples in different datasets are quite
various, making transfer learning between them challenging. Due to the small
number of samples in dataset REFUGE, we just used it as target domain dataset,
while LAG and pri-RFG are used for cross-domain evaluation. In other words,
we implemented a total of four groups of experiments. Based on the direction



134 Y. Bao et al.

from source domain to target domain, they can be represented as LAG → pri-
RFG, pri-RFG → LAG, LAG → REFUGE and pri-RFG → REFUGE. When
used as a source domain dataset, we separated training and validation set. When
used as a target domain dataset, all the images were fed into the reconstruction
model to train and adapt the encoder layers.

4.2 Implement Details and Evaluation Metrics

Both the source classification model and the target reconstruction model were
implemented using Pytorch (version 1.3.0) and trained on an NVIDIA RTX
2080Ti GPU. We implemented the source classification model as a VGG [16]
and optimized it with cross entropy (CE) loss [11]. During the training stage of
the source classification model, we set the learning rate as 10−6, weight decay
as 5 × 10−4. All the samples in the source domain were split into training set
and validation set using a ratio of 7:3 empirically, following stratified sampling
method to ensure that the Pos vs. Neg ratios in each set are similar. At each
iteration, a mini-batch of 16 samples were fed into the model. The number of
training epochs was set as 50. To avoid the over-fitting issue, the model which
achieved the maximum accuracy in the validation set was saved.

During the training stage of the self-adaptive reconstruction model on the
target dataset, the learning rate of the encoder was set as 10−7 and that of the
rest layers was set as 10−3. To avoiding over-fitting on the reconstruction task
and losing the ability to extract features that are useful for classification task,
the target reconstruction model was trained for only 20 epochs. We empirically
set the weights α, β1 and β2 in the reconstruction loss function as 0.3, 0.2, 0.5,
and the channel number of the latent vector in the model as 32.

Once the target reconstruction model was trained, the self-adapted encoder
of it was used as the feature extractor of a target classification model. The last
lightweight FC layer of the source classification model played a role as classifier.
This new combined target classification model was evaluated on target domain
dataset by metrics in terms of Accuracy, Recall, Precision, F1 score and Area
Under the ROC Curve (AUC).

4.3 Results and Discussion

As described in Sect. 4.2, based on the three available datasets, there are four exe-
cutable domain adaptation directions denoted as LAG → pri-RFG, pri-RFG →
LAG, LAG → REFUGE, and pri-RFG → REFUGE. For validating the effective-
ness of the proposed SATL strategy, on each experiment direction we compared
the performance of proposed method (w/ SATL) with the source classification
model (w/o SATL) and a state-of-the-art CycleGAN-based domain adaptation
method [23] (w/ CGAN). The CycleGAN-based method trains a generator to
transfer the target images to the source domain by adversarial learning. The
most noteworthy difference between CycleGAN and the proposed SATL strat-
egy is that: our method is completely independent of the source domain data
while CycleGAN is not. More specifically, training CycleGAN to perform domain
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Table 2. The classification performance of four groups of experiments

Direction LAG → pri-RFG pri-RFG → LAG

Strategy w/o SATL w/ CGAN w/ SATL w/o SATL w/ CGAN w/ SATL

Accuracy 0.799 0.672 0.856 0.352 0.628 0.579

Recall 0.659 0.422 0.726 1.000 0.707 0.779

Precision 0.807 0.923 0.855 0.352 0.481 0.445

F1 score 0.726 0.580 0.785 0.521 0.573 0.566

Direction LAG → REFUGE pri-RFG → REFUGE

Strategy w/o SATL w/ CGAN w/ SATL w/o SATL w/ CGAN w/ SATL

Accuracy 0.933 0.913 0.945 0.240 0.540 0.580

Recall 0.425 0.600 0.500 0.975 0.825 0.850

Precision 0.810 0.558 0.909 0.114 0.157 0.173

F1 score 0.557 0.579 0.645 0.204 0.264 0.288

adaptation needs both source and target domain images. On the contrary, the
proposed SATL strategy relies on only the target domain unlabeled images.

The experimental results of three strategies are tabulated in Table 2. More-
over, the ROC curves are also plotted and illustrated in Fig. 2. By observing the
demonstrated results, two main conclusions can be drawn:

(1) Compared to the source model without SATL, which can be seen as a base-
line, the model with SATL outperforms in all four domain adaptation direc-
tions in terms of Accuracy and F1 Score. Despite there exist a mass of
differences between three used datasets, SATL shows to be effective for self-
supervised domain adaptation regardless of the source and target domain
data distribution. This phenomenon shows that the proposed SATL is valu-
able and reliable for the production of pseudo labels in data from a grand-
new hospital.

(2) When testing the source model in the target domain images transferred by
CycleGAN, the performance is comparable with the proposed SATL strategy
in domain adaptation directions of pri-RFG → LAG and LAG → REFUGE.
While in directions of LAG → pri-RFG and pri-RFG → REFUGE, the
proposed SATL strategy surpasses the CycleGAN by a large margin. This
phenomenon demonstrates that SATL is more robust and have more sta-
ble generalization ability in different domain adaptation scenes. Note that
CycleGAN uses the source domain images in the domain adaptation stage
while the proposed SATL does not. Thus, our method which is completely
independent of the source domain is more feasible in real scene applications.
It can ensure the isolation of multi-center datasets and meet the privacy
protection policy.
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Discussion. Despite the proposed method improves the performance of the
classification model in the target domain via self-supervised training, there still
remains some research worth exploring for enhancing the performance. For exam-
ple, in this paper, we directly trained and validated the source classification
model on the source domain. However, it may be a better option to initialize the
source classification model by a model pre-trained on large scale nature image
datasets such as ImageNet. Besides, the backbone used in this paper is VGG
for the convenience of building the reconstruction VAE model. In the future, it
can also be replaced by other state-of-the-art backbone such as Inception [18] or
SENet [6]. Last but not least, the features adapted by SATL framework in the
target domain need to be explore and compare with that before SATL. Further
improvement in glaucoma diagnosis may be achieved by learning features which
can better represent ONH traits.

Fig. 2. ROC curves of the models evaluated in all four domain adaptation directions.

5 Conclusion

In this paper, we present a self-adaptive transfer learning (SATL) strategy to
fill the domain gap between multicenter datasets and perform the evaluation in
glaucoma classification based on three fundus retina image datasets. Specifically,
a reconstruction model is trained using only target domain unlabeled images.
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The encoder of this reconstruction model is initialized from a pre-trained source
classification model and self-adapted in the target domain. Experimental results
demonstrate that the proposed SATL strategy enhances the classification per-
formance in the target domain and outperforms another state-of-the-art domain
adaptation method which even utilizes source domain images for training, as
well. In the near future, more efforts will be devoted to exploring how to further-
more lifting the performance of the self-supervised domain adaptation method
via designing new reconstruction losses. Moreover, we will extend this strategy
to other medical image analysis problems.
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