
Huazhu Fu · Mona K. Garvin · 
Tom MacGillivray · Yanwu Xu · 
Yalin Zheng (Eds.)

LN
CS

 1
29

70

Ophthalmic Medical 
Image Analysis
8th International Workshop, OMIA 2021
Held in Conjunction with MICCAI 2021
Strasbourg, France, September 27, 2021, Proceedings



Lecture Notes in Computer Science 12970

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7412

http://www.springer.com/series/7412


Huazhu Fu ·Mona K. Garvin ·
Tom MacGillivray · Yanwu Xu ·
Yalin Zheng (Eds.)

Ophthalmic Medical
Image Analysis
8th International Workshop, OMIA 2021
Held in Conjunction with MICCAI 2021
Strasbourg, France, September 27, 2021
Proceedings



Editors
Huazhu Fu
Inception Institute of Artificial Intelligence
Abu Dhabi, United Arab Emirates

Tom MacGillivray
University of Edinburgh
Edinburgh, UK

Yalin Zheng
University of Liverpool
Liverpool, UK

Mona K. Garvin
University of Iowa
Iowa City, IA, USA

Yanwu Xu
Baidu Inc.
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-86999-1 ISBN 978-3-030-87000-3 (eBook)
https://doi.org/10.1007/978-3-030-87000-3

LNCS Sublibrary: SL6 – Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer Nature Switzerland AG 2021, corrected publication 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9702-5524
https://orcid.org/0000-0001-5120-0086
https://orcid.org/0000-0002-7873-0922
https://orcid.org/0000-0003-3299-3150
https://orcid.org/0000-0002-1779-931X
https://doi.org/10.1007/978-3-030-87000-3


Preface

The 8th International Workshop on Ophthalmic Medical Image Analysis (OMIA 2021)
was held on September 27th, 2021, in conjunctionwith the 24th International Conference
onMedical ImageComputing andComputerAssisted Intervention (MICCAI 2021).Due
to the breakout of COVID-19, this year was once again a fully virtual conference.

Age-related macular degeneration, diabetic retinopathy, and glaucoma are the main
causes of blindness in both developed and developing countries. The cost of blindness
to society and individuals is huge, and many cases can be avoided by early intervention.
Early and reliable diagnosis strategies and effective treatments are therefore a world
priority. At the same time, there is mounting research on the retinal vasculature and
neuro-retinal architecture as a source of biomarkers for several high-prevalence con-
ditions like dementia, cardiovascular disease, and of course complications of diabetes.
Automatic and semi-automatic software tools for retinal image analysis are being used
widely in retinal biomarkers research, and increasingly percolating into clinical prac-
tice. Significant challenges remain in terms of reliability and validation, number and type
of conditions considered, multi-modal analysis (e.g., fundus, optical coherence tomog-
raphy, scanning laser ophthalmoscopy), novel imaging technologies, and the effective
transfer of advanced computer vision and machine learning technologies, to mention a
few. The workshop addressed all these aspects and more, in the ideal interdisciplinary
context of MICCAI.

This workshop aimed to bring together scientists, clinicians, and students from mul-
tiple disciplines in the growing ophthalmic image analysis community, such as elec-
tronic engineering, computer science, mathematics, and medicine, to discuss the latest
advancements in the field. A total of 31 full-length papers were submitted to the work-
shop in response to the call for papers. All submissions were double-blind peer-reviewed
by at least three members of the Program Committee. Paper selection was based on
methodological innovation, technical merit, results, validation, and application poten-
tial. Finally, 20 papers were accepted to the workshop and chosen to be included in this
Springer LNCS volume.

We are grateful to the Program Committee for reviewing the submitted papers and
giving constructive comments and critiques, to the authors for submitting high-quality
papers, to the presenters for excellent presentations, and to all the OMIA 2021 attendees
from all around the world.

August 2021 Huazhu Fu
Mona K. Garvin

Tom MacGillivray
Yanwu Xu

Yalin Zheng
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Adjacent Scale Fusion and Corneal
Position Embedding for Corneal Ulcer

Segmentation

Zhonghua Wang, Junyan Lyu, Wenhao Luo, and Xiaoying Tang(B)

Southern University of Science and Technology, Shenzhen, China
tangxy@sustech.edu.cn

Abstract. Corneal ulcer segmentation from fluorescein staining images
is vital for objective and quantitative assessments of ocular surface dam-
ages. How to utilize prior information from the fluorescein staining images
is a challenge. In this work, we propose and validate a novel method
for corneal ulcer segmentation. Leveraging Adjacent Scale Fusion and
Corneal Position Embedding, our method can effectively capture fine pat-
terns of the corneal ulcer as well as explicitly characterize the discrimi-
nating relative position information within the cornea. We evaluate the
corneal ulcer segmentation performance of our method on a publicly-
accessible SUSTech-SYSU dataset for automatically segmenting and clas-
sifying corneal ulcers, with a mean Dice similarity coefficient of 80.73%
and a mean Jaccard Index of 71.63% having been obtained. Quantitative
results identify the superiority of the proposed method over representative
state-of-the-art deep learning frameworks. In addition, the importance of
each key component in the proposed method is analyzed both quantita-
tively and qualitatively.

Keywords: Corneal ulcer segmentation · Adjacent Scale Fusion ·
Corneal Position Embedding · Fluorescein staining image

1 Introduction

Cornea functions to focus light in the human visual system. Damages and infec-
tions of the cornea may result in loss of vision and blindness [1,2]. One of the most
common corneal manifestations is corneal ulcer. It can occur as consequences of
various types of keratitis, disorders of the ocular surface, excessive contact lens
wear, or topical steroid use [3]. Corneal fluorescein staining is an important tool
that can be used for characterizing the pattern of a corneal ulcer which typically
stains green because of the necrosis of epithelium cells [4]. It has become a common
clinical practice to utilize fluorescein staining for assessing ulcer-related ocular sur-
face damages and monitoring clinical responses to various therapies [5].

Precisely and accurately evaluating the severity of a corneal ulcer is
the premise and basis for personalized medical and surgical intervention.

Z. Wang and J. Lyu contributed equally to this work.

c© Springer Nature Switzerland AG 2021
H. Fu et al. (Eds.): OMIA 2021, LNCS 12970, pp. 1–10, 2021.
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Researchers have been working on establishing objective criteria for diagnosing
corneal ulcers. Currently, the severity of a corneal ulcer is graded mainly utiliz-
ing semi-quantitative systems such as the van Bijsterveld, Oxford and National
Eye Institute (NEI) scales [6–8]. These grading systems nevertheless largely rely
on ophthalmologists’ visual examinations, which may lead to inefficiency and
subjectivity. A few computer-aided methods have been attempted to provide
objective and quantitative evaluations. For example, Peterson et al. employed
a digital image processing technique by applying edge-detection and relative-
coloration to predict an objective grade, which has been reported to be more
sensitive and reliable than subjective grading [9]. Chun et al. developed an auto-
mated algorithm by jointly utilizing the difference of Gaussians (DoG) edge
detection for morphometry characterization and RGB/HSV color models for
color discrimination based on enhanced fluorescein staining images, the results
of which showed strong correlations with clinical grading in terms of both Oxford
and NEI scales [10]. Deng et al. achieved an accuracy of 98.4% and a Pearson
correlation coefficient of 92.1% in automatically segmenting flaky corneal ulcers
utilizing a superpixel method [11].

For corneal ulcer segmentation, preocular tear film, reflective areas, as well
as fluorescein pooling are difficult to be differentiated from true ulcers since
they have very similar pixel intensities and relative locations within the cornea
(Fig. 1). Existing corneal ulcer segmentation methods mainly relied on threshold-
ing and traditional machine learning techniques. They generally cannot differen-
tiate the aforementioned ambiguities, especially for low-quality images. In addi-
tion, those thresholding and traditional machine learning methodologies relied
on pre-selected and typically fixed thresholds and hyperparameters, which had
limited performance on images with large individual variability. Deep learning
(DL) has seen an impressive number of medical applications in the last few
years. Compared to feature-based machine learning, DL has the advantages of
end-to-end predictions and better feature distinction abilities, exhibiting state-
of-the-art (SOTA) performance in many realms. Recent DL studies on ophthal-
mologic diseases include diabetic retinopathy, glaucoma and age-related macular
degeneration, making use of fundus images and optical coherence tomography
images [12–14]. However, studies applying DL to quantitative analyses of corneal
ulcers based on fluorescein staining images are relatively rare, because of a lack
of large-scale publicly-available datasets which are usually a prerequisite of DL.
Recently, a well-constructed and large-scale fluorescein staining image dataset,
namely the SUSTech-SYSU dataset, has been released for segmenting and clas-
sifying corneal ulcers, which accommodates well the urgent need of developing
DL pipelines for corneal ulcer segmentation [15].

In such context, we propose a novel DL pipeline for fluorescein staining
image based corneal ulcer segmentation. On the basis of a backbone model for
medical image segmentation, U-Net, we introduce Corneal Position Embedding
to explicitly characterize the relative position within the cornea of the afore-
mentioned disturbing effects (e.g., fluorescein pooling). Adjacent Scale Fusion
is further proposed to capture subtle differences between corneal ulcers and
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Occlusion Fluorescein Pooling Reflection

Fig. 1. Several representative factors, including occlusion, fluorescein pooling, and
reflection, that make corneal ulcer segmentation challenging.

misleading ambiguities. The proposed method is quantitatively and qualita-
tively evaluated on 354 samples from the SUSTech-SYSU dataset and com-
pared with several representative SOTA DL frameworks. The source code is
available at https://github.com/CRazorback/The-SUSTech-SYSU-dataset-for-
automatically-segmenting-and-classifying-corneal-ulcers.

2 Methodology

The proposed method builds upon the classical U-Net and makes use of prior
information from the fluorescein staining images to enhance our corneal ulcer
segmentation performance. In subsequent subsections, we will describe two novel
modules in our pipeline, namely Adjacent Scale Fusion (ASF) and Corneal Posi-
tion Embedding (CPE). The overall framework is illustrated in Fig. 2.

2.1 Adjacent Scale Fusion

A semantic segmentation result is highly dependent on the input image’s scale.
Scaled-up images provide more detailed features on edge, texture, color and
fine structures, while scaled-down images provide more global context [16]. For
corneal ulcer segmentation, we aim at exploiting the texture and color patterns of
the ulcer region, which may provide unique and differentiating characteristics.
In such context, training a network with high-resolution inputs may greatly
benefit our corneal ulcer segmentation. However, it is highly computationally
expensive to take the original high-resolution fluorescein staining images as the
input, especially at the training stage.

As such, we propose ASF to address the above issue. At the training stage,
a given input image is downsampled by factors of 2 and 4 and the downsam-
pled images are then sent into U-Nets with shared weights, producing feature

https://github.com/CRazorback/The-SUSTech-SYSU-dataset-for-automatically-segmenting-and-classifying-corneal-ulcers
https://github.com/CRazorback/The-SUSTech-SYSU-dataset-for-automatically-segmenting-and-classifying-corneal-ulcers
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Shared weights

0.25x Scale

0.5x Scale

1x Scale

Adjacent 
Scale Fusion

Training Stage

Testing Stage

Adjacent 
Scale Fusion

Shared weights

Concatenation

U-Net

Corneal Position 
Embedding

Training Stage

Testing Stage

Fig. 2. The overall pipeline of our proposed corneal ulcer segmentation method.

maps {M0.25,M0.5} and soft segmentation predictions {p0.25,p0.5}. ASF pro-
vides spatial attention maps for adjacent-scale predictions {p0.25,p0.5} via a
relation function, which can be formulated as

w0.25 = f([g(M0.25),M0.5]). (1)

In this equation, f(·) represents the normalized relation function, implemented
as 3 × 3 Convolution → Batch Normalization → Rectified Linear Unit (ReLU) →
1×1 Convolution → Sigmoid, and g(·) denotes a bilinear upsampling operation.
Details of ASF are illustrated in Fig. 3.

Fig. 3. Details of our Adjacent Scale Fusion module.
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Once we obtain pixel-wisely varying weights from ASF, we can fuse the soft
segmentation predictions from adjacent scales as below

p̄0.5 = w0.25 ∗ g(p0.25) + (1 − w0.25) ∗ p0.5, (2)

where + and ∗ respectively refer to pixel-wise addition and multiplication.
By learning how to compute relative attention maps from adjacent-scale fea-

ture maps, ASF can be easily extended to multi-scale scenarios and fuse predic-
tions hierarchically. This can effectively reduce the computation overhead during
training but still make use of high-resolution images as the testing input.

2.2 Corneal Position Embedding

Explicit position embedding offers strong spatial inductive bias when training
a network. There are several explicit position embedding strategies that have
been widely adopted in computer vision and natural language processing, such as
Cartesian Spatial Grid (CSG) and Sinusodial Positional Encoding (SPE). These
embedding strategies typically consider explicit priors on the image space. CSG
normalizes image coordinates by height and width, bringing absolute position
information into a network. SPE employs the sinusoidal function, maintaining
consistent transformation between neighboring positions and providing relative
position information [17].

In a fluorescein staining image, the absolute position information within the
cornea is very important; the presence of reflective areas, fluorescein pooling and
occlusion which are hard to be differentiated from the true ulcer region is tightly
relevant to their distances to the cornea center. The relative position information
is also essential; regions outside the cornea may confuse the network, but they
still provide more complementary information than zero or reflection padding.
Therefore, we propose a novel explicit position embedding function for corneal
ulcer segmentation, namely CPE. CPE measures the shortest distance from each
pixel of interest to the cornea edge and stays zero outside the cornea. We use
I → {0, 1} to represent a binary cornea mask, wherein a pixel value of 0 indicates
background and a pixel value of 1 indicates foreground. CPE is defined as

PCPE(p) =
{

min{d(I(p), I(q)) | I(q) = 0,q ∈ O}, I(p) = 1
0, I(p) = 0, (3)

where p represents a spatial location (namely pixel) in the input image space
and q can be any spatial location in the corresponding cornea mask O. d(·) is
a normalized distance function, which is implemented as the Euclidean distance
normalized by the semi-major axis length of the cornea.

3 Experiment

3.1 Dataset

We evaluate our method on the SUSTech-SYSU dataset for segmenting and
classifying corneal ulcers (SUSTech-SYSU). SUSTech-SYSU contains 354 ocular
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staining images with corneal and corneal ulcer labels, collected at the Zhong-
shan Ophthalmic Centre, Sun Yat-sen University. The patients went through
fluorescein instillation and got imaged using a Haag-Streit BM 900 slit-lamp
microscope (Haag Streit AG, Bern, Switzerland) in combination with a Canon
EOS 20D digital camera (Canon, Tokyo, Japan), with the cornea centered in
the field of view. All images have resolutions of 2592 × 1728. We perform 5-fold
cross-validation on this dataset, with 60% for training, 20% for validation and
20% for testing. Specifically, we split the dataset into 213, 70 and 71 for training,
validation and testing in each fold.

3.2 Implementation

Network Parameters. We adopt a modified U-Net as our baseline network.
Each of the five resolution levels consists of two 3 × 3 convolutions with batch
normalization and ReLU activation and a bilinear resampling module. The fea-
ture depths are respective 32, 64, 128, 256 and 512 at the corresponding five
levels. The input scales for ASF at the training stage are 0.25 and 0.5, and the
input scales at the testing stage are 0.25, 0.5 and 1.0.

Data Augmentation and Preprocessing. To enlarge the training set, ran-
domly resized cropping, horizontal flipping and color distortion including bright-
ness and contrast are applied during training. We first crop the images with
respect to the corresponding cornea masks. Images are then bicubicly interpo-
lated to 1024 × 1024 and normalized to have an intensity range of −1 to 1.

Optimization Parameters. Adam optimizer is used to optimize the gener-
alized Dice loss, which performs better on predicting small objects. The initial
learning rate is 3× 10−4 and cosine decayed to be 1.5× 10−4 within 100 epochs.
The network is trained for 100 epochs, with the best model saved based on the
validation loss.

3.3 Quantitative Results

In this section, we report quantitative evaluation results using two metrics,
namely Dice similarity coefficient (DSC) and Jaccard Index (JI). We analyze
the impact of ASF and CPE on the segmentation performance. We also com-
pare our proposed method with representative SOTA DL frameworks.

Ablation Studies: Position Embedding. As shown in Table 1, CPE out-
performs the baseline by 1.12% on DSC and 1.84% on JI. This indicates that
CPE provides appropriate inductive bias for U-Net and exploits discriminat-
ing information from the relative position within the cornea. CPE is observed
to significantly outperform another popular position embedding strategy SPE
by a large margin. SPE decouples locations and scales, thus being unaware of
variations in the cornea size.
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Ablation Studies: Multi-scale Fusion. To show the superiority of our pro-
posed ASF, we compare ASF with Explicit Multi-scale Fusion (EMF) in terms
of segmentation performance and computation time. EMF averages predictions
from multiple inputs of different scales only at the testing stage, and thus does
not induce any computation cost during training. Theoretically, the training cost
of ASF is 25% higher than EMF but the testing costs are the same. The results
shown in Table 1 clearly verify our conjecture; ASF boosts the segmentation
performance of U-Net at the cost of a slight increase in the computation during
training.

Comparison with SOTA. We compare the proposed method with representa-
tive SOTA approaches in Table 2. Experimental results identify the effectiveness
of jointly utilizing ASF and CPE, the performance gains obtained from which
are huge. The proposed method exhibits superior performance with the highest
mean and lowest standard deviation in terms of both DSC and JI. It is also
worth mentioning that our proposed modules can be easily extended to stronger
baselines since ASF and CPE are decoupled from network structures.

Table 1. Ablation studies on position embedding and multi-scale fusion, wherein Ttrain

indicates consumption of the training time (hours). The best results are highlighted in
bold. ‘–’ means Ttrain is not considered in the corresponding ablation study.

Method Metrics

DSC JI Ttrain

U-Net (baseline) 77.31 ± 21.39 67.19 ± 24.30 –

Ablation studies: multi-scale fusion

U-Net+ASF 78.47 ± 22.14 68.94 ± 24.68 4.05

U-Net+EMF [16] 77.61 ± 21.47 67.61 ± 24.33 3.31

Ablation studies: position embedding

U-Net+CPE 78.43 ± 22.17 69.03 ± 24.21 –

U-Net+SPE [17] 77.18 ± 21.58 67.03 ± 24.17 –

Ablation studies: joint utilization

U-Net+ASF+CPE 80.73 ± 20.60 71.63 ± 23.31 –

3.4 Qualitative Results

As demonstrated in Fig. 4, jointly utilizing CPE and ASF can detect and differ-
entiate the true ulcer region from ambiguities such as fluorescein staining pooling
and reflective areas. Generally, corneal ulcer with different patterns and sizes can
be well-segmented by our proposed method.
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Table 2. Performance comparisons with SOTA approaches. The best results in terms
of each metric are highlighted in bold.

Method DSC JI

U-Net [18] 77.31 ± 21.39 67.19 ± 24.30

U-Net++ [19] 78.15 ± 24.96 69.39 ± 26.16

FPN [20] 75.77 ± 24.25 67.32 ± 25.97

PSPNet [21] 74.45 ± 24.60 64.36 ± 26.30

Deeplab-v3 [22] 78.03 ± 22.85 68.59 ± 25.11

Proposed 80.73 ± 20.60 71.63 ± 23.31

Original Image Baseline Baseline+CPE Baseline+ASF Baseline+CPE+ASF Groundtruth

Fig. 4. Randomly selected examples from SUSTech-SYSU. The corneal ulcer regions
have been zoomed in for a better visualization purpose.

4 Conclusion

In this paper, we proposed an automated pipeline for corneal ulcer segmentation.
Two novel modules, ASF and CPE, have been proposed to utilize prior infor-
mation. ASF can effectively exploit fine patterns of the corneal ulcer from high-
resolution fluorescein staining images with little computation overhead during
training. CPE explicitly encodes relative positions within the cornea and makes
use of the discriminating power from such position information. We successfully
demonstrated that with the two proposed modules, our pipeline outperformed
SOTA both quantitatively and qualitatively. Future work involves applying the
proposed pipeline to subsequent severity grading and large-scale clinical trials
on corneal diseases.
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Abstract. Longitudinal medical image analysis is crucial for identify-
ing the unobvious emergence and evolution of early lesions, towards ear-
lier and better patient-specific pathology management. However, tradi-
tional computer-aided diagnosis (CAD) systems for diabetic retinopathy
(DR) rarely make use of longitudinal information to improve DR anal-
ysis. In this work, we present a deep information fusion framework that
exploits two consecutive longitudinal studies for the assessment of early
DR severity changes. In particular, three fusion schemes are investigated:
(1) early fusion of inputs, (2) intermediate fusion of feature vectors incor-
porating Spatial Transformer Networks (STN) and (3) late fusion of fea-
ture vectors. Exhaustive experiments compared with respect to no-fusion
baselines validate that incorporating prior DR studies can improve the
referable DR severity classification performance through the late fusion
scheme whose AUC reaches 0.9296. Advantages and limitations of the
different fusion methods are discussed in depth. We also propose dif-
ferent pre-training strategies which are employed to bring considerable
performance gains for DR severity grade change detection purposes.

Keywords: Diabetic retinopathy · Deep learning · Information
fusion · Longitudinal analysis · Computer-aided diagnosis

1 Introduction

As a common and high-risk complication of diabetes, diabetic retinopathy (DR)
is a leading cause of visual impairment and blindness worldwide [9]. The overall
prevalence of DR is up to 27.0%, comprising non-proliferative DR (NPDR) for
25.2% and proliferative DR (PDR) for 1.4% [22]. A regular annual DR screening
is recommended to diabetic patients. General retinal screening uses the color
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(a) mild NPDR (b) moderate NPDR (c) severe NPDR

Fig. 1. Evolution from mild to severe NPDR. Yellow, red and magenta boxes resp. rep-
resent microaneurysms, hemorrhages and exudates. Images from OPHDIAT [7] dataset.
(Color figure online)

fundus photography (CFP) for DR diagnosis by examining the presence of retinal
lesions such as microaneurysms, hemorrhages, soft or hard exudates (Fig. 1). The
international clinical DR severity scale includes: no apparent DR, mild NPDR,
moderate NPDR, severe NPDR and PDR [23], labeled as grades 0, 1, 2, 3,
and 4. NPDR (grades 1, 2, 3) corresponds to the early-to-middle stage of DR
and deals with a progressive microvascular disease characterized by small vessel
damages and occlusions. PDR (grade = 4) corresponds to the period of potential
visual loss due to massive hemorrhage. Early detection and adapted treatment,
especially in the mild to moderate stage of NPDR, could help to slow down
the DR progression, thereby preventing the occurrence of diabetesrelated visual
impairment and blindness.

DR analysis has been an active research area over the last few decades.
Recently, deep learning (DL) has been widely adopted in various tasks of retinal
image processing. Many studies [4,6,12,13,18,19] have focused on the image-
level DR grading classification, as severity labels can be easily extracted from
clinical reports. [12] proposed a multiple-instance learning framework which only
exploits image-level labels for both automatic DR scale prediction and pixel-wise
pathological area detection. They further developed an instant automatic DR
diagnosis system [13] which incorporates multiple convolutional neural networks
(CNN) and targets three classification tasks: laterality identification, referable
DR detection and severity assessment. More recently, [18] applied a synergic
DL model incorporating histogram-based region-of-interest segmentation for DR
classification. [19] dealt with DR classification from retinal images using extreme
gradient boosting (XGBoost) based on intensity and texture features extracted
from CFP.

Previous studies have demonstrated the potential of fusion methods in medi-
cal imaging, such as multi-view [3,10,24,25] or bilateral [3] fusion. Several studies
attempted the automatic analysis of longitudinal medical images. [17] analyzed
the evolution of longitudinal chest X-rays using long short-term memory (LSTM)
networks. [11] compared four DL longitudinal fusion methods of mammogram
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series: early fusion, feature fusion based on gradient boosting or LSTM, late
fusion. [8] targeted a unified analysis of both vascular and non-vascular changes
that are observed in longitudinal CFP time-series. [2] used a microaneurysm-
tracker to evaluate DR progression in a follow-up study whereas [1] presented a
flexible multistage approach for tracking retinal changes in longitudinal images.
However, the number of existing DL methods that analyze longitudinal screen-
ings to assist in DR classification is still exceedingly limited.

In this regard, we aim to integrate longitudinal information of CFP images
to help in predicting referable DR (moderate to severe) severity changes (Fig. 1).
Specifically, we target the change detection between no DR/mild NPDR (grade
= 0 or 1) and more severe DR (grade ≥ 2) through two consecutive follow-
ups. To this end, we explore three fusion methods that incorporate current and
prior studies: (1) early fusion of input images, (2) intermediate fusion of feature
vectors incorporating Spatial Transformer Networks (STN) and (3) late fusion
of feature vectors. We conduct a comprehensive evaluation by comparing these
pipelines on the OPHDIAT dataset [7]. To our knowledge, this work is the first to
automatically assess the early DR severity changes between consecutive images.

2 Methods

In this work, we study the severity grade change from normal/mild NPDR to more
severe DR between a pair of follow-up CFP images {It−1, It}. Two backbone net-
works are used: VGG16 [20] and InceptionV4 [21], which are proven to be effec-
tive in many image recognition tasks. Figure 2 uses a simplified architecture for
the sake of clarity. Image pair selection and pre-processing are detailed in Sect. 3.

2.1 Longitudinal Fusion Schemes

Early Fusion. We firstly perform image registration from It−1 to It using affine
transformation to get I

′
t−1 (Fig. 2(a)). Afterwards, I

′
t−1 and It are concatenated

as input tensor (6 channels). We then employ a convolutional layer at the begin-
ning of the architecture to adjust the model channels (3) to standard VGG16 or
InceptionV4 networks, for the purpose of fine-tuning from pre-trained models.
Other layers remain unchanged. The output of such one-stream network is the
confidence score of whether there is a grade change between t − 1 and t.

Intermediate Fusion. The intermediate fusion implements fusion at the
feature-level, i.e. at an intermediate level within the model. As shown in Fig. 2(b),
we employ a Siamese network combined with specific fusion modules, Spatial
Transformer Networks (STN), that actively transform feature maps without any
extra supervision. The STN module was first proposed by [5] to be inserted into
existing convolutional architectures, resulting in better model invariance to spa-
tial translation, rotation and scaling. An STN module consists of three steps: (1)
a localization network to compute parameters θ of the spatial transformation to
be applied to the feature map U , (2) a grid generator to create a parameterized
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Fig. 2. Early, intermediate and late fusion for DR severity grade change assessment.

sampling grid τθ(G) and (3) a differentiable image sampler to produce the output
feature map V based on the estimated spatial transformation (Fig. 2(b)). Ordi-
narily, STNs are used to modify the feature volumes of one-stream networks. In
our case, we adaptively modified the use of STN in order to adjust the feature
maps arising from the two branches of the Siamese network.

A Siamese network normally includes two identical branches with shared
weights, such that features from two different input images are jointly extracted
and learned. Instead, in the proposed intermediate fusion scheme, both branches
are trained without weight sharing because the fusion operation is desired to
be performed in the STN modules. The two branches are not supposed to be
commutative. As seen in Fig. 2(b), we provide the Siamese network with non-
registered image pairs {It−1, It}. Each image is processed independently up to
a given convolutional layer Lbreak (before dense layers), outputting two sets of
features f1 and f2. Then, we add two independent STN modules after the given
convolutional layer Lbreak to obtain two sets of transformed feature volumes f ′

1

and f ′
2. Specifically, the STN modules are inserted before the 8th convolutional

layer of VGG16 and before the first Inception-C module of InceptionV4. There-
after, a fusion operation is applied to the two sets of feature maps, which allows
the back-propagation of the loss which minimizes the difference between feature
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JJ warp I

Fig. 3. Example of image registration between image at time t−1 (J) and image at
time t (I). An affine transformation is applied to align J to I to obtain Jwarp.

maps. Hence, a mean square error (MSE) loss is employed as fusion operator.
Finally, the transformed feature maps f ′

1 and f ′
2 are processed with the remain-

ing layers of the network. In practice, we use cross-entropy loss to optimize
both branches of the Siamese network. The final loss function is designed as:
Linterfusion = Lbce + λ · LMSE where λ = 100 balances the loss terms.

Late Fusion. Similar to intermediate fusion, the late fusion scheme also incorpo-
rates a Siamese network (Fig. 2(c)). Non-registered image pairs {It−1, It} are pro-
vided as inputs since the fusion operation is performed at the feature vector level
and is invariant to spatial transformations of inputs. Two identical branches with
shared weights are trained simultaneously, so that the training parameters can be
largely reduced. We concatenated the extracted feature vectors of size 1×dim into
a 2 × dim vector (dim = 512 for VGG16, 1536 for InceptionV4), which is used for
the final classification of severity grade change between It−1 and It.

2.2 Pre-training

Among the 101,383 patients from the OPHDIAT database [7], about 70% have
no follow-up and the proportion of normal cases exceeds 79%. This means that
most of the data cannot be employed for the longitudinal study. Nevertheless, it
can be used for pre-training purposes. In practice, we compare three pre-training
strategies: (1) using pre-trained weights from ImageNet [15], (2) based on (1),
training a K-label classification model using cross-entropy loss. The output of
the softmax layer is K scores with K = 5 representing the five following classes:
grade = 0, 1, 2, 3 and 4, (3) based on (1), training a K-logistic multi-classifier
model with BCEWithLogits loss. In this setting, K = 4 represents four binary
classifiers: grade ≥ 1, grade ≥ 2, grade ≥ 3 and grade ≥ 4.

3 Dataset

The proposed models are trained and evaluated on OPHDIAT [7], a massive CFP
database collected from the Ophthalmology Diabetes Telemedicine network and
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Table 1. Distribution of pairs with change/non-change in each subset.

Subset Change Non-change Total pairs

Train (60%) 4839 10666 15505

Validation (20%) 1613 3556 5169

Test (20%) 1626 3543 5169

made of examinations acquired from 101,383 different patients between 2004
and 2017. Within 763,848 interpreted CFP images, about 673,017 images are
assigned with a DR severity grade. Image sizes vary from 1440 × 960 to 3504 ×
2336 pixels. Each examination contains at least 2 images for each eye.

Image Pair Selection. From the entire OPHDIAT database, we first select
patients with up to two-year follow-up screenings and whose severity grade
changes from grade = 0 or 1 to grade ≥ 2. To train our longitudinal fusion
frameworks, the input image pairs {It−1, It} should meet the following condi-
tions: (1) arising from the same patient, (2) captured from the same viewpoint
of the ipsilateral eye, (3) coming from two different screening times {t − 1, t}.
Image pairing and registration are fundamental pre-processing steps for longitu-
dinal analysis [16]. To avoid the influence of position shifts, scales or other factors
related to the heterogeneity of OPHDIAT, we first select image pairs captured
from almost the same viewpoint from two consecutive image series {Et−1, Et}
according to the following steps. For each image I from Et and each image J
from Et−1, we use an affine transformation to align J to I and obtain Jwarp

(Fig. 3). This transformation could not be done inversely (i.e. from I to J) since
lesions may appear between time t−1 (image J) and time t (image I). Then, we
calculate MSE between {I, Jwarp}. The image J that minimizes MSE(I, Jwarp)
is considered as a correspondence of image I. The image pairing is necessary
for all proposed fusion schemes, whereas only the pre-fusion scheme requires the
registered image Jwarp as input. Following the above process, we finally obtained
25,843 pairs of images from 2668 patients as data for longitudinal fusion. This
dataset is further randomly divided into training (60%), validation (20%) and
test (20%) sets. The number of pairs with/without grade change is shown for
each subset in Table 1.

Data for Pre-training. By excluding ungradable images based on the attached
diagnosis report and the patients used for the longitudinal study, we finally use
649,365 images for pre-training. We randomly choose 80% as the training set
and 20% for validation.

Data Pre-processing. Given the diversity of image resolutions, colors, contrast
and illuminations in the OPHDIAT database, several preprocessing steps are
performed, as specified by [12]. Firstly, images are adaptively cropped to the
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Table 2. Hyper-parameters used for each deep network

Network Imsize Learning rate Batch size Iteration

VGG16 224 0.005 32 20k

InceptionV4 299 0.005 16 20k

Table 3. Quantitative results using VGG16 [20] and InceptionV4 [21] backbones.

Fusion Pre-training VGG16 InceptionV4

ImageNet K-label K-logistic acc AUC acc AUC

No fusion (only It) � 0.8594 0.9143 0.8510 0.9087

� 0.8603 0.9261 0.8692 0.9206

� 0.8555 0.9209 0.8632 0.9148

Early fusion � 0.7684 0.8034 0.8187 0.8742

� 0.8140 0.8618 0.8392 0.8995

� 0.8179 0.8771 0.8383 0.8965

Intermediate fusion � 0.7855 0.8513 0.7934 0.8451

� 0.8483 0.9032 0.8623 0.9091

� 0.8551 0.9151 0.8619 0.9088

Late fusion � 0.8580 0.9216 0.8392 0.8993

� 0.8696 0.9289 0.8756 0.9293

� 0.8684 0.9296 0.8696 0.9168

width of the field of view (i.e. the eye area in the CPF image) and are adjusted
to various sizes depending on the model used. The InceptionV4 (resp. VGG16)
network receives as input images with size 299 × 299 × 3 (resp. 224 × 224 × 3).
Secondly, in order to attenuate the strong intensity variations among the dataset,
the background is estimated by a Gaussian filter in each color channel then
subtracted from the image. Finally, the field of view is eroded by 5% to eliminate
illumination artifacts around edges. Random resized crops ([0.96, 1.0] as scale
range and [0.95, 1.05] as aspect ratio range) are applied for data augmentation.

4 Experiments and Results

The various proposed longitudinal fusion models are implemented using
pytorch. Experiments are performed on an Nvidia GeForce GTX 1080Ti and
trained using the SGD optimizer. We list in Table 2 the hyper-parameters used
for VGG16 and InceptionV4 networks. The performance of each method is mea-
sured using the classification accuracy (acc) and the area under the receiver
operating characteristics curve (AUC). The statistical significance was estimated
using DeLong’s t-test [14] to analyze and compare ROC curves. We perform com-
parative experiments between the different fusion schemes on two CNN architec-
tures: VGG16 and InceptionV4. Three pre-training strategies are investigated for
each model and each fusion scheme. To fairly compare these methods, we list in
Table 3 their classification acc and AUC. The baseline of each longitudinal fusion
scheme is to train a CNN classifier using a single image It, without involving
prior images.
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Fusion Results Comparison. According to our experimental results (Table 3),
the late-fusion achieved the best performance for both models (acc = 0.8696,
AUC = 0.9296, p = 0.007 for VGG16, acc = 0.8756, AUC = 0.9293, p = 0.006 for
InceptionV4). Surprisingly, for both models, incorporating the fusion of longitu-
dinal studies in prior to the network (early fusion) or in the middle of the network
(intermediate fusion) showed a considerable decrease compared to the no-fusion
baseline. Nevertheless, it is noteworthy that the late fusion scheme remains a
relevant strategy for both models, with better performance than other fusion
schemes. In particular, the late fusion brings 0.2%–0.9% AUC improvements to
the baseline, with statistical significance (p < 0.05).

Pre-train Comparison. Regardless of the fusion scheme, pre-training on
OPHDIAT dataset largely boosts the classification performance, from 0.6% AUC
(no fusion) to 7.37% (intermediate fusion with VGG16). The K-label pre-training
brings average AUC improvements of 2.86% (3.94%) for VGG16 (InceptionV4)
while the K-logistic pre-training leads to 3.36% (3.58%) gains. The K-label model
is slightly better than the K-logistic one, in most cases.

5 Discussion

In this study, we addressed the early-grade DR severity change detection by ana-
lyzing the fusion of two consecutive follow-up images. Deep learning based DR
classification that incorporates prior screening has not been exploited in existing
studies whereas the comparison with prior screening is an important step for
clinicians towards better decision-making. Specifically, we studied the impact of
the position of the fusion operations on network performance. Extensive experi-
ments have demonstrated that both early and intermediate fusions can not bring
further performance improvement with respect to the no-fusion baseline. Con-
versely, a simple late fusion has shown stable performance gain (Table 3). Our
explanations are as follows. The experimental results of the no-fusion baseline
have revealed that the network can classify It with fairly good performance
(AUC > 90%), indicating that the network has the ability to extract effective
features from single-image DR severity classification. However, to make early or
intermediate fusions robustly work, the network should be able to focus on the
lesion evolution at image or feature-map levels. This requires high-quality regis-
tration of consecutive images to make sure that the lesion areas are well aligned.
Moreover, due to the diversity of DR lesions and the subtlety of early lesions,
it is more difficult for the network to target the lesion evolution. Regarding the
late fusion scheme, the network firstly extracts effective features from It − 1 and
It, followed by a global average pooling layer. Then, the fusion operation is per-
formed based on the subsequent feature vectors that no longer contain spatial
information. Accordingly, the mis-alignment does not affect the fusion results.

The main limitation of this work deals with image registration between longi-
tudinal follow-up images. As a pre-processing step, it requires higher registration
quality. As a feature-level step, it is difficult to achieve automatic alignment at an
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intermediate level of the network. From the current point of view, the late fusion
strategy remains the simplest and most efficient method of image fusion. Exper-
imental results validate that incorporating prior DR studies can improve the
early-grade DR severity classification performance with respect to single-image
scenarios. This conclusion could be extended to other retinal image classification
tasks. In the future, our method will be further investigated using multiple pre-
vious studies or for other longitudinal pathology analysis, towards more accurate
CAD systems. We also claim that more in-depth works are required to explore
the interpretability of fusion networks applied to longitudinal image series.
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Abstract. Effective treatment of degenerative retinal diseases will
require robot-assisted intraretinal therapy delivery supported by excel-
lent retinal layer visualisation capabilities. Intra-operative Optical
Coherence Tomography (iOCT) is an imaging modality which provides
real-time, cross-sectional retinal images partially allowing visualisation
of the layers where the sight restoring treatments should be delivered.
Unfortunately, iOCT systems sacrifice image quality for high frame rates,
making the identification of pertinent layers challenging. This paper
proposes a Super-Resolution pipeline to enhance the quality of iOCT
images leveraging information from iOCT 3D cube scans. We first explore
whether 3D iOCT cube scans can indeed be used as high-resolution
images by performing Image Quality Assessment. Then, we apply non-
rigid image registration to generate partially aligned pairs, and we carry
out data augmentation to increase the available training data. Finally,
we use CycleGAN to transfer the quality between low-resolution (LR)
and high-resolution (HR) domain. Quantitative analysis demonstrates
that iOCT quality increases with statistical significance, but a qualita-
tive study with expert clinicians is inconclusive with regards to their
preferences.
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1 Introduction

Regenerative therapies are considered as promising treatments for retinal dis-
eases such as Age-Related Macular Degeneration (AMD) [2] that cause blind-
ness. These novel therapies, however, must be precisely delivered subretinally
or intraretinally over prolonged periods of time. Retinal layers cannot be visu-
alised under conventional vitreoretinal surgical protocols, i.e. with en face binoc-
ular biomicroscopy, which calls for the use of Intra-operative Optical Coherence
Tomography (iOCT) to capture cross-sectional retinal images (Fig. 1a).

OCT is a non-invasive imaging modality, which uses light in the near-infrared
spectral range to visualise tissue layer information. Pre-operatively acquired
OCT images are of excellent quality taking advantage of spatiotemporal sig-
nal averaging albeit requiring a prohibitively long acquisition time for real-time
visualisation of interventions. iOCT, on the other hand, allows real-time scan-
ning but at the cost of inferior image quality making iOCT interpretation and
layer discrimination challenging. Therefore, the interventional utility of iOCT
images generated from current commercial systems is debatable.

In parallel with development of advanced iOCT hardware carried out interna-
tionally, we are pursuing computational enhancement of iOCT image quality to
support the microprecise delivery of sight-restoring therapies within the retina.
Previous studies on iOCT mainly focused on needle localisation [23], tool track-
ing [16] and anterior segment anatomies detection [17] but the enhancement of
posterior eye segment visualisation in iOCT is still unaddressed.

Several classical software-based techniques have been proposed to reduce
speckle noise in OCT images [1] and thus improve image quality. Averaging mul-
tiple registered B-scans of uncorrelated speckle noise, acquired at the same posi-
tion on the retina [9,19] and single B-scan filtering [1,14] have positive denoising
results. However, the need for prolonged scans and perfect alignment lessen the
effectiveness of solutions for intra-operative applications and iOCT.

Deep learning approaches have been developed for image quality enhance-
ment and super-resolution in natural images [7,8,11,24]. In the medical imaging
domain [4] proposed autoencoders built using convolutional layers for denoising,
while in [22] a generative adversarial network (GAN) accompanied by Wasser-
stein distance and perceptual similarity was used to successfully denoise CT
images. In [15,21], the authors focused on unsupervised Super-Resolution (SR)
techniques while several works developed SR models for OCT image denoising
[3,10].

This paper reports underpinning work towards real-time iOCT Super Res-
olution. First, we perform No-Reference Image Quality Assessment (IQA) to
investigate whether the available 3D iOCT scans are of better quality than low
resolution (LR) 2D iOCT frames and thus if they can be used as high resolu-
tion (HR) images. Second, in order to provide weak supervision to the network,
we apply non-rigid registration to create partially aligned pairs of LR and HR
images. Then, we augment our initial paired dataset by exploiting the temporal
continuity in 2D iOCT frames and use CycleGAN for quality transfer between
LR and HR domain. We evaluate our pipeline through quantitative analysis
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Fig. 1. (a): Left: Surgical microscope view. Right: iOCT B-scans. (b) From top to
bottom:V-iOCT, C-iOCT and C-pOCT.

using four different IQA metrics calculated on the super-resolved iOCT image.
We also report qualitative data by capturing the individual preferences of 11
vitreoretinal surgeons with regards to original versus SR iOCT images.

2 Methods

In this section we present the Image Quality Assessment between the two iOCT
image types, the partial alignment between LR and HR images and the genera-
tion of Super-resolved images using adversarial training with cycle consistency.

2.1 Datasets

The data used in this study originate from an internal dataset of intra-operative
retinal surgery videos and OCT/iOCT scans from 66 patients acquired at Moor-
fields Eye Hospital, London, UK. The data was acquired in accordance with the
Declaration of Helsinki (1983 Revision) and its ethical principles. To qualify for
inclusion in our dataset, a “patient” should have all of the following three types
of OCT data acquired by ZEISS devices (Carl Zeiss Meditec Inc., Dublin, CA):

1. Intra-operative OCT video frames (V-iOCT), recorded from RESCAN 700
integrated into the OPMI LUMERA 700 acquired during surgery.

2. Intra-operative OCT cube frames (C-iOCT), extracted from 512 × 1024 ×
128 OCT cubes, acquired at the onset of surgery using RESCAN 700.

3. Preoperative OCT cube frames (C-pOCT), extracted from 512 × 1024 × 128
OCT cubes, acquired prior to the intervention using Cirrus 5000.

This led to a subset 18 data tuples/patients to be considered in this paper.
As a preprocessing step, we manually identified the frames of the three OCT

sources that contain corresponding underlying anatomy given that the videos
and the scans of the same patient visualise alike retinal structures. We ended up
having 983 images per type (V-iOCT, C-iOCT,C-pOCT).
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2.2 Image Quality Assessment

Even though arguably C-pOCT scans are the OCT images with the best quality
(Fig. 1b), we investigated whether C-iOCT can be used as the HR domain to
enhance the V-iOCT (LR). As both C-iOCT and V-iOCT were obtained
under the same conditions (device, date, patient position), they represent a
smaller HR/LR domain gap. Therefore, we explored methods in the context
of No-Reference Image Quality Assessment to compare the quality of the two
iOCT sources as in our case true HR reference images are not available.

First, we used a perceptual loss function [8] which measures the high level
perceptual difference between input and target images through their distance
in the feature space of Imagenet-pretrained Deep Convolutional Network [18].
Specifically, for each patient and for each OCT type, e.g., V-iOCT, we extracted
the VGG-16 [20] conv43 feature representations for every input V-iOCT image
and we averaged them generating one averaged feature map for the V-iOCT
images. We applied the same process for C-iOCT and C-pOCT images obtain-
ing two more averaged feature maps per patient. Then, we calculated pairwise
Euclidean distances between the averaged feature maps (Φ) of V-iOCT and
C-pOCT as well as between C-iOCT and C-pOCT:

�feat = ‖Φi − Φp‖2 (1)

The per patient �feat values indicate the perceptual similarity of V-iOCT and
C-iOCT relative to C-pOCT.

Furthermore, we used Frechet Inception Distance (FID)[6], a metric used to
evaluate the performance of GANs [5]. For image generation tasks using GANs,
FID can capture how similar two sets of images are by comparing the statis-
tics of the distributions of feature representations extracted from the ImageNet-
pretrained Inception-v3. In this context, we use FID to calculate the similarity
of V-iOCT-C-pOCT and C-iOCT-C-pOCT datasets across the 18 patients:

FID = ‖μi − μp‖2 + Tr(Σi + Σp − 2(ΣiΣp)1/2) (2)

where Xi ∼ N(μi, Σi) and Xp ∼ N(μp, Σp) are the activations of the first
max pooling layer for intra-operative (V-iOCT, C-iOCT) and preoperative
(C-pOCT) samples respectively. We chose the first max pooling layer 64-
dimensional features of Inception-v3 as every patient contains at least 64 images
per OCT type which are sufficient to calculate the statistics.

Finally, we considered Natural Image Quality Evaluator (NIQE) [13], one
of the state-of-the-art No-Reference IQA metrics. We trained a custom NIQE
model from the database of C-pOCT images, and we calculated the NIQE score
for each V-iOCT and C-iOCT image.

Lower NIQE scores indicate better perceptual quality of the examined iOCT
image with respect to C-pOCT.

The intuition behind the above methods is that if the values of �feat, FID and
NIQE for C-iOCT images across the 18 patients are lower than the correspond-
ing values of V-iOCT, then C-iOCT would be perceptually more similar to the
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Fig. 2. Overview of the proposed augmentation approach.

C-pOCT which are the highest quality images of our dataset. Therefore, consid-
ering C-iOCT’s as the HR domain would be meaningful. IQA results, reported
in Sect. 3.1, demonstrate that C-iOCT are perceptually closer to the C-pOCT
and thus they will be used as HR domain throughout the next sections.

2.3 Registration

Despite the fact that V-iOCT and C-iOCT frames were both acquired intra-
operatively and under the same conditions, there were misalignments between
underlying structures due to patient motion. CycleGAN which is the SR model
of our pipeline, has been used mainly for unpaired datasets. However, in our
first experiments we noticed that unpaired V-iOCT and C-iOCT data led to
incosistent SR results, so we decided to partially register them aiming to pro-
vide weak supervision to the network. In order to create a valid set of paired
V-iOCT-C-iOCT images, we applied an affine transformation as initialization
and performed multi-resolution non-rigid registration using B-splines as param-
eterisation between the V-iOCT (fixed) and C-iOCT frames (moving).

Following registration, we applied Retinal Pigment Epithelium (RPE) layer
delineation using a heuristic method in the resulting moved image. The method
considers the RPE as the most hyper-reflective retinal layer and estimates RPE
points by calculating the brightest pixels across the A-scans (columns) of the
iOCT image. Then, based on the calculated RPE points, we defined the hori-
zontal and vertical cropping points considering as useful part of the moved image
the region between RPE and ILM. The cropping points defined the crop region
for both moved (C-iOCT) and fixed (V-iOCT) frames leading to images of
size 380 × 150.

2.4 Data Augmentation

We exploited the temporal continuity in V-iOCT frames to augment the train-
ing pairs (so far 537). Knowing the position of one of the already paired V-iOCT
(reference), we examined which of the ±5 neighbour frames capture relevant
retinal tissue. We delineated the RPE layers in neighbour frames and calculated
their Hausdorff Distance with respect to the reference’s RPE. Registration with
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Table 1. IQA results of V-iOCT and C-iOCT with respect to C-pOCT. Arrows
indicate that lower means better.

Metric V-iOCT C-iOCT

FID (↓) 3.77 ± 1.87 0.65 ± 0.22

�feat(↓) 597.57 ± 80.84 503.50 ± 66.72

NIQE (↓) 26.29 ± 1.52 16.32 ± 2.06

the reference’s C-iOCT image was performed only for the neighbour frames
where Hausdorff Distance was less than 15 (pixels). We then rigidly registered
the selected frames to the reference’s C-iOCT. This data augmentation method-
ology (Fig. 2) led to a total of 1022 paired images. The source code of our meth-
ods will be available online at https://github.com/RViMLab/OMIA2021-iOCT-
Super-Resolution.

2.5 Super Resolution with Cycle Consistency

To perform Super Resolution (SR), we adopted CycleGAN’s architecture [24],
which is widely used in image-to-image translation tasks. Given two datasets
of LR (V-iOCT) and HR (C-iOCT) images, CycleGAN can learn a mapping
G : LR → HR such that the distribution of the generated images G(LR) is
indistinguishable from the distribution of HR images. Unlike to typical GANs,
it also learns an inverse mapping from output to input G : HR → LR and uses
cycle consistency to enforce mappings in both directions.

3 Results

In this section, we present the results obtained from IQA between C-iOCT
and V-iOCT as well as the quantitative and the qualitative analysis that we
conducted to validate our Super-Resolution pipeline.

3.1 Image Quality Assessment

Table 1 summarises IQA results. The reported values are the averaged results
across 18 patients. The values of the three metrics (FID, �feat, NIQE) are
lower for C-iOCT which indicates better perceptual quality with respect to
C-pOCT. Therefore, C-iOCT are closer to the preoperative data (C-pOCT),
which implies that they contain more information than V-iOCT and thus they
can be used as HR images. The statistical significances of the pairwise compar-
isons were assessed using paired t-test and all the p-values were p < 0.001.

https://github.com/RViMLab/OMIA2021-iOCT-Super-Resolution
https://github.com/RViMLab/OMIA2021-iOCT-Super-Resolution
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V-iOCT X1.5 SR-iOCT(CGAN) X1.5

Fig. 3. LR V-iOCT images and their Super-resolved SR-iOCT.

V-iOCT SR-iOCT(CGAN) SR-iOCT(Pix) C-iOCT

Fig. 4. From left to right: V-iOCT(LR), SR by CycleGAN, SR by Pix2Pix, C-
iOCT(HR).

3.2 Quantitative Analysis

We performed quantitative analysis to validate the quality enhancement of the
SR images (Fig. 3) with respect to C-iOCT. The analysis was based on the: V-
iOCT (LR), SR-iOCT(CGAN) (SR) and C-iOCT (HR) test sets (204 images
each). Three already analysed in Sec. 2.2 metrics (FID, �feat, NIQE) and the
no-reference Global Contrast Factor (GCF) [12] metric were used.

First, we divided the test set to 3 subsets of 64 images each and we calcu-
lated the FID between SR-iOCT and C-iOCT as well as the FID between
V-iOCT and C-iOCT and we averaged the results across the 3 subsets. �feat
was computed between each V-iOCT, SR-iOCT and its corresponding C-
iOCT frame while NIQE score was obtained per V-iOCT, SR-iOCT image
after training a model on C-iOCT images. GCF, a reference-free metric which
calculates the image contrast, was also computed per V-iOCT, SR-iOCT. The
reported values (Table 2) are the averaged results across the 204 V-iOCT and
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Table 2. Quantitative analysis results. Arrows show if higher/lower means better.

Metric V-iOCT SR-iOCT(CGAN) SR-iOCT(Pix)

FID (↓) 3.18 ± 0.93 3.22 ± 0.39 3.26 ± 0.64

�feat(↓) 632.31 ± 74.29 602.55 ± 77.24 621.94 ± 72.99

NIQE (↓) 32.01 ± 5.81 28.22 ± 4.74 39.07 ± 3.60

GCF (↑) 7.85 ± 0.60 8.21 ± 0.58 6.49 ± 0.46

SR-iOCT images. To further validate our work, we compared our approach
against Pix2Pix, SR-iOCT(Pix), which which is one of the state-of-the-art
methodologies for image-to-image translation tasks. Pix2Pix is an implemen-
tation of the Conditional GAN where the generation of an image is conditional
on a given image. It needs aligned pairs of LR and HR images, a requirement
which is fulfilled to a great extent in our case because of the registration step.
The quantitative and visual results of the method are presented in Table 2 and
Fig. 4 respectively.

Our analysis aimed at investigating whether our pipeline can improve the
quality of the LR OCT frames. From these results, SR-iOCT(CGAN) images,
super-resolved images using CycleGAN, are perceptually more similar to the
HR than the corresponding LR according to �feat. Furthermore, lower NIQE
score and higher GCF values show that SR-iOCT(CGAN) has better percep-
tual quality and higher contrast respectively compared to V-iOCT. However,
FID demonstrates that V-iOCT statistics are more similar to C-iOCT, which
is probably because the metric uses lower layer features trying to address the
problem of having limited samples for statistics calculation. On the other hand,
SR-iOCT(Pix) images are worse than the LR images according to three out
of four metrics (Table 2). Pix2Pix’s architecture does not include a Cycle Con-
sistency Loss term and as a result structures from original sample may not
appear in the reconstructed sample. We assessed the statistical significance of
the results using paired t-test and the p-values for all the metrics except FID
were p < 0.001. It is also worth mentioning that CycleGAN needs 0.029 (s) time
to generate one super-resolved image of size 350 × 350 which is acceptable for
the real-time requirement of our application.

3.3 Qualitative Analysis

Our survey included 30 pairs of V-iOCT and SR-iOCT(CGAN) frames
(Fig. 3), randomly arranged to avoid order bias during the evaluation. We asked
11 retinal doctors/surgeons to select the image that they would prefer to observe
in a clinical setting. The results indicate that clinicians marginally prefer the
Super-resolved OCT obtained by our methodology, as 51% of the total experts’
answers are in favour of SR-iOCT instead of V-iOCT. Furthermore, it is
worth noting that 2 out of the 11 clinicians strongly preferred the SR-iOCT (in
83.33% and 73.33% of the occasions), 3 were against SR-iOCT (less than 35%
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cases) and the rest fluctuated between 46% and 63%. In addition, in 5 out of 30
pairs, more than 73% of the experts tend to prefer SR-iOCT than the original
V-iOCT.

Therefore, despite the fact that our quantitative metrics demonstrate that
our pipeline can produce images of higher quality than the original V-iOCT
frames, the qualitative analysis shows that most participants, in the majority of
the cases were unable to choose between V-iOCT and SR-iOCT, showcasing
the need for further work to deliver qualitatively superior iOCT images.

4 Discussion and Conclusions

This paper presents initial work on the Super-resolution of intra-operative Opti-
cal Coherence Tomography images obtained in real-time during various vitreo-
retinal surgical procedures.

First, we assessed the quality of C-iOCT and V-iOCT using three different
No Reference Image Quality Assessment methods demonstrating that C-iOCT
can be used as HR domain. Furthermore, we performed Non-rigid Registration
between LR and HR images and we deployed an automatic way to augment the
available training dataset. Finally, we used CycleGAN to apply Super-Resolution
by quality transfer between LR and HR domains.

We evaluated our pipeline by performing both quantitative and qualitative
analysis. In the former case, the obtained results showed that the proposed
method can generate enhanced iOCT images, while the later analysis demon-
strated that there is not a clear preference between original and Super-resolved
images in the majority of the occasions.

To the best of our knowledge, this paper is the first which addresses the prob-
lem of Super-Resolution in intra-operative OCT images leveraging the available
HR iOCT 3D scans. Further research into temporal alignment of iOCT frames
must be carried out to maximise the potential of creating iOCT frames of truly
superior image quality than what currently available.
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Abstract. Disease grading and lesion identification are two important
tasks for diabetic retinopathy detection. Disease grading uses image-level
annotation but lesion identification often needs the fine-grained anno-
tations, which requires a lot of time and effort of professional doctors.
Therefore, it is a great challenge to complete disease grading and lesion
identification simultaneously with the limited labeled data. We propose
a method based on weakly supervised object localization and knowledge
driven attribute mining to conduct disease grading and lesion identifica-
tion using only image-level annotation. We first propose an Attention-
Drop-Highlight Layer (ADHL), which enables the CNN to accurately and
comprehensively focus on the various lesion features. Then, we design a
search space and employ neural architecture search (NAS) to select the
best settings of the ADHL, to maximize the performance of the model.
Finally, we regard the lesion attributes corresponding to different disease
grades as weakly supervised classification labels representing prior knowl-
edge, and propose an Attribute Mining (AM) method to further improve
the effect of disease grading and complete lesion identification. Exten-
sive experiments and a user study have proved that our method can cap-
ture more lesion features, improve the performance of disease grading, and
obtain state-of-the-art results compared to the methods only using image-
level annotation.

Keywords: Diabetic retinopathy detection · Disease grading · Lesion
identification

1 Introduction

The technology of disease grading and lesion identification provides great help
for diabetic retinopathy (DR) detection [11–13]. Disease grading predicts grading
of DR and assists doctors to complete early diagnosis. Lesion identification can
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Inputs Heatmap Lesion identification Heatmap Lesion identification

ADL Our method

Fig. 1. Compared with the ADL [3] method, our method can locate the lesions more
accurately and provide the category of lesions. Blue and cyan represents microaneurysm
and hemorrhages, black represents no category prediction, just highlighted. (Color
figure online)

directly locate the focus and provide an interpretable diagnostic basis for doctors
and patients. Disease grading is usually regarded as classification task. Several
methods based on convolutional neural network have been designed to classify
DR [5,6,12]. Most lesion identification methods are based on object detection
and semantic segmentation [12,15]. The task of disease grading needs to use
the data with image-level annotation; but lesion identification needs to use the
fine-grained bounding box or pixel-level annotation, which is time-consuming
and laborious for professional doctors. Therefore, it is a challenge to complete
disease grading and lesion identification with limited labeled data.

In this paper, we propose a weakly supervised object localization [14] and
attribute mining method, which only uses image-level annotation and lesion
attribute annotation derived from prior knowledge to complete disease grad-
ing and lesion identification of DR. As shown in Fig. 1, we propose a weakly
supervised object localization method, Attention-Drop-Highlight Layer (ADHL),
which enables the network to pay attention to more lesion features and provides
comprehensive and accurate information for disease grading and lesion identi-
fication. However, the insertion location and parameter settings of ADHL will
greatly affect the training effect of CNN. Therefore, we design a search space,
using neural architecture search (NAS) [17] to search suitable setting of these
parameters, to maximize the performance of the ADHL. Finally, we take the
basis of lesion classification in Table 1 as the prior knowledge attribute tag, and
propose an attribute mining (AM) method to enable the model to learn more
specific information about attributes, to further improve the disease grading per-
formance. Additionally, the specific attribute information obtained in the process
of AM is used as the results of lesion identification. Quantitative and qualitative
experiments on three public datasets and a user survey prove the effectiveness
of our proposed method.

2 Method

2.1 Attention-Drop-Highlight Layer (ADHL)

CNN tends to employ the most discriminative features to conduct image clas-
sification, resulting in ignorance of other potentially useful information [3].
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Table 1. Grades of DR according to international clinical guidelines for diabetic
retinopathy [2]. IRMA stands for Intra Retinal Microvascular Abnormalities.

Grade Criterion

0 - No DR No Abnormalities

1 - Mild Microaneurysms

2 - Moderate More than just microaneurysms but less than Grade 3

3 - Severe Intraretinal hemorrhages or Definite venous beading or Prominent IRMA

4 - PDR Neovascularization or Preretinal hemorrhage

However, it is often necessary to make disease grading by comprehensive evalu-
ation of multiple lesions in medical images. We propose an ADHL to solve this
problem. Figure 2 (b) shows the structure of the ADHL. The Attention branch
implements self-attention on the input feature map, to enhance the representa-
tion of important features. The function of the Drop branch is to drop the most
discriminative features and force the network to notice and capture other lesion
features that are helpful to classify the current disease. The Highlight branch,
the complement of the Drop branch, avoids the overfitting caused by the network
paying too much attention to extensive lesion features.

The input of the ADHL is a feature map F (F ∈ RH×W×D, where H, W ,
D are height, width and depth of F ). After channel-wise average pooling, the
attention map A (A ∈ RH×W ) is obtained. The value of A is mapped to [0,1]
after sigmoid to reflect the discriminant of the feature. The part of A whose value
is greater than the parameter Drop threshold tD will be set to 0, which means
that the most discriminative feature in this spatial dimension is discarded. The
part of A whose value is less than the parameter Highlight threshold tH will
be set to 0, indicating that the features in this part of spatial dimension that
may be useless for classification are discarded. Then, the network enters the
branch selection stage with the probabilities of the three branches PA, PD and
PH (PA + PD + PH = 1). The new feature map F ′ is obtained by multiplying
the selected branch feature with the input feature map F :

F ′ =

⎧
⎪⎨

⎪⎩

A × F , r ∈ [0, PA)
D × F , r ∈ [PA, PA + PD)
H × F , r ∈ [PA + PD, 1]

(1)

where r ∈ [0, 1] is a random number generated during training, × is point-wise
multiply, A, D and H are the outputs of Attention, Drop and Highlight branch.

2.2 NAS-ADHL

In our proposed ADHL, there are some parameters and settings directly related to
the performance of disease grading and lesion identification, including the insertion
position of ADHL, the selection probability of three branches (PA, PD, PH), and
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Fig. 2. Pipeline of our method. NAS controls the parameters in the ADHL. After
iterative optimization by reinforcement learning, the model with the best performance
on the validation set is selected, and the AM is applied to complete the attribute pre-
diction and disease grading. The white regions on the heatmaps are dropped features.
Note that the QWK is the quadratic weighted kappa metric.

the threshold of Drop and Highlight (tD , tH ). Therefore, in order to avoid adjusting
parameters manually and maximize the role of the ADHL, we use the NAS method
to search for these parameters. The NAS module we designed is responsible for
determining whether to insert ADHL after a convolutional layer, and selecting the
probability of three branches, Drop threshold and Highlight threshold. Addition-
ally, we use the strategy similar to NASNet [17], to update the parameters with
proximal policy optimization (PPO) [8].

2.3 Attribute Mining (AM)

We take the criterion of each DR grade in Table 1 as prior knowledge, and get
six attributes: microaneurysm (MA), hemorrhage (HE), definite venous bead-
ing, prominent IRMA, neovascularization (NV) and preretinal hemorrhage. We
use these attributes to train a multi-label classification task. However, the prior
knowledge attribute tags we obtain are not completely correct, because the lesion
features represented by the fundus images of the same category are not exactly
the same. For example, one sample with grading 4 may have preretinal hem-
orrhage and microaneurysms, and another sample with the same grading may
have neovascularization and hemorrhage.

The first effectiveness of AM is to solve the problem above and further
improve disease grading performance. As shown in Fig. 2 (c), FNA is the out-
put of the last convolutional layer of CNN trained with NAS-ADHL. The dis-
ease grading task is finished first using Cross Entropy Loss conducted with the
predictions of the model and DR grading labels. The calculation of attributes
prediction goes ahead by a function f with a fully connected layer and a sig-
moid layer. p (p ∈ R6) represents the prediction probabilities of the six lesion
attributes.

Then, we use Grad-CAM [9] to get the heatmap of FNA and use a threshold
t to obtain the K activated regions on the heatmap to form K connected com-
ponents, with each connected component as a lesion area. The AM iteratively
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Fig. 3. Qualitative evaluation of the ADHL and others. The locations highlighted in
heatmap are the potential lesions found by models.

calculates the heatmap for K times, each time drops one connected area on the
feature map and multiplies with FNA, and shares the weight of f to obtain the
new attribute estimation pk (pk ∈ R6). We can obtain the lesion attribute weight
of this iteration through the softmax layer, and finally take the average value as
the lesion attribute weight, which can be defined as:

weight =
1

K + 1

K∑

k=0

softmax (pk) (2)

where softmax (·) is the function of softmax layer, and k = 0 means the calcula-
tion on original heatmap. Then, the adjusted attribute prediction, pweighted , is
conducted by multiplying the weight with p. Finally, Pweighted passes through
a fully connected layer and a sigmoid layer to calculate Binary Cross Entropy
Loss (BCE) loss with the attribute tags.

The second effectiveness of AM is to identify lesions. In the k-th calculation
of iterative lesion attribute mining, each drop position is a lesion area. The
proposed AM conducts k-th lesion identification using the formula as follow:

Lesionk = arg max
k∈{1,2,··· ,K}

(softmax (pk) − softmax (pk−1)), (3)

where Lesionk is the category of the k-th lesion area.

3 Experimental Results

3.1 Settings

Datasets and Evaluation Metrics EyePACS [1] contains 35,126 training
and 53,576 testing images with the same five classes as Table 1, but with a
class imbalance problem. Messidor [4] contains 1,200 fundus images with four
classes (0 to 3). This dataset is usually used for two binary tasks: referral/non-
referral and normal/abnormal. For the former task, tags 0 and 1 are used as
non-referrals, 2 and 3 are used as referrals. For the latter task, tag 0 is regarded
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Table 2. Contrastive experiments
on the EyePACS dataset.

Method Ap Dp Hp QWK Acc.

ADL 0.8 0.2 - 0.845 0.838

0.2 0.8 - 0.842 0.831

0.6 0.4 - 0.845 0.841

0.4 0.6 - 0.843 0.836

Baseline - - - 0.844 0.836

ADHL 0.8 0.1 0.1 0.848 0.844

0.1 0.8 0.1 0.847 0.839

0.1 0.1 0.8 0.845 0.841

0.6 0.2 0.2 0.850 0.839

0.2 0.6 0.2 0.847 0.836

0.2 0.2 0.6 0.848 0.842

Table 3. Quantitative evaluation results
of the NAS-ADHL. L denotes the inser-
tion of ADHL and x-y means the y-th con-
volutional layer in the Stage x of ResNet.

L Ap Dp Hp tD tH QWK Acc

5-3 0.32 0.48 0.20 0.90 0.75 0.851 0.844

5-3 0.27 0.24 0.49 0.75 0.75 0.853 0.843

5-2 0.38 0.46 0.16 0.75 0.85 0.852 0.838

5-3 0.22 0.45 0.33 0.95 0.90

4-3 0.45 0.41 0.14 0.95 0.95 0.848 0.847

4-6 0.38 0.34 0.28 0.90 0.75 0.850 0.842

5-3 0.12 0.48 0.40 0.95 0.85

as normal and the others as abnormal samples. In addition, we use FGADR [16]
dataset which has 1842 samples with pixel-level annotation for six type of lesions
but has the problem of unbalanced labels, to verify the performance of lesion
identification. For disease grading, we use accuracy (Acc.), quadratic weighted
kappa (QWK) [1] and the area under curve (AUC) as the evaluation metrics.
For lesion identification, we use DICE to conduct quantitative evaluation and
design a user study for qualitative evaluation.

Implementation Details. We resize the fundus images to 512 × 512, use
ResNet50 as the baseline, and employ basic augmentations. We first train 30
epochs using NAS-ADHL. Then the ADHL with the optimal parameters is used
to train an additional 30 epochs. Finally, we add AM and finetune 20 epochs
to enable the model to complete lesion identification. More information about
implementation details can be found in the supplementary material.

3.2 Ablation Studies

Effect of ADHL. We conduct a comparative experiment among our proposed
ADHL, baseline (ResNet50) and a weakly supervised object location method
(ADL [3]). Figure 3 shows the lesion areas considered useful for classification
by the model. We can see that baseline is not comprehensive enough for lesion
capture; ADL can capture a wider range of lesion features than the baseline, but
it is still not accurate enough. Our ADHL shows the best effect, as it can capture
more lesion features. In Fig. 3 (b), the ADL and baseline focus on too many
features, and our ADHL can capture lesion features in details. The quantitative
results are shown in Table 2. The performance of ADHL is better than that of the
ADL and the baseline. Specifically, with the same attention selection probability,
QWK and Acc. are improved after a part of the selection probability is allocated
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Table 4. Performance compari-
son of DR grading on the Eye-
PACS dataset.

Methods QWK

CLSC [15] 0.872

AFN [6] 0.859

Min-Pooling 0.849

o O 0.845

RG 0.839

Zoom-in-Net [12] 0.849

CABNet(ResNet50) [5] 0.851

Ours 0.856

Table 5. Quantitative evaluation results
on the Messidor dataset.

Task Referral Normal

Methods AUC Acc. AUC Acc.

CLSC [15] 0.976 0.939 0.943 0.922

AFN [6] 0.968 - 0.935 -

VNXK [10] 0.887 0.893 0.870 0.871

CKML [10] 0.891 0.897 0.862 0.858

Expert [7] 0.940 - 0.922 -

Zoom-in-Net [12] 0.957 0.911 0.921 0.905

Ours 0.960 0.911 0.937 0.900

from the Drop branch to the Highlight branch. This result illustrates that our
method can improve the effect of disease classification after a comprehensive
capturing of the key lesion information in the image.

Effect of NAS-ADHL. We select the NAS-ADHL structure ranked top 5 on
the QWK metric on the validation set, train models with the method in the
section of implementation, and obtain the results shown in Table 3. We can see
that in ResNet50, only convolutional layers in Stage4 and Stage5 are selected,
indicating that ADHL can achieve better disease classification effect when it is
applied to the deep layer of CNN. Compared to other models, our model ranked
second in the validation set has higher value of highlight probability, and achieves
better results in the final test set. This shows that the Highlight branch can assist
the model in comprehensively capturing lesion features and highlighting the fea-
tures utility for disease grading. Additionally, the experimental results show that
too high threshold of Drop or Highlight will damage the feature representation
ability of the model and reduce the QWK score on the validation set.

Effect of AM. The quantitative results of DR grading are shown in Table 4.
Compared with the best QWK in Table 3, the disease grading performance of the
model can be further improved after using the AM. We conduct a cross-validation
segmentation experiment on FGADR dataset to verify the performance of lesion
recognition, and get: MA 0.0543, HE 0.1664, IRMA 0.0022, and NV 0.0028.
The results of fully supervised segmentation are MA 0.1774, HE 0.3877, IRMA
0.0119, and NV 0.0339. It can be seen that our AM has good localization ability
for MA and HE. However, it is a difficult problem to locate IRMA and NV,
and even the fully supervised segmentation method can not locate them well.
In addition, the result without using AM is None, because the network has no
ability to complete recognition through image-level annotation. Note that the
other two lesions, hard exudates and soft exudates are not in Table 1, so we don’t
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Fig. 4. Qualitative results of lesion identification. Blue, cyan, green and yellow rep-
resent microaneurysms, hemorrhages, definite venous beading and prominent IRMA.
In part (a), we manually display three representative regions of lesion in each sample,
crop and enlarge them from the input images. Failure cases are shown in part (b),
which are caused by the recognition of too much information with our method. (Color
figure online)

evaluate them. Figure 4 shows the effectiveness of AM on lesion identification. In
part (a), it can be seen that our method can complete the lesion identification
only using image-level labels. In each sample, three lesions are selected for mag-
nification, and their location and category predictions are correct. Part (b) is
the demonstration of failure cases. Although the disease grading results of these
samples are correct, limited by the serious class imbalance problem of EyePACS,
some rare lesions make the model difficult to accurately predict their location.

3.3 Comparison with SOTA Methods on Disease Grading

Table 4 shows the results of quantitative comparison with the SOTA methods
on EyePACS. The methods in the upper part of the table use additional fine-
grained annotations. CLSC [15] used pixel-level annotation and AFN [6] utilized
bounding box annotation. Methods in the lower part of the table only used
the image-level annotation. Our methods outperform them in terms of QWK
score. Table 5 shows the results of comparison of different methods on Messidor.
It shows that our method can achieve good performance in both referral/non-
referral and normal/abnormal tasks, especially in the AUC metric, which shows
that our model can effectively process the fundus images with diseases.

3.4 User Study on Lesion Identification

We randomly select 50 samples in test set, and use the visualization method sim-
ilar to Fig. 4 to display the heatmap of ADHL and ADL. Five doctors are asked
to compare the two lesion capture effects of each sample. According to statistics,
on average, doctors think that the results of the ADHL are better, accounting for
90.4% of the total sample. Then we ask doctors to compare the results of ADHL
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with category prediction (lesion identification results of AM) with those of ADL
without category. As a result, they all think that the prediction with category is
better. To sum up, our method can identify lesions more comprehensively and
accurately, and has certain significance for clinical auxiliary diagnosis.

4 Conclusion

We propose a method to complete disease grading and lesion identification of
DR with only image-level annotation. The proposed ADHL enables CNN to
focus on comprehensive and accurate lesion information, and we use NAS to
maximize the performance of ADHL. The designed AM method can use the
prior knowledge tags to identify the lesions. Experiments and a user survey
show that our proposed method is better than the previous methods which only
use image-level annotation, and lesion identification with our method can have
a positive role in clinical diagnosis.
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Abstract. Optical coherence tomography angiography (OCTA) is a
recent advance in ophthalmic imaging, which provides detailed visualiza-
tion of two important anatomical landmarks, namely foveal avascular zone
(FAZ) and retinal vessels (RV). Studies have shown that both FAZ and
RV play significant roles in the diagnoses of various eye-related diseases.
Therefore, accurate segmentation of FAZ and RV from OCTA images is
highly in need. However, due to complicated microstructures and inho-
mogeneous image quality, there is still room for improvement in exist-
ing methods. In this paper, we propose a novel and efficient deep learn-
ing framework containing two subnetworks for simultaneously segmenting
FAZ and RV from en-face OCTA images, named FARGO. For FAZ, we use
RV segmentation as an auxiliary task, which may provide supplementary
information especially for low-contrast and low-quality OCTA images. A
ResNeSt based encoder with split attention and ImageNet pretraining is
employed for FAZ segmentation. For RV, we introduce a coarse-to-fine
cascaded network composed of a main segmentation model and several
small ones for progressive refining. Spatial attention and channel attention
modules are utilized for adaptively integrating local features with global
dependencies. Through extensive experiments, FARGO is found to yield
outstanding segmentation results for both FAZ and RV on the OCTA-500
dataset, performing even better than methods that utilize 3D OCTA vol-
ume as an extra input.

Keywords: Foveal avascular zone · Retinal vessels · Joint
segmentation · Coarse-to-fine · OCTA · ResNeSt.

1 Introduction

Optical coherence tomography angiography (OCTA) is a recent advance in oph-
thalmic imaging. It is a non-invasive imaging modality that does not require intra-
venously administering fluorescent dyes [2], which is much safer than prevenient

L. Peng and L. Lin contributed equally to this work.

c© Springer Nature Switzerland AG 2021
H. Fu et al. (Eds.): OMIA 2021, LNCS 12970, pp. 42–51, 2021.
https://doi.org/10.1007/978-3-030-87000-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87000-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-87000-3_5


FARGO: A Joint Framework for FAZ and RV Segmentation 43

forms of imaging. It provides details of vascular structures within the retina as
well as images of blood flow in the retina and choroid [21]. Due to the high resolu-
tion of OCTA images, detailed microvascular structures can be displayed, which
is beneficial for accurate extractions of foveal avascular zone (FAZ) and retinal
vessels (RV) in the retina. These two anatomical landmarks play significant roles
in the diagnoses of various eye diseases and eye-related systemic diseases [1]. For
instance, the morphology and contour irregularity of FAZ is related to the con-
dition of age-related macular degeneration [11,15] and the severity of glaucoma
[4,22] and morphological changes in the RV tortuosity and caliber can reflect the
progression of diabetic retinopathy [10,19]. Therefore, an efficient and accurate
method for simultaneous FAZ and RV segmentation utilizing OCTA images is in
need.

In the research direction of FAZ and RV segmentation from OCTA images,
there exist a small number of related works [8,24,26]. For example, Dı́az et al. [6]
created a FAZ segmentation pipeline based on morphological processing and trans-
formation methods. Eladawi et al. [7] proposed a joint Markov-Gibbs random field
model to segment RV and used a Generalized Gauss-Markov random field model
for denoising. In addition to traditional methods, a variety of deep learning based
methods have been developed to tackle the medical image segmentation task in
recent years. Ronneberger et al. [20] proposed the classical U-Net, concatenating
the outputs of the encoders and the inputs of the decoders. Several U-Net variants
such as U-Net++ [27] have also been proposed. For FAZ and RV segmentation,
there have also been ongoing research efforts in this direction. For example, Ma
et al. [16] introduced a split-based coarse-to-fine vessel segmentation network con-
taining a coarse segmentation module and a refined segmentation module. Deng et
al. [5] developed a U-Net based approach to segment and classify avascular, hypo-
vascular, and capillary-dense areas. Li et al. [13] designed a 3D-to-2D image projec-
tion network which utilizes 3D OCTA and OCT volumes as the input to mitigate
erroneous retina layer segmentation and to better segment FAZ and RV.

However, these methods still have limitations. For example, [16] and [13]
require multi-stage training or a large quantity of model parameters. Also, most
of them suffer from inhomogeneous OCTA image quality and complicated struc-
tures of FAZ and RV. For example, inferior image quality and erroneous layer
projection may cause a network of interest to confuse FAZ with interfering struc-
tures, leading to imprecise boundaries and inevitable outliers. Retinal vessels
are multi-scaled and it is difficult for fine vessels or terminal branches in noisy
images to be segmented accurately. It will be even more complicated if there
exist lesions, e.g., microaneurysms and non-perfusion. Such lesions may result
in mis-segmentation of vessels and make this task even more challenging. Fur-
thermore, existing works for simultaneously and fully-automatically segmenting
FAZ and RV from OCTA images are relatively rare.

In such context, we propose a novel joint FAZ and RV segmentation framework,
whichmitigates the aforementioned issues and exhibits superior performance.This
framework contains two subnetworks. For FAZ, we build a ResNeSt based U-Net
with split attention and ImageNet pretraining for better segmentation perfor-
mance. More importantly, we employ RV segmentation as an auxiliary task to
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provide complementary edge and position information, which further improves the
FAZ segmentation accuracy, especially for images wherein the contrast between
FAZ and its neighborhood is low or the FAZ contours are blurry. For RV, we design
a coarse-to-fine cascaded network flow to refine the output of each subnetwork
step by step. Spatial attention and channel attention modules are also applied to
promote inter-class discrimination and intra-class aggregation [9,17,18]. The final
predictions are obtained by merging the outputs of the FAZ subnetwork and the
RV subnetwork.

The main contributions of this paper are four-fold: (1) We propose an
innovative joint framework for simultaneous FAZ and RV segmentation from
OCTA images, achieving superior performance over representative state-of-the-
art (SOTA) methods on the publicly-available OCTA-500 dataset [14]. (2) For FAZ
segmentation, we make use of RV segmentation as an auxiliary task and a ResNeSt
based U-Net structure with split attention and pretrained parameters for initial-
ization. (3) For RV segmentation, we employ a spatial-and-channel dual-attention
mechanism in a cascaded coarse-to-fine fashion to gradually refine the outputs. (4)
Extensive comparison experiments are conducted, both quantitatively and quali-
tatively. The source code is available at https://github.com/lkpengcs/FARGO.

2 Methodology

2.1 The Proposed Architecture

The proposed framework is shown in Fig. 1, which consists of a joint FAZ seg-
mentation subnetwork and a coarse-to-fine RV segmentation subnetwork.
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Fig. 1. Schematic demonstration of the architecture of our proposed framework
FARGO. The upper part represents the FAZ subnetwork with region of interest extrac-
tion and ResNeSt blocks. The lower part represents the RV subnetwork including a
main segmentation model and N small refining models. Spatial attention and channel
attention modules are applied in the RV subnetwork.

https://github.com/lkpengcs/FARGO
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FAZ Segmentation. Disturbing structures often interfere with the segmenta-
tion of FAZ, resulting in outlier predictions and inaccurate contours. Clinically,
FAZ is defined as the area without any retinal vessel in the fovea, and thus it
is natural to use retinal vessels as prior knowledge to constrain the position of
FAZ and assist in distinguishing FAZ boundaries from interfering surroundings.
Therefore, we build a joint segmentation model with an encoder-decoder struc-
ture to segment FAZ. Instead of treating it as a single-class segmentation task,
we train our network to segment FAZ and RV together. It is desirable for such
a joint segmentation model to learn the relationship between the distribution of
RV and the location and shape of FAZ. Here, we define a weighted loss for FAZ
segmentation, with λ1, λ2, λ3 being trade-off parameters

Lweighted = λ1Lfaz + λ2Lrv + λ3Lbg, (1)

where Lfaz,Lrv,Lbg respectively denote the Dice loss for FAZ, RV and the back-
ground. We use ResNeSt50 [23] backbone with split attention and ImageNet pre-
training initialization as the encoder to speed up network training and converg-
ing, resulting in better segmentation performance. Besides, appropriate region
of interest (ROI) extraction is performed to focus on regions where FAZ is most
likely to appear and reduce the influence of background noise.

RV Segmentation. Given retinal vessels are multi-scaled and are likely to be
interfered by similar structures, resulting in disconnected vessels or outliers, we
design a coarse-to-fine framework with an iterative correction mechanism. The
refining framework consists of a main segmentation model and N small refin-
ing models. Compared to FAZ, retinal vessels are typically slender, and thus
we employ shallower networks with fewer downsampling operations. Refining is
simpler than segmentation, so we utilize four encoder blocks in the main model
and three in the refining models. Each encoder block comprises two layers of 3
× 3 filters, batch normalization (BN), ReLU and maxpooling. RV segmentation
from the input OCTA image is accomplished by the main model and the refining
models mainly focus on removing potential errors and generating refined results.
The input to the first refining model is the feature maps from the penultimate
layer of the main model, and other refining models follow similarly [12]. Features
obtained from the first layer of the main model are also concatenated with fea-
tures from the first layer of each refining model. This allows each refining model
to receive different inputs and to encounter differences and changes produced by
preceding models. In this way, the main model can generate coarse vessel predic-
tions from OCTA images and the refining models can polish those predictions by
identifying potentially-missed vessels, eliminating outliers and recovering contin-
uous details.

Furthermore, spatial and channel attention modules are employed in both the
main model and each refining model. The features from the encoder are fed into
two parallel attention blocks - a channel attention module (CAM) and a spatial
attention module (SAM) as shown in Fig. 2. CAM utilizes features from each
channel of the feature maps and improves feature representation by adaptively
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assigning weights to channels. SAM obtains spatial information and selectively
aggregates contexts by generating a spatial attention map [18]. For training the
RV subnetwork, cross entropy is used for outputs from each model and then they
are summed up with certain weights, defined as:

Li = −yi log (pi) − (1 − yi) log (1 − pi) (2)

Lrv =
∑

i

wiLi (3)

where yi and pi respectively represent the groundtruth and prediction of pixel
i, and all wi are set to be 1 since we do not treat any output specially.
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Fig. 2. Illustration of Spatial Attention Module (SAM) and Channel Attention Module
(CAM).

3 Experiments

3.1 Dataset and Image Preprocessing

The OCTA-500 dataset are divided into two subsets according to the field of view
(FOV) type. One subset contains 300 samples with 6 mm × 6 mm FOV, named
OCTA 6M. The other subset contains 200 samples with 3 mm × 3 mm FOV,
named OCTA 3M [14]. Please refer to the original paper for relevant biostatis-
tic information [14]. We utilize en-face OCTA images generated by maximum-
projection between internal limiting membrane layer and outer plexiform layer.
Manual annotations for both FAZ and RV are provided. To generalize the entire
pipeline, we employ the following data enhancement methods: random horizon-
tal & vertical flipping and random rotation. In addition, for the two different
subsets of OCTA-500, namely OCTA 6M and OCTA 3M, we respectively pad
the images from 400× 400 and 304× 304 to 416× 416 and 320× 320 with reflect
padding to meet the downsampling requirement that the input resolution of the
network should be a power of 2.
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3.2 Experimental Setting

We train and evaluate our pipeline on both OCTA 6M and OCTA 3M. For fair
comparison, the training set, validation set and test set are divided according to
[14]. All compared methods and the proposed one are implemented with Pytorch
using NVIDIA TITAN RTX GPUs. We use the Adam optimizer with a learning
rate of 1× 10−4 with no learning rate policy and train the network for a total of
1000 epochs. The coefficients λ1, λ2, λ3 in the weighted loss for FAZ segmentation
are respectively set to be 0.6, 0.2, 0.2. Empirically, we choose N = 3, i.e., three
refining models for the RV segmentation task.

3.3 Results

All methods are evaluated using four metrics, i.e., Dice[%], Jaccard[%],
95% Hausdorff Distance (HD[px]) and Average Symmetric Surface Distance
(ASSD[px]), the results of which are tabulated in Table 1. We compare our pro-
posed framework with several SOTA segmentation models such as Deeplabv3+
[3] and PSPNet [25] for natural image segmentation as well as U-Net and U-
Net++ for medical image segmentation. Apparently, our proposed framework
FARGO achieves the best performance on both FAZ and RV segmentation on
OCTA-500 among all methods that only use en face OCTA as the input. Com-
pared with the most advanced IPN V2+ [14], our framework achieves overwhelm-
ing FAZ segmentation performance and competitive RV segmentation perfor-
mance (slightly inferior), with much less computational complexity and memory
consumption. To be noted, it is reasonable for IPN V2+ to achieve comparable
or even better performance on some subsets or tasks due to its utilizations of
3D volume information and more complicated network structures.

Table 1. Quantitative evaluations of different methods for FAZ and RV segmentation.
‡ indicates the value is directly obtained from the cited paper.

FAZ OCTA 6M OCTA 3M

Method Dice↑ Jaccard↑ HD↓ ASSD↓ Dice↑ Jaccard↑ HD↓ ASSD↓
Deeplabv3+ [3] 87.75± 12.36 79.71 ± 14.44 8.05 ± 12.49 1.92 ± 3.07 95.43 ± 3.17 91.42 ± 5.51 3.51 ± 2.56 0.71 ± 0.27

Pspnet [25] 84.93 ± 13.09 75.56 ± 15.79 10.77 ± 21.84 2.01 ± 2.97 94.04 ± 3.87 88.99 ± 6.41 5.32 ± 7.20 0.95 ± 0.57

U-Net [20] 89.27 ± 12.51 82.27 ± 15.05 6.40 ± 8.91 1.31 ± 1.94 95.41 ± 4.27 91.51 ± 7.06 4.85 ± 4.39 0.75 ± 0.46

U-Net++ [27] 88.55 ± 15.90 81.90 ± 17.67 10.13 ± 24.54 2.15 ± 5.00 96.91 ± 1.59 94.06 ± 2.93 4.24 ± 3.26 0.63 ± 0.35

IPN V2+‡ [14] 90.54 ± 10.05 84.00 ± 14.16 – – 97.42 ± 2.16 95.04 ± 3.88 – –

Ours 92.72 ± 6.74 87.01 ± 10.60 7.76 ± 12.17 1.58 ± 3.07 98.39 ± 0.92 96.84 ± 1.76 3.11 ± 2.29 0.40 ± 0.27

RV OCTA 6M OCTA 3M

Method Dice↑ Jaccard↑ HD↓ ASSD↓ Dice↑ Jaccard↑ HD↓ ASSD↓
Deeplabv3+ [3] 78.82 ± 2.99 65.14 ± 3.93 5.51 ± 4.06 0.90 ± 0.31 78.74 ± 2.84 65.02 ± 3.79 11.94 ± 8.00 1.37 ± 0.71

Pspnet [25] 67.35 ± 2.84 50.84 ± 3.23 12.13 ± 2.48 1.88 ± 0.32 58.02 ± 2.99 40.93 ± 3.02 9.57 ± 4.79 1.93 ± 0.37

U-Net [20] 88.40 ± 2.69 79.32 ± 4.10 4.98 ± 4.29 0.64 ± 0.34 90.40 ± 2.04 82.54 ± 3.27 3.20 ± 2.61 0.54 ± 0.25

U-Net++ [27] 88.49 ± 2.55 79.44 ± 3.94 4.44 ± 3.34 0.62 ± 0.26 90.66 ± 2.01 82.97 ± 3.26 3.26 ± 2.40 0.56 ± 0.29

IPN V2+‡ [14] 89.41 ± 2.74 80.95 ± 4.32 – – 92.74 ± 3.95 86.67 ± 5.88 – –

Ours 89.15 ± 2.39 80.50 ± 3.75 4.47 ± 3.73 0.61 ± 0.28 91.68 ± 2.05 84.70 ± 3.34 2.78 ± 2.67 0.44 ± 0.25
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Representative visualization results from FARGO on OCTA 6M and
OCTA 3M are shown in Fig. 3. Clearly, the segmentation results of both FAZ
and RV produced by FARGO are more precise and more accurate than those
produced by other compared methods. Representative segmentation results for
both high-quality images (row 2 and row 4) and low-quality images (row 1 and
row 3) are presented in that figure. Our proposed framework has the highest
Dice scores in all cases.

Input Deeplabv3+ Pspnet U-Net U-Net++ Ours Ground Truth

Dice 0.79 0.74 Dice 0.65 0.48 Dice 0.65 0.81 Dice 0.69 0.81 Dice 0.81 0.84

Dice 0.95 0.83 Dice 0.92 0.71 Dice 0.96 0.91 Dice 0.96 0.91 Dice 0.98 0.92

Dice 0.91 0.71 Dice 0.88 0.57 Dice 0.94 0.78 Dice 0.94 0.78 Dice 0.98 0.81

Dice 0.97 0.81 Dice 0.97 0.69 Dice 0.98 0.90 Dice 0.98 0.88 Dice 0.99 0.94

Fig. 3. Representative visualization results from OCTA 6M and OCTA 3M. The first
two rows are results from OCTA 6M and the last two rows are results from OCTA 3M.
Purple areas represent FAZ and the purple numbers represent their corresponding Dice
scores. Red areas represent RV and the red numbers represent their corresponding Dice
scores. Areas highlighted by blue circles reflect the ability of our framework to segment
fine retinal vessels, even when the input image is of relatively low quality. (Color figure
online)

In order to evaluate the effectiveness of several key components in FARGO,
we also conduct several ablation studies. For FAZ segmentation, we compare
with the proposed FAZ subnetwork without segmenting RV as an auxiliary task,
without center ROI extraction, without ResNeSt as the encoder (using the orig-
inal encoder of U-Net with BN), without pretrained parameters from ImageNet.
As shown in Table 2, the Dice score of the original FAZ subnetwork is higher than
that of the same network w/o the RV auxiliary task, that w/o center ROI extrac-
tion, that w/o ResNeSt as the encoder and that w/o pretrained parameters by
0.60%, 0.69%, 0.84% and 3.31% on OCTA 6M and by 0.17% and 0.27%, 0.54%
and 1.25% on OCTA 3M, demonstrating the effectiveness of each component in
the FAZ segmentation subnetwork.
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Table 2. Ablation analysis results for FAZ segmentation.

RV ROI ResNeSt Pretrain OCTA 6M OCTA 3M

Dice Jaccard HD ASSD Dice Jaccard HD ASSD

� � � 92.12 86.69 9.53 1.76 98.22 96.35 4.41 0.49

� � � 92.03 86.21 8.12 2.03 98.12 96.35 3.72 0.54

� � � 91.88 86.14 10.26 1.80 97.85 95.82 3.87 0.58

� � � 89.41 82.57 12.03 2.64 97.14 94.49 5.92 0.82

� � � � 92.72 87.01 7.76 1.58 98.39 96.84 3.11 0.40

For RV segmentation, we demonstrate the significance of the two attention
modules via ablation studies as well, the results of which are tabulated in Table 3.
It is evident that the performance degrades when removing either SAM or CAM.
Specifically, the Dice score decreases by 0.24% and 0.15% on OCTA 6M and
decreases by 0.12% and 0.33% on OCTA 3M when removing CAM and SAM.

Table 3. The importance of the two attention modules for RV segmentation.

Method OCTA 6M OCTA 3M

Dice Jaccard HD ASSD Dice Jaccard HD ASSD

w/o SAM&CAM 89.09 ± 2.57 80.43 ± 3.98 5.25 ± 3.94 0.68 ±0.30 87.65 ± 3.99 78.21 ± 5.75 8.58 ± 7.99 0.81 ± 0.50

w/o CAM 88.91 ± 2.59 80.13 ± 3.98 5.54 ± 4.08 0.70 ± 0.34 91.56 ± 2.25 84.50 ± 3.63 2.91 ± 2.76 0.47 ± 0.28

w/o SAM 89.00 ± 2.67 80.29 ± 4.10 5.42 ± 4.62 0.70 ± 0.35 91.35 ± 2.21 84.15 ± 3.56 3.44 ± 4.25 0.52 ± 0.33

Ours (w SAM&CAM) 89.15 ± 2.39 80.50 ± 3.75 4.47 ± 3.73 0.61 ± 0.28 91.68 ± 2.05 84.70 ± 3.34 2.78 ± 2.67 0.44 ± 0.25

The influence of the number of the refining models is also explored. The cor-
responding result is shown in Table 4. We observe that the one with 3 refining
models achieves relatively good performance and has reasonable model complex-
ity. The one with 2 refining models has lots of false positives or false negatives
to be corrected and that with 4 refining models has a serious overfitting issue by
misclassifying many interference structures as RV.

Table 4. The effect of the number of refining models for RV segmentation.

RV OCTA 6M OCTA 3M

Method Dice Jaccard HD ASSD Dice Jaccard HD ASSD

2 refining
models

88.96 ± 2.60 80.21 ± 4.02 5.37 ± 3.84 0.69 ± 0.30 91.26 ± 2.20 83.99 ± 3.55 3.49 ± 3.61 0.49 ± 0.29

3 refining
models

89.15 ± 2.39 80.50 ± 3.75 4.47 ± 3.73 0.61 ± 0.28 91.68 ± 2.05 84.70 ± 3.34 2.78 ± 2.67 0.44 ± 0.25

4 refining
models

88.99 ± 2.72 80.26 ± 4.16 5.72 ± 4.55 0.71 ± 0.37 91.53 ± 2.21 84.46 ± 3.56 2.76 ± 2.98 0.45 ± 0.30
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4 Conclusion

In this work, we proposed and validated a novel framework for simultaneously
segmenting FAZ and RV from OCTA images. For FAZ, we proposed a joint seg-
mentation network with RV segmentation as an auxiliary task and ResNeSt with
split attention as the encoder. Center ROI extraction and ImageNet pretraining
were also employed for further improvements. For RV, we designed a coarse-
to-fine flow with two attention modules to refine the RV segmentation results
step by step. Based on extensive quantitative and qualitative experiments, the
proposed method was found to be competitive or even better than representa-
tive SOTA segmentation methods, including the methods from the authors of
the OCTA-500 dataset utilizing both 3D OCTA volumes and 2D OCTA images,
particularly for the FAZ segmentation.
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Abstract. With the development of information technology, eyes are
easily overworked for modern people, which increases the burden of oph-
thalmologists. This leads to the urgent need of the computer-aided early
screening system for vision examination, where the color fundus photog-
raphy (CFP) is the most economical and noninvasive fundus examination
of ophthalmology. The macula, whose center (i.e., fovea) is the most sen-
sitive part of vision, is an important area in fundus images since lesions
on it often lead to decreased vision. As macula is usually difficult to
identify in a fundus image, automated methods for fovea localization
can help a doctor or a screening system quickly determine whether there
are macular lesions. However, most localization methods usually can not
give realistic locations for fovea with acceptable biases in a large-scale
fundus image. To address this issue, we proposed a two-stage framework
for accurate fovea localization, where the first stage resorts traditional
image processing to roughly find a candidate region of the macula in
each fundus image while the second stage resorts a collaborative neural
network to obtain a finer location on the candidate region. Experimental
results on the dataset of REFUGE2 Challenge suggest that our algo-
rithms can localize fovea accurately and achieve advanced performance,
which is potentially useful in practice.

Keywords: Macula · Fovea · Fundus image · Object localization ·
Collaborative learning · REFUGE2

1 Introduction

Age-related macular degeneration is one of the most common diseases, which
can cause vision loss and has become a growing public health concern in the
United States [1]. Under normal circumstances, checking the visual ability of
the macular area is an important part of human vision examination. The fovea
c© Springer Nature Switzerland AG 2021
H. Fu et al. (Eds.): OMIA 2021, LNCS 12970, pp. 52–61, 2021.
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is the most sensitive part of vision and is an important indicator of macular
area [6]. So, it is important to find where the fovea is.

Fig. 1. Illustration of fundus images. The image on the left is easy to find where macula
is, but the right one is difficult because of bad illumination.

Currently, color fundus photography (CFP) is the most economical and non-
invasive fundus examination of ophthalmology [15]. However, due to the influence
of illumination, instruments and fundus lesions, the macular area is sometimes
difficult to distinguish (as examples shown in Fig. 1). The detection of fovea on
colored fundus images is a time-consuming and subjective process. An auto-
mated fovea localization method can help doctors quickly determine whether
there are macular lesions [18].

Recently, some efforts on computer-aided fovea localization have been
devoted based on machine learning and traditional image processing tech-
niques [2,4,9,11,14,20–22]. Previous work for fovea detection can be divided
into three groups. The first group extract the vessels and localize fovea by the
density and shape of vessels [2,4,14,22]. The vascular density around the fovea
is usually the minimum in the fundus image and only some small vessels can
penetrate fovea’s perimeter. This fact is used to detect fovea’s position in these
methods. The second group do not extract the vessels but extract the image
features with traditional methods [9,20], such as texture features and intensity
features. These methods regard the fovea area as a circular and dark area relative
to its surrounding area and use this as a prior condition to resist the interference
of unbalanced illumination. But designing features manually is cumbersome, not
robust and also easily affected by image quality. With the development of deep
learning, the third group [11,21] attempt to use the neural network to local-
ize the fovea. However, most of these methods can only find a rough location,
which may be because they abandon the traditional image pre-processing. For
example, it is unrealistic to input the whole image into a neural network as the
fundus images usually have large sizes (e.g., 1, 940 × 1, 940) which may not only
cost more computation resources but also withstand a fine location regression.
In such situation, a more realistic strategy is to first (1) roughly but fast extract
a small ROI around the object location and then (2) input the ROI to a neural
network to obtain a fine location.

In this paper, we proposed a two-stage framework for accurate fovea local-
ization with above considerations. Specifically, in the first stage, we resort tra-
ditional image processing, to roughly find an ROI of the macula in each fundus
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image. This stage is only executed once, thus is simple and efficient. In the second
stage, we obtain a finer location by a neural network with collaborative learning
of a regression task and a pseudo segmentation task. The neural network intently
extracts complex features and predicts fovea coordinates only in the ROI found in
the first stage and utilizes a simultaneous segmentation task to help improve the
performance. Experimental results on the dataset of REFUGE2 Challenge [15]
suggest that our algorithms can localize fovea accurately and achieve advanced
performance.

2 Materials

The REFUGE2 [15] Challenge dataset1 is a public dataset of retinal fundus.
This dataset contains 1, 600 fundus images, where 1, 200 images were released in
Phase-1 with manual annotations of the fovea locations and 400 were released in
Phase-2 with holding the annotations for online validation. The images in Phase-
1 are with three different sizes, i.e., 2, 124× 2, 056, 1, 634× 1, 634, 1, 940× 1, 940
while those in Phase-2 are all with size of 1, 940 × 1, 940. The official evaluation
metric (Euclidean distance, ED) is calculated as follows:

ED (X, Y ) =
1
n

n∑

i

‖Xi − Yi‖2 (1)

where vectors Xi and Yi with length of 2 denote the predicted location and the
groundtruth of the i-th image, respectively.

3 Method

We proposed a two-stage framework for accurate fovea localization. In the first
stage, we resort traditional image processing as flowchart in Fig. 2, to roughly
find an ROI of the macula in each fundus image. In the second stage, we train
a fine localization model under the collaboration of multiple tasks.

Stage 1–Roughly Macula Detection: This stage has two steps. In the first
step, we take a manner to suppress the blood vessel, which may cause interfer-
ing information [4], by removing the high frequency part since it contains most
blood vessels as shown in Fig. 3. We conducted all the following study in the
green channel of each image according to the fact that the macula is more vis-
ible in the green channel. We transform the image into frequency domain via
fast fourier transform (FFT) [8] and split it into high and low frequency part
and then transform the low frequency part (within 0.02 times the height (H)
and width (W ) of a frequency-domain image) back to image space via inverse
FFT. After that, we apply the contrast limited adaptive histogram equalization

1 https://refuge.grand-challenge.org/.

https://refuge.grand-challenge.org/
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(CLAHE) [19] to each image to weaken the impact of noise and light. In this
step, we can remove most of the interference and enhance the part of interest.
Compared with other methods of removing blood vessels, our method is faster
and more effective, will not eliminate other useful area by mistake.

St
ep

 2
St

ep
 1

Original Image

Find Optic Disc

Fourier Transform CLAHEGreen Channel

DLC FilterMacula Detection

ROI (512 512)

Fig. 2. Pipeline of our proposed image processing. Step 1: suppress the blood vessels.
Step 2: locate the macula roughly.

In the second step of Stage 1, we locate the macula in each fundus image
roughly according to the clinical knowledge, as the fovea is usually a dark spot in
the center of macula and its distance to the optic disc is about 5 times the radius
of the optic disc [12]. Therefore, we then find the optic disc which is usually the
maximum and brightest connected region in an image, and find the macula with
distance to optic disc between 3−8 times the radius of optic disc. We use a sliding
window with size of 600×600 to get the rough regions of optic disc and macula. For
optic disc, we first segment the original image by a threshold which equals the 0.75
times of the maximum intensity of an image. This thresholding can get a segmen-
tation with most optic disc area and a few other parts (as shown in Fig. 2), where
we select the window with the maximum segmentation region and re-segment it
by a threshold which is the 0.75 times the maximum intensity of the selected win-
dow. Then, we calculate the height and center of the segmentation region as the
diameter and center of the optic disc. This step is simple, fast, and effective. We
then select the macula from those windows, each of which has eligible distance to
the optic disc and average intensity larger than the average intensity of its inner
center region (100×100). If there are more than one eligible windows, the window
with the maximum intensity difference between inner and outer regions is selected.
Because the blood vessels are strips and the macula is round, the weight of each
window’s inner center region is enhanced to distinguish blood vessels and mac-
ula. The macula is segmented by using the average value of the average intensity
and the minimum intensity as the thresholding value. Finally, the candidate mac-
ula region is further screened by directional local contrast (DLC) filter [23], which



56 Z. Chen et al.

can shrink the candidate region of fovea (in macula), and remove those unquali-
fied single spots. We regard the qualified spots as the center, and cut out the ROI
(512 × 512). This process is without training and learnable parameters, the final
ROI can contain all the macula area. In the testing phase, the detecting rate of
our processing algorithm is 100%.

FFT

Inverse FFT

Inverse FFT

High FrequencyLow FrequencyOriginal Image

=0.02

Fig. 3. Illustration of our proposed method to remove blood vessels. It can be seen
that the high frequency part contains almost all blood vessels and even some small
endings. Hence, only the low frequency image is used to find the optic disc.

Stage 2–Accurate Localization: In Stage 2, we proposed a Collaborative Deep
Learning model with joint Regression task and Segmentation task (CDLRS) for
accurate fovea localization around the macula center. The model uptakes both the
structure of PyConvResNet-50 [7] and U-Net [17], where the former focuses on the
coordinate regression task and the latter focuses on the segmentation task.

As illustrated in Fig. 4, our CDLRS have three modules, including a feature
extraction module (F) to extract features from each input image, a regression
module (R) to regress the fovea location with extracted features, and a segmen-
tation module (S) to segment a pseudo mask of the macula center. The modules
F and R share the same structure with PyConvResNet-50 [7] while module S
shares same structure with the decoder part (i.e., U-Net [17]). Namely, F con-
sists of 1 convolutional layer and 4 pyramid convolutional (i.e., pyconv) blocks,
the last two blocks are both constructed with dropblock as a kind of regular-
ization to avoid over-fit problem. R consists of a global average pooling layer
and 3 fully connected layers, while S consists of 5 deconvolutional layers and 6
convolutional layers. To recover the resolution downsampled by the first layer
of PyConvResNet-50, an additional convolutional layer is used to provide non-
downsampled features to the last layer of module S. We utilize the last feature
map of F to complete such two tasks, so as to let the segmentation branch help
ameliorate the regression branch.

After Stage 1, a rough region of the macula center has been detected from
each fundus image. Thus, in Stage 2, our CDLRS focuses only on the macula
center, i.e., we crop a patch of 128× 128 around the macula center with random
shift within [−32, 32] in both X-axis and Y-axis. This patch is then is random
augmented by horizontal flip, vertical flip, and random-angle rotation. For the
regression task, the location of fovea is synchronously computed with the aug-
mentation process. For the segmentation task, the pseudo mask is a span with
radius of 30 pixels centered at the location of fovea.
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Fig. 4. Architecture of proposed CDLRS model. PyConvResNet-50 [7] is used as our
backbone with adding dropblock after the 3rd and 4th pyconv-blocks. The regression
branch consists of three fully-connected layers with “tanh” activation in the last layer
while the segmentation branch concatenates the feature maps in a U-Net [17] form.

While training the proposed CDLRS, We resort the MAE loss and Euclidean
distance loss to guide the regression task and resort the dice loss and cross
entropy loss to guide the segmentation task. Namely, the loss function for regres-
sion task is

Lr =
1
n

n∑

i

(
‖P̂i − Pi‖ + ‖P̂i − Pi‖2

)
, (2)

where P∗ is ground-truth coordinate and P̂∗ is the predicted coordinate obtained
by the regression module. The loss function for segmentation task (denoted as
Lseg) is

Ls =
1
n

n∑

i

⎛

⎝1 −
2
∣∣∣Mi ∩ M̂i

∣∣∣ + 1

|Mi| +
∣∣∣M̂i

∣∣∣ + 1
+ log

(
1 − M̂i

)
− Mi log

M̂i

1 − M̂i

⎞

⎠ . (3)

where M∗ is the pseudo span mask and M̂∗ is the predicted mask obtained by
the module. Therefore, the total loss of our CDLRS is L = Lr +βLs, where β is
an equilibrium coefficient and is set to 0.8 in our experiments according to the
validation in the training set.

For the test set, we do the same crop and augmentation for each image (ran-
dom shift [−32, 32] pixels (50 times), with/without left-right flip, with/without
up-down flip, with/without 90◦ rotation), thus, we have 400 patches for each
image. The fovea location of each input patch is calculated as the average of
the center of the synthetic mask and the regression result and the overall fovea
location of each image is the average of these patches. This is a kind of test-time
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augmentation that can improve the performance of model and help to obtain
more robust inference of a given image [13].

Ground Truth

Preprocess

Regression

Segmentation

Overall(CDLRS)

( 19.63)

(10.65 0.93)/(12.10)

(9.54 0.84)/(11.34)

(9.18 0.71)/(10.02)

Fig. 5. Effort of these three parts (preprocession, regression, and segmentation) in
CDLRS to fovea localization. The left part are the results for eight typical images
while the right part is the quantified results on training and test phase.

4 Experiments and Results

We performed two groups of experiments in this work. In the first group, we
evaluated the contribution of each major components. In the second group, we
compared our CDLRS with some state-of-the-art localization methods as well
as some results on the semi-final leaderboard of REFUGE2. On the first and
second group of experiments, we randomly split these 1200 images of training
phase in five parts and conducted 5-fold cross-validation. Hence, we have five
well-trained models in total. While applying to these 400 images of test phase,
the predicted locations of these five models on each image are averaged as the
final prediction of this image. The average euclidean distance on test phase is
obtained by submission the prediction to the REFUGE2 challenge platform.
All our experiments are conducted in Python with Pytorch library on a Linux
platform with a NVIDIA GTX 1080Ti GPU and an Intel i5-7200U CPU. Our
CDLRS is trained 100 epochs via the SGD optimizer with momentum = 0.9,
initial learning rate = 0.0003, batch size = 64. We also use cosine annealing to
update the learning rate.

Ablation Study: In the first group, we compared the localization ability of
the major stages of our algorithm, including the preprocessing step, the seg-
mentation branch, and the regression branch. The results of these three part as
well as the overall performance by their joint efforts and the ground truth are
illustrated in Fig. 5. The left part visualized some results for eight typical images
while the right part provided the quantified results of the 5-fold cross-validation
and on the test phase, which are denoted as (∗ ∗ ± ∗ ∗) and (∗∗), respectively.
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From Fig. 5, it could be found that the preprocessing step can provide a rough
location for the fovea which could be further promoted by our CDLRS. Mean-
while, the segmentation module achieves results slightly better than the regres-
sion module, while the overall results is even better than both of them. It sug-
gests that even a pseudo mask can provide the model abundant supervision
information and obtain more robust results. Altogether, our CDLRS is an effi-
cient system with strong localization ability, thus is potentially very useful in
practice.

Compare with Other Methods: In the second group, we compared the local-
ization ability of our CDLRS with four state-of-the-art methods, including Mask
R-CNN [10], Faster R-CNN [16], YOLOv4 [3], and DETR [5]. All these com-
peting methods resort the same preprocessing step and test-time augmentation
with our CDLRS to make a fair comparison. Results are list in Table 1, where
we reports both the results of the 5-fold cross-validation on train phase and the
results on the test phase for all methods. And we also do the statistical test and
calculate the p-value to verify that our method is significant on the results of
training phase. From Table 1, two observations can be found. (1) Our CDLRS
achieves the lowest mean ED on both phase than other methods, which implies
the superiority of our CDLRS in fovea localization. And our CDLRS is signif-
icantly better than other methods from the result of statistical test. (2) These
methods (CDLRS, Mask R-CNN) with two branches consistently outperform
those (Faster R-CNN, YOLOv4, DETR) with single branch. It suggests that
resorting a segmentation branch can help improve the performance in localiza-
tion task, even if the referred segmentation mask is pseudo. The potential reason
may be that using a region other than a dot can provide more information, thus is
more robust to unexpected annotation error and prediction bias. We also reports
some results derived from the semi-final leaderboard of REFUGE22 in Table 1,
where we can see that our result is between the 5th and 6th and only has a small
gap (1.61) to the 1st one.

Table 1. The results of comparision with other state-of-the-art methods on object
detection. All of these methods are tuned to fit the localization task. In each block of
training phase, the first line is mean ± std and the second line is the maximum value.

Ours Mask R-CNN [10] Faster R-CNN [16] YOLOv4 [3] DETR [5]

Training phase 9.18 ± 0.71 9.57 ± 0.69 9.87 ± 1.08 10.02 ± 0.72 10.30 ± 1.45

9.89 10.51 11.65 11.26 11.83

(p-Value) \ 1.94 × 10−5 6.52 × 10−3 7.66 × 10−4 1.74 × 10−3

Final phase 10.02 10.98 11.57 11.45 11.90

Methods on leaderboard MAI (1st): 8.41 lip frog (5th): 9.99 cheeron (6th): 10.08

2 https://refuge.grand-challenge.org/Semi final Leaderboards/.

https://refuge.grand-challenge.org/Semi_final_Leaderboards/
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5 Conclusion

In this paper, we proposed a two-stage framework for accurate fovea localization.
Specifically, in the first stage, we resort traditional image processing to roughly
find a candidate region of the macula in each fundus image. In the second stage,
we proposed the CDLRS for accurate fovea localization around the macula cen-
ter. This framework achieved acceptable euclidean distance on fovea localization
task of REFUGE2, which may be useful in practice. In this task, the pseudo
mask considers that the fovea in reality is not a single spot but an area. It is
reasonable that regarding it as a segmentation task and a coordinate regression
task can help model pay more attention to the center of fovea. This is why we use
a collaborative deep learning method to solve this problem. Our future work will
attempt to build hierarchical cascade framework and uptake domain adaption
techniques to result finer and more accurate localization.
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Abstract. Fundus photography has routinely been used to document
the presence and severity of retinal degenerative diseases such as age-
related macular degeneration (AMD), glaucoma, and diabetic retinopa-
thy (DR) in clinical practice, for which the fovea and optic disc (OD) are
important retinal landmarks. However, the occurrence of lesions, drusen,
and other retinal abnormalities during retinal degeneration severely com-
plicates automatic landmark detection and segmentation. Here we pro-
pose HBA-U-Net: a U-Net backbone enriched with hierarchical bottle-
neck attention. The network consists of a novel bottleneck attention
block that combines and refines self-attention, channel attention, and
relative-position attention to highlight retinal abnormalities that may
be important for fovea and OD segmentation in the degenerated retina.
HBA-U-Net achieved state-of-the-art results on fovea detection across
datasets and eye conditions (ADAM: Euclidean distance (ED) of 25.4
pixels, REFUGE: 32.5 pixels, IDRiD: 32.1 pixels), on OD segmentation
for AMD (ADAM: Dice coefficient (DC) of 0.947), and on OD detection
for DR (IDRiD: ED of 20.5 pixels). We further validated the design of
our network with an ablation study. Our results suggest that HBA-U-Net
may be well suited for landmark detection in the presence of a variety of
retinal degenerative diseases.

Keywords: Deep learning · Landmark detection · Segmentation ·
Self-attention · Fundus · Fovea · Optic disc · Retinal degeneration ·
Age-related macular degeneration · Diabetic retinopathy · Glaucoma

1 Introduction

Age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy
(DR) are three of the most common causes of blindness in the world [2]. Fundus
photography has routinely been used to document the presence and severity of
these retinal degenerative diseases in clinical practice. Among the landmarks of
interest are the fovea, which is a small depression in the macula, and the optic
disc (OD), which is where the optic nerve and blood vessels leave the retina.
c© Springer Nature Switzerland AG 2021
H. Fu et al. (Eds.): OMIA 2021, LNCS 12970, pp. 62–71, 2021.
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However, detecting retinal abnormalities associated with these diseases (e.g.,
drusen in AMD, hemorrhage in DR) is a labor-intensive and time-consuming
process, thus necessitating the need for automated fundus image analysis.

In recent years, numerous methods have been proposed for retinal struc-
ture detection. Jiang et al. [7] proposed an encoder-decoder network with deep
residual structure and recursive learning mechanism for robust OD localization,
followed by an end-to-end region-based convolutional neural network (R-CNN)
for joint optic disc and cup segmentation [8]. Similarly, numerous studies have
employed various convolutional neural network (CNN) models for fovea local-
ization (e.g., [1,15]). Although fovea and OD are spatially correlated with each
other, only a few studies (e.g., [10,22]) have focused on joint fovea and OD seg-
mentation. Furthermore, models trained on healthy eyes tend not to generalize
well to diseased eyes due to retinal abnormalities. A notable exception is Kamble
et al. [9] who achieved state-of-the-art (SOTA) performance on landmark detec-
tion for AMD and glaucoma using a modified U-Net++ with an EfficientNet
encoder. However, there is potential merit in combining convolutional backbone
networks with attentional mechanisms [19] to highlight retinal abnormalities
that may be important for landmark detection in the degenerated retina.

To develop a segmentation model that is well suited for retinal degeneration,
we propose HBA-U-Net: a U-Net backbone enriched with hierarchical bottleneck
attention. The main contributions of this work are:

1. We propose a hierarchical bottleneck attention (HBA) block: a novel attention
mechanism that combines and refines self-attention [19], channel attention
[21], and relative-position attention [13] to highlight retinal abnormalities
important for landmark detection in the degenerated retina.

2. We integrate the HBA block into bottleneck skip connections across all layers
of a U-Net backbone network to form HBA-U-Net, and test the network’s
performance on three benchmark datasets for retinal degeneration: ADAM
[4] for AMD, REFUGE [11] for glaucoma, and IDRiD [12] for DR.

3. We validate the design of HBA-U-Net with an ablation study.
4. We demonstrate SOTA performance on fovea detection across datasets and

eye conditions, on OD segmentation for AMD, and on OD detection for DR.

2 Methods

2.1 Model Architecture

HBA-U-Net. The proposed network architecture is illustrated in Fig. 1. First,
ImageNet pretrained ResNet-50 blocks were used as encoders to obtain feature
maps at different spatial resolutions. These feature maps, along with the original
image, were then fed into a modified U-Net structure [10,14] with HBA blocks
added to skip connections. The outputs of the HBA blocks were up-sampled and
aggregated to produce the final fovea and OD segmentation mask.

Our goal was to incorporate HBA blocks into the U-Net without drastically
increasing the computational complexity. Consistent with [16], we noticed that
adding a self-attention mechanism to the bottleneck layers (a shrinking path, the
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Fig. 1. HBA-U-Net architecture. A U-Net enriched with a novel attention block and re-
designed skip-connection paths jointly locates the fovea and segments the optic disc.
ResNet-50 was used as encoder. Note that the number of local bottlenecks and the
down/up-sampling projection rate depends on the image dimensions.

attention module, and an expanding path) significantly boosted the network’s
performance. However, the original U-Net contains only a single bottleneck layer
(between the last down-sampling block and the first up-sampling block). To
incorporate multiple HBA blocks into the network, we therefore re-designed the
U-Net by creating local bottleneck structures in each skip-connection pair (see
Fig. 1). After each down-convolution block, the features were down-sampled by
pooling and passed to the HBA block, followed by up-sampling to the original
size. In this way, the pairs of down/up-sampling convolution blocks could be
treated as local bottleneck structures operating at different spatial resolutions.

HBA Block. Recently, attention mechanisms have seen widespread adoption in
various tasks [19]. Inspired by [16,21], our HBA block (Fig. 2) consisted of chan-
nel, content, and relative-position attention modules, each described in detail
below. We denote the query, key, value, input feature map, relative height logit,
and relative weight logit as q, k, v, F,Rh, Rw, respectively.

In the proposed HBA block, content attention (blue box in Fig. 2) attended
to individual pixels in each spatial feature map. For each attention head, dense
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Fig. 2. HBA block architecture, consisting of channel attention (green box outputs FC),
content attention using multi-head self-attention (blue box outputs FS), and relative
position attention (pink box outputs FR). (Color figure online)

layers (WQ,WK ,WV ) were used to calculate the query (q = WQ(F )), key (k =
WK(F )), and value (v = WV (F )) for each pixel. The output of the content
attention was an attention score (FS) between key (k) and query vectors (q):

FS = qkT . (1)

Inspired by [13,16], we included relative-position attention (pink box in
Fig. 2) to encode the relative position of different retinal landmarks (e.g., to
relate the fovea to the OD location). Relative logits were used to store the x and
y offsets (Rh and Rw) between each key and query. These were added and the
relative positional attention score FR was computed using the dot product:

FR = q(Rh + Rw)T . (2)

In a U-Net, spatial information is encoded to different channels through
down/up-sampling. We believe channel-wise attention is well suited to utilize this
information in the bottleneck layers, which usually have many channels. We there-
fore used the channel attention module proposed in [21] (green box in Fig. 2). The
input feature map F was passed in parallel to average pooling and max pooling
layers, compressing each channel to one value. These two feature maps were for-
warded through a single, shared multi-layer perceptron (MLP) with one hidden
layer and added to compute the final channel attention score (FC):

FC = MLP (AvgPool(F )) + MLP (MaxPool(F )). (3)
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In contrast to a conventional transformer, the value vector was scaled not
only by the content attention score (FS), but also according to the relative-
position attention score (FR) and the channel attention score (FC). The output
of the HBA block (F′) is given as follows:

F′ = softmax(FS + FR)σ(FC)v, (4)

where the softmax was applied across attention heads and σ denotes the sigmoid
function.

2.2 Datasets

We evaluated our model on three prominent datasets for retinal degeneration:
ADAM [4] for AMD, REFUGE [11] for glaucoma, and IDRiD [12] for DR.

ADAM was released as part of a Grand Challenge at a satellite event of
the ISBI 2020 conference. The dataset contains 400 fundus images at either
2124 × 2056 or 1444 × 1444 resolution, 87 of which depict eyes at various stages
of AMD progression (typical signs include the presence of drusen, exudation, and
hemorrhage), and the rest are from healthy controls. ADAM includes ground-
truth OD segmentation masks and fovea image coordinates.

REFUGE was released as part of a Grand Challenge of the OMIA5 workshop
at MICCAI 2018. The dataset contains 1200 fundus images at either 2124×2056
or 1634 × 1634 resolution, 120 of which depict eyes with glaucoma, and the rest
are from healthy controls. REFUGE includes ground-truth OD segmentation
masks and fovea image coordinates.

IDRiD was released as part of a Grand Challenge at ISBI 2018. The dataset
contains 516 images at 4288 × 2848 resolution divided into 413 train images
and 103 test images, all of which contain pathological conditions such as DR
and diabetic macular edema. IDRiD includes ground-truth image coordinates
for the fovea and OD center, but not segmentation masks.

2.3 Implementation Details

Data Preprocessing and Augmentation. First, we resized every image in
the dataset to 512 × 512 pixels. Second, we followed [9] to generate circular
segmentation masks from the ground-truth fovea coordinates and combined them
with the ground-truth OD segmentation masks. Third, we applied random image
rotations (uniformly sampled from [−0.2, 0.2] rad), and horizontal/vertical flips
to augment the original dataset on-the-fly. Fourth, we split the data 85-15 into
train and test sets and held out 20% of the training images for validation.

Training Procedure. The model was trained using the adam optimizer, the
Dice loss [17], and early stopping, with a custom learning rate scheduler (start
rate 0.0025, decay rate 0.985 after 150 epochs), and batch size 8 for 500 epochs.
Initial weights were pre-trained on ImageNet. The model was implemented using
Keras 2.4.3 (Python 3.7) and run on an NVIDIA Tesla K80 (12 GB of RAM).
The code is available at github.com/bionicvisionlab/2021-HBA-U-Net.

https://github.com/bionicvisionlab/2021-HBA-U-Net
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Evaluation Metrics. We evaluated the performance of the model using
Euclidean distance (ED) [10], where only image coordinates were given, and
Dice coefficient (DC), where segmentation masks were given. Since none of the
three datasets came with fovea segmentation masks, we followed [10] to create a
circular disc centered over the ground-truth fovea coordinates, which was then
used to train our network. After training, we recovered predicted coordinates by
extracting the centroid of the predicted segmentation mask using scikit-image.

3 Experiments and Results

3.1 Joint Fovea and OD Detection in the Degenerated Retina

Table 1 summarizes our results on three prominent datasets for retinal degener-
ation: ADAM for AMD, REFUGE for glaucoma, and IDRiD for DR.

HBA-U-Net achieved SOTA performance on fovea detection across all
datasets (ADAM: ED 25.4 px; REFUGE: ED 32.5 px; IDRiD: 32.1 px) and
thus across eye conditions, despite the fact that these datasets were previously
used in Grand Challenges that featured convolutional [9], attentional [23], and
adversarial [20] approaches, some of which had a considerably larger number of
trainable parameters. Because all three datasets are relatively new, the number
of published results is still relatively small.

HBA-U-Net also achieved SOTA performance on OD segmentation for AMD
(DC of 0.947, on par with [9]) and on OD detection for DR (ED of 20.5). Our
OD segmentation was slightly worse than competing models, with the SOTA
belonging to [20], a patch-based morphology-aware segmentation network.

However, please note that the test data of these challenges is not made avail-
able to the public. To offer a fair comparison across models, we therefore re-
implemented a number of commonly used alternative network architectures and
compared their performance using our own train/test split. These alternative

Table 1. Landmark detection on ADAM, REFUGE, and IDRiD. Note that Challenge
test data is not publicly available. ED: Euclidean Distance. DC: Dice Coefficient.

Fovea Optic Disc

Model ED ED DC

ADAM Aira matrix [9] (ISBI 2020 Challenge Winner) 26.2 – 0.947

HBA-U-Net (this paper) 25.4 – 0.947

REFUGE Fu et al. [5] – – 0.936

Zhang et al. [23] – – 0.953

Kamble et al. [9] 35.2 – 0.957

Wang et al. [20] – – 0.960

HBA-U-Net (this paper) 32.5 – 0.947

IDRiD DeepDR (IDRiD Subchallenge-3 Winner, on-site) 64.5 21.1 –

ZJU-BII-SGEX (IDRiD Subchallenge-3 Winner, online) 45.9 25.6 –

HBA-U-Net (this paper) 32.1 20.5 –
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Table 2. Landmark detection for different reimplemented models tested on ADAM,
REFUGE, and IDRiD. ED: Euclidean Distance, DC: Dice Coefficient, F: Fovea, OD:
Optic Disc.

Model ADAM REFUGE IDRiD

EDF DCOD EDF DCOD EDF EDOD

U-Net [14] 70.7 0.741 65.2 0.806 87.1 53.7

EfficientNet encoded U-Net++ [9] 26.9 0.867 37.6 0.935 50.4 28.1

HBA-U-Net (this paper) 25.4 0.947 32.5 0.947 32.1 20.5

Fig. 3. Representative example predictions for a healthy eye (top row), AMD (second
row), glaucoma (third row), and DR (bottom row). Predictions are shown for a re-
implemented U-Net (second column), EfficientNet encoded U-Net++ with scSE blocks
(third column), and HBA-U-Net (fourth column), and compared against ground truth
(rightmost column). Error rates are given below each prediction panel.

networks included the classical U-Net [14] and an EfficientNet [18] encoded U-
Net++ with scSE blocks (similar to [9]). Results are given in Table 2 and example
predictions are shown in Fig. 3. HBA-U-Net outperformed the baseline models
on all three datasets.
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Table 3. Ablation studies on each network component. Starting from a U-Net back-
bone [10,14], we gradually added a ResNet-50 encoder [6], a standard self-attention
block [13] (‘Self-Att’), a single HBA block in the bottleneck (‘HBA-1’), and HBA
blocks across all levels of the hierarchy (‘HBA-all’).

U-Net ResNet Self-Att HBA-1 HBA-all Params Fovea ED OD DC

� 8.7M 70.7 0.741

� � 20.8M 34.8 0.902

� � � 21.1M 29.8 0.925

� � � � 21.3M 25.8 0.920

� � � � � 22.2M 25.4 0.947

3.2 Ablation Study

To measure the impact of the HBA block on different versions of our proposed
model architecture, we performed an ablation study on ADAM (see Table 3).

Starting with the original U-Net [10,14] as a baseline, we were able to reduce
fovea ED by a factor of two by adding a ResNet-50 encoder [6]. Adding the orig-
inal self-attention block [13] (without relative position and channel-wise atten-
tion; labeled ‘Self-Att’ in Table 3) at the bottleneck part of the U-Net improved
fovea ED by ∼5%, but led to a ∼2% decrease in DC for OD segmentation.
Upgrading the self-attention block to our proposed HBA block at the bottleneck
part of the U-Net (labeled ‘HBA-1’) resulted in both the ED and DC improv-
ing by ∼4%. Finally, creating local bottlenecks with HBA blocks at each skip
connection in the hierarchy (labeled ‘HBA-all’) led to SOTA performance.

4 Conclusions

We have proposed a re-designed U-Net architecture with hierarchical bottleneck
attention and demonstrated its utility for fundus analysis. The proposed net-
work achieved SOTA performance on fovea detection across datasets and eye
conditions, on OD segmentation for AMD, and on OD detection for DR.

Although self-attention, channel attention, and relative-position have been
deployed separately in other computer vision tasks, here we refined, simplified,
and combined their potential in segmenting retinal abnormalities. Furthermore,
our ablation study demonstrates the benefit of the local bottleneck structures
and HBA blocks for retinal landmark segmentation. Compared to content self-
attention alone, HBA does not add much overhead: relative position attention
does not have any learnable parameters and channel attention consists of a
shared MLP with one hidden layer. Compared to other pure attention networks
such as ViT [3], HBA blocks are more resourceful and better suited to work in
combination with convolutional modules commonly used in segmentation tasks.

Overall our results suggest that HBA-U-Net may be well suited for landmark
detection in the presence of a variety of retinal degenerative diseases.
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Abstract. Descemet’s membrane endothelial keratoplasty (DMEK) has
become the preferred corneal transplantation technique for severe stages
of corneal pathologies such as Fuchs’ endothelial dystrophy. Post-
operative assessment of DMEK graft attachment can be done using
anterior segment optical coherence tomography (AS-OCT), but man-
ual quantification of DMEK graft detachment is a time-consuming pro-
cess. Recently, a deep learning-based pipeline was proposed to aid in the
quantification of such detachments. The method includes a U-Net model
for segmentation of the detached graft segments, which was applied on
individual AS-OCT cross-sectional slices (B-scans), neglecting contex-
tual information from neighbouring B-scans. In this work, a novel model
architecture - Radial U-Net - is proposed that takes into account the
radial acquisition of the AS-OCT data and that integrates contextual
information from neighbouring B-scans to the input. We compare Radial
U-Net with variants of U-Net previously described in literature. Models
were trained and optimized using 960 B-scans from 50 patients that were
annotated by corneal specialists. Performance of the models was evalu-
ated on an independent test set of 320 B-scans of 18 other patients to
compare the detachments with corneal specialist annotations. Incremen-
tal improvements in the Dice score were obtained in comparison with
the baseline model (0.859± 0.009), with Radial U-Net performing best
(0.872± 0.006). The design of Radial U-Net is easily customisable and
can be adapted to other radially acquired data sets.

Keywords: Radial data · Segmentation · Deep learning · DMEK

1 Introduction

Descemet’s Membrane Endothelial Keratoplasty (DMEK) has become the pre-
ferred corneal transplantation procedure for restoration of vision for patients
affected by corneal pathology, such as Fuchs’ dystrophy [7,13,15]. The most
prevalent complication after a DMEK procedure is (partial) graft detachment.
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Graft detachment occurs in 4% to 62% of cases depending on experience of the
surgeon and may require another gas bubble injection or a complete repeat of
the DMEK procedure [12,14,16,17]. Presence of (partial) graft detachment can
be determined using anterior segment optical coherence tomography (AS-OCT).
Using the AS-OCT, the physician can observe high resolution cross-sectional
images (B-scans) of the graft and cornea without invasive measures [3]. For
each eye, 16 radial B-scans are obtained, as schematically represented in Fig. 1.
However, the manual quantification of the detachments in all these B-scans is
tedious and time-consuming. In some B-scans, presence of graft detachment can
be ambiguous and the DMEK expert uses neighbouring B-scans to gather con-
textual information that can indicate detachment.

A fast and objective method to evaluate graft detachment has previously
been proposed by Heslinga et al. [8]. The authors developed an image analysis
pipeline that includes a segmentation model based on deep learning [11]. The
segmentation model was designed to automatically locate graft detachments in
individual B-scans. In contrast to evaluation by a physician, the existing seg-
mentation model does not take into account neighbouring B-scans for contextual
information.

In this research, we aim to improve upon the previously developed segmenta-
tion model by incorporating contextual information from neighbouring B-scans.
We compare multiple modifications to the segmentation model and propose a
novel model architecture - Radial U-Net - that takes into account the radial
nature of the AS-OCT data.

1.1 Related Work

U-Net has become the de facto standard for deep learning-based biomedical
image segmentation [19]. The U-Net architecture consists of two pathways that
yield a U-shaped network. The first pathway is a downsampling path that reduces
the spatial information while increasing the feature information. The second
pathway is the upsampling path that uses upsampling layers to increase reso-
lution while combining this with the extracted features from the downsampling

Fig. 1. A schematic representation of the B-scans and their radial nature [8].
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path. A 3D variant of a U-Net can be used to segment 3D volumes. For example,
Qamar et al. used a 3D U-Net to segment infant brain tissues in MRI data [18].
However, 3D layers are computationally expensive and 2D architectures that
can process 3D input effectively are still actively being used. Examples include
stacking of slices as if they were channels [22] and processing the 2D images
separately before combining their feature maps later in the network [21].

Alternatively, Zhou et al. combined 2D and 3D layers into a single network,
referred to as D-UNet [23]. The model consists of two downsampling pathways
that both take the same 3D input. The first pathway, however, processes the
input as if it were 2D while the second pathway processes the 3D input as
3D. The information extracted by the 3D layers is then concatenated to the
2D pathway which is made possible by a transformation block that reduces
the dimension of the 3D data. The authors concluded that the D-UNet has
similar results compared to a standard 3D U-Net while significantly reducing
the computational costs.

2 Methods and Materials

2.1 Data

The data used in this research consists of swept-source AS-OCT scans (CASIA2;
Tomey Corp. Nagoya, Japan) collected by the department of Ophthalmology in
the Rigshospitalet Glostrup in Denmark as part of a randomized study that
examined the difference between air and sulfur hexafluoride DMEK surgery [1].
Eighty AS-OCT scans from 68 patients were obtained either directly after or
seven days after surgery. The dataset contains scans with and without graft
detachment. In some scans the intraocular gas bubble was visible, which can
have a similar appearance as the DMEK graft. Each AS-OCT scan consists
of 16 radially acquired B-scans of 2133 by 1466 pixels (16 by 11 mm) with a
separating angle of 11.25%. Details about the dataset, regarding participants
age, sex, diagnosis and other characteristics can be found in [8]. For each B-
scan, DMEK experts annotated the locations where the grafts were detached.
Similar to [8] the B-scans were horizontally aligned, cropped and split into two
halves to decrease the size of the training input. AS-OCT data was split on a
patient-level into a set of 960 B-scans for training and validation, and a set for
320 B-scans for testing. Furthermore, the images were downsampled by a factor
of two resulting in images of 480 by 384 pixels.

2.2 Models and Experiments

Baseline Model. Our baseline model is similar to the model described by
Heslinga et al. [8], based on the U-Net architecture [19]. It consists of four down-
sampling blocks and four upsampling blocks with skip connections between each
block. The model takes a single grey-scale B-scan as input and produces its
corresponding segmentation map. The baseline model and all adaptations were
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implemented using Python 3.7 and Keras 2.3.1 with TensorFlow 1.13.1 backend.
All models were trained by optimizing the binary cross-entropy loss between the
model predictions and the annotated masks with Adam [10]. Hyperparameters
for each model were similar unless mentioned otherwise. The standard batch size
was 10 and the initial learning rate 0.001. Training was continued for 200 epochs
and the learning rate was updated every 60 epochs with a factor of 0.3.

Pseudo-3D U-Net. As a first alternative to the baseline model, contextual
information is captured by including neighbouring B-scans as if they were chan-
nels [22]. We refer to this model as Pseudo-3D U-Net. A schematic representation
of the model and its inputs is shown in Fig. 2. The model was tested with increas-
ing numbers of neighbouring slices ranging from one to four on each side of the
central slice. Based on the performance on the validation set the optimal number
of neighbouring slices found to be two on each side.

Multi-Branch U-Net. A different approach for including contextual infor-
mation is inspired by the work from Sun et al. [21]. The proposed network uses
multiple downsampling branches where each neighbouring B-scan passes through
its own individual branch before they are combined at a later stage in the net-
work. A visual representation of this model, from here on referred to as the
Multi-Branch model (MB), is depicted in Fig. 3. Based on the validation set, we
determined that the optimal point of concatenation was just before the fourth
max-pooling layer, using a single neighbouring slice on each side of the central
slice.

3D U-Net. A 3D variant of U-Net was included [4], using the same input as
for the Pseudo-3D model. In contrast to the aforementioned models, the 3D U-
Net uses 3D kernels and outputs a 3D volume from which we select only the
middle slice. Due to the higher computational costs of the 3D convolutions, this
model was exclusively tested with a single neighbouring slice on each side of the
central slice and 16 initial filters instead of 32. Because of the small number in
the z-direction, max-pooling operation of the 3D U-Net were only applied in the
x and y-direction, keeping the depth of the feature maps constant.

D-UNet. As a more efficient alternative to 3D U-Net, D-UNet [23] was imple-
mented. Two separate downsampling branches process the input volume as 2D
and 3D simultaneously. A transformation block that reduces the dimension of
the 3D information made concatenation between the 2D and 3D branches pos-
sible. The upsampling path behaves in the same manner as the standard 2D
U-Net. Since D-UNet is computationally more efficient than 3D U-Net, training
was possible with two neighbouring slices on each side of the central slice rather
than just one.
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Fig. 2. Pseudo-3D U-Net. Neighbouring slices are stacked onto the central slice and
act as a single input.

Fig. 3.Multi-Branch U-Net. The central (C) and neighbouring slices (C+1, C− 1) will
go through separate downsampling branches before concatenation and finally producing
a segmentation map of the central slice (C).

Fig. 4. Radial U-Net. Slices are preprocessed by cutting into two parts, resulting in
two stacks of slices, central and outer slices. The number of neighbouring slices can be
varied independently for the two stacks. The stacks go through separate downsampling
branches before concatenation in the x-y plane.
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Radial U-Net. All models so far did not take into account the radial nature of
the AS-OCT data scans (Fig. 1). Since acquisition of neighbouring slices happens
at a different angle, the slices are misaligned in the x-dimension when stacked, an
effect that is more pronounced for x-coordinates more distant from the centre.
The misalignment might have a negative effect on the convolutions of a deep
neural network, where one assumes that the stacked data is directly sampled from
3D space. Moreover, due to the diverging nature of the radially acquired B-scans,
the distance between neighbouring slices is larger at the outer part than in the
central part. We therefore hypothesised that misaligned or distant information is
less useful and potentially hampers model’s performance. We therefore propose
a new model (Fig. 4) that allows us to customize the addition of the number of
neighbouring slices for different segments of the B-scan.

For our experiments we chose to have two image segments: a central stack and
an outer stack, but the concept can be extended to a larger number of segments.
Segments are obtained by simply dividing a B-scan along the x-dimension. To
deal with the different input sizes of the different segments, each segment has
its own downsampling branch. At the lowest level, just before the fourth max-
pooling operation, the feature maps of the branches are concatenated in the
x-y plane, along the x-dimension, restoring the relative spatial placing of the
segments. Please note that this type of concatenation is different from the typical
concatenation along the channel-dimension. This architecture allows us to easily
control the number of neighbouring slices for central and outer part of the image.
We refer to this model as the Radial U-Net. For our experiments, slices are
vertically cut into a central and outer part that consist of 30% (2.16 mm) and
70% (5.04 mm) of the original slice width respectively. Specifically, the network
uses a stack of nine central slices while limiting the stack of outer slices to three.

2.3 Metrics

Model performance was evaluated based on the projected Dice score, similar
to [8]. The model’s prediction and annotations were projected onto the x-axis
and subsequently the Dice score for both projections was calculated [5]. Cases
without detachment were excluded when calculating the mean Dice.

In addition, we analyzed the projected Dice score for the central and outer
part of the image separately. The central part consists of the central 288 pixels
(4.32 mm) and the outer part consists of the outer 672 pixels (10.08 mm). These
separate Dice scores give us more insight regarding the differences due to the
radial component of the data set, where we would expect more improvement in
the central part of the segmentation map.

Every network was trained five times using random weight initialization to
acquire an average Dice score that is representative of the model’s performance.
A one-tailed t-test for two independent means was used to determine the sig-
nificance of the change in performance of each model in comparison with the
baseline model.
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3 Results

The segmentation results obtained by the different model types on the test
set are shown in Table 1. The baseline model obtained the lowest Dice score
(0.859± 0.009) followed by the 3D archetypes, 3D U-Net (0.861± 0.008) and
D-UNet (0.863± 0.004). Pseudo-3D U-Net and Multi-Branch U-Net models per-
formed similarly with Dice scores of 0.869 (±0.008) and 0.868 (±0.008) respec-
tively. Radial U-Net performed best with a Dice score of 0.872 (±0.006). Based
on the one-tailed two independent means t-tests, Pseudo-3D U-Net and Radial
U-Net were found to perform significantly better than the baseline model. Dice
scores for the other models were not statistically different from the baseline
model.

Similarly, the baseline model and 3D archetypes had the lowest Dice scores
for the central part, while the Radial model performed best with a Dice score of
0.872 (±0.006). Dice scores for the outer segments were similar for all models,
ranging from 0.869 (±0.009) to 0.874 (±0.006) and were not statistically different
from the baseline model. The difference in performance for the central part
is visualized with an example in Fig. 5. Segmentation maps for a B-scan with
substantial detachment is shown for the baseline, Pseudo-3D and Radial U-
Net. As can be seen by the gaps in the segmentation map compared to the
annotated mask, the baseline model under-segments some parts of the graft for
this particular image. The Pseudo-3D model performs slightly better, but only
the Radial U-Net seems to have detected the full extent of the detachments in
the central part of the image.

Table 1. Results on the test. M indicates the number of neighbouring slices on each
side. *For this particular model the first number states the amount of outer neigh-
bouring slices and the second number states the amount of central neighbouring slices.
Param. = number of trainable weights.

Model M Param. Batch Projected dice score

Full Central Outer

Baseline 0 7,766,369 10 0.859± 0.009 0.830± 0.023 0.869± 0.009

P3D 2 7,767,521 10 0.869± 0.008 0.865± 0.011 0.873± 0.007

MB 1 14,041,313 5 0.868± 0.008 0.858± 0.023 0.871± 0.011

3D 1 5,648,337 10 0.861± 0.008 0.843± 0.007 0.869± 0.007

D-UNET 2 8,633,667 10 0.863± 0.004 0.840± 0.010 0.870± 0.004

Radial 1/4* 8,942,849 10 0.872± 0.006 0.873± 0.009 0.874± 0.006
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Fig. 5. Top: AS-OCT B-scan with substantial graft detachment. Bottom: segmentation
maps for the baseline U-Net, pseudo-3D U-Net, radial U-Net and the ground truth.

4 Discussion

Manual quantification of DMEK graft detachments in AS-OCT images is tedious
and time-consuming, and can be challenging for some cases. Automated segmen-
tation using deep learning has been shown to yield good results, yet the base-
line model sometimes missed some obvious detachments in the central region
of the image that corneal specialists would have been unlikely to miss. Using
neighbouring slice information to improve graft segmentation makes sense from
a clinical perspective, as this is also standard practice by corneal specialists.
However, how to effectively incorporate this contextual information into a deep
learning framework for segmentation had not been addressed before. Our study
compared multiple strategies to modify a U-Net and showed that incremental
improvements could be achieved.

The proposed Radial U-Net achieved the largest improvement in segmenta-
tion performance in comparison with the baseline U-Net. The improvement is
more pronounced in the central region where DMEK graft detachment is clin-
ically most relevant and could be a direct result of the addition of more slices
for this region. Radial U-Net also performed best for segmentation in the outer
region, although this difference is not statistically significant when compared
with the baseline model. For the full range, significant improvements were also
obtained with the more straight-forward approach of Pseudo-3D U-Net. How-
ever, visual evaluation of B-scans with particularly high amounts of partial graft
detachment in the central region indicated that the Radial U-Net outperformed
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the other models. A more extensive hyperparameter search could be conducted
in future research to find the optimal configuration of the Radial U-Net. Specif-
ically, finding the optimal x-location to cut the B-scans, and the number of
neighbouring slices for both stacks. In addition, a more extensive ablation study
could be performed to identify which hyperparameters and design choices con-
tributed mostly to the results. The concept of Radial U-Net can also easily be
applied to other applications that use radially acquired cross-sectional data sets,
since the design is customisable. Within the field of ophthalmic imaging, exam-
ples include corneal layer segmentation [6], corneal thickness measurements [9],
retinal fluid segmentation [20], and optic nerve head segmentation [2]. Moreover,
radial image acquisition is used in several other medical imaging modalities.
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inputs to convolutional neural networks for medical image segmentation. Med.
Phys. (2020)

23. Zhou, Y., Huang, W., Dong, P., Xia, Y., Wang, S.: D-UNet: a dimension-fusion U
shape network for chronic stroke lesion segmentation. IEEE/ACM Trans. Comput.
Biol. Bioinform. (2019)



Guided Adversarial Adaptation Network
for Retinal and Choroidal Layer

Segmentation

Jingyu Zhao1,2, Jiong Zhang2, Bin Deng1, Yalin Zheng3, Jiang Liu4,
Ran Song5(B), and Yitian Zhao2(B)

1 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
2 Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology

and Engineering, Chinese Academy of Sciences, Ningbo, China
yitian.zhao@nimte.ac.cn

3 University of Liverpool, Liverpool, UK
4 Department of Computer Science and Engineering,

Southern University of Science and Technology, Shenzhen, China
5 School of Control Science and Engineering, Shandong University, Jinan, China

ransong@sdu.edu.cn

Abstract. Morphological changes, e.g. thickness of retinal or choroidal
layers in Optical coherence tomography (OCT), is of great importance
in clinic applications as they reveal some specific eye diseases and other
systemic conditions. However, there are many challenges in the accu-
rate segmentation of retinal and choroidal layers, such as low contrast
between different tissue layers and variations between images acquired
from multiple devices. There is a strong demand on accurate and robust
segmentation models with high generalization ability to deal with images
from different devices. This paper proposes a new unsupervised guided
adversarial adaptation (GAA) network to segment both retinal layers
and the choroid in OCT images. To our best knowledge, this is the first
work to extract retinal and choroidal layers in a unified manner. It first
introduces a dual encoder structure to ensure that the encoding path of
the source domain image is independent of that of the target domain
image. By integrating the dual encoder into an adversarial framework,
the holistic GAA network significantly alleviates the performance degra-
dation of the source domain image segmentation caused by parameter
entanglement with the encoder of the target domain and also improves
the segmentation performance of the target domain images. Experimen-
tal results show that the proposed network outperforms other state-of-
the-art methods in retinal and choroidal layer segmentation.

Keywords: OCT · Domain adaptation · Retinal and choroidal layer

1 Introduction

Optical coherence tomography (OCT) is an indispensable ocular imaging tool
and has been extensively used in clinics. Anatomically, the retina can be divided
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H. Fu et al. (Eds.): OMIA 2021, LNCS 12970, pp. 82–91, 2021.
https://doi.org/10.1007/978-3-030-87000-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87000-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-87000-3_9


Guided Adaptative Segmentation for Retinal and Choroidal Layer 83

(a) (b)

So
ur

ce
 D

om
ai

n
Ta

rg
et

 D
om

ai
n

ILM

NFL/GCL

IPL/INL

INL/OPL

OPL/ONL

ELM

Up IS

Low IS

OS/RPE

BM/Ch

Ch/Sclar

Fig. 1. Illustration of full layer segmentation of OCT images. (a) Boundaries of dif-
ferent layers manually annotated by an experienced clinician. ILM: internal limiting
membrane, NFL: nerve fiber layer, GCL: ganglion cells layer, IPL: inner plexiform
layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer,
ELM: external limiting membrane, IS: inner segment, OS: outer segment, RPE: retinal
pigment epithelium, Ch: choroid. (b) Segmentation results by a pre-trained U-Net on
images from the source and target domains. From left to right: example OCT B-scans,
ground truth, and the segmentations by U-Net, which was trained on the source domain
dataset.

into nine cellular layers with varying thickness [1–3]. The choroid is a densely
vascularized layer lying between the retina and the sclera of the eye. Figure 1(a)
illustrates the boundaries of different retinal and choroidal layers in a B-scan
OCT image annotated manually by a senior ophthalmologist. In clinics, layer
thickness is an important biomarkers for the diagnosis of many different types
of eye diseases. For instance, glaucoma leads to the thinning of the nerve fiber
layer (NFL) [4,5]. Age-related macular degeneration (AMD) causes a thinner
choroid [6] whilst central serous chorioretinopathy [7] and polypoidal choroidal
vasculopathy [6] may lead to choroidal thickening. In consequence, the accurate
measurement of thickness of retinal and choroidal layers is vital for diagnos-
ing and monitoring disease progression. However, manual annotation of a large
number of images is an exhausting task for clinicians and vulnerable to human
errors. Current proprietary segmentation programs of clinical OCT devices still
lack accuracy and robustness.

With the rapid development of deep learning, many segmentation networks,
such as FCN [8], U-Net [9], CS-Net [10,11] and CE-Net [3], have been employed
for retinal layer segmentation tasks. However, to the best of our knowledge,
no existing method is dedicated to the segmentation of retinal and choroidal
layers in a unified model. In addition, although the retina and choroid of the
human eye share similarity, different imaging devices could produce large domain
discrepancy even of the same eye due to different noise distributions, i.e., domain
gap between the training (source) and test (target) images. This often causes low
generalization of a pre-trained model - high performance in the source domain
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and low performance in target domain, as demonstrated in Fig. 1(b). Hence,
supervised model often requires re-annotating pixel-level ground truth and thus
require high labour costs. To this end, it is essential to establish a model trained
on an existing dataset with manual annotations and can be generalized to new
test data from another domain (e.g. different device or with varying protocols).

In order to overcome these shortcomings, several unsupervised domain adap-
tation techniques [12] based on Generative Adversarial Network (GAN) [13–15],
have been proposed to close the gap between the source and target domains,
where manual labels are not available in the target domain. Although some
typical approaches such as Adversarial Discriminative Domain Adaptation [16]
achieved promising results, the input images of the source and target domains
are encoded using the same path, which means that the source and the tar-
get domain segmentation networks share the same parameters. As a result, the
parameters of the two networks will be entangled with each other and affect the
overall performance of the model.

In this paper, we develop a Guided Adversarial Adaptive (GAA) framework
for full layer segmentation in OCT images. We use the source domain encoder
to guide the target domain encoder for learning segmentation network parame-
ters. The dual encoder structure makes the encoding path of the source domain
independent of that of the target domain, and thus does not produce parameter
entanglement. Simultaneously, we carry out adversarial adaptation both in the
feature and output space of the two domain images, to minimize the feature dis-
crepancy between the source and target domains after encoding. Consequently,
the target domain encoder can make continuous progress.

The contributions of our work can be summarized in three-fold: 1) This is
the first attempt to segment full layers (both retinal and choroidal layers) in
OCT imagery by a single segmentation model, and it also demonstrates the
ability of data adaptation for different imaging devices. 2) We propose a guided
dual-encoder joint structure to guarantee the mutual independence between the
encoding paths of the source and target domains for parameter entanglement.
3) We show that without the need of any manual annotations on the target
domain, our method outperforms supervised learning using annotations in the
target domain by a large margin.

2 Proposed Method

In this section, we first provide an overview to the proposed method, and then
elaborate its two main components, i.e., the guided dual-encoding and the adver-
sarial adaption, respectively.

2.1 Overview

As shown in the Fig. 2, our framework consists of five basic modules: a source
domain encoder Es, a target domain encoder Et, a sharing decoder Dsh, a encod-
ing discriminator Disen and a decoding discriminator Disde. Thus, Es and Dsh
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Fig. 2. Overview of the Guided Adversarial Adaptation (GAA) network. The yellow
and the green arrows indicate the source and target domain paths, respectively. The
black dashed arrows denote the parameter guidance and the red dashed arrows denote
the adversarial learning. (Color figure online)

constitute the source domain segmentation network (SDSN), and Et and Dsh

constitute the target domain segmentation network (TDSN). The input OCT
image from the source domain is denoted as Xs ∈ RC×H×W with its cor-
responding annotation Ls while the one from the target domain denoted as
Xt ∈ RC×H×W has no annotation.

Adversarial methods can reduce the domain discrepancy [17] and thus make
the output feature space of TDSN consistent with that of SDSN through train-
ing. However, for most adversarial methods, since the parameters of the two net-
works are shared which trigger the parameter entanglement, the SDSN couldn’t
gain the optimal solution, so that TDSN will often end with a compromise per-
formance, which is better than that of the model trained only with the source
domain data but worse than that of the model trained with the target domain
data (assuming that the annotations are available). To alleviate this problem,
our idea is to lift the performance of TDSN by allowing it more independence
while still keeping its training guided by SDSN for domain adaption. There-
fore, we propose a guided dual-encoding architecture where the two encoders of
SDSN and TDSN are not shared and the domain adaption for transferring the
segmentation knowledge from SDSN to TDSN is delivered through a parameter
guidance process and an architecture of adversarial learning.

2.2 Guided Dual-Encoding

In this work, we use two individual encoders for Xs and Xt for SDSN and TDSN,
respectively so that there is no parameter sharing in their encoding paths during
the training. We build a teacher-student structure which aims to use Es to guide
Et for encoding the input images of the same modality but acquired by different
OCT devices into the same feature space.

Then, two levels of adversarial learning is adopted to promote the continuous
progress of Et and achieve the same encoding effect as Es. Here, we apply the
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Exponential Moving Average (EMA) in order to guide Et to learn parameters
from Es: {

φn
t = γφ̂n−1

t + (1 − γ)φn
s (n ≥ 2)

φn
t = φn

s (n = 1)
(1)

φ̂n−1
t = φn−1

t − α∇J(φn−1
t ) (n ≥ 2) (2)

where φn
s and φn

t denote the parameters of Es and Et before the adversarial train-
ing, respectively. φ̂n

t denote the parameters of Et after the adversarial training
where n is the iteration index. γ as a hyperparameter is a smoothing coefficient.
J(φ) represents the loss function of Et and α denotes the learning rate.

2.3 Adversarial Adaptation

We regard the encoder and decoder of the segmentation network as two levels
of generators, which conduct adversarial learning with different discriminators
in the intermediary feature space and the output space of the whole model,
respectively. In the encoding stage, we adopt the adversarial process between
Et and the Disen to reduce the gap between the feature spaces of Es(Xs) and
Et(Xt), which aims to encode the Xs and Xt from Es and Et respectively to an
identical feature space. The Disen loss LE

d and the adversarial loss LE
adv for Et

can be expressed as follows:

LE
d (Xs,Xt) = −

∑
z log(Disen(Es(Xs)))

+ (1 − z)(1 − log(Disen(Et(Xt))))
(3)

LE
adv(Xt) = −

∑
log(Disen(Dsh(Et(Xt)))) (4)

where z = 1 if the encoding prediction is from S, and z = 0 if from T .
In the decoding stage, Dsh starts with the encoded features Es(Xs) and

Et(Xt), and fuse the multi-scale features outputs from different levels of the two
encoders concurrently through skip connections. Although such a popular net-
work architecture is well know for improving the segmentation mainly due to the
preservation of low-level features, it hinders the restoration of high-level features
after the adversarial encoding. Therefore, we use Disde in the output space of
Dsh to eliminate the potential impact of the skip connections. Disde can further
enhance the effect of domain adaptation and make the output Dsh(Et(Xt)) more
similar to Dsh(Es(Xs)). The Disen loss LD

d and the adversarial loss LD
adv for Et

are expressed as follows:

LD
d (Xs,Xt) = −

∑
z log(Disde(Dsh(Es(Xs))))

+ (1 − z)(1 − log(Disde(Dsh(Et(Xt)))))
(5)

LD
adv(Xt) = −

∑
log(Disde(Dsh(Et(Xt)))). (6)
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We adopt the mean square error (MSE) loss function to train SDSN with
supervised learning.

Lseg(Xs) =
1

2m

m∑
i=1

(
l(i)s − Dsh(Es(x(i)

s ))
)2

(7)

where l
(i)
s and x

(i)
s ∈ Xs denote the ith ground truth and the input image in the

source domain, respectively. m is the total number of the source domain OCT
images. The overall training objective for our framework is:

Ltotal(Xs,Xt) = Lseg(Xs) + LE
adv(Xt) + LD

adv(Xt). (8)

Based on Eq. (8), we optimize the following min-max criterion:

min
G

max
D

= Ltotal(Xs, Xt). (9)

where G denotes the generator and D denotes the discriminator. The ultimate objective
is to minimize the segmentation loss for source image, while fooling the discriminators
Disen and Disde by maximizing the probability of Et(Xt) and Dsh(Et(Xt)) being con-
sidered as Es(Xs) and Dsh(Es(Xs)) in the feature and the output spaces, respectively.

3 Experimental Results

3.1 Datasets

Our experiments are performed on two OCT image datasets acquired by two different
devices. The first dataset provides layer segmentation annotations and thus is consid-
ered as the source dataset to train SDSN in a supervised manner. The images in the
second dataset are used as target domain images and will be used to evaluate the model
generalization ability.

Source: Topcon dataset consists of 1,280 OCT B-scans with the resolution of 992
× 512 pixels. All the images were captured by a Topcon DRI-OCT-1 system from 20
subjects. Each image has a corresponding pixel-level manual annotation of the retinal
and choroidal layers provided by experts. We make use of 640 images for training and
640 images for testing.

Target: Optovue dataset comprises 670 OCT B-scans in total taken by an Optovue
RTVue-XR device, with the resolution of 640 × 400 pixels. In particular, 640 images
(without layer manual annotations) were used for training, and 30 images (with man-
ual annotations) were used for testing. All the images were acquired with regulatory
approvals and patient consents as appropriate.

3.2 Implementation Details

In this experiment, DCGAN [13] and ResNet [18] were employed as the encoding and
decoding discriminator, respectively. Both the source and target domain images were
cropped to 512 × 400 pixels automatically, where all the cropped images contain retinal
and choroidal layers in either source or target domain. During the training, batch size
was set to 4 and we adopt the Adam optimizer with a weight decay of 5e−4 to train
the entire network end-to-end. The smoothing coefficient γ of EMA was set to 0.8.
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3.3 Evaluation Metrics

In order to quantitatively evaluate the performance of our framework, the following
metrics were calculated: the Dice coefficient (Dice) and the Intersection over Union
(IoU). In addition, we introduce the mean absolute error of the boundaries (MAE
(pixels)) to evaluate boundary segmentation performance. It is defined as the mean
error of retinal and choroidal interfaces:

MAER/C =
1

M × N

N∑

i=1

M∑

j=1

∣∣∣l(i)j − y
(i)
j

∣∣∣ (10)

where l
(i)
j and y

(i)
j denote the jth boundary mean coordinates of the ground truth label

and the prediction of the ith testing OCT image, respectively. We choose M = 10 when
computing the MAE of the retina layers, and M = 2 of the choroid layer.

Fig. 3. Visual results of different segmentation networks with domain adaptation.

3.4 Results

In the following sections, we report the segmentation performance under different sce-
narios, i.e., different segmentation models with and without our adaptation module.
For comparisons, we use the well-known network architectures such as U-Net [9], CE-
Net [3] and CS-Net [10,11] as SDSN and TDSN.

Domain Adaptation. To justify the superiority of the proposed method in domain
adaptation, we compared our GAA Net with state-of-the-art domain adaptation meth-
ods: Adapt Structured Output Space for Semantic Segmentation (AdaptSeg Net) [19],
Perceptual-assisted Adversarial Adaptation(PAAA Net) [20], Unsupervised domain
adaptation by backpropagation (UDAB Net) [17], with the U-Net applied as back-
bone for the segmentation of the target domain images.
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Table 1 shows the evaluation results of the proposed GAA Net against the state-
of-the-art methods. Compared to utilizing U-Net to segment the target domain images
directly, the Dice and the IoU of domain adaptation methods have great improvements
in the retina and choroid segmentation. The GAA Net outperforms all competing
methods consistently in terms of all evaluation metrics. In particular, we calculate the
MAE of all domain adaptation methods after post-processing, our method achieves a
much lower MAE in both retina and choroid segmentation, which indicates that it is
an accurate and reliable method for measuring the retinal layers and choroid thickness.
Figure 3 shows some visual results for retina and choroid segmentation. Moreover, we
also set CE-Net and CS-Net as the segmentation backbone to verify the versatility of
our method. The results in Table 1 show that compared to the pre-trained CE-Net and
CS-Net, our method leads to a roughly 18% improvement in terms of Dice score for
both segmentation backbones.

Table 1. Layer segmentation performances over target domain image by different
domain adaptation methods with different segmentation networks.

Method Retinal layer Choroidal layer

IoU ↑ Dice ↑ MAE ↓ IoU ↑ Dice ↑ MAE ↓
U-Net [9] 64.09% 77.96% — 71.32% 83.26% —

Adaptseg Net (U) [19] 82.22% 90.15% 2.918 77.93% 87.40% 8.928

PAAA Net (U) [20] 83.56% 91.00% 2.141 70.21% 82.34% 10.689

UDAB Net (U) [17] 82.55% 90.40% 3.334 74.12% 85.04% 10.614

GAA Net(U) 92.41% 96.05% 1.099 85.01% 91.84% 5.374

CE-Net [3] 65.52% 79.17% — 57.09% 72.69% —

GAA Net(CE) 93.74% 96.76% 0.939 87.01% 93.06% 4.124

CS-Net [10] 62.06% 76.53% — 76.51% 86.01% —

GAA Net(CS) 90.12% 94.79% 1.026 83.37% 90.84% 5.610
∗ Adaptseg Net (U) denotes the Adaptseg Net uses U-Net as the segmentation
backbone, and so on.

Table 2. Performance degradation between U-Net and domain adaptation methods
over source domain image.

Method Retinal layer Choroidal layer

EIoU ↓ EDice ↓ EMAE ↓ EIoU ↓ EDice ↓ EMAE ↓
U-Net [9] — — — — — —

Adaptseg Net [19] 4.37% 2.44% 1.285 0.55% 0.32% 1.699

PAAA Net [20] 5.06% 2.80% 1.145 0.96% 0.56% 2.474

UDAB Net [17] 6.17% 3.44% 1.145 2.93% 1.69% 2.592

GAA Net 0.68% 0.70% 0.70 0.10% 0.05% 0.178
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Parameter Entanglement. We also evaluate the effect of parameter entangle-
ment (i.e. SDSN and TDSN share the same encoder). In order to reasonably verify the
performance degradation caused by parameter entanglement in the source domain, the
SDSN and TDSN of the five competing methods listed in Table 2 all adopt U-Net with
the same setting. The parameters of the SDSN and TDSN are shared in AdaptSeg Net,
PAAA Net and UDAB Net but not in the GAA Net that we propose. We take the per-
formance mertics of U-Net as the baseline, and computed the error of IoU (EIoU ), Dice
(EDice) and MAE (EMAE) between U-Net and the other methods. It can be seen from
Table 2 that the metrics of retinal layer segmentation of all methods whose parameters
are shared, have significant margin when compared to U-Net. By contrast, our GAA
Net achieves a comparable performance with the original U-Net. This indicates that
the SDSN module in our method is capable of retaining the segmentation performance
of the source domain images, while the TDSN module can alleviate the performance
degradation caused by the parameter sharing. For the choroidal layer segmentation,
similarly, GAA Net performs better than all other competing methods in terms of all
metrics. The results demonstrate that the parameter entanglement generally leads to
the performance degradation of the SDSN, such that the TDSN cannot gain the best
performance when combined with SDSN together.

4 Conclusion

This paper have proposed a guided adversarial adaptation (GAA) framework for the
segmentation of retinal and choroidal layers in OCT images acquired from different
devices. By using a dual-encoder structure, the source domain encoder guides the learn-
ing of the target domain encoder. This helps to avoid the degradation of source domain
segmentation caused by parameter entanglement. In addition, through an adversarial
scheme, the target domain segmentations are also enhanced with good performance as
the source domain segmentations. In the future work, we will focus on applying the
GAA framework to the diagnosis of various ophthalmic diseases.
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Abstract. Traditional cycloplegic refractive power detection with spe-
cific lotions dropping may cause side-effects, e.g., the pupillary retrac-
tion disorder, on juvenile eyes. In this paper, we develop a novel neural
network algorithm to predict the refractive power, which is assessed by
the Spherical Equivalent (SE), using real-world clinical non-cycloplegic
refraction records. Participants underwent a comprehensive ophthalmic
examination to obtain several related parameters, including sphere degree,
cylinder degree, axial length, flat keratometry, and steep keratometry.
Based on these quantitative biomedical parameters, a novel neural net-
work model is trained to predict the SE. On the whole age test dataset,
the domain knowledge embedding network (DKE-Net) prediction accu-
racies of SE achieve 59.82% (between ±0.5D), 86.85% (between ±1D),
95.54% (between ±1.5D), and 98.57% (between ±2D), which demonstrate
superior performance over conventional machine learning algorithms on
real-world clinical electronic refraction records. Also, the SE prediction
accuracies on the excluded examples that are disqualified for model train-
ing, are 2.16% (between ±0.5D), 3.76% (between ±1D), 6.15% (between
±1.5D), and 8.78% (between ±2D). This is the leading application to pre-
dict refraction power using a neural network and domain knowledge, to the
best of our knowledge, with a satisfactory accuracy level. Moreover, the
model can also assist in diagnosing some specific kinds of ocular disorders.
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1 Introduction

Over the past two decades, myopia has increased rapidly among juvenile stu-
dents, which is also the leading cause of correctable vision impairment [1,2], and
presented a significant burden on the public healthcare system [3]. The innate
character of myopia is the excessive elongation of ocular axial length far away
from the normal integrated optical power of the corneal and crystalline lens.
Previous research has recognized the refractive error as a significant predictor
of myopia. The refractive detection can be measured after a comprehensive eye
examination, conducted by ophthalmologists and optometrists in eye hospitals
or ophthalmic centers [4,5]. In general, myopia can be defined as having a refrac-
tive error of Spherical Equivalent (SE) of less than −0.50 diopter (D), which is
equivalent to the Sphere degree (S) plus half of the Cylinder degree (C).

Previous epidemiological research has established an apparent high preva-
lence of myopia in younger, female, and parental-myopia adolescents [6–10].
Besides, education background, living area (rural or city), and ethnicity are
also important risk profiles of myopia [8]. Comparison between near work, mid-
distance, and distance activities has shown that the longer time spent outdoor
activity may effectively prevent myopia progression. Moreover, different environ-
ments and lifestyles may contribute to various myopia presentations among the
same ethnic people, not to mention among the other races and ethnicities [8].
Above all, while some studies have been carried out on refractive errors analysis,
most of the studies focused on identifying and evaluating the myopia distribution
characteristics through classical statistical and meta-analysis methods or linear
modeling approach (e.g., Generalized estimating equations).

Generally, the refractive error is measured by subjective refraction and objec-
tive refraction procedure. Due to the children’s strong accommodation abil-
ity, the objective refraction detection of schoolchildren is usually conducted by
cycloplegic autorefraction, which is regarded as the gold standard for refraction
measurement, to obtain the informative ocular optic and structural biometric
variables. Above all, (I) such detection operation is unsatisfactory, which may
have side-effects and cause sequelae, such as the pupillary retraction disorder.
(II) the existence of fundus lesions, amblyopia, small pupil, strong nystagmus,
and crystal turbidity will impede correctly measure the refractive power with a
low-credibility. This paper has proposed a novel domain knowledge embedding
network (DKE-Net), leveraging the axial length (AL) and corneal curvature to
investigate the feasibility of predicting the refractive power, i.e., spherical equiv-
alent, to avoid the aforementioned problems (I) and (II). Also, this study has
investigated the prediction ability of the refractive power and provided a signif-
icant opportunity to advance the diagnosis of poor-refractive eyes according to
the output of the proposed prediction model. It has revealed that the forecast
result of the refractive power of participants with ocular pathological changes is
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far away from the ground-truth value, which enables us to distinguish healthy
eyes from diseased ones with great potential for future clinical application.

2 Methodology

Fig. 1. An overview of the research framework. The examples inclusion criteria are
as follows: Left/Right Vision Acuity (L/RVA) higher than 4.0; the absolute difference
between LVA and RVA less than 1.0; and the correction vision higher than 4.5, which
was our pre-processing standard in this experiment to select health ocular subjects.

The study is a multidisciplinary, cross-sectional research project. Three quan-
titative analysis machine learning approaches are conducted to evaluate the
refractive power prediction performance on a clinical data collection after pre-
processing. An overview of the three research pipelines is shown in Fig. 1(B). The
refractive power prediction experiment is first conducted on the standard linear
regression for the high-interpretability available. Then, the näıve forward neural
network is selected as the second pipeline to create another baseline. After that,
we propose a novel network architecture to utilize the cylinder degree and sphere
degree as the assisted branches to predict the spherical equivalent. Specifically,
we first transfer the refractive power prediction problem to a regression task
based on the initial step’s clinical electronic health records (EHRs). Following
the regression task, the test samples can be classified according to the predicted
error between the model output and the ground truth value.

2.1 Data Collection and Pre-processing

The clinical EHRs of 19,627 recruited participants from 22 schools (including
kindergartens, primary schools, and middle schools) were collected by the same
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equipment and investigators from the EYESEE hospital. All of the participants
enrolled in our research have signed the clinical informed consent form. An auto-
refractometer (RM-800, TOPCON, Japan) was used to perform non-cycloplegic
autorefraction to measure S and C. The AL, Flat Keratometry (KF), and Steep
Keratometry (KS) were collected by an optical biometer (AL-SCAN, NIDEK,
Japan). Besides, some other intuitive parameters were recorded in the tabular
format, such as age, school, grade, etc. In Fig. 1, Part A on the left side is
the data collection procedure by EYESEE. We performed quality control for
the original tabular data by filtering inappropriate participant examples and
disqualified biomedical parameters described in Fig. 1(A), through which 7,142
participant records were excluded (12,485 records left).

Fig. 2. The network architecture of DKE-Net. The Part A provides the whole structure
of DKE-Net. Part B shows the detail of the hidden layer and adaptive layer, which
all consist of input subject, specific number of neurons, relu activation function, and
output subject.

Depending on the clinical fact, the vision correction by orthokeratology and
contact lens participants were excluded from the original examples. Based on
the biomedical knowledge, we averaged the KF and KS to calculate Mean Ker-
atometry (KM) and exploited the absolute value of KS minus KF to obtain
ASTigmatism (AST). To keep the magnitude consistency, we take AL’s recipro-
cal value as an additional parameter. Among these biomedical variables, we chose
gender, axial length, Mean Keratometry (KM), and ASTigmatism (AST) to be
the parameters according to clinical practice. The target variable is spherical
equivalent (SE), which represents the refractive power in clinical.

The final parameters are AL’s reciprocal value, KM, Gender, and AST in
our study. As the clinical record of one participant contains two eyes’ measure-
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ment data, thus one record is split into two examples to create a more abun-
dant database. Thus, the study includes 24,970 preprocessed real-world clinical
samples covering a total of 12,485 participants, between 3 and 15 years of age,
from 22 primary and junior high schools in Southwest China.

2.2 Domain Knowledge Embedding Network (DKE-Net)

Although the multi-layer feedforward neural network can recognize the non-
linear data pattern, we consider S and C’s existence would presumably further
improve the refractive power prediction performance. This paper has proposed
a novel domain knowledge embedding network (DKE-Net), which embeds two
assisted branches to predict the target variable. When the target variable is SE,
the domain knowledge embedding branches train distinct neurons’ weights to
predict S and C, respectively. During the training process, the model automati-
cally adjusts the last layer’s weights to leverage the relationship SE = S+0.5×C
through the adaptive layer. The specific neural network architecture is shown in
Fig. 2.

In these experiments, the splitting percentage of the training set and test
set is defined as 7:3 among the whole clinical dataset. The training sets and
test sets are randomly partitioned from the entire clinical EHRs each time to
obtain more reliable results. The number of input neurons is corresponding to
the number of the parameters. After that, we randomly initialized the network
model’s weights. We then assessed the predicted refractive power error under
different scopes, calculated by predicted value minus ground-truth value, on the
test set. The final results are validated by ten times experiments and record
the mean value of these trials. All of the experiment codes are implemented
by Python v3.7.5 and PyTorch v1.4.0 framework. Besides, the experiments are
conducted on TITAN V GPUs with 12 GB memory. Overall, the average training
time of the DKE-Net model is 75 s.

3 Experimental Results

We conduct two quantitative analysis machine learning algorithms, i.e. linear
regression (LR) and multi-layer perceptron (MLP), to compare with out method.
The prediction accuracy of SE of the complete experiment results are exhibited
in the Tables 1 and 2. Based on clinical evaluation metrics, the scopes were
defined as ±0.5D, ±1D, ±1.5D, and ±2D, containing results of both unilateral
and bilateral. It can be seen from the table that DKE-Net’s performance has
achieved the best accuracy, which is better than all of the previous approaches.
Especially in the −0.5D∼0.5D, the occurrence rate of prediction error under 0.5D
is 59.82% and the performance improvement has achieved 1.6% than MLP, which
is about 100 patients in our research. The centralized trends of SE’s prediction
error for different scopes are significant throughout the projection period, as
shown in the Table 2. The proposed network outperform other baseline rivals
with the max patient numbers in the lowest error scope.
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Table 1. Performance of spherical equivalent prediction task

LR MLP DKE-Net

−0.5D∼0.5D 3,580 (47.79%) 4,382 (58.23%) 4,481 (59.82%)

−1D∼1D 5,930 (79.16%) 6,535 (87.24%) 6,506 (86.85%)

−1.5D∼1.5D 6,992 (93.34%) 7,170 (95.71%) 7,157 (95.54%)

−2D∼2D 7,307 (97.54%) 7,396 (98.73%) 7,384 (98.57%)

All 7,491 (100%) 7,491 (100%) 7,491 (100%)

Table 2. Stratified performance of spherical equivalent prediction task

LR MLP DKE-Net

Less −2D 35 (0.47%) 31 (0.41%) 38 (0.51%)

−2D∼−1.5D 136 (1.82%) 51 (0.68%) 56 (0.75%)

−1.5D∼−1D 623 (8.32%) 293 (3.91%) 260 (3.47%)

−1D∼−0.5D 1,491 (19.90%) 1,120 (14.95%) 994 (13.27%)

−0.5D∼0D 1,997 (26.66%) 2,319 (30.96%) 2,355 (31.44%)

0D∼0.5D 1,583 (21.13%) 2,043 (27.27%) 2,126 (28.38%)

0.5D∼1D 859 (11.47%) 1,053 (14.06%) 1,031 (13.76%)

1D∼1.5D 439 (5.86%) 342 (4.57%) 391 (5.22%)

1.5D∼2D 179 (2.39%) 175 (2.34%) 171 (2.28%)

More 2D 149 (1.99%) 64 (0.85%) 69 (0.92%)

Subsequently, a unilateral and bilateral summary of the comparison of SE’s
prediction performance distribution of the three kinds of quantitative approaches
is revealed in Fig. 3, where the refraction power absolute error is aligned with
the ascend diopter scope, from 0.5D to all. In these figures, the X-axial rep-
resents the absolute prediction error under 0.5D (diopter), 1D, 1.5D, 2D, and
all. Meanwhile, the Y-axial represents the total number of people under various
scope. Clear evidence of a higher prediction trend has existed in our DKE-Net.
As shown in Fig. 3, most of the DKE-Net prediction output value is higher than
the real ground truth value (hyperopia). In contrast, the output of standard
linear regression exhibits an opposite result (myopia).

4 Discussion

To the best of our knowledge, until now, there has been little quantitative analy-
sis based on machine learning algorithms in the refractive power prediction area.
Recently, investigators have examined the effects of the random forests algo-
rithm on predicting high-level myopia in a specific future time point, achieving
a satisfactory forecasting performance. Such an approach deals with the longitu-
dinal electronic medical records collected from several large ophthalmic centres
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Fig. 3. The unilateral and bilateral prediction performance of the spherical equivalent

in China. Different from the task of previous research, this paper attempts to
illuminate the prediction of spherical equivalent on cross-sectional large-scale
non-cycloplegic autorefraction clinical data by developing an improved percep-
tron neural network. The experiments have been conducted on standard linear
regression, naive multi-layer feedforward neural network, and DKE-Net, among
which the DKE-Net has achieved the best prediction performance.

4.1 Main Findings

Our study has estimated refraction power, i.e., spherical equivalent, through a
newly proposed DKE-Net, which has achieved a satisfactory accuracy (prediction
diopter error under 0.5D) of 59.82%. Consistently throughout our linear model
for SE prediction, the axial length’s reciprocal value is most associated with the
target variables in the prediction tasks, which is in agreement with the previous
findings [4]. This is also relevant for the KM and gender, which are significant
determinate of refraction prediction. Compared with that, the AST and the inter-
cept term are relatively less critical risk factors in the specific linear model. In the
beginning, we have considered age as one of the candidature parameters to predict
the refraction power. In contrast, the prediction performance had no significant
improvement with the existence of age. According to Occam’s Razor principle, the
model structure should be as simple as possible. Thus, we excluded the variable
age from our basic pipelines. Apart from the SE prediction, we also have conducted
the sphere degree prediction experiment with obtaining 60.75% accuracy (diopter
error under 0.5D) by DKE-Net, which is better than other approaches.

However, to distinguish the gender-specific influence has generated on the
regression model, distinctive linear regression of male and female in the whole
age records have been conducted. After the linear regression of different age sub-
groups, there is a significant trend toward higher coefficients of the gender with
increasing age. The detailed coefficients of gender are displayed in the Table 3
when the standard linear regression is conducted to predict sphere equivalent
in each different age subgroup. We found that the coefficient of gender was
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Table 3. Stratified gender coefficients of linear regression model

Age 3 4 5 6 7 8 9

Coefficients −0.0211 −0.0268 −0.145 −0.244 −0.374 −0.409 −0.485

Age 10 11 12 13 14 15 All

Coefficients −0.527 −0.554 −0.553 −0.498 −0.699 −0.581 −0.401

gradually increasing with age arising. It means gender plays a more important
role in the refraction power prediction among older participants.

After that, we built the linear regression model on male and female partic-
ipant examples separately to compare the gender’s influence on the refraction
power. The co-efficients of the age in these two prediction equations are 0.0162
(P< 0.0001, 95% CI, 0.009∼0.024) and 0.0514 (P< 0.0001, 95% CI, 0.044∼0.059)
for female and male, respectively. The statistical analysis reflects a significant
lifestyle discrepancy in male and female students among our participants, which
means the male juvenile is more prone to be myopia. This phenomenon may
be associated with different daily outdoor behavior patterns and study/reading
habits.

To further investigate the best prediction performance, we have tried some
tricks on the DKE-Net architecture. For example, the double hidden layers of
näıve feedforward neural network architecture and dropout modules are sepa-
rately applied to the task. Besides, independent S, SE, and C output structures
without the adaptive layer are also tested for the SE prediction. However, the
experimental results show that the double hidden-layers structure, the presence
of dropout, and simply average the last layer lead to a performance degenera-
tion about 2% of the accuracy of ±0.5D. This suggests the DKE-Net may have
achieved the best performance among all similar network architecture.

An interesting aspect of these health records are the differences in the effect
of risk factors between normal examples and redundant instances, which were
excluded in the pre-processing unit. In addition, the experiments evaluated the
refractive power prediction performance of the excluded instances. The results
show that when the prediction error is below 0.5D, the percentage of instances
among all test datasets is only 2.16% for SE, when testing with excluded eyes.
Therefore, the results conclude that the abnormal participant examples do not
follow the same data distribution with normal participants. This study has impor-
tant implications for simple screening or disorder warning prediction, such as fun-
dus lesions, amblyopia, small pupil, strong nystagmus, and crystal turbidity.

4.2 Strengths and Limitations

The strengths of the study include extensive population-based clinical EHRs of
refraction detection. Data on a cohort of 19627 participants enrolled in the study
between 3 to 15 years old children were collected in the present investigation. As
the samples are randomly selected, the analyzed sub-cohort is representative of
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the entire research population. Moreover, this large Southwest China schoolchil-
dren population-based research has provided strong evidence of the effectiveness
and accuracy of our new proposed approach for SE prediction with satisfactory
performance.

However, our study has some defects which can be improved later. The first
is the relatively limited chosen biomedical parameters. Anterior chamber depth
and lens thickness are vital candidate risk factors that could be added to the
analysis to boost the prediction accuracy and aid lesion localization. Moreover,
previous research has revealed a strong association between myopia’s relevance in
Children and some common risk factors, such as outdoor activity time, parental
myopia, parental employment, and parental education, which are absent in this
study. Second, cross-sectional research based on the specific time point’s clinical
HERs cannot reflect the potential trend of refractive power changes over time.
The longitudinal data collection is also one of the improved directions.
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Abstract. Peripapillary atrophy (PPA) is a clinical finding that reflects atrophy
of the retinal layer and retinal pigment epithelium. It is very important to segment
PPA area as it indicates the progress of eye diseases such as myopia and glaucoma,
while it is a challenging task to segment PPA due to the irregular and ambiguous
boundaries. In this paper, a boundary guidance deep learningmethod is introduced
to segment PPA area to obtain precise shape. We propose a boundary guidance
block together with a contour loss function to improve the PPA segmentation
performance on boundaries. Our approach is evaluated on a clinical dataset. The
F1-score, IOU and Hausdorff distance of our method performance is 80.06%,
67.29%, 5.4934 respectively. Compared with other methods, our method achieves
the best performance both qualitatively and quantitatively. Our proposed method
can work well on retinal images with narrow PPA even with small training set.

Keywords: Peripapillary atrophy (PPA) · Boundary guidance · Segmentation

1 Introduction

Peripapillary atrophy (PPA) is a clinical finding associated with chorioretinal thinning
and disruption of the retinal pigment epithelium (RPE) in the area surrounding optic
disc [1]. Clinical studies show that the presence of PPA often associates with myopia or
glaucoma [2]. Therefore, monitoring PPA area is very helpful for myopia and glaucoma
screening. In recent years, PPA segmentation has been investigated. Most methods seg-
ment the area of optic disc (OD) and PPA together (i.e. PPAOD) following by subtracting
the OD region due to the difficulty of direct PPA segmentation [3]. Constraint on the
shape of PPA or OD with a simple ellipse fitting is also considered in some work, but it
leads to a limited improvement.

In this paper, we propose a novel deep learning method to segment PPA regions.
Different from other work, we segment the PPA area directly, which reduces the model
complexity compared with methods based on PPAOD subtraction. Furthermore, a new
module is engaged in our network to provide the boundary guidance together with a
contour constraint. The contributions of our approach can be summarized as follows.
(1) A novel end-to-end PPA segmentation method is proposed to directly extract PPA
region with a precise boundary in retinal images. (2) A boundary guidance block is
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proposed to provide boundary information and work as a guidance for the network.
(3) We utilize the contour loss to constrain the pixels around the boundary to further
improve performance. (4) We have carried out extensive experiments with the clinical
data to evaluate our approach. The results suggest that our approach achieves the supe-
rior performance compared with the state-of-the-art methods, and the performance is
significantly improved even with small training set.

2 Related Work

Image segmentation is a classic problem in computer vision and there are many methods
used in image segmentation, which are mainly divided into two categories: conventional
segmentation methods and deep-learning based segmentation algorithms. Conventional
segmentation methods vary from threshold-based, region-based and edge detection-
based methods [4] to the wavelet analysis and active contour models [5]. With the
development of deep learning, more and more convolutional neural network models
have been proposed for segmentation task and achieve satisfactory performance, such
as Unet [6] and SegNet [7].

Many methods are also proposed for retinal fundus image segmentation. Joshi et al.
[8] proposed a novel OD segmentation method which integrates the local image infor-
mation around each point of interest in multidimensional feature space. The method
proposed by Yu et al. [9] used alternating sequential filtering (ASF) and morphologi-
cal reconstruction to remove vessels and bright region distractors followed by level set
model with both region information and local edge vector to segment OD. Bharkad et al.
[10] proposed to segment the OD region using a combination of the equiripple low pass
finite impulse response filter, thresholding, and grayscale morphological dilation and
median filtering operation. Maninis et al. [11] proposed a network structure based on
VGGnetwork to segment both retinal vessel andOD.Wang et al. [12] proposed a coarse-
to-fine pipeline which segments OD based on a U-net structure and the segmentation
map from color funds images and corresponding grayscale vessel density maps.

As to retinal PPA segmentation, Lu et al. [3] proposed to extract PPA using region
growing and modified Chan-Vese model with a shape constraint. This method searches
for the local optimum, so it is seriously affected by initialization. Li et al. [13] used
evenly-oriented radial lines to detect the candidate boundary points of OD and PPAOD,
followed by outlier removal and ellipses fitting. The complicated illuminance situation
around optical disk will lead to failure due to the unreliable point determination which
relies on brightness curve on the radiation line. Chai et al. [14] proposed a novel PPA
area segmentation using amulti-task fully convolutional Network, which simultaneously
divided the OD and PPAOD regions and subtracted the two to obtain the final result.

3 Methodology

In this paper,wepropose a boundary guidancePPAsegmentationmethod,which contains
a boundary guidance block with contour loss. These two components are helpful to learn
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Fig. 1. The overview framework for PPA segmentation.

low-level boundary features and generate precise PPA shape. The overall architecture is
illustrated in Fig. 1, which is designed based on backbone of DRIU [10]. Feature maps
are extracted by VGG convolutional blocks and the proposed boundary guidance block,
which are fused for the final segmentation result and provides an auxiliary boundary
constraint. The boundary guidance block generates the refined feature maps maintaining
boundary information. Combining the features from multiple scales provided by DRIU,
themodel can finally give the prediction of a full size segmentationmap. Inwhat follows,
we will give detailed information on the main components of our approach.

3.1 Boundary Guidance Block (BGB)

Facing the problem of ambiguous shape in the segmentation map, we introduce a sharp-
aware component to alleviate the issue by enhancing the power of boundary information
extraction. If only the backbone network is used for segmentation, the segmentation map
sometimes has a confusing shape at the boundary. Therefore, a boundary guidance block
is proposed to help the network improve the segmentation performance. We believe that
by adding this block, the network can learn more information at the boundary area, and
the output of this block is integrated with the output of the backbone to guide the process
of segmentation.

The proposed boundary guidance block (BGB) is shown as the light green box in
Fig. 1, which is only applied on the low-level feature maps of VGG containing the
sufficient boundary information. In practice, feature maps from the second layer of the
first convolutional block in VGG (i.e. conv1–2) are used as the input of BGB. Our
BGB consists of three dilated convolution kernels with different dilation rates, where
dilated convolutions can control the receptive field and resolution without increasing
the number of parameters. The generated feature maps are concatenated followed by a
1 × 1 convolutional layer to extract richer boundary information. As a result, let ds

r (f )
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denotes dilated convolution for feature f with dilation rate r and filter size of s× s. Our
BGB can be expressed as:

F = conv1×1

(
concat

(
d3
1 (f ), d

3
2 (f ), d

3
4 (f )

))
(1)

3.2 Loss Function

The loss function is the most important component to train a deep learning neural net-
work. In our loss function, not only the global pixel loss is considered but also the local
contour loss. As to the global pixel loss, we utilize the widely used cross-entropy loss,
which is implemented as:

LCE = −
∑

i

(
YilogY

∗
i + (1 − Yi)log

(
1 − Y ∗

i

))
, (2)

where Yi, Y ∗
i represent ground truth label and predicted probability value of pixel i.

Besides, we propose a contour loss on the surrounding pixels of PPA to improve the
poor performance around the edge. This local punishment forces the model pay more
attention on the region where the more errors are going to happen. A weighted mask is
obtained by dilation and erosion operations on the ground truth followed by a Gaussian
filter, the purpose of this is to give more attention to the pixels closer to the boundary
area, with the expression as follows:

M = Gauss
((
(Y ; S)+ − (Y ; S)−))

, (3)

where (Y ; S)+ and (Y ; S)− represent dilation and erosion operations to the ground truth
Y respectively, and S is the operation kernel size. The reason for Gaussian filtering is that
pixels closer to the boundary should be given higher weights due to the high influence
to the shape. The loss function of the boundary area consists of two parts: 1) the loss
between the ground truth boundary area and the corresponding area of the output; 2) the
loss between the BGB module output image and the ground truth boundary area. The
loss function can be expressed as:

Lcontour = −∑
i Mi

(
YilogY ∗

i + (1 − Yi)log
(
1 − Y ∗

i

))
−∑

i

(
BilogB∗

i + (1 − Bi)log
(
1 − B∗

i

)) (4)

where Mi, Yi and Y ∗
i represent the mask, ground truth label and predicted probability

value of pixel i respectively, Bi, B∗
i represent ground truth boundary label and BGB

predicted probability value of pixel i. Finally, the total loss to train our model is:

L = LCE + K × Lcontour, (5)

whereK is a hyperparameter to balance the weights. In our experiments,K is empirically
set to 1.
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4 Experiment and Results

4.1 Dataset and Evaluation

Retinal fundus PPA images can be divided into two categories: crescent-shaped and
ring-shaped. In most cases, the shape of PPA is crescent-shaped, so we focus on the
crescent-shaped PPA in our experiment. The dataset we use is provided by the Beijing
Tongren Hospital, which contains 200 clinical data. For this dataset the PPA area is
narrow which occupies an average of 2.37% of the ROI area and the age range of the
data collectors is 6 to 14 years old. Because the target region is narrow, segmentation is
difficult.

We randomly select 50 images as the testing set, and the rest as the training set.
The preprocessing including eye alignment and ROI extraction is performed before
resizing the images to a unified size of 512 × 512. Eye alignment mainly refers to the
normalization of all data to the right eye. ROI extraction first uses the [15] method to
locate the optic disc, and then the cropping side length is determined by 0.4 times the
height of the fundus image.

We use F1-score and IOU as the main metrics to evaluate PPA segmentation perfor-
mance. Both F1-score and IOU are metrics to measure the similarity between two sets.
In the field of image segmentation, they are used to measure the similarity between the
segmentation result and ground truth (GT). To evaluate the performance on the boundary,
we apply Hausdorff distance as it is more sensitive to the boundary changes.

Our model is implemented using PyTorch. During training, our model is optimized
using Adam optimizer with batch size of 8 and learning rate of 0.0001. The training stop
condition adopts early stopping mechanism which selects the model with the smallest
loss, if there is no lower point than the current point in the next 50 epochs, the current
model is the final result. When constructing mask M in contour loss, the kernel size S
is selected as 5 × 5, and the kernel size of the Gaussian filer is equal to 5 × 5.

4.2 Comparison with State-of-Arts

We compare our method with Li et al. [13], Unet [6], SegNet [7] and DRIU [11].
Figure 2 shows the visual comparison between our method and other methods. Our
method achieves better results which are the closest to the ground truth especially on
the boundaries. The reason for the analysis is that the method proposed in this paper
adds boundary constraints, which makes the network pay more attention to boundary
information in learning, thereby improving the performance of the entire network.

Table 1 show the quantitative results of our method and other methods on the clinical
datasets. It can be observed from Table 1 that our method has an improvement in quanti-
tative evaluation compared with other methods. Although Li’s method [13] has superior
performance in traditional methods, there is still a gap compared with the performance
of algorithms based on deep learning.
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Fig. 2. Comparison with other methods. The corresponding number below the image is the
F1-score corresponding to the result. In the result, the red is the ground truth, the green is the
segmentation result, and the yellow is the overlap area. (Color figure online)

Table 1. Comparison with the-state-of-art methods.

Li et al. [13] Unet [6] SegNet [7] DRIU [11] Ours

F1-score 63.70% 79.11%
±0.70%

76.57%
±1.25%

79.43%
±0.67%

80.06%
±0.39%

Precision 63.19% 79.89%
±1.08%

75.71%
±1.45%

78.69%
±1.16%

79.06%
±0.86%

Recall 68.13% 79.67%
±1.15%

79.42%
±1.16%

81.57%
±0.33%

82.25%
±0. 82%

Accuracy 97.93% 99.01%
±0.04%

98.86%
±0.06%

99.01%
±0.05%

99.04%
±0.02%

IoU 48.59% 65.99%
±0.91%

62.91%
±1.36%

66.46%
±0.86%

67.29%
±0.54%

Hausdorff distance 5.9699 5.7504
±0.2489

5.8039
±0.3182

5.5596
±0.2154

5.4934
±0.1384

4.3 Ablation Study

In order to validate the contribution of our BGB block and the contour loss, we have con-
ducted the experiments on the models trained with or without each component. Table 2
summarizes the results of three models. We use DRIU and SegNet respectively as the
baseline model. It can be seen from the results that whether the baseline uses DRIU or
SegNet, the dataset has been greatly improved. For the dataset, the segmentation task is
difficult for narrow PPA, mainly because narrow PPA occupies a small area in the image,
which will be ignored without carefully loss design in deep learning. Adding only the
BGB or CL module improves F1-score and IoU, but may cause the Hausdorff distance
to decrease. The reason is that in addition to the boundary information being extracted
and processed in the feature map generated by the BGB module, the blood vessels and
optic disc regions will also be slightly affected. The CL focuses on the boundary area of
the ground truth, so adding CL may cause discontinuities or holes in the segmentation.
In such cases, the addition of BGB and CL can significantly improve the performance.

Take baseline method DRIU as an example, it can be seen from Fig. 3 that each
added part has a certain constraint effect on the boundary.
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Table 2. Ablation study on boundary guidance block and contour loss.

Baseline Baseline + BGB Baseline + CL Baseline + BGB
+ CL

DRIU F1-score 79.43%
±0.67%

79.79%
±0.10%

79.60%
±0.42%

80.06%
±0.39%

IoU 66.46%
±0.86%

66.91%
±0.13%

66.70%
±0.55%

67.29%
±0.54%

Hausdorff
distance

5.5596
±0.2154

5.6067
±0.0891

5.4373
±0.1366

5.4934
±0.1384

SegNet F1-score 76.57%
±1.25%

76.72%
±1.17%

76.94%
±2.04%

77.16%
±1.04%

IoU 62.91%
±1.36%

63.00%
±1.40%

63.23%
±2.58

63.50%
±1.29%

Hausdorff
distance

5.8039
±0.3182

6.0630
±0.2331

5.9227
±0.4811

5.6910
±0.1638

Fig. 3. Comparison of the ablation study with DRIU baseline method. Corresponding number
below the image is the Hausdorff distance corresponding to the result. In the result, the red is the
ground truth, the green is the segmentation result, and the yellow is the overlap area. (Color figure
online)

5 Conclusion

In this paper, we propose a deep convolution neural network to segment PPA area auto-
matically from retinal images. To solve the problem of irregular and blurry boundaries
of PPA, we propose a boundary guidance block and introduce a contour loss to improve
the PPA segmentation performance on the boundary. The proposed model is trained and
evaluated based on clinical data. Our model achieves 80.06% F1-score, 67.29% IoU,
Hausdorff distance of 5.4934, outperforming the state-of-art model. In the future, we
will further analyze multiple situations of PPA such as ring-shaped area.

Acknowledgment. The research work is supported by the National Natural Science Founda-
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Abstract. Risk of cardiovascular diseases (CVD) is driven by both genetic and
environmental factors. Deep learning (DL) has shown that retinal images contain
latent information indicating CVD risk. At the same time, genome-wide polygenic
risk scores have demonstrated CVD risk prediction accuracy similar to conven-
tional clinical factor-based risk scores. We speculated that information conveying
CVD risk in retinal imagesmay predominantly indicate environment factors rather
than genetic factors, i.e., provide complementary information. Hence, we devel-
oped a DL model applied to diabetes retinal screening photographs from patients
with type 2 diabetes based on EfficientNetB2 for predicting clinical atheroscle-
rotic cardiovascular disease (ASCVD) risk score and a genome-wide polygenic
risk score (PRS) for CVD. Results from 6656 photographs suggest a correlation
between the actual and predicted ASCVD risk score (R2 = 0.534, 95% CI [0.504,
0.563]; MAE = 0.109 [0.105, 0.112]), but not so for actual and predicted PRS
(R2 = −0.005 [−0.02, 0.01]; MAE = 0.484 [0.467, 0.5]. This suggests that reti-
nal and genetic information are potentially complementary within an individual’s
cardiovascular risk, hence their combination may provide an efficient and pow-
erful approach to screening for CVD risk. To our best knowledge, this is the first
time that DL is used to investigate the complementarity of retinal and genetic
information for CVD risk.

Keywords: CVD risk · Genetic risk · Retinal fundus imaging · EfficientNet

1 Introduction and Motivation

With the growing burden of cardiovascular disease (CVD) globally, there is an urgent
need to be able to identify rapidly and inexpensively individuals at risk, to maximize the
potential for cost-effective prevention at both individual and population level. Currently
clinical risk assessment, such as the PCEASCVD risk score, performmoderately at best
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in practice and do not incorporatemanywell-establishedmarkers of cardiovascular (CV)
risk, e.g. body mass index, leading to over-estimation of the risk in some populations
and under-estimation in others [22]. There is therefore a need for refinements of CV risk
prediction tools in clinical practice.

We present a deep learning (DL) investigation of the potential for complementarity
of the retinome (the totality of potentially clinically relevant information embedded in
the retina; here, in retinal fundus images) and genome to predict clinical and genomic
risk of atherosclerotic cardiovascular disease (ASCVD) risk. To our best knowledge,
this is the first ever report of such a DL study.

CVD is largely preventable through lifestyle and medical management, so the ability
to accurately predict risk at an early stage simply and conveniently would enable timely
intervention, with important clinical benefits. Like other chronic complex conditions,
CVD risk is determined by a combination of inherited (genetic) factors and environ-
mental and lifestyle factors. Recently genome-wide polygenic risk scores (GW-PRS)
have been reported to predict CVD risk with similar accuracy to conventional clinical
risk scoring approaches such as the Pooled Cohort Equations ASCVD risk score [9].
Combining a clinical score with a GW-PRS may further increase prediction accuracy
[6]. GW-PRS can today be determined relatively easily and cheaply from genome-wide
chip-based assays but determining a clinical risk score is by comparison logistically
more complex and costly in terms of time and resources: it requires a clinic visit to
obtain a range of clinical measures to be combined with other patient information.

There is increasing interest in the retina as a potential source of information indicating
CVD risk, supported by recent DL approaches [2, 8, 24, 25]. Importantly, images of the
retina can be captured simply and efficiently, including with portable devices exploiting
mobile-phone technology. Crucially, the extent to which information in the retina is
complementary to clinical risk and information in the genome for predicting risk has not
yet been established. We therefore investigated, for the first time to our best knowledge,
to what extent a DL approach applied to retinal images would be able to predict clinical
risk score and a GW-PRS for CVD.

2 Related Work

DLalgorithms for image analysis of fundus camera retinal images have been appearing at
a fast rate in recent years, addressingmostly vessel segmentation and artery-vein classifi-
cation [13, 19, 32], vessel morphology quantification and abnormalities/lesion detection
in the context of diseases [31]. For recent reviews we refer the reader to [20, 31]. Vascu-
lar measurements pre-defined by clinicians have been computed semi-automatically by
systems likeQUARTZ [32], SIVA [16] andVAMPIRE [21] to explore retinal biomarkers
for systemic conditions like diabetes and its complication, dementia and CVD risk [3,
4, 7, 11]. There has long been interest in the association of retinal parameters and CV
risk. Several studies have shown that specific retinal vascular measures, such as vessel
diameter, tortuosity and fractal dimension, are all associated with CVmarkers and CVD
events [17, 18].

Recently, DL approaches have identified retinal information related to CV risk,
e.g. [24, 25]. DL has enabled an approach to biomarkers research complementary to
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pre-defined dictionaries of clinical features. The DL approach seeks to classify retinal
images directly by outcome (e.g. an adverse cardiovascular event happened within a
given time from imaging the retinal); if successful, the DL network must be mined for a
representation of the image information driving the classification [28, 29]. Several groups
have reported results with large image sets [8, 15, 24, 25], exploring the association of
the retina with various diseases as well as patient information like age and gender.

3 Materials

3.1 Dataset

Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) is a cohort
study started in 1998 for investigating genetics of type 2 diabetes, progression and
response to treatment. Full details have been described previously [12]. GoDARTS
is accessible by negotiated agreement with the access committee. GoDARTS medical
records for patients with type 2 diabetes have been linked to retinal images from the Scot-
tish diabetic retinopathy screening program; here we use the baseline (earliest available)
image available for each patient. We selected a primary prevention cohort, i.e. individ-
uals who had no previous history of hospitalization for myocardial infarction (MI) or
stroke using ICD-10 codes I21–I23 and I60–I63.We used a total of 13964 retinal images
from n = 6656 individuals. The increased number of images reflect the availability of
left and right eye photographs. Image capture followed the standard Scottish diabetes
retinal screening protocol [27] that includes 45° field of view, macula centered. Multiple
images are available for some individuals for quality assessment reasons. A statistical
description of the data is shown in Table 1 for the whole cohort as well as the data splits.

3.2 Outcome Variables: Risk Scores

Clinical risk of ASCVD was calculated using the Pooled Cohort Equations (PCE)
ASCVD risk score [9]. The PCE risk score includes the following clinical variables:
age, sex, systolic and diastolic blood pressure, total and high-density lipoprotein choles-
terol, diabetes history and smoking status. The equation gives the percentage risk of
ASCVD at 10 years. Using available electronic health record data, we captured these
variables at the time of the retinal photograph for each individual and calculated the
PCE risk score at the time of the photograph. The GW-PRS was constructed from the
genome-wide genotyping data available in the GoDARTS bioresource using previously
published data provided [14]. The score was z-standardised.

4 Methods

4.1 Image Pre-processing

The 13964 images used have 14 different resolution levels; 2236× 3504 (12936 images,
92.6%) and with 2304 × 3456 (560, 4%) form the vast majority of the images. Smaller
resolutions account for only3.4%of the images.The images present significant variations
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Fig. 1. Block diagram for image pre-processing.

in terms of luminosity, pigmentation, focus, and in general quality. To compensate we
apply the pre-processing sketched in Fig. 1. We automatically locate the circular retinal
region (briefly: color to grey levels, thresholding to binary, bounding rectangle), drop
the peripheral black regions and fit a circle to remove the artefacts on the retina. We
then resize the images to 512 × 512 and perform contrast-limited adaptive histogram
equalization (CLAHE) on each color channel (R, G, B) and normalized the intensities
to [0,1].

Table 1. Baseline characteristics (full cohort and data splits): std = standard deviation; n= total;
n available = used for the feature in boldface. Gene risk score values are z-standardised.

Overall Train Validation Test

n 6656 4659 665 1332

Images 13964 9786 1392 2786

Of which right eye (%) 6928(49.61) 4852(49.58) 690(49.57) 1386(49.75)

Age at imaging

n available 6655 4659 665 1331

Mean (std) 67.21(11.18) 67.0(11.1) 67.32(11.3) 67.88(11.4)

Sex

n available 6655 4659 665 1331

Male (%) 3721(55.91) 2610(56.02) 349(52.48) 762(57.25)

ASCVD clinical risk score

n available 6638 4647 663 1328

Mean (std) 0.34(0.2) 0.34(0.2) 0.34(0.21) 0.35(0.2)

Genetic risk score

n available 6441 4508 645 1288

Mean (std) 6.95(0.61) 6.95(0.61) 6.94(0.62) 6.93(0.63)
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4.2 Deep Learning Architecture and Training

We adopted the EfficientNetB2 [30] DL model, a family of deep convolutional archi-
tectures that achieved excellent performance in the ImageNet challenge [26] with 1000
object classes. We used 260 × 260 input images following the authors’ recommenda-
tions [30] for best performance based on the compound scaling mechanism.We replaced
the EfficientNetB2 fully connected layer with a global average pooling layer followed
by a single output node with linear activation. The total number of trainable parameters
in the model is ~7.7M.

We initialized themodel with pre-trainedweights from ImageNet. The image set was
split randomly into 70% training, 10% validation and 20% testing. Care was taken not
to have retinal images of the same individual in different splits to avoid information leak
during training.We trained all themodel parameters for a total of 50 epochs and batch size
32 for fine-tuningwith retinal image as input and correspondingCVD risk score as output
label. For image augmentations on the train dataset during training we applied horizontal
flip and random rotation. We used mean squared error loss, Adam optimization and
Nesterov Accelerated Gradient momentum with initial learning rate 0.001, reduced by a
factor 0.1 if the validation loss did not improve within 5 consecutive epochs (minimum
learning rate 10–5). Further, to avoid overfitting, the training stopped if there was no
improvement in the validation loss for 20 epochs. The weights with best validation
performancewere saved. The learning curves are provided in the supplementarymaterial
(SM) (Sect. 1).

Experiments were carried out in the safe haven (SH) environment provided by our
local health informatics center (HIC) services following the University of Dundee, UK
guidelines [10] on aNVIDIATITANXpGPU.WeusedPython 3.6 for code development
with libraries opencv [1], scikit-learn [23] for image processing, and Keras 2.2.2 [5] with
tensorflow 1.9.0 as back-end for training and testing DL model.

4.3 Evaluation Metrics

Following recent reports ofDL studies on retinal biomarkers [8, 15, 24, 25],we computed
themean absolute error (MAE,Eq. (1)), and the coefficient of determination (R2, Eq. (2)),
as both risk scores (ASCVD, PRS) are real numbers. Note that R2 can sometime give
negative values, suggesting that the mean provides a better fit than the function fitted.
Below, yi is the true value, y the mean true value and ŷi the predicted value of the i-th
sample.

MAE = 1/n
∑n

i=1

∣∣yi − ŷi
∣∣ (1)

R2 = 1−
∑n

i=1

(
yi − ŷi

)2
∑n

i=1(yi − y)2
(2)

4.4 Statistical Significance

Non-parametric bootstrap sampling was used to assess the statistical significance of the
model performance on test data. We used 2000 random samples with replacement from
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the test data where each sample size was the same as that of the test data and computed
MAE, R2 from each bootstrap sample. Following [24], we define the 95% confidence
interval (CI) from the distributions of the performance metrics as the range between the
2.5 and 97.5 percentile points.

4.5 Activation Visualization

We used gradient-based class activation mapping (grad-CAM) [28] to visualize the
regions of the input images that contains key information for the classifier. Grad-CAM
uses the gradient of the loss function with respect to the feature maps (in the intermediate
layers, like convolutional layer) as weights. The weighted averaged feature maps in the
layers of interest can be then upscaled to the original input size to visualize the critical
regions identified.

We applied grad-CAM to the last convolutional layer which is followed by a batch
normalization layer, an activation layer, a global average pooling layer and the output
layer of EfficientNetB2. The spatial dimensions of the feature maps at these layers are
9× 9× 1048, where 1048 is the number of channels. The 9× 9 weighted feature maps
are rescaled to input image dimensions (260× 260) to obtain heatmaps. The substantial
upscaling can generate artifacts.We computed non-normalized heatmaps for all the input
images in the test data from the visible circular retinal region. Figure 3 shows examples
of images and grad-CAM heatmaps.

5 Results

We used 9786 retinal images for training, 1392 images for validation to avoid overfitting
and 2786 for testing. Two models for estimating the PCE ASCVD risk score and the
genetic risk scorewere trained, validated and tested individually.The respective bootstrap
results of MAE and R2 for the test data are reported in Table 2. The model achieved
an R2 of 0.5338 (95% CI 0.5036, 0.5628) and MAE of 0.1085 (0.1053, 0.1116) for
estimating the PCE ASCVD risk score. The R2 achieved when estimating the PRS is
−0.0053 (−0.0198, 0.009) with MAE of 0.4837 (0.4670, 0.5).

Table 2. Model performance on the estimating risk scores in the test dataset. 95% CI values
computed using 2000 bootstrap samples.

Feature Image number Metric Metric value

PCE ASCVD risk score 2778 R2 (95%CI) 0.5338 (0.5036, 0.5628)

MAE (95%CI) 0.1085 (0.1053, 0.1116)

Genetic risk score 2690 R2 (95%CI) −0.0053 (−0.0198, 0.009)

MAE (95%CI) 0.4837 (0.4670, 0.5)

The scatter plot for PCE ASCVD risk score estimation (Fig. 2 left) shows a positive
correlation between the actual and predicted labels which represents that the model
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learned to estimate PCE ASCVD risk score from the retinal images. The model has not
learnt any associations between retinal image and genetic risk score, simply learning the
average of the actual genetic risk score (value: 7).

Further, we generated grad-CAM heatmaps at the last convolutional layers from the
model trained for estimating PCE ASCVD risk score using the test images. Figure 3
shows two sample retinal images along with the heatmap generated for the prediction
made. More example heatmaps are provided in SM (Sect. 2). The optic disc, macula and
vasculature emerge as the most important for classifying the PCE ASCVD risk score
from retinas.

Fig. 2. Scatter plots for actual and predicted risk scores in the test data. Left: actual and predicted
ASCVD risk score. Right: actual and predicted genetic risk score. Green line: main diagonal.
(Color figure online)

Fig. 3. Two examples of grad-CAM heatmaps for ASCVD risk score (original image, overlaid
heat map). Left: actual label 0.05, predicted 0.09. Right: actual label 0.95, predicted 0.67.

6 Discussions and Conclusions

We applied a DL model to 13964 conventional digital photographs from 6656 patients
with type 2 diabetes. Our main result is that the retina seems to contain information that
can indicate clinical risk as defined by the PCE ASCVD risk score, but we found no
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indication that it contained information relating to genetic risk as defined by the GW-
PRS. This finding suggests that the retina may provide valuable information relating
to CVD risk that is largely complementary to a powerful genome-wide polygenic risk
score. For instance, the PRS used in our study was shown to be capable of identifying
individuals in the population with equivalent risk to monogenic mutations [14] and
indeed in our GoDARTS population we have demonstrated a 68% increase in risk of
CVD per standard deviation increase in the PRS used for this study (data not shown).

Genome-wide data is becoming increasingly cheap and easy to obtain, for example
from a saliva sample or mouth scraping. The cost keeps falling and is currently similar
to that of a standard laboratory blood test. Furthermore, unlike many clinical tests for
CVD, it only needs to be performed only once in an individual’s lifetime. However
genetic tests can only ever contain a proportion of the risk information as do not account
for lifestyle and environmental exposures. While this might seem surprising given the
strong associations between both the retina and genetic risk scores with CVD separately,
it can be explained by two factors. First, the retinal assessment is likely to reflect a
combination of genetic and environmental factors, which means that the contribution of
any genetic pathways is likely to diminish over time; the mean age in our cohort was
over 60 years. Second, the genetic risk score we used was based on genetic variants
significantly associated with coronary heart disease. While these variants are likely to
have some shared pathways with other risk factors that affect the retina such as blood
pressure, there canwell be a level of independence between them, reflected in our finding.
This lack of association between the retina and genetic risk may however represent a
benefit, as the two may provide complementary risk prediction.
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Abstract. Diabetic Retinopathy (DR) is a very common retinal disease in the
world, which can affect vision and even cause blindness. Early diagnosis can
effectively prevent the disease, or at least delay the progression of DR. However,
mostmethods are based on regular single-view images,whichwould lack complete
information of lesions. In this paper, a novel method is proposed to achieve DR
classification using ultra-widefield images (UWF). The proposed network includes
a dual-branch network, an efficient channel attention (ECA) module, a spatial
attention (SA) module, and an atrous spatial pyramid pooling (ASPP) module.
Specifically, the dual-branch network uses ResNet-34 model as the backbone.
The ASPP module enlarges the receptive field to extract rich feature information
by setting different dilated rates. To emphasize the useful information and suppress
the useless information, the ECA and SAmodules are utilized to extract important
channel information and spatial information respectively. To reduce the parameters
of the network, we use a global average pooling (GAP) layer to compress the
features. The experimental results on theUWF images collected by a local hospital
show that our model performs very well.

Keywords: Diabetic retinopathy · Dual-branch network · Efficient channel and
spatial attention · Atrous spatial pyramid pooling

1 Introduction

Diabetic retinopathy (DR) originates from diabetes and is a relatively common fundus
disease that can cause blindness. It is estimated that about 93 million people worldwide
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suffer from DR [1], and this number continues to rise. Since DR can be detected by
the morphological changes of the retina, many researchers are devoted to the research
of disease detection based on fundus images to assist ophthalmologists for diagnosis.
However, most methods are based on single-view fundus images, which lead to incom-
plete information of lesions. So some researchers chose ultra-widefield (UWF) images
as their studying objects [2–4]. In clinical, compared with conventional single-view
scanning images, the UWF images have a vision of 180–200° and contain more region
information, which is beneficial for the accurate diagnosis. For instance, Nagasato et al.
proposed a central retinal vein occlusion detectionmethod based onUWF fundus images
[5]. Pellegrini et al. presented anmethod for artery/vein classification usingUWF images
[6].

The UWF fundus images of patients with DR and those of normal people are shown
in Fig. 1. It shows that there is little contrast between the lesion area and the normal
area, with differences in lesion size and inhomogeneous distribution, which brings great
challenges to the processing and analysis of the UWF images.

Fig. 1. Display of the UWF images with two categories. The two images on the left are DR
images, and the two on the right are normal images.

Deep learning performs well in medical image processing and analysis and many
researchers have applied it to automatically diagnose various diseases. For example,
Brown et al. designed an automatic detectionmethod for retinopathy of prematurity using
deep convolutional network [7]. Li et al. used a deep learning method to detect DR and
diabeticmacular oedema [8]. Diaz-Pinto et al. presented amethod based on deep learning
to detect and classify glaucoma [9]. Xie et al. used a cross-attention network for fundus
diseases classification [10]. However, compared to the background area, some lesion
areas are small and the background area is more obvious than the target area (especially
in UWF images). Some researchers tried to use more complex models or design multiple
networks to extract the discriminative features. For instance, Hamwood et al. used a fully
convolutional network to determine the positions of cone photoreceptors [11]. Ruan et al.
achieved kidney tumor segmentation on CT images by using a multi-branch feature
sharing network [12]. However, these networks have advantages in extracting global
features, but easily overlook the important local information, which is disadvantageous
for the expression of discriminative detailed features. To address this situation, some
researchers have turned to attention mechanism [13–16]. The attention mechanism can
obtain more detailed information of the target, which is very helpful for the detection
and discrimination of lesion.

In this paper, a dual-branch networkwithResNet-34 [17] as the backbone is proposed
to extract features. We use atrous spatial pyramid pooling module (ASPP) to enlarges
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the receptive field and obtain rich semantic information. According to the dependence
of spatial and channel information between the features, the efficient channel attention
(ECA) and spatial attention (SA) modules are utilized to emphasize the useful informa-
tion after multiple convolutional layers of the network. Finally, we use a global average
pooling (GAP) layer to compress the features and concatenate the features from two
branches to complete the final classification task.

2 Methodology

The architecture of our proposed method is shown in Fig. 2. We propose a dual-branch
network to extract features and enlarge the receptive field by ASPP to obtain richer
semantic information. At the same time, the ECA and SA modules are employed to
emphasize some important information. After obtaining discriminative features by GAP,
the features from the two branches are concatenated and used for the prediction. The
detailed information of modules will be described below.

Fig. 2. The architecture of proposed method. The ResNet-34 model is the backbone and is used
in both two branches. The features extracted from the ASPP module are fed into the ECA and SA
modules to interact the high-dimensional features and compressed by GAP.

2.1 Dual-Branch Network

Inspired by [9], we propose a dual-branch network to extract depth features. Each branch
of the model is based on the ResNet-34 model, which solves the gradient disappearance
problem in deep networks through residual connection. It is worth noting that the first
three layers of the two branch networks share parameters, so the scale of the model
parameters is reduced. We use the UWF images as the input of the dual-branch network,
and the extracted rich deep semantic features can be used in the subsequent modules.
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Fig. 3. Demonstration of the ASPP module. Resnet-34 model extracts features and feeds the
features to the ASPP module. After feature extraction with different dilated rates, all the features
are concatenated. And the final output is obtained by a 1 × 1 convolution layer.

2.2 Atrous Spatial Pyramid Pooling Module

General neural networks use pooling operation to enlarge the receptive field to capture
more spatial information while reducing the resolution, but this process will have some
loss of detailed information. To solve this issue, some researchers used atrous convolution
(AC) instead of pooling operation. We can obtain the context information of different
scales by setting different dilated rates. At the same time, spatial pyramid pooling (SPP)
[18] can detect complex objects in multiple fields of view and extract features from
different angles and then aggregate themby 1× 1 convolution, which improves detection
accuracy. Combining the advantages of AC and SPP, an atrous spatial pyramid pooling
(ASPP) module is added to a branch of the network to extract more context features,
which can further improves the classification performance on UWF images without
increasing parameters. Specifically, we use three different dilated rates to perform atrous
convolution operation and all the extracted features are integrated by a 1× 1 convolution
layer. The structure of ASPPmodule is demonstrated in Fig. 3 in which we set the dilated
rate to 1, 2, and 3 respectively. Because the extraction of information with a large dilated
rate may only have an obvious effect on the detection of some large objects, while
the focus area of most fundus diseases is relatively small compared with the global
background area.
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Fig. 4. The structure ofECAandSAmodules.After aGAP layer, ECAgenerates channel attention
weights matrix by a one-dimensional convolution of size K, where K is adaptively determined
by the number of channels. The channel attention map is obtained by multiplying the channel
attention weight matrix with the original feature map. After AP and MP, we use a convolutional
layer and an sigmoid function to integrate the concatenated features as the spatial attention weight
matrix. Finally, the channel-refined map is multiplied by the spatial attention weights to get the
final output.

2.3 Efficient Channel Attention Module and Spatial Attention Module

Inspired by [19–21],we use the attentionmechanismof efficient channel attention (ECA)
and spatial attention (SA) to enhance the feature representation ability. The ECA and
SA modules are shown in Fig. 4. We perform a GAP operation on the feature map and
capture the cross-channel information from each channel and itsK neighbors, which can
be achieved by a one-dimensional convolution of sizeK. Then use amatrixmultiplication
operation to integrate the output of the previous step with the original feature map. After
that, we perform average pooling (AP) operation and max pooling (MP) operation, and
the spatial attention coefficients matrix are obtained by a simple convolutional layer
and sigmoid operation. Finally, all features are integrated and become the output of this
module. Moreover, an adaptive selection method of one-dimensional convolution kernel
size in ECA is employed to find the suitable receptive region of kernel. The formula is
described as follows:

K = φ(C) = | log2(C) + b

γ
|, (1)

where K is the kernel size of one-dimensional convolution, C is the number of channels,
b and γ are manually parameters, which are set as 1 and 2 respectively.
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3 Experiments

3.1 Dataset and Implementation Details

The experiment performs on ultra-widefield scanning laser ophthalmoscopy images
which is called UWF dataset. The UWF is obtained from a local hospital and includes
four categories of images.We choose the DR and the Normal images here. Among them,
we have 398 images of DR and 948 images of Normal, which are divided into training
data and testing data at 3:1. The specific divisions of the training data and testing data are
shown in Table 1. In addition, the images in the UWF dataset have a high resolution of
2600× 2048whichwould be difficult to put the original images directly into the network
for training. So we resize the images to 448 × 448. Meanwhile, random vertical and
horizontal flipping are used for data augmentation in the training set to prevent network
overfitting. Accuracy, Precision, Recall, and F1-score are used to evaluate the network
classification performance.

Table 1. The specific distribution of the training data and testing data.

DR Normal

Training data 298 708

Test data 100 240

Total 398 948

We implement our work with PyTorch and use GPUs to accelerate the training
process. The pre-trainedResNet-34model is used for the first three layers of the network,
and the second two layers are initialized randomly. During training, we choose the Adam
with default values as the optimizer. We set the max epoch to 80, set the size of every
training batch to 8 and set the size of every testing batch to 1. In addition, the learning
rate is 0.0001 and decays by 10% per 50 epochs.

3.2 Experimental Results

The experimental results of different methods is shown in Table 2. We choose VGG16
[22], ResNet-34 [17], ResNet-50 [17], InceptionV3 [23], and DenseNet121 [24] for
comparison. The VGG16, ResNet-34, ResNet-50, and DenseNet121 contain the charac-
teristics of deep networks, while InceptionV3 has the characteristics ofmultiple branches
and great feature extraction ability. So these networks are good baselines for research.

From Table 2, we can see that among the backbone networks, InceptionV3 has the
best performance, followed by ResNet-34. So we know the multi-branch has an impact
in the stage of feature extraction. From line 2, line 3, and line 5, it shows that the
deep networks perform not as good as other networks. Generally, the deeper networks
are easily overfitting and difficult to train. The proposed method extracts multi-scale
features and uses the attention mechanism to strengthen the degree of attention to some
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Table 2. Performance of different models (%).

Method Accuracy Precision Recall F1-score

VGG16 95.00 95.60 87.00 91.10

ResNet34 95.88 89.81 97.00 93.27

ResNet50 93.53 84.21 96.00 89.72

InceptionV3 96.18 93.34 93.00 93.47

DenseNet121 95.59 88.99 97.00 92.82

Proposed 98.82 96.15 100.00 98.04

important information. From Table 2, our model performs well compared with the other
backbone networks and achieves the highest accuracy of 98.82%.

Ablation experiments are conducted to estimate the modules in our model. Specifi-
cally, we select the following networks for comparison: ResNet-34 model (ResNet34),
dual-branchmodel (DB), dual-branchmodelwithASPP (DB-ASPP), dual-branchmodel
with attention modules (DB-AM), and dual-branch network with all complete modules
(Proposed). The experimental results are shown in Table 3. We can know that adding
corresponding modules to the backbone can slightly strengthen the classification per-
formance. From the experimental results, the score of dual-branch model with ECA and
SA on Recall is lower than backbone, because both ECA and SA modules operate with
deep features. Without strengthening the global feature extraction capability, the use of
ECA and SA alone will produce biased errors in the classification results. So the result
has a slight decrease in Recall.

Table 3. Evaluation of every module of our method (%).

Method Accuracy Precision Recall F1-score

ResNet34 95.88 89.81 97.00 93.27

DB 95.88 90.83 98.00 93.33

DB-ASPP 97.06 92.45 98.00 95.15

DB-AM 96.47 92.31 96.00 94.12

Proposed 98.82 96.15 100.00 98.04

Tomore intuitively evaluate our method, we plot the receiver operating characteristic
(ROC) curves and the area under curve (AUC) is used as the evaluation metric. The ROC
curves are shown inFig. 5 inwhichwe canobserve ourmodel has very goodperformance.
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Fig. 5. Demonstration of ROC curves. We can see that the AUC value of our proposed model is
0.9720, which is the highest compared to other methods.

4 Conclusions

We propose a novel dual-branch network for DR classification. Two branches use
ResNet-34 as the backbone, which can strengthen the extraction ability. ASPP enlarges
the receptive field and integrates more features. ECA and SA emphasize the important
information of feature space to obtain more discriminative features. The experimental
results show our method performs better than other methods on the UWF dataset.
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Abstract. The early screening of glaucoma is important for patients
to receive treatment in time and maintain eyesight. Deep learning (DL)
based models have been successfully used for computer-aided diagno-
sis (CAD) of glaucoma. However, a DL model pre-trained on certain
dataset from one hospital may have poor performance on other hospital
data, therefore its applications in the real scene are limited. In this paper,
we propose a self-adaptive transfer learning (SATL) strategy to fill the
domain gap between multi-center datasets. Specifically, the encoder of a
DL model that is pre-trained on the source domain is used to initialize
the encoder of a reconstruction model. Then, this reconstruction model is
trained using only unlabeled image data from the target domain, which
makes the encoder in the model adapt itself to extract useful features
both for target domain images encoding and glaucoma classification,
simultaneously. Experimental results on a private and two public glau-
coma diagnosis datasets demonstrate that the proposed SATL strategy
is effective. Also, it meets the real scene application and the privacy
protection policy due to its independence from the source domain data.

Keywords: Glaucoma diagnosis · Transfer learning · Multi-center
domain adaptation

1 Introduction

Glaucoma is one of the most primary leading causes of blindness [10]. The loss
of sight due to glaucoma is irreversible while some other eye diseases such as
myopia and presbyopia are not. Thus, early diagnosis of glaucoma for effective
treatment and vision conservation matters a lot for patients.

However, the symptoms of glaucoma in the early stage are difficult to per-
ceive. One of the standard methods widely used by eye specialists nowadays is
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the optic nerve head (ONH) assessment [10] in fundus retina images. Whereas,
mastering the tricks of performing ONH assessment remains challenging. There-
fore, some automatically calculated parameters were presented and popularized
as quantitative clinical measurements, such as cup to disc ratio (CRD) which
means the ratio of vertical cup diameter to vertical disc diameter in the fundus
retina image. Generally, a larger CRD represents a higher possibility of glau-
coma and vice verse. However, manually labeling the mask of the cup or disc
region is labor-consuming, which makes image-level category labels necessary
and reasonable for automatically screening glaucoma.

In the past several years, Deep Learning (DL) based methods have received
unprecedented attention and achieved state-of-the-art performance in many
fields, including medical image analysis [14]. Glaucoma can be screened from
fundus retina images by DL models which are well trained on sufficient data
and precise image-level labels [4]. However, DL models trained on one single site
cannot be directly generalized and applied to other sites. The distributions of
training and testing data are partially different so the pre-trained model may
fail to fulfill the diagnosis task.

Commonly, the difference between datasets can be seen as a domain gap. For
Example, the discrepancy between images from different dataset can be reflected
in many image statistical traits, such as color style, contrast, resolution, and so
on. Also, the joint distributions of images and labels may be quite different
between the source and the target domain, i.e., P (xs, ys) �= P (xt, yt). This is
mainly because the margin distributions are different, i.e., P (xs) �= P (xt) even
if the conditional distributions, i.e., P (ys|xs) and P (yt|xt) are similar. Many
methods have been proposed to solve this problem. Fine tuning [19] is most
widely used in real practical applications. However, fine-tuning is unable to apply
when the dataset from a new target domain is completely unlabeled.

To solve the domain adaptation problem, a novel self-adaptive transfer learn-
ing (SATL) framework is proposed in this paper for glaucoma diagnosis. Specif-
ically, we train a convolutional neural network in the source domain with suffi-
cient labeled data. Then, the feature extraction layers of this trained model is
shared as the encoder of a reconstruction network. The reconstruction network is
trained in the target domain using only unlabeled data. The encoder is adapted
to fit the distribution of target data while maintains the ability for glaucoma
diagnosis. The contributions of this paper can be concluded as follows:

(1) To the best of our knowledge, our work is the first to investigate the study
of transfer adaptation learning for the classification of glaucoma with mul-
ticenter fundus retina images.

(2) Our framework only uses unlabeled date in the target domain and is inde-
pendent from source domain data, so it has great potential for real scene
applications and can meet privacy protection policy for medical data.

(3) Experimental results shows that our framework can preserve most of the
classification ability of the off-shelf model and meanwhile improve its classi-
fication performance in target domain data. Even totally independent from
source domain data, it outperforms other state-of-the-art domain adaptation
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methods such as CycleGAN, which heavily relies on source domain data in
adaptation stage.

2 Related Works

Transfer adaptation learning (TAL) [20,22] is the most relevant area with the
proposed method. It is a combination of transfer learning (TL) and domain adap-
tation (DA) and can be categorized into three classes, which will be introduced
respectively.

Instance Re-weighting Adaptation Learning (IRAL). Methods in this
area assign weights to the source domain instances based on their similarity to
the target domain instances [13,24]. Via re-sampling or importance weighting,
the performance of the trained source classifier in the target domain can be
enhanced. However, the estimation of the assigned weights is under a prior-
decided parametric distribution assumption [22], which may differ from the true
parametric distribution.

Feature Adaptation Learning (FAL). For adapting datasets from multiple
domains, methods in this category are widely proposed to find a feature rep-
resentation space where the projected features from target and source domain
follow similar distributions [15,21]. In the past few years, the most famous FAL
methods are GAN-based domain adaptation models. However, finding a general
feature space for most domains remains challenging. Also, training a GAN-based
domain adaptation model needs both source and target domain data, which is
more and more impractical in the real scene due to the privacy protection policy
for medical data.

Self-supervised Transfer Learning (SSTL). Algorithms in this category
focus on training a supervised classifier on the source domain and then transfer
its knowledge to the target domain via self-supervised learning [2,3,5,17]. For
example, Cheplygina et al. [3] investigated a Gaussian texture features-based
classification model of chronic obstructive pulmonary disease (COPD) in multi-
center datasets. These methods integrate the data information from different
domains by extracting some manually designed features from images, which
limits the generalization ability of model. Ghifary et al. [5] is the most rela-
tive literature with our framework. Our method differs from [5] mainly in the
network structure. Moreover, we explore application in glaucoma diagnosis in
several datasets.

3 Method

The framework of the proposed method is illustrated in Fig. 1. The proposed
SATL framework can transfer a pre-trained source classification model to a target
domain without using neither source images nor labels.
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Fig. 1. Illustration of the self-adaptive transfer learning (SATL) strategy, which is
independent of the source domain data and more suitable for the real scene applications.

Let fs : X s → Ys be the source pre-trained classification model and f t :
X t → X t

rec be the target reconstruction model. The feature encoder is denoted
as fenc : X → F and the lightweight classification function fcls : F → Y. We
denote one more function: an decoder fdec : F → X in f t. Then, given an input
sample x, fs and f t can be formulated as:

fs(x) = fs
cls(f

s
enc(x)); f t(x) = f t

dec(f
t
enc(x)) (1)

Once f t(x) is trained, we can build the self-adapted classification model
f t
SA(x) for target domain image classification by f t

SA(x) = fs
cls(f

t
enc(x))

As shown in Fig. 1, the reconstruction model f t
dec is implemented as a vari-

ational auto-encoder (VAE), which can compress the image information and
sample a latent vector z. The encoder of it f t

enc is initialized by the pre-trained
source encoder fs

enc.
The loss function used to optimize the proposed self-adaptive reconstruction

model can be represented as:

L(f t
enc, f

t
dec, x

t) = α · LKL + β · Lrec, (2)

LKL = −KL(f t
enc(z|xt)|f t

dec(z|xt)), (3)

where the first term in the loss function LKL is the KL divergency of
the latent vector distribution and the true data distribution. The second term
Lrec is the reconstruction loss between the output image and the input image.
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Instead of using a single MSE loss, we perform a new designed combination of
two loss functions following [9]. We argue that the self-adaptive reconstruction
model should be guided to reconstruct high-level style information in the target
domain images rather than just the pixel-wise texture. Thus, the reconstruction
loss function designed in this paper is as:

Lrec = β1 ·
∑

i,j,k

(Boutput
ijk − Binput

ijk )2 + β2 ·
∑

m,n

(Goutput
mn − Ginput

mn )2, (4)

where Boutput and Binput denote the output and input of the reconstruction
model, respectively. i, j, k and m,n represent the position indexes. Goutput and
Ginput are the Gram matrices of Boutput and Binput. The gram matrix can be
calculated as:

G =
1

ni × nj × nk
vvT, (5)

where v is the flattened column vector of Boutput or Binput.

4 Experiments and Results

4.1 Datasets

Table 1. The statistical difference between three datasets

Dataset Domain Samples Pos vs. Neg Avg of image size

LAG (public) Source/Target 4854 3143:1689 300 × 300

pri-RFG (private) Source/Target 1881 1013:868 989 × 989

REFUGE (public) Target only 400 40:360 1062 × 1062

We used two public datasets and one private dataset to validate the pro-
posed SATL framework on glaucoma diagnosis task. The first public dataset is
large-scale attention-based glaucoma (LAG) dataset [8] established by Li et al..
The second is from the REFUGE challenge [12]. Moreover, we also collected
1881 retina fundus images from one collaborated hospital and built a private
dataset (pri-RFG) via labeling all the images by experienced ophthalmologists.
The details of the above-mentioned three datasets (LAG, REFUGE, pri-RFG)
are summarized and tabulated in Table 1. We can observe that the scales, the
average size of images and the ratio of samples in different datasets are quite
various, making transfer learning between them challenging. Due to the small
number of samples in dataset REFUGE, we just used it as target domain dataset,
while LAG and pri-RFG are used for cross-domain evaluation. In other words,
we implemented a total of four groups of experiments. Based on the direction
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from source domain to target domain, they can be represented as LAG → pri-
RFG, pri-RFG → LAG, LAG → REFUGE and pri-RFG → REFUGE. When
used as a source domain dataset, we separated training and validation set. When
used as a target domain dataset, all the images were fed into the reconstruction
model to train and adapt the encoder layers.

4.2 Implement Details and Evaluation Metrics

Both the source classification model and the target reconstruction model were
implemented using Pytorch (version 1.3.0) and trained on an NVIDIA RTX
2080Ti GPU. We implemented the source classification model as a VGG [16]
and optimized it with cross entropy (CE) loss [11]. During the training stage of
the source classification model, we set the learning rate as 10−6, weight decay
as 5 × 10−4. All the samples in the source domain were split into training set
and validation set using a ratio of 7:3 empirically, following stratified sampling
method to ensure that the Pos vs. Neg ratios in each set are similar. At each
iteration, a mini-batch of 16 samples were fed into the model. The number of
training epochs was set as 50. To avoid the over-fitting issue, the model which
achieved the maximum accuracy in the validation set was saved.

During the training stage of the self-adaptive reconstruction model on the
target dataset, the learning rate of the encoder was set as 10−7 and that of the
rest layers was set as 10−3. To avoiding over-fitting on the reconstruction task
and losing the ability to extract features that are useful for classification task,
the target reconstruction model was trained for only 20 epochs. We empirically
set the weights α, β1 and β2 in the reconstruction loss function as 0.3, 0.2, 0.5,
and the channel number of the latent vector in the model as 32.

Once the target reconstruction model was trained, the self-adapted encoder
of it was used as the feature extractor of a target classification model. The last
lightweight FC layer of the source classification model played a role as classifier.
This new combined target classification model was evaluated on target domain
dataset by metrics in terms of Accuracy, Recall, Precision, F1 score and Area
Under the ROC Curve (AUC).

4.3 Results and Discussion

As described in Sect. 4.2, based on the three available datasets, there are four exe-
cutable domain adaptation directions denoted as LAG → pri-RFG, pri-RFG →
LAG, LAG → REFUGE, and pri-RFG → REFUGE. For validating the effective-
ness of the proposed SATL strategy, on each experiment direction we compared
the performance of proposed method (w/ SATL) with the source classification
model (w/o SATL) and a state-of-the-art CycleGAN-based domain adaptation
method [23] (w/ CGAN). The CycleGAN-based method trains a generator to
transfer the target images to the source domain by adversarial learning. The
most noteworthy difference between CycleGAN and the proposed SATL strat-
egy is that: our method is completely independent of the source domain data
while CycleGAN is not. More specifically, training CycleGAN to perform domain
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Table 2. The classification performance of four groups of experiments

Direction LAG → pri-RFG pri-RFG → LAG

Strategy w/o SATL w/ CGAN w/ SATL w/o SATL w/ CGAN w/ SATL

Accuracy 0.799 0.672 0.856 0.352 0.628 0.579

Recall 0.659 0.422 0.726 1.000 0.707 0.779

Precision 0.807 0.923 0.855 0.352 0.481 0.445

F1 score 0.726 0.580 0.785 0.521 0.573 0.566

Direction LAG → REFUGE pri-RFG → REFUGE

Strategy w/o SATL w/ CGAN w/ SATL w/o SATL w/ CGAN w/ SATL

Accuracy 0.933 0.913 0.945 0.240 0.540 0.580

Recall 0.425 0.600 0.500 0.975 0.825 0.850

Precision 0.810 0.558 0.909 0.114 0.157 0.173

F1 score 0.557 0.579 0.645 0.204 0.264 0.288

adaptation needs both source and target domain images. On the contrary, the
proposed SATL strategy relies on only the target domain unlabeled images.

The experimental results of three strategies are tabulated in Table 2. More-
over, the ROC curves are also plotted and illustrated in Fig. 2. By observing the
demonstrated results, two main conclusions can be drawn:

(1) Compared to the source model without SATL, which can be seen as a base-
line, the model with SATL outperforms in all four domain adaptation direc-
tions in terms of Accuracy and F1 Score. Despite there exist a mass of
differences between three used datasets, SATL shows to be effective for self-
supervised domain adaptation regardless of the source and target domain
data distribution. This phenomenon shows that the proposed SATL is valu-
able and reliable for the production of pseudo labels in data from a grand-
new hospital.

(2) When testing the source model in the target domain images transferred by
CycleGAN, the performance is comparable with the proposed SATL strategy
in domain adaptation directions of pri-RFG → LAG and LAG → REFUGE.
While in directions of LAG → pri-RFG and pri-RFG → REFUGE, the
proposed SATL strategy surpasses the CycleGAN by a large margin. This
phenomenon demonstrates that SATL is more robust and have more sta-
ble generalization ability in different domain adaptation scenes. Note that
CycleGAN uses the source domain images in the domain adaptation stage
while the proposed SATL does not. Thus, our method which is completely
independent of the source domain is more feasible in real scene applications.
It can ensure the isolation of multi-center datasets and meet the privacy
protection policy.
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Discussion. Despite the proposed method improves the performance of the
classification model in the target domain via self-supervised training, there still
remains some research worth exploring for enhancing the performance. For exam-
ple, in this paper, we directly trained and validated the source classification
model on the source domain. However, it may be a better option to initialize the
source classification model by a model pre-trained on large scale nature image
datasets such as ImageNet. Besides, the backbone used in this paper is VGG
for the convenience of building the reconstruction VAE model. In the future, it
can also be replaced by other state-of-the-art backbone such as Inception [18] or
SENet [6]. Last but not least, the features adapted by SATL framework in the
target domain need to be explore and compare with that before SATL. Further
improvement in glaucoma diagnosis may be achieved by learning features which
can better represent ONH traits.

Fig. 2. ROC curves of the models evaluated in all four domain adaptation directions.

5 Conclusion

In this paper, we present a self-adaptive transfer learning (SATL) strategy to
fill the domain gap between multicenter datasets and perform the evaluation in
glaucoma classification based on three fundus retina image datasets. Specifically,
a reconstruction model is trained using only target domain unlabeled images.
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The encoder of this reconstruction model is initialized from a pre-trained source
classification model and self-adapted in the target domain. Experimental results
demonstrate that the proposed SATL strategy enhances the classification per-
formance in the target domain and outperforms another state-of-the-art domain
adaptation method which even utilizes source domain images for training, as
well. In the near future, more efforts will be devoted to exploring how to further-
more lifting the performance of the self-supervised domain adaptation method
via designing new reconstruction losses. Moreover, we will extend this strategy
to other medical image analysis problems.
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Abstract. Glaucoma is one of the leading causes of blindness in
humans, which is not reversible, but early detection and treatment can
save helpful vision. Clinicians classify glaucoma into early, moderate, and
advanced stages based on the extent of the patient’s visual field deficit.
The treatment of glaucoma varies with the course of the disease. With
the development of deep learning technology, more and more studies
focus on the automatic diagnosis of glaucoma. Most of them are based
on color fundus images or OCT images. However, there are limitations
in using only one modality images to analyze glaucoma due to the com-
plexity of glaucoma. Therefore, in this paper, two modalities of images,
color fundus image and 3D OCT image provided by the GAMMA Chal-
lenge, were used to design baseline algorithms for glaucoma grading. On
the preliminary dataset of the GAMMA Challenge, the kappa value of
the glaucoma grading results based on the two modalities of image input
were improved by 0.092 and 0.075, respectively, compared with those of
the model with single fundus image and single OCT image input. And on
the final datasets, the corresponding improvement were 0.029 and 0.127.
At the same time, considering that optic disc changes are the main fea-
tures of glaucoma, we added local information of optic disc into the input
module, so that the kappa values were improved respectively by 0.075
and 0.068 in the preliminary dataset and final dataset of the model based
on the images of two modalities as input. In addition, this study used
an ordinal regression strategy on the classification task to increase the
kappa value of the results of automatic classification of glaucoma based
on multi-modality images by 0.097 and 0.050 on the preliminary and
final datasets of the GAMMA Challenge.

Keywords: Multi-modality images classification · Glaucoma grading ·
3D OCT · Color fundus photography · GAMMA challenge
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1 Introduction

Glaucoma is one of the leading causes of irreversible but preventable blindness
in the world [11]. Clinically, glaucoma is categorized into early, moderate, and
advanced stages based on visual field defects. Visual field defects are determined
by visual field tests, which can calculate the mean deviation (MD) of the patient’s
visual field compared to the normal person. According to [6], the MD is less than
6 dB for early glaucoma, between 6 dB and 12 dB for moderate glaucoma, and
greater than 12 dB for advanced glaucoma. However, visual field tests require
patient cooperation. Moreover, the tests are time-consuming, and poor repro-
ducibility due to numerous influencing factors. With the development of deep
learning technology, medical image processing has been paid more attention.
Many researchers focused on diagnosing of glaucoma based on the color fundus
images [1,4,9]. Meanwhile, some researchers first used 3D OCT images to obtain
the thickness of optic nerve fiber layer or ganglion cell complex layer, and then
made the diagnosis of glaucoma [2]. However, glaucoma can cause a variety of
structural changes in the fundus that are difficult to observe only in color fundus
photography. And, the task of glaucoma grading has been rarely studied.

Therefore, in this paper, we studied glaucoma grading by using color fundus
photography and OCT images. Instead of calculating optic fiber layer thick-
ness or ganglion cell complex layer thickness from OCT images in advance, we
designed the models for the glaucoma grading directly using images. We used 100
pairs of color fundus images and 3D OCT images released in GAMMA Challenge
for training. And, the preliminary and final datasets of GAMMA Challenge were
used for testing. To improve the effect of glaucoma grading, this paper used the
ordinal regression strategy [7], and discussed its influence on the results and its
significance. The major contributions of this paper are threefold.

– The effect differences of automatic glaucoma grading using different modality
images was analyzed.

– The importance of optic disc region to glaucoma grading was considered in
the model.

– An ordinal regression strategy was performed to improve the performance of
glaucoma grading.

2 Methodology

In this paper, the baselines of the automatic glaucoma grading task were designed
using color fundus images only, OCT images only, and the above two modalities
of images. The samples are divided into three categories: non-glaucoma, early
glaucoma, and moderate and advanced glaucoma. We designed baselines based
on the images of different modalities. In addition, considering that the optic
disc region may be degenerate due to glaucoma, we extracted the optic disc
region and added it into the models as input. Moreover, since the images of
early, moderate and advanced glaucoma are all glaucoma samples, we divided
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Fig. 1. The networks for the baselines based on one modality images, such as color
fundus photography and OCT images. (a) color fundus photography, (b) OCT image
slices, (c) the network structure. In the baselines based on the different modality images,
the input images module of the network will be color fundus photography and OCT
slices respectively.

the tripartite classification task into two binary classification tasks by referring
to the ordinal regression strategy [7]. In this strategy, we judge whether the
images belong to non-glaucoma or glaucoma samples, and then judge whether
they belong to early or moderate/advanced stages.

2.1 Baselines

As shown in Fig. 1, the network structure of the baseline model adopts the form
of a single branch for single-modality image input. For the fundus images or OCT
images, the encoding network is used to extract features first, and the network
structure used in this paper is ResNet34 [5]. Then the input images are divided
into three categories according to their features by using the full connection layer.
As shown in Fig. 2, for the two modalities of image input, the baseline is in the
form of two branches. We used two ResNet34 networks to extract features from
the input fundus images and OCT images respectively, and then concatenated
these features, and finally classified these features using the full connection layer.
The loss functions used in these model training processes are the cross-entropy
loss which is commonly used in the classification task.

2.2 Local Information of Optic Disc

Since glaucoma leads to lesions in the optic disc region, such as cup-disc ratio
enlargement, and optic disc hemorrhage [8], we considered extracting the optic
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Fig. 2. The networks for the baseline based on the images of two modalities (color fun-
dus photography and OCT images). The network simultaneously extracts the features
of two modalities, and then synthesizes the two features through concat, finally realize
the tri-classification task.

disc region of fundus images as local information to supplement the network
input module. According to paper [12], we took the center of optic disc region
as the center, and 2 times the maximum diameter of the optic disc as the side
length. Square patches were cropped from fundus images as local information
(see Fig. 3). Specifically, the optic disc region can be obtained through common
deep learning methods such as U-Net [10] and M-Net [3]. In this paper, the
optic disc regions are segmented by the U-Net network. The features of the local
information were also extracted by the ResNet34 network, and then the features
were combined with the features of other input images in the concat way, and
then used for glaucoma grading.

2.3 Ordinal Regression Strategy

In the training process, if the model identifies advanced glaucoma as early glau-
coma or identifies advanced glaucoma as non-glaucoma, the losses of these two
situations are the same according to the cross-entropy loss, which is commonly
used in the classification task. In fact, identifying advanced glaucoma as non-
glaucoma deviates more from the gold standard than identifying as early glau-
coma. Therefore, we need to consider not only the classification loss, but also the
ranking relationship between the misclassified category and the true category,
where the loss should be smaller if the classification is closer. Ordinal regression
strategy can solve the above problems. As shown in Fig. 4, we used the output
features to perform two binary classifications respectively. The first classifier
divides the sample into 0 and 1, that is, to judge whether the input image is
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Fig. 3. Local information of optic disc. The square patch was extracted with the center
of optic disc as the center, and the side length was 2 times the maximum diameter of
optic disc.

a glaucoma sample. The second classifier divides the sample into 0 and 1 to
identify the input image as moderate/advanced glaucoma sample or not. The
labels of the original tripartite classification task were converted according to the
two binary classification tasks, that is, the labels of the original non-glaucoma
samples were changed to (0, 0), the labels of the original early glaucoma sam-
ples were changed to (1, 0), and those of the original moderate and advanced
glaucoma samples were changed to (1, 1). The loss function used in this model
training processes is the sum of the two binary cross-entropy losses.

3 Experiments and Discussion

Dataset. A total of 300 paired data of 3D OCT and 2D color fundus images
were released in GAMMA Challenge. Among them, 100 samples are training data
(with gold standard), 100 samples are preliminary data and 100 samples are final
data. Among them, every 3D OCT contains 256 slices, each slice size is 512×992.
The fundus image sizes are 2992×2000 or 1956×1934. The dataset was provided
by Sun Yat-sen Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
The ground truth of glaucoma grading for each sample was obtained from the
clinical visual field testing results (early glaucoma: Mean deviation > −6 dB,
advanced glaucoma: Mean deviation < −12 dB, and the rest were moderate
glaucoma). Table 1 shows the distribution of glaucoma samples in each period
in the dataset.
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FC Layer FC Layer

(a) (b)

Fig. 4. Ordinal regression schematic. (a) tripartite classification task schematic, (b)
two binary classification tasks with ordinal regression strategy.

Table 1. The distribution of glaucoma samples in each period in the dataset.

Total Non Early Moderate and advanced

Training 100 50 26 24

Preliminary 100 50 26 24

Final 100 51 25 24

Metrics. Cohen’s kappa coefficient was used to evaluate the glaucoma grading
results. Cohen’s kappa is the standard evaluation metric for the multi-category
classification task. The kappa coefficient is calculated based on the confusion
matrix, with the value between −1 and 1, usually greater than 0. The calculation
formula of kappa coefficient based on confusion matrix is as follows:

κ =
p0 − pe
1 − pe

(1)

where, p0 is accuracy; pe is the sum of the products of the actual and predicted
numbers corresponding to each category, divided by the square of the total num-
ber of samples.

Implementation Details. The training procedure consists of 1000 iteration
with a Nvidia Tesla V100-SXM2 GPU. Pre-trained ResNet34 was selected for
all the models, Adam was selected for all the optimizers, and the number of
iterations was 1000. The batch sizes were 4 and the initial learning rates were
1e−4. In our experiments, the 2D color fundus images were resized to 256×256,
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and the 3D OCT slices were resized to 512× 512. The final full connection layer of
all the pre-training ResNet was removed and the channel of the first convolution
layer in the 3D slice branch was changed to 256. The codes of the baselines will
be publicly available with the PaddlePaddle deep learning platform.

3.1 Overall Performances

Table 2 shows the experimental results of this paper. As can be seen from the
table, seven models are designed in this paper. Among them, experiments 1,
3 and 5 were designed for glaucoma grading models under three conditions of
single fundus image input, single OCT image input, and two modalities of image
input. On the preliminary dataset of the GAMMA Challenge, the kappa values
of the glaucoma grading model based on the two modalities of image input were
improved by 0.092 and 0.075, respectively, compared with those of the model
with single fundus image and single OCT image input. Similarly, in the final
dataset of the GAMMA Challenge, the kappa values of the models for grading
glaucoma using the two modalities were improved by 0.029 and 0.127.

Table 2. Performances of the baselines for glaucoma grading.

No. Color fundus 3D OCT Disc Ordinary Preliminary Final

photography region regression

1 � - - - 0.625 0.673

2 � - � - 0.654 0.677

3 - � - - 0.642 0.575

4 - � � - 0.703 0.732

5 � � - - 0.717 0.702

6 � � � - 0.792 0.770

7 � � - � 0.814 0.752

8 � � � � 0.863 0.812

Experiments 2, 4 and 6 were the experiments of supplementing the input
module of Experiment 1, 3 and 5 with local information of optic disc from color
fundus photograph. It can be seen from the table that the glaucoma grading
results supplemented with local information of optic disc were better than the
original models in both the preliminary and final GAMMA datasets. Especially
for the model with only OCT images as the input, after supplementing the local
information of optic disc, the kappa value of glaucoma grading results increased
by 0.061 in the preliminary dataset and 0.157 in the final dataset. This is mainly
because the original OCT data is the scanning volume data centered on the
macula and lacks the features of optic disc. Therefore, the model effect is greatly
improved after adding the local information of optic disc region.
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Experiment 7 was an experiment using an ordinal regression strategy on
the model which is based on the two modalities of image as input. By com-
paring Experiment 7 and Experiment 5, it can be seen that the model using
the ordinal regression strategy is superior to the model using the traditional
three-classification concept in terms of performance, and the kappa value of the
grading results in the preliminary and final datasets can be improved by 0.097
and 0.050 respectively. As can be seen from Table 2, in the preliminary dataset,
the model based on the input of two modalities images and using the ordinal
regression strategy had the best effect, and the kappa value of the grading result
was 0.814. In the final dataset, the model based on the input of two modalities
images and supplemented local information of optic disc had the best effect,
and the corresponding kappa value was 0.770. The above experimental results
indicate that the effect of the glaucoma grading model with the input of two
modalities is better than that with the input of a single modality. Experiment
8 was adding the local information of optic disc region and using an ordinal
regression strategy on the model of Experiment 5. It can be seen from Table 2,
Experiment 8 can achieve the highest kappa value on both preliminary and final
datasets. The experimental results show that the local information of optic disc
and the ordinal regression strategy can effectively improve the glaucoma grading
performance of the model.

4 Conclusion

In this paper, to discuss the effect of automatic glaucoma grading by using
deep learning algorithm based on different modality images, we designed several
baselines for glaucoma grading based on 2D color fundus photography and 3D
OCT images. We used the common ResNet-34 as the network structure of the
baselines. 100 pairs of training data provided by GAMMA Challenge were used
to train models based on 2D color fundus photographs, 3D OCT images, and
these two modalities images. The experimental results show that the effect of
automatic glaucoma grading achieved by using the images of two modalities is
better than those by using the images of only one modality. In addition, since
glaucoma causes many variations in the optic disc region, we cropped optic disc
patch from the 2D color fundus photography and added it to the input mod-
ule of the baselines, and found that the experimental results of supplementing
local information of optic disc were better. Furthermore, we also found that the
performance of the model based on multi-modality images can be improved by
using the strategy of ordinal regression. In the future work, we will explore more
effective methods of multi-modality image feature fusion to further improve the
performance of glaucoma grading.
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4. Gómez-Valverde, J.J., et al.: Automatic glaucoma classification using color fundus
images based on convolutional neural networks and transfer learning. Biomed.
Optics Express 10(2), 892–913 (2019)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

6. Hodapp, E., Parrish, R.K., Anderson, D.R.: Clinical Decisions in Glaucoma. Mosby
Incorporated, Chicago (1993)

7. Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multi-
ple output CNN for age estimation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4920–4928 (2016)

8. Orlando, J.I., et al.: Refuge challenge: a unified framework for evaluating auto-
mated methods for glaucoma assessment from fundus photographs. Med. Image
Anal. 59, 101570 (2020)

9. Phene, S., et al.: Deep learning and glaucoma specialists: the relative importance
of optic disc features to predict glaucoma referral in fundus photographs. Ophthal-
mology 126(12), 1627–1639 (2019)

10. Ronneberger, Olaf, Fischer, Philipp, Brox, Thomas: U-Net: convolutional networks
for biomedical image segmentation. In: Navab, Nassir, Hornegger, Joachim, Wells,
William M.., Frangi, Alejandro F.. (eds.) MICCAI 2015. LNCS, vol. 9351, pp.
234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4 28

11. Tham, Y.C., Li, X., Wong, T.Y., Quigley, H.A., Aung, T., Cheng, C.Y.: Global
prevalence of glaucoma and projections of glaucoma burden through 2040: a sys-
tematic review and meta-analysis. Ophthalmology 121(11), 2081–2090 (2014)

12. Xiulan, Z., Yanwu, X., Weihua, Y.: Annotation and quality control specifications
for fundus color photograph. Intelligent Medicine (2021)

https://doi.org/10.1007/978-3-319-24574-4_28


Impact of Data Augmentation on Retinal OCT
Image Segmentation for

Diabetic Macular Edema Analysis

Daniel Bar-David1(B), Laura Bar-David2, Shiri Soudry2,3,4, and Anath Fischer1

1 Faculty of Mechanical Engineering, Technion Israel Institute of Technology, Haifa, Israel
danielba@technion.ac.il

2 Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
3 Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa, Israel

4 Ruth and Bruce Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel

Abstract. Deep learning models have become increasingly popular for analysis
of optical coherence tomography (OCT), an ophthalmological imaging modal-
ity considered standard practice in the management of diabetic macular edema
(DME). Despite the need for large image training datasets, only limited number
of annotated OCT images are publicly available. Data augmentation is an essential
element of the training process which provides an effective approach to expand
and diversify existing datasets. Such methods are even more valuable for segmen-
tation tasks since manually annotated medical images are time-consuming and
costly. Surprisingly, current research interests are primarily focused on architec-
tural innovation, often leaving aside details of the training methodology. Here,
we investigated the impact of data augmentation on OCT image segmentation
and assessed its value in detection of two prevalent features of DME: intrareti-
nal fluid cysts and lipids. We explored the relative effectiveness of various types
of transformations carefully designed to preserve the realism of the OCT image.
We also evaluated the effect of data augmentation on the performance of simi-
lar architectures differing by depth. Our results highlight the effectiveness of data
augmentation and underscore themerit of elastic deformation, for OCT image seg-
mentation, reducing the dice score error by up to 23.66%. These results also show
that data augmentation strategies are competitive to architecture modifications
without any added complexity.

Keywords: Deep learning · Data augmentation · Elastic deformation · OCT ·
DME

1 Introduction

Diabetic retinopathy (DR) and one of its major sight-threatening complications, diabetic
macular edema (DME), are the leading causes of vision loss in individuals with diabetes
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mellitus. Early diagnosis and prompt treatment of DME are critical to prevent permanent
vision loss [1]. The clinical features of DME include retinal thickening or fluid retention,
sometimes with a cystic pattern, which may be accompanied by deposition of protein or
lipid within the central retinal tissue.

Optical coherence tomography (OCT) is an ophthalmological imaging modality
based on optical reflectivity, which can provide cross-sectional images and three-
dimensional volumetric data of the retina [2]. Because of its simplicity, availability,
and ability to provide abundance of information, OCT has become essential in the clin-
ical practice, enabling better diagnosis and management of various retinal conditions,
including DME.

Interpretation ofOCT images requires trained retina experts and can be complex even
for experienced clinicians. Moreover, human readings are notably time-consuming, with
variable repeatability and interobserver agreement [3]. The application of computer-
aided diagnosis (CAD) systems to medical imaging can significantly facilitate their
interpretation, including detection of ophthalmic diseases such as DME. In the past few
years, the use of deep-learning models in CAD has greatly improved the ability to detect
clinical abnormalities in medical imaging, resulting in improved results [4]. To date,
however, no retinal CAD system has become commercially available for routine clinical
use, largely due to methodological challenges [5].

A major obstacle to the implementation of deep-learning algorithms for medical
image analysis is the absence of large, annotated datasets required for training of neural
networks. This partly stems from the level of expertise and extent of effort required for
proper data interpretation and labeling, but also from ethical considerations required by
data protection laws. Consequently, there are only a few publicly available OCT datasets
collected from multiple imaging devices, most of which often comprise a relatively
limited number of scans and represented pathologies [6].

The performance of deep-learning models in computer vision depends on the neural
networks training, architecture andmodel scaling [7].Moreover, architectural innovation
is broadly regarded as the main focus of research interest, leaving aside critical details of
the training methodology [8]. Specifically, only a few studies investigated the efficiency
of data augmentation in convolutional neural network training for image classification
and segmentation. The data augmentation type is often stated, but little is explained
about the method, range, and frequency of the process [9].

Presently, for most computer vision problems, basic transformations such as random
flipping, rotating, scaling, shifting or adjusting contrast are valuable regularizers which
can generalize the model and reduce overfitting by expanding and diversifying datasets
without acquiring new images [10].

Elastic deformation is a more complex approach for data augmentation, introducing
higher-order transformation. Utilization of elastic deformation for training of convo-
lutional neural networks was first introduced on the MNIST handwritten digit dataset
[11] where after deformation the image still appeared sufficiently plausible to repre-
sent a real digit. Along with basic transformations, elastic deformation is particularly
suitable for non-rigid objects, yet at the same time it is complicated to construct since
it alters the inner elements of the image. Medical images deal with objects which can
inherently undergo natural transformations that can be described as elastic deformations.
Indeed, different methods of elastic deformation have been applied for medical image
registration [12]. Yet, due to the difficulty of achieving elastic deformation methods
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for images with complex morphology, and perhaps also due to the indeterminate value
of this approach thus far, elastic transformation for data augmentation has been less
commonly used. A previously reported elastic deformation technique for data augmen-
tation was applied on OCT scans of the optic nerve head to render the network invariant
with atypical morphology [13]. Recently, an elastic deformation method was clinically
validated for OCT images of patients suffering from DME [14]. However, to date, the
impact of transformations on neural network performance for OCT image analysis, and
particularly the benefit of elastic deformation, has been relatively understudied.

Here, to provide a systematic approach for OCT data segmentation for DME, we
explored the benefits of data augmentation with a particular examination of the added
value of elastic deformation. We first investigated the impact of diverse data augmenta-
tion methods on an established neural network for segmentation of OCT images from
subjectswithDME, and determined the relative effectiveness of the different approaches.
We then evaluated the impact of data augmentation in relation with the depth of the neu-
ral networks by comparing the performance of two similar architectures differing by
depth in OCT image segmentation.

2 Methods

2.1 Data Augmentation

Basic transformations are augmentation techniques commonly applied to most learn-
ing algorithms, as they are intuitive, easy to understand, and straightforward to imple-
ment. The inner composition of the image is essentially unaffected, but represents a vari-
ation in the image acquisition process such as the subject position or a physical property
of the photographic system. Several basic transformation methods were evaluated on
OCT scans and are described in Table 1.

Table 1. Description of the augmentations applied during neural network training

Augmentation Description

A No transformation Original OCT scan

B Horizontal flip Horizontally flip the OCT scan

C Rotation Randomly rotate the OCT scan in the range ±15°

D Shift Randomly translate horizontally and vertically by up to 10% of
the image height and width

E Scale Randomly scale sampled from the interval [0.9,1.1]

F Brightness, contrast,
saturation

Modify the brightness, contrast and saturation by a random
factor [0.75, 1.25]

G Noise Add gaussian noise with a variance of 0.07

H Basic transformations Combine and apply transformations A to G together

I Elastic deformation Apply elastic transformation with an intensity σ = 9

J All transformations Combine and apply transformations B to G and I together
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Elastic deformation is a higher level of data augmentation that modifies the inner
elements of the image, thus potentially affecting its intrinsic pattern and altering its
realism. OCT retina images often represent anatomically complex features and thus
following the introduction of additional distortion to the inner structure, practicing retina
specialists highly-familiar with typical features of clinical OCT images can evaluate
their authenticity to avoid potential bias. A recent study reported a process of clinical
validation of the degree of elastic deformation that can be applied to OCT scans with
DME while preserving their realistic value [14].

Fig. 1. Elastic deformation process (a) Generate a displacement grid; (b) then a smooth displace-
ment field is interpolated using spline interpolation on the grid displacement; (c) Superimposing
the displacement field on the mask and OCT scan by using bilinear interpolation; (d) Result:
deformed OCT scan and mask

The outline of the elastic deformation method is as follow. First, a uniform 2D grid
of 3 × 3 control points is generated from a normal distribution of mean μ = 0 and
standard deviation σ (Fig. 1(a)). Then a displacement field is created by using spline
interpolation between values of the 3× 3 grid (Fig. 1(b)). Finally, the displacement grid
is applied on the original OCT scan and on the mask by using bilinear interpolation
(Fig. 1(c)), resulting in a deformed OCT image and mask (Fig. 1(d)). To keep the elastic
deformation realistic for OCT images with DME, the maximum deformation intensity
σ is equal to 9 [14].

2.2 Segmentation Network

To assess the impact of various types of transformations on segmentation tasks, we use
a convolutional neural network (CNN) based on U-net architecture [15]. We choose the
U-net model since it has gaineds tremendous recognition and popularity in recent years
in medical image segmentation. Indeed, most of segmentation neural networks of OCT
scans, rely on its encoder decoder design removing or adding layers [16], adding skip
connection [17], modifying convolution [13] or pooling [18].

The segmentation network receives as input anOCT scan, and outputs a segmentation
map that predicts for each pixel if it belongs to intraretinal fluid cysts (IRF), intraretinal
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lipid (IRL) or background. The symmetric structure of the network is shown in Fig. 2
including the contracting path for analyzing context information, the expanding path
for synthesizing the output of the contracting and merging path that transfers local
and accurate information. The proposed architecture differs from the original U-net in
the following manner: batch normalization is added after each block of convolution,
conv-transposed is used instead of up-convolution and filters are resized.

Fig. 2. Illustration of the auto encoder for segmentation based on u-net. Each blue block corre-
sponds to a multi feature map. The model gets an OCT scan and the output is a mask. (Color
online figure)

A common used metric for medical image segmentation is the Dice coefficient that
compares the pixel wise agreement between a segmentation model prediction and their
corresponding ground truth. The formula for Boolean data is defined as follow:

Dice = 2TP

2TP + FP + FN
(1)

Where (TP) is True positive, (FP) False positive and (FN) False negative. The best
segmentation is reached when dice = 1 while dice = 0 refers to a wrong segmentation.
The dice loss function is defined as follow:

Lossdice = 1− 1
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Where y is the ground truth, ŷ is the predicted segmentation, l is the total number of
labels and N is the number of pixels. ε avoids the division by zero.

2.3 Comparison of Shallow Network Versus Deep Network

Following Alexnet architecture [19], researchers have mostly created deeper and more
complex networks to increase performance [20–22]. These architectural expansions are
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beneficial for improving performance but make the network less efficient by increasing
complexity and decreasing speed. Recently, studies have emphasized model efficiency
by optimizing training methods and scaling strategies [8, 9, 23]. Here, a comparison of
two segmentation networks differing by their depth is presented, where the objective
is to determine if architectural differences can be overshadowed by data augmentation.
The “deep network” refers to the segmentation network presented in Sect. 2.2 (Fig. 2)
and consists in 22,807,617 parameters. To provide an objective comparison, the “shallow
network”was constructed by removing the last level of the deep network (supplementary
Table 1). As a result, the number of parameters for the shallow network drop by 35% to
14,940,737 parameters.

3 Evaluation

3.1 Dataset and Training Process

OCT scans were obtained from patients treated at the Retina service of the department
of Ophthalmology, Rambam Health Care Campus, Haifa, Israel from 2016 to 2019. B-
scans were extracted from the Heidelberg Spectralis device using a 49-line raster macula
scan. The size of each OCT image used in this study consists of 352 × 496 pixels and
no subsampling is applied.

OCT volume-scans of 120 subjects affected byDMEwere randomly extractedwhere
only a single cross-section image of the macula was selected per each scan. Two of the
most prevalent clinical features associated with DME, namely intraretinal fluid cysts
(IRF) and intraretinal lipid (IRL) deposits, were manually segmented by a trained oph-
thalmologist and reviewed by a retinal expert. The data was randomly split into three
sets: 60% for the training, 20% for the validation and 20% for the test set.

The network was trained with a batch size of 8 using Adam optimizer. Data aug-
mentation was performed online at each epoch during the training session to remove
memory constraints. The probability that an image undergoes a transformation is 0.5.
We used pytorch library on a single NVIDIA Titan V GPU.

3.2 Evaluation of Data Augmentation Impact on Segmentation

To evaluate the impact of data augmentation on OCT segmentation, the dice score,
sensitivity (Se) and specificity (Sp) metrics were calculated.

Table 2 summarizes results obtained for each transformation on the test set for the
shallow and deep network. Specificity is close to one because there are many more back-
ground pixels than object pixels. Sensitivity is the true positive rate and measures the
proportion of object pixels that are correctly identified. When each basic transforma-
tion (B-G) is applied separately, the dice score is only slightly improved compared to
the baseline (A). However, when they are combined together (H) there is a significant
increase over the baseline (A). Paradoxically, even applied alone, elastic deformation (I)
performs as well as all basic transformations (H). Best performances are obtained with
a combination of all transformations (J).
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Table 2. Performance of the shallow and deep segmentation models on IRF and IRL

Augmentation Shallow network Deep network

Dsc (%) Se (%) Sp (%) Dsc (%) Se (%) Sp (%)

A No transformation IRL 50.14 56.73 99.86 53.17 56.25 99.88

IRF 70.2 73.46 99.58 75.2 79.13 99.62

B Horizontal flip IRL 57.32 61.81 99.88 58.1 57.45 99.91

IRF 70.97 76.39 99.57 75.64 80.44 99.49

C Rotation IRL 56.18 57.86 99.88 57.36 59.43 99.89

IRF 72.06 80.91 99.54 76.68 80.06 99.61

D Shift IRL 52.62 54.78 99.89 54.61 57.7 99.88

IRF 72.51 71.07 99.74 75.22 79.51 99.54

E Scale IRL 56.57 58.76 98.87 57.57 59.86 99.88

IRF 71.82 70.5 99.68 76.63 78.26 99.69

F Brightness, contrast,
saturation

IRL 50.28 59.74 99.82 54.6 56.23 99.9

IRF 72.66 74.08 99.6 76.45 80.78 99.59

G Noise IRL 53.33 50.39 99.92 55.69 55.44 99.89

IRF 70.43 78.73 99.54 75.7 79.66 99.62

H Basic
transformations

IRL 58.47 59.15 99.9 60.25 60.69 99.9

IRF 76.02 82.08 99.51 78.05 81.8 99.63

I Elastic deformation IRL 58.69 57.74 99.92 60.2 59.17 99.91

IRF 76.1 81.34 99.57 78.64 82.75 99.63

J All transformations IRL 60.23 61.06 99.9 62.03 67.07 99.87

IRF 77.25 81.94 99.55 79.36 82.48 99.61

The chart presented in Fig. 3 compares our shallow and deep network for IRF and
IRL. For both features and with the same transformations applied during the training, the
deep network (in red) is always greater than or equal to the shallow network (in blue).
But with all transformations (J) the shallow network succeeds to perform better than the
deep network with each single basic transformation (A–G) and is comparable to elastic
deformation and all basic transformations performance (H, I).

To get a quantitative sense of the effect of basic transformations (H), elastic defor-
mation (I) and all transformations (J), the improvement in the test set accuracy was
calculated in Table 3. Improvement over baseline is greater for shallow than deep net-
work for IRF and IRL. Data augmentation has resulted by a reduction of 23.66% in the
dice score error (IRF, shallow network). All transformations (J) reduced the dice score
error by up to 3.9% compared to basic transformations and elastic deformation.

Figure 4 illustrates an example of segmentation outputs of the IRF and IRL features
for the deep network with no augmentation (A) and with all transformations (J).
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Fig. 3. Dice score values for distinct transformations on IRL and IRF. Each color represents a
segmentation network: in blue the shallow and in red the deep. (Color figure online)

Table 3. Improvement when transformations are added. Difference of the dice score error (%).

Index Augmentation IRF � (%) IRL � (%)

Shallow Deep Shallow Deep

A No transformation 0 0 0 0

H Basic transformations 9.53 11.49 16.7 15.1

I Elastic deformations 19.8 13.87 17.1 15

J All transformations 23.66 16.77 20.2 18.9

Fig. 4. Examples of IRF and IRL segmentation results with no transformation (A) and with all
transformations (J) during the training for the deep network.
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4 Discussion

This work investigated the contribution of data augmentation methods on OCT images
from subjects with DME for improving model performance, and showed their competi-
tiveness to CNN architecture modification. Recent works, using deep-learning for auto-
mated segmentationofOCTscans have shownpromising results, but thus farmost studies
prioritized architecture modification over training methods. Moreover, even when data
augmentation methods have been applied, studies generally briefly mention or describe
them putting more emphasis on architecture modifications [24–26]. Whereas architec-
tural improvements are indeed essential, the paucity of annotated datasets makes data
augmentation crucial in the field of deep-learning of medical images. The results of our
study highlighted the positive impact of data augmentation on OCT image segmentation
when the transformations applied are carefully designed to preserve the realism of the
images and to avoid bias.

Best results for IRF and IRL segmentation were achieved when all transforma-
tions were applied. Yet, sometimes transformations may add less value depending on
the segmentation task. Moreover, as IRL features are smaller than IRF, manual and
computational segmentation are less accurate, resulting in a lower dice score.

Each basic transformation applied separately improved much less performance than
elastic deformation (I). Also, all basic transformations (H) applied together yielded sim-
ilar results as elastic deformation (I). Its complexity compared to basic transformations
has probably limited its application to OCT scans, but these results showed that they
should be more commonly apply.

The comparison of two similar architectures differing by depth showed that archi-
tecture improvements can be overshadowed by data augmentation. Indeed, the shallow
network using all transformations (J) for training outperformed the deep network with-
out transformation (A) and with each basic transformation (B-G). Moreover, the perfor-
mance was very tie for the shallow network using all transformations (J) and the deep
network using all basic transformations (I).

Further studies will determine the proper balance between training methodology and
architecture modification to reduce complexity and increase efficiency.
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Abstract. Glaucoma can result in both diffuse and regional patterns of
retinal neuron loss due to damage to their axons at the optic nerve head.
However, most quantitative estimates of glaucomatous progression use
a global average and do not capture underlying spatial patterns. Moti-
vated by the need for quantitative methods for describing and visual-
izing the spatial patterns of neuron loss in glaucoma, we evaluate the
feasibility of spatial modeling of macular ganglion cell plus inner plexi-
form layer (mGCIPL) thickness maps using a deep learning variational
autoencoder (VAE). More specifically, after training from optical coher-
ence tomography based mGCIPL thickness maps of glaucoma and nor-
mal subjects, our VAE model was able to (1) succinctly represent the pat-
tern of mGCIPL thickness maps with only two latent variables (using the
encoder part of the VAE), and (2) reconstruct individual mGCIPL thick-
ness maps given just two latent variable values. Based on evaluation of
reconstruction errors on the mGCIPL thickness maps from an indepen-
dent testing set of glaucoma and normal eyes, our results demonstrate the
promise of the VAE model for a succinct representation of patterns of glau-
comatous damage as well as use of the latent space for visualizing these
patterns.

Keywords: Glaucoma · Optical coherence tomography (OCT) ·
Ganglion cell-inner plexiform layer (GCIPL) · Variational autoencoder
(VAE)

1 Introduction

Glaucoma is one of the leading causes of irreversible blindness related to optic
nerve damage; it is further estimated that the number of glaucoma patients (aged
c© Springer Nature Switzerland AG 2021
H. Fu et al. (Eds.): OMIA 2021, LNCS 12970, pp. 159–167, 2021.
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40–80) will increase to 111.8 million people worldwide by 2040 [1]. Although the
exact causes of glaucoma are still unclear, elevated intraocular pressure (IOP),
advancing age, family history, high myopia, nocturnal hypertension, and race are
commonly recognized as main risk factors [2]. Optic nerve damage is currently
considered non-reversible. Critical clinical decision-making focuses on whether
glaucomatous damage is progressing, requiring advancement of treatment. The
most valuable tests to detect glaucoma and its progression, besides IOP, are func-
tional tests to map the visual field sensitivity (e.g., using standard automated
perimetry, SAP) and structural tests to assess whether there is evidence for loss
of nerves at the optic disc and the distribution of nerve loss in the corresponding
areas of the retina. Monitoring progression can be observed and quantified by
structural analysis of the retina and optic disc using optical coherence tomogra-
phy (OCT) and by functional changes in sensitivity of the corresponding areas
of the visual field (VF) [3–5].

Because glaucoma can result in both diffuse and focal loss of nerve axons
(and corresponding loss of visual field sensitivity), there continues to be a need
for approaches that enable quantitative tracking, visualization, and prediction
of such changes over time. For example, both diffuse and focal nerve loss can be
visualized (e.g., through use of inner retinal layer thickness maps and visual field
maps) when following patients over time. Quantifying progression is primarily
limited to the use of linear trends of global and/or regional parameters [e.g.,
measuring the slope of averaged peripapillary retinal nerve fiber layer or macu-
lar ganglion cell plus inner plexiform layer (mGCIPL) thickness from OCT over
time]. However, there is a need for visualizing and quantifying the underlying
spatial pattern of damage in order to detect progression at an earlier time when
damage can be slowed or halted. More recent efforts have been directed at mod-
eling patterns of damage using machine-learning approaches [6–8] for possible
use in monitoring progression, but these have primarily been used for modeling
visual field rather than structural maps from OCT.

In this work, we investigate the feasibility of using a deep-learning variational
autoencoder (VAE) model [9] to allow for the succinct representation (in our case,
using only two latent digits) and reconstruction of spatial structural thickness
maps from OCT. The VAE involves two concatenated deep-learning networks:
an encoder to allow representation of input structural image maps by two latent
variables and a decoder to allow reconstruction of input image maps given only
latent values. We specifically focus on modeling the mGCIPL thickness map,
but our approach would easily extend to other structural maps as well. We
first trained a VAE model to compute two latent variables that can span a
latent space to cover the range of the spatial and global mGCIPL thinning
patterns in the training set. Then, we evaluated the trained VAE model, in an
independent testing dataset, to evaluate the correlation coefficients as well as
signed/unsigned differences between sector thickness values computed from the
input and reconstructed images.
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Fig. 1. Overview of a variational autoencoder (VAE) model for macular ganglion cell
plus inner plexiform layer (mGCIPL) thickness maps as the input. (A) A basic VAE
architecture. (B) Implementation of the proposed VAE model, with the encoder out-
putting two latent variables (d1, d2) and the decoder reconstructing the input mGCIPL
thickness map from d1 and d2. (C) An illustration of the reconstructed mGCIPL thick-
ness maps based on varying latent variables (d1, d2) from –4 to 4; which can be seen
as the visualization of the VAE latent space. (D) The same arrangement as (C) but
showing all the training data [red dots: 25 glaucoma subjects with 602 OCT scans;
blue dots: 25 normal subjects with 899 OCT scans]. Note: the glaucoma eye whose d1
and d2 latent variable space lies within the normal subject data (cluster of red dots in
the center of the cluster of blue dots) is from an eye with only peripheral loss. CNN:
Convolutional neural network. (Color figure online)

2 Methods

2.1 Overview

Figure 1 shows an overall flowchart that describes the proposed VAE model in
this study. We first introduce the preparation of the input images of the VAE
(i.e., mGCIPL thickness map) in Sect. 2.2. Next, details of the VAE concept
(Fig. 1A) and architecture (Fig. 1B) are provided in Sect. 2.3. Then, the created
latent space (Fig. 1C), the training set case distribution (Fig. 1D) as well as
network hyperparameters and the overall training/testing process are discussed
in the Experimental Methods (Sect. 3).

2.2 Macular Ganglion Cell - Inner Plexiform Layer Thickness Map

Previous studies suggested that identification of defects using the mGCIPL thick-
ness map may be easier than with use of standard automated perimetry (SAP)
or with peripapillary retinal nerve fiber layer (pRNFL) thickness values in glau-
comatous eyes [10,11]. In this study, we investigated spatial patterns of mGCIPL
thinning in a 2D latent space using a trained VAE model. All the OCT images
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were macula-centered from Cirrus OCT machines (Carl Zeiss Meditec, Dublin,
CA); the OCT image either contained 200 × 200× voxels or 512 × 128 × 1024
voxels, but both protocols covered the same physical dimensions of 6 × 6 × 2
mm3. To align all the mGCIPL thickness maps at the fovea location, each input
OCT volume was segmented first using a graph-based automated approach [12].
Then, the corresponding mGCIPL thickness map was computed and cropped
at the center of fovea with image dimensions of 162 × 162 pixels, which covers
the area that Zeiss Cirrus software analyzes the mGCIPL in an elliptical annu-
lus with a vertical inner and outer radius of 0.5 and 2.0 mm; and a horizontal
inner and outer radius of 0.6 and 2.4 mm, respectively. The annulus was further
divided into six sectors, which include superior nasal (SN), superior (S), supe-
rior temporal (ST), inferior temporal (IT), inferior (I), and inferior nasal (IN)
sectors.

2.3 Variational Autoencoder

A VAE is commonly designed by concatenating two simultaneously trained con-
volutional neural networks (i.e., a encoder and decoder, shown in Fig. 1A) to
provide a probabilistic model so that: 1) the encoder can learn how to effec-
tively (and meaningfully from the decoder’s perspective) decompose the input
image into succinct digits, named latent variables, 2) the decoder can learn how
to correctly (from the encoder’s perspective) reconstruct the input image by
only analyzing these succinct latent variables, which only contain two digits in
this study [9]. In our design, the encoder and decoder have a symmetric struc-
ture of five concatenated convolutional layers with various channels followed by
rectified linear units (ReLU); details are elaborated in Fig. 1B. To enforce that
the latent space is smooth and easy to interpret, the sampling units introduced
standard/normalized Gaussian distribution from the output of the encoder to
constrain the distribution of the latent variables. In the training process, the loss
function (L) was designed to consist of two terms. The first term represents the
reconstruction error (LRec), which penalizes the difference between the input
image (x) and the reconstructed image (x̂). The second term uses Kullback-
Leibler divergence (LKL) to constrain the learned latent variable distribution
q(z|x) to be as close as possible to the standard Gaussian distribution, N(0, I).
The overall loss function can be summarized as

L = LRec(x, x̂) + β × LKL(q(z|x), N(0, I)) , (1)

where β is the Kullback-Leibler divergence coefficient.

3 Experimental Methods

This study included strictly separate training and testing datasets randomly
sampled from an existing longitudinal clinical glaucoma dataset acquired at the
University of Iowa [13]. For the training set of the proposed VAE model, 602
macula-centered OCT scans from 25 randomly selected glaucoma subjects and
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899 macular-centered OCT scans from 25 randomly selected normal subjects
were included (both eyes from multiple visits). Meanwhile, each eye at each visit
had multiple repeated scans. Since two OCT protocols were involved in this
dataset (i.e., 200 × 200 × 1024 voxels or 512 × 128 × 1024 voxels), all computed
mGCIPL thickness maps were resized to 200×200 pixels before fovea alignment
(details in Sect. 2.2) for consistency.

3.1 VAE Model - Training

For a more straightforward visualization and interpretation, two latent variables
were used in our VAE model. However, it is worth noting that the same VAE
concept can be directly apply to a higher-dimension latent space with very little
modification. Meanwhile, other hyper-parameters included an epoch number of
100, batch size of 60 images, learning rate of 0.001, Kullback-Leibler divergence
coefficient of 1.5, and Adam optimizer with weight decay of 10−5.

As the results of training, Fig. 1C shows a montage of the reconstructed
mGCIPL thickness map (i.e., each image tile) from the decoder that deciphers
the latent variables (d1, d2) with a range between –4 to 4 and color bar units from
0 to 225 µm. By this arrangement, the latent space can be “visually” observed.
Since the overall average mGCIPL thickness is one of the most common global
measurements of glaucoma progression, Fig. 1D displays the latent space that
is converted into the overall mGCIPL thickness domain (instead of the spatial
pattern domain in Fig. 1C). In addition, Fig. 1D shows all of the training data
with labels: the red dots represent glaucoma cases, and the blue dots represent
the normal cases, respectively. Two examples, which are highlighted in separate
tiles, with glaucomatous defects are also shown in Fig. 1.

3.2 VAE Model - Testing

An independent testing set in this study included another 25 randomly selected
glaucoma subjects and five randomly selected normal subjects (N = 30) who
were tested repeatedly on multiple visits. For the evaluation purpose, we chose
the study eye (randomly decided) at the first visit for each subject. After seg-
mentation and image quality control, 77 and 13 macular-centered OCT scans
were left in the glaucoma and normal groups, respectively. Next, the mGCIPL
thickness maps were computed. Then, the same processes of the image cropping
and fovea alignment (Sect. 2.2) were applied. Assume that each subject at their
first available visit had J repeated OCT scans of the study eye, each of these
fovea-aligned cropped mGCIPL thickness map can be represented as xij , i ∈ N ,
j ∈ J .

Each of the testing images xij was sent to the VAE encoder, the correspond-
ing latent variables d1i,j , d2i,j were computed, and then the reconstructed image
x̂ij was generated by the VAE decoder. To evaluate the reconstruction ability of
the VAE model, differences of the thickness at each sector in the mGCIPL grid
(that is the same annulus setting as Zeiss software uses) between the original and
reconstructed images were computed. To deal with the repeated scans for each
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eye, we first define the mean difference per eye as x̄i = 1
J

∑J
j=1(xij − x̂ij). Then

the mean signed difference ( 1
N

∑N
i=1 x̄i) and root-mean-square (RMS) difference

(
√

1
N

∑N
i=1 x̄i

2) across subjects were computed for each mGCIPL grid sector.

4 Results

The corresponding latent variable pairs (d1 and d2) were computed by the VAE
encoder for all the input testing mGCIPL thickness maps from randomly selected
25 glaucoma (77 scans) and five normal (13 scans) subjects (Sect. 3.2). Figure 2
shows the scatter plot of the mean d1 and d2 among the repeated scans of each
test subject’s study eye (i.e., 1

J

∑J
j=1 d1i,j ,

1
J

∑J
j=1 d2i,j), where the red dots repre-

sent the 25 glaucoma eyes, and the blue triangles represent the five normal eyes.
The background image is the same latent space tile montage as shown in Fig. 1C
but with latent variable ranges of −2 < d1 < 3 and −3 < d2 < 2 for a better
visualization. Next, all the 90 pairs of the latent variables were sent to the VAE
decoder for reconstruction. Figure 3 demonstrates the ability of the VAE decoder
to recreate the input thickness map and the sector thickness measurements in
the mGCIPL grid. Furthermore, we computed the mean signed difference and
RMS difference across the test eyes. Figure 4(a) shows that the proposed VAE
model was slightly biased to overestimate the thinning (i.e., underestimate the
thickness) of the retina in all six sectors (overall: 0.54 µm; the inferior sector had
the highest bias of 1.66 µm). Figure 4(b) shows the mean RMS difference across
all six sectors was 7.14 µm, with the smallest RMS differences in the superior
and inferior sectors (approximately 5.5 µm) and the largest RMS differences
in the temporal sectors (approximately 8.9 µm). Figure 5 illustrates (a) a scat-
terplot of the sectoral data points (each sector highlighted in a different color)
with the correlation of all data points being 0.86 (p-value < 0.01; the shaded
area represents 95% confidence interval for the regression), and (b) the correla-
tion coefficients of 0.86, 0.90, 0.71, 0.81, 0.92, and 0.86 for the superior nasal,
superior, superior temporal, inferior temporal, temporal, and inferior nasal sec-
tors, respectively (all p-values < 0.01). The pattern in Fig. 4(b) and Fig. 5(b) are
consistent.

5 Discussion and Conclusion

In this study, we investigated the VAE’s ability to: 1) disentangle spatial fea-
tures in the training dataset through the trained encoder and show a smooth 2D
latent space for easy visualization by the trained decoder’s reconstruction of the
mGCIPL spatial pattern based on the two latent variables, 2) reconstruct the
input image by evaluating the signed/unsigned differences between the original
and reconstructed image by dividing the image into a commonly used mGCIPL
sector grid. This is the first attempt to characterize the patterns of glaucomatous
structural loss in the macula of individual eyes utilizing a latent space based on
a VAE model. Our results showed that the latent space tile montage (Fig. 1C
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Fig. 2. Mean latent variable scatter plot of the testing dataset; 25 red dots represent
glaucoma cases and five blue triangles represent the normal cases. (Color figure online)

Glaucoma Normal

Original

VAE

Original

VAE

Fig. 3. VAE reconstruction of the thickness pattern from the original mGCIPL thick-
ness map using only two latent variables. Shown are two examples of a glaucoma right
eye and a normal right eye. The glaucoma eye shows a typical macular inferior arcu-
ate pattern of loss. The thickness of each sector in micrometers is given along with
the overall average thickness (upper left corner). SN: Superior Nasal, S: Superior, ST:
Superior Temporal, IT: Inferior Temporal, I: Inferior, IN: Inferior Nasal, Overall: The
mean thickness value in micrometers of all six sectors.

and Fig. 2) contains meaningful spatial patterns of glaucomatous defects corre-
sponding to the known superior and inferior arcuate patterns of nerve loss due
to nerve bundles being damaged at the optic nerve head. In both our training
and testing set, the data with mGCIPL thinning were correctly described by the
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(a) Mean signed difference (b) Root-mean-square difference

Fig. 4. Mean signed and unsigned (RMS) differences in micrometers between the input
(original) and reconstructed images across all test images; Overall (bottom left corner)
represents the mean value of all six sectors. In (a), the inferior sector (I) shows an 1.66
µm bias towards VAE model underestimating the thickness at this sector.

(a) (b)

Fig. 5. Data scatter plot and correlation coefficients. (a) Comparing the original image
sector thickness with the corresponding VAE reconstructed sector thickness at six
sectors in micrometers; gray region is the 95% confidence interval for the regres-
sion. (b) The correlation coefficient between the two measurements at each sector; all
p-values< 0.01.

VAE model, especially for these regional defects. The VAE model demonstrates
a promising potential to be used for glaucoma/normal case classification and for
monitoring of further glaucomatous progression in the clinic.

There also exist a few limitations in this study. First, in our current training
dataset, we had used only 25 glaucoma and 25 normal subjects. Although 1501
OCT scans were used for training, adding more subjects with various levels of
defects can further improve the robustness of the neural network and reduce the
signed/unsigned differences. Second, the proposed encoder/decoder architecture
can be replaced by more sophisticated designs to achieve better performance.
Third, for the purpose of easy visualization/interpretation, only two latent vari-
ables were utilized in this study. Increasing the dimensionality of latent space
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can potentially extract more subtle changes in spatial patterns of glaucomatous
defects.
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Abstract. Domain adaptation is an attractive approach given the avail-
ability of a large amount of labeled data with similar properties but dif-
ferent domains. It is effective in image classification tasks where obtaining
sufficient label data is challenging. We propose a novel method, named
SELDA, for stacking ensemble learning via extending three domain adap-
tation methods for effectively solving real-world problems. The major
assumption is that when base domain adaptation models are combined,
we can obtain a more accurate and robust model by exploiting the abil-
ity of each of the base models. We extend Maximum Mean Discrepancy
(MMD), Low-rank coding, and Correlation Alignment (CORAL) to com-
pute the adaptation loss in three base models. Also, we utilize a two-fully
connected layer network as a meta-model to stack the output predic-
tions of these three well-performing domain adaptation models to obtain
high accuracy in ophthalmic image classification tasks. The experimen-
tal results using Age-Related Eye Disease Study (AREDS) benchmark
ophthalmic dataset demonstrate the effectiveness of the proposed model.

Keywords: Stacking ensemble learning · Domain adaptation ·
Ophthalmic image classification

1 Introduction

In real-world applications, it is typically challenging to obtain sufficient number
of annotated training samples. To address this problem, domain adaptation (DA)
[16] has been successfully developed to adapt the feature representations learned
in the source domain with required label information to the target domain with
fewer or even no label information.

There are two main categories for deep domain adaptation approaches:
Domain-invariant features adaptation, and discriminators adaptation. The first
tries to map source and target domains in the common subspace to learn the
c© Springer Nature Switzerland AG 2021
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shared features space approach by adding adaptation layers into deep neural net-
works [21,22]. The second approach attempts to adversarially recognize features
in the variant domains by adding the domain discriminator [11].

Our proposed method is based on domain-invariant features adaptation. This
category of methods is obtained through optimizing several measures of domain
discrepancy, such as Maximum Mean Discrepancy (MMD) [6,10,22], Low-rank
representation [7,15], and Correlation Alignment (CORAL) [3,4,19]. Further-
more, we propose a combination of deep DA methods through the stacking
ensemble strategy. Stacking ensemble methods are an outstanding strategy in
machine learning (win most Kaggle competitions) [17], and extending them with
domain adaptation models makes the technique very useful for solving real-world
problems. Ensemble learning methods integrate multiple machine learning mod-
els (base learners) that each model is trained to solve the similar problems and
then the outcome of base models are combined for achieving better results. As
the outcome is the majority voting (in the case of classification), the models
could be both more accurate and more robust.

We proposed a novel model, Stacking Ensemble Learning in Domain
Adaptation (SELDA), by introducing a deep domain adaptation method to
acquire a cross-domain high-level feature representation and to reduce the cross-
domain generalization error by the stacking learning method. In particular, we
focus on the ophthalmic image classification task in an unsupervised scenario.
Our model includes three base DA models and a meta-learner model. The model
architecture for each of the three base DA models consists of domain-general and
domain-specific representations across domains for unsupervised domain adap-
tation. For domain-specific parts, we apply a hybrid neural structure to extract
multiple representations and extract more information from input images. Fur-
thermore, to compute the adaptation loss and to decrease discrepancy between
source and target domain distributions, MMD, Low-rank, and CORAL, are
extended in base models. Our stacking DA model is illustrated in Fig. 1.

Our approach can be implemented via the most feed-forward methods and
trained by using standard backpropagation. The contributions of this paper are
summarized as follows:

– To the best of our knowledge, the proposed method (SELDA) is the first
stacking model for deep domain adaptation in the ophthalmic image classifi-
cation tasks.

– We propose the multi-representation deep domain adaptation networks as
base models that are ensembled through a stacking strategy to reach high
accuracy.

– The MMD, Low-rank, and CORAL are jointly extended to align the domain
discrepancy in deep neural networks.

– Extensive experiments demonstrate that SELDA achieves state-of-the-art
performance on Age-Related Eye Disease Study (AREDS) [20] benchmark
ophthalmic dataset.
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2 Proposed Model

Domain adaptation is effective in situations that efficient labeled data in the
target domain does not exist or is scarce. We propose a DA framework to improve
the accuracy of classification tasks using an innovative stacking ensemble learning
approach on ophthalmic datasets.

Fig. 1. Overview of the proposed model. Stacking combines multiple predictive models
to generate a new combined model.

We are given a source domain Ds = {(xs
i ,y

s
i )∀i ∈ [1 : ns]} where (xs

i ,y
s
i )

is tuple of source data and their labels, and ns is the number of labeled source
samples, and a target domain Dt = {(xt

j)∀j ∈ [1 : nt]} where xt
j is the target

data, and nt is the number of unlabeled target samples. The source and target
domains have different probability distributions. The purpose is to align these
distributions by designing deep DA models.

Almost all DA models apply the single-representation structure, which
focuses on the partial information from the data, but multi-representation struc-
tures can extract more information on the data. So, we learn multiple domain-
invariant representations to obtain better performance where a hybrid structure
with multiple substructures is utilized to extract multiple representations from
input images.

Furthermore, we apply MMD, Low-rank, and CORAL techniques to reduce
the distributions discrepancy between the multiple representations extracted
from the source and target domains on three CNN models. We obtain higher
accuracy by proposing a stacking ensemble learning approach on them.

We introduce these MMD-based, Low-rank-based, and CORAL-based deep
DA models as base learners and learn these models on the training data. For
each of the three base learners, predictions are made for observations on the
validation data. Then, we propose a meta-learner model and fit it on predictions
that are made by the base learners as inputs. Finally, we test the meta-learner
model on testing data.

2.1 Base Models

The structures of three base models are similar, but the domain adaptation
methods used to train the parameters are different. The architecture of each
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Fig. 2. The architecture of the base models in SELDA approach.

base model consists of three parts. The first part of each base model is the CNN,
which is used to convert high-pixel images to low-pixel ones. The second part is
the global average pooling for extracting representations from low-pixel images.
Finally, the third part is the model prediction. The architecture of base models is
illustrated in Fig. 2. We have four types of convolution-pooling layers to extract
different representations of the data. In each base model, one of the DA methods
is applied to all different representations.

The optimization problem of domain adaptation is weighted sum of two cost
functions. The first cost is used to minimize the classification errors on the source
set, and the second cost minimizes the discrepancy between the source and target
data in each base model. Let Xs be a matrix containing all training data of the
source domain, wherein ith row corresponds to ith datum xs

i . Similarly, Xt is
a matrix containing all target domain data. Furthermore, assume g to be the
general feature extractor, and {si}d

i=1 be d different specific feature extractors.
Then, the cost function can be defined as

min
f,g,{si}d

i=1

1

ns

ns∑

i=1

J
(
f([s1(g(xs

i )); ...; sn(g(xs
i ))]), y

s
i

)
+ λ

n∑

i=1

D(si(g(Xs)), si(g(Xt))),

(1)

where [s1; ...; sn] is the concatenated vector of different features, f is a function
from stacked features to scores of different labels, J is the classification cost
measuring the distance between label scores and true labels y, and D is the
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cost for minimizing the discrepancy between the source and target distributions.
In this equation, λ > 0 indicates the trade-off parameter. In this paper, f is
a fully connected network followed by a softmax layer, and J(., .) denotes the
cross-entropy loss.

The domain-general representation is implemented based on ResNet50. The
domain-special representations for each base model are extracted by the substruc-
ture1 (conv1 × 1, conv5 × 5), substructure2 (conv1 × 1, conv3 × 3, conv3 ×
3), substructure3 (conv1 × 1), and substructure4 (pool, conv1 × 1). Since train-
ing deep CNN needs a large amount of labeled data that is expensive for many
DA applications, so we utilize the CNN pre-training networks on ImageNet2012
data and then fine-tune them similar Long et al. [14]. The loss functions for min-
imizing the discrepancy between source and target domains can be MMD-based,
Low-rank-based, and CORAL-based. These adaptation methods and training the
parameters of each method are obtained as the following subsections.

The model training applies standard mini-batch stochastic gradient descent
(SGD) method. In each mini-batch, the equal number of source domain data and
target domain data are sampled to solve the bias which is caused by domain size.

Maximum Mean Discrepancy (MMD): MMD is a metric widely used to
measure the discrepancy of marginal distributions. By minimizing the MMD
metric in the following equation, the marginal distributions between the source
and target domains become close:

DMMD(X̄s
, X̄t) =

∥
∥
∥
∥

1
ns

∑

xi∈X̄s

Φ(Xi) − 1
nt

∑

xj∈X̄t

Φ(Xj)
∥
∥
∥
∥

2

H

, (2)

where Φ represents the kernel function, and ||.||H is the norm in the Hilbert
space.

Minimizing the difference between the conditional distributions of source and
target domains is definitive for robust distribution adaptation. So we utilize con-
ditional MMD (CMMD) instead of MMD to decrease domain discrepancy. We
apply CMMD to the first base model for measuring the domains discrepancy D
in Eq. (1) identical to [22]. Here we calculate the distance among the class condi-
tional distributions P (xs|ys = c) and Q(xt|yt = c), which is called CMMD. Each
class label in the source domain and each pseudo class label in the target domain
is represented by c ∈ {1, ..., C}. The output of the deep NN, ŷt

i = f(Xt
i), could

be utilized as the pseudo label for target data. We expect to iteratively improve
the quality of pseudo labels of the target domain during the optimization.

DCMMD(X̄s
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Low-Rank Coding: We apply Low-rank coding to the second base model for
aligning source and target distributions and decreasing domains discrepancy in
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Eq. (1). We can reach this aim by minimizing the Low-rank formulation, which
is shown in Eq. (4).

DLow rank(X̄s
, X̄t) = ‖ Z ‖∗ +λ ‖ E ‖1 s.t.X̄t = X̄sZ + E, (4)

where ||.||∗ is the nuclear norm of a matrix [13]. The reconstruction matrix Z
and noise matrix E can be optimized by Augmented Lagrange Multiplier (ALM)
method [12] through fixing one variable and optimizing the other one until it
converges.

Correlation Alignment (CORAL): We apply CORrelation ALignment
(CORAL) to the third base model for matching the second-order statistics
(covariances) between the data distributions in Eq. (1). We can reach this aim
by minimizing the CORAL formulation, which is shown in Eq. (5).

DCORAL(X̄s
, X̄t) =

1
4m2

∥
∥
∥
∥
Covs − Covt

∥
∥
∥
∥

2

F

, (5)

where ||.||F is the Frobenius norm. m is the dimensions of data. Covs and Covt

are the covariance matrices for the source and target data, respectively.

2.2 Meta-learner Model

As we mentioned before, the goal of stacking models is to learn various base
models and combine them via training a meta-learner model to obtain more
accurate output predictions based on the multi predictions returned through
these base models. In our classification problem, we choose a MMD based, a
Low-rank based, and a Coral based classifiers as base learners, and decide to
learn two fully connected layers neural network as a meta-learner model. The
meta-learner comprises a fully connected layer of 64 units with ReLU activation
and another fully connected layer with softmax activation function as the output
layer. The meta-learner model will receive as inputs the outputs of our three base
learner models and will learn for returning the final predictions. So we pursue
the following steps:

Step 1: Choose three domain adaptation models as the base learners, and
fit them to the training data.

Step 2: For each of these three base learners, make predictions for observa-
tions to the validation data.

Step 3: Fit the meta-learner model to the validation data by applying pre-
dictions that were made through the base learners as meta-learner inputs.

Step 4: Test the meta-learner model by testing data, and obtain the final
predictions.

3 Experimental Results

We will evaluate our proposed model with retinal fundus images collected from
patients with macular degeneration.
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Fig. 3. Classification accuracy of the base models and ensemble approach versus epoch
number based on the AREDS dataset.

3.1 Implementation Details

The algorithms were implemented in Python and Pytorch, and all convolu-
tional and pooling layers were fine-tuned based on Pytorch-provided models
of ResNet [9]. The optimization approach was mini-batch stochastic gradient
descent (SGD) with momentum of 0.9 and learning rate ηp = η0

(1+αp)β where p

was in range [0–1], η0 = 0.01, α = 10, and β = 0.75. The classifiers were trained
based on back-propagation with a batch size 32 (minibatch) and the accuracy
was obtained at epoch 30.

3.2 Benchmark Dataset

We evaluate our model on AREDS benchmark ophthalmic dataset.
AREDS [5] consists of fundus images from 4757 participants (55–80 years)

who represented AMD during follow-up (1992–2005). AREDS dataset contains
14 different classes named, 0: Both-NV-AMD-and-GA, 1: Control, 2: Control-
Questionable-1, 3: Control-Questionable-2, 4: Control-Questionable-3, 5: Control-
Questionable-4, 6: GA, 7: Large-Drusen, 8: Large-Drusen-Questionable-1, 9:
Large-Drusen-Questionable-2, 10: Large-Drusen-Questionable-3, 11: NV-AMD,
12: Other-non-control, 13: Questinable-AMD.

3.3 Results and Discussions

We applied our models on AREDS dataset. This dataset includes highly imbal-
anced classes with substantially greater number of samples in some classes (e.g.,
large drusen) and significantly small number of samples in other classes. There-
fore, we randomly selected 4900 images with an equal number of samples from
each class to train our models. We then split the selected images into two parts
as AREDS source (80%) and AREDS target (20%). However, we tested the
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Fig. 4. The confusion matrix of the proposed model on AREDS dataset.

model to rest of data to assure generalizability. As some of the eyes included
multiple fundus photographs, we assured samples from each eye and patient go
to either training, testing, or validation to avoid bias. The classification accu-
racy of SELDA was obtained 77.85%. Figure 3 shows the accuracy versus epoch
number and Fig. 4 shows the confusion matrix of the SELDA. SELDA achieved
the highest accuracy compared to the base models and provided an accuracy of
77.85% for classifying fundus photographs to 14 AMD classes.

Burlina et al. [2] developed several deep learning models to detect four sever-
ity levels of AMD based on the AREDS dataset and obtained accuracy ranging
from 83.2% to 91.6%. However, this model was able to detect only four sever-
ity levels while detecting AMD in finer levels has more clinical relevance. In a
follow up study, the same team [1] developed a deep learning-based model to
identify the detailed severity characterization of patients with AMD based on
the AREDS dataset and obtained an accuracy level of 59.1% in identifying 9 dif-
ferent classes. Grassman et al. [8] developed a framwork based on an ensemble of
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six different deep learning architectures to identify 9-step (12 classes) grading of
ADM based on AREDS dataset and achieved an overall accuracy of 63.3%. How-
ever, our model was able to identify 14 different classes of AMD and achieved
an accuracy of 77.85%.

Peng et al. [18] developed a deep learning model to detect different severity
levels of AMD based on same AREDS dataset and obtained an accuracy of 67.1%
while the accuracy of SELDA was about 10% higher than their model too.

Results indicate that SELDA outperforms state-of-the-art [2,18]. This is
achieved by iteratively reducing the domain discrepancy and effectively prop-
agating the class labels. This could be justified by the fact that SELDA inherits
the capabilities of each of the base learner methods; MMD guarantees to min-
imize marginal and conditional distributions difference between the source and
target domains, the low-rank representation extracts more relevant information
shared between domains by constructing the block-wise structure,and CORAL
tries to align the covariances of the source and target domains to mitigate domain
discrepancy.

The ablation study was performed to evaluate the efficiency of the proposed
method. First, we run our model only by using BMMD, second, only by using
BLowrank, third, only by using BCoral, and finally, by ensembling on all three base
learners. The accuracies of BMMD, BLowrank, BCoral, and SELDA were obtained
73.33%, 72.61%, 72.35%, and 77.85%, respectively. As it is seen, the best results
were obtained using SELDA, which utilizes all three base learner models. The
results show that our proposed model has learned to extract important features
from the macular region of the fundus images. Furthermore, because the network
has learned the features which were most predictive for the related class, it is
feasible that the model is utilizing features previously to be unknown or have
been ignored by humans which may be highly predictive of certain AREDS
classes, so it can be efficiently trained to detect specific disease-related changes
on fundus images.

4 Conclusions

In this paper, we rethink domain adaptation problem and propose stacking
ensemble learning by utilizing MMD-based CNN, low rank-based CNN, and
CORAL-based CNN base DA learners and a meta-learner to address domain
shift challenge in ophthalmology and diagnosis of eye diseases. We utilize a two-
fully connected layer network as a meta-learner model to stack the output pre-
dictions of these three well-performing DA models to obtain high accuracy in
ophthalmic image classification tasks. The proposed model jointly inherits the
capabilities of each of the base learner models, efficiently. Extensive experimen-
tal results and analyses on AREDS visual benchmark dataset have illustrated
the effectiveness of our model.
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Abstract. Learning human visual attention into a deep convolutional network
contributes to classification performance improvement. In this paper, we propose
a novel attention-guided architecture for image quality assessment (IQA) of slit
lamp images. Its characteristics are threefold: First, we build a two-branch classi-
fication network, where the input of one branch uses masked images to learning
regional prior. Second, we use a Forward Grad-CAM (FG-CAM) to represent the
attention of each branch and generate the saliency maps. Third, we further design
an Attention Decision Module (ADM) to decide which part of the gradient flow
of both two branch saliency maps will be updated. The experiments on 23,197
slit lamp images show that the proposed method allows the network closer to
human visual attention compared with other state-of-the-art methods. Our method
achieves 97.41%, 84.79%, 92.71% on AUC, F1-score and accuracy, respectively.
The code is open accessible: https://github.com/nhoddJ/CSRA-module.

Keywords: Slit lamp images · Image quality assessment · Forward Grad-CAM ·
Attention Decision Module

1 Introduction

Convolutional neural network has been widely used in image fusion, object detection
and image classification and has achieved widespread success. In the field of medical
image analysis, it also achieves performance close to human experts and beyond [1–4].
Recent research shows that learning human visual attention into a convolutional network
can help improve classification effect [5]. This is because the introduction of clinical
prior knowledge (e.g., the shape and size of the Lesion area) allows the network to learn
more and becomes more robust.

Learning human visual attention into a deep convolutional network contributes to
classification performance improvement [6–10]. Huang et al. [8] utilized masks between
the internal limiting membrane (ILM) layer and the retinal pigment epithelium (RPE)
layer to guidemacular disease diagnose.Wang et al. [9] utilized iris regionmasks to assist
image quality assessment (IQA) in the iris region. He et al. [11] proposed a multi scale
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feature extractor to get deep features of fovea region masks to assist diabetic macular
edema (DME) grading. These researches show that the clinical semantic region attention
mechanisms often lead performance improvement of the classification task.

In this work, we focus on the task of slit lamp image quality assessment. Slit lamp
images are mainly used to observe ocular surface diseases, which is one of the common
clinical ophthalmology diseases. The common clinical manifestations include dry eye
disease (DED), blepharitis, seasonal allergic conjunctivitis, etc. For DED, its ocular
surface irritation and ocular surface damage have a significant impact on the visual
acuity between blinks. In severe cases, it can cause ocular surface inflammation, lacrimal
glands inflammation and vision loss. The latest epidemiological data survey shows that
DED and new cases that occur with environmental changes account for about 20% of
the population [11]. As an important tool to judge ocular surface inflammations and
elevated intraocular pressure [12], bulbar conjunctiva hyperemia grading needs high-
quality image to analyze morphological features of blood vessels. Lesions analysis and
feature quantification also needhigh-quality images. Therefore, it is necessary to evaluate
the image quality of the slit lamp images to screen high-quality images.

In this work, we propose a novel attention-guided architecture for image quality
assessment of slit lamp images. Our key insight is to let the attention of the classification
network focus on the region marked by human experts, so that the network learns human
visual attention. To this end, we build a two-branch classification network, where the
input of one branch uses masked images to learning regional prior. Second, we use a
Forward Grad-CAM (FG-CAM) to represent the attention of each branch and generate
the saliency maps. Third, we further design an Attention Decision Module (ADM) to
decide which part of the gradient flow of both two branch saliency maps will be updated.

This paper makes contributions as follows:

(1) We propose a novel attention-guided architecture for image quality assessment of
slit lamp images. Experimental results show that it achieves visual attention closer
to human experts than state-of-the-art baselines.

(2) We design a Forward Grad-CAM and an attention decision module. The FG-CAM
is used to represent the network attention and can participate in network training,
while ADM is used to update the branch gradients.

2 Dataset

The dataset we use contains 47095 slit lamp images taken from clinical purposes among
several hospitals between 18/3/2015 and 05/10/2019. The dataset contains a variety
of diseases, e.g., pterygium, trichiasis, pinguecula, hemorrhage, edema and cases of
different degrees of conjunctival hyperemia. Further, the dataset also contains a variety
of lighting conditions, e.g., Retro-illumination and indirect illumination, while the cases
with ocular fluorescein staining are excluded in this analysis.

We select 11831, 2000 and 9367 images as training set, validation set and test set,
respectively. Note that, the training set and test set are patient-independent. All the
images are resized to 224× 224. To evaluate the image quality of the bulbar conjunctiva
area in these images, 9 trained graduate students annotated three types of labels that
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illumination (‘Good’, ‘Medium’, ‘Bad’), blur (‘Slight’, ‘Medium’, ‘Sever’) and image
quality (‘Accept’ or ‘Refuse’) for the train and validation dataset, while only image
quality (‘Accept’ or ‘Refuse’) for the test dataset. 2 experienced experts finally determine
the category of image quality. To obtain the bulbar conjunctiva mask, the two experts
performed pixel-level annotations on 1045 additional slit lamp images. A U-Net [13]
model was trained to acquire bulbar conjunctival region masks for the above train,
validation and test dataset. The final dataset, called SLIQA, contains slit lamp images,
image quality labels, and bulbar conjunctival region masks.

3 Method

Fig. 1. The proposed attention-guided architecture for slit lamp image quality assessment.

Overview: Our proposed architecture as shown in Fig. 1 contains three parts: (1) Basic
two-branch CNN. (2) Trainable Forward Grad-CAM. (3) Attention Decision Module.
The two-branch CNN with different inputs is introduced in Sect. 3.1. The trainable
Forward Grad-CAM (FG-CAM) used to obtain the saliency maps of two branches is
introduced in Sect. 3.2. The Attention Decision Module (ADM) used to update the
branch gradients is introduced in Sect. 3.3.

3.1 Multi-task Two-Branch Architecture

We denote the original slit lamp image as X and the bulbar conjunctiva region mask
X̃ . We firstly build a two-branch CNN, where the backbone we used is VGG [14],
and the two branches are concatenated at the first length 512 fully connected layer.
The inputs of two branches are X and X · X̃ respectively, where · denotes pixel-wise
multiplication. Then after two fully connected layers, the final fully connected layer
output is length 11 category score vector relative to 4 classification tasks, including
levels of illumination, blur, image quality and bulbar conjunctiva region area level.
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The image quality classification is the main task while the others are auxiliary
classification tasks. Level of the area LArea is calculated as:

LArea =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, A
(
X̃

)
< 0.15

1, 0.15 ≤ A
(
X̃

)
< 0.3

2, 0.3 ≤ A
(
X̃

)
(1)

where A(•) indicates the area ratio of the bulbar conjunctiva area to the total area.
This multi-tasking design is to extract more effective features while accelerating the
convergence of the network.

3.2 Trainable Forward Grad-CAM

In this work, we seek a CAM that can participate in network training, not just for
visualization. Inspired by [15], we use a trainable Forward Grad-CAM (FG-CAM) to
describe the saliency of attention. It is expressed as:

A = conv(f ,w) (2)

where f is the feature map of the convolutional layer, and w represents the neuron
importance weights obtained by the gradients flowing back through a global average
pooling layer. Different from [15], we remove the ReLU operation, which is designed
for visualization in the work of Selvaraju et al. [16].

3.3 Attention Decision Module

Fig. 2. Our proposed attention decision module. GCAMc
1 , GCAM

c
2 denote two outputs of FG-

CAM modules in Fig. 1. DSRM denotes down-sampled semantic region mask. We compare the
cosine distance of these three inputs one to one, and we make final decision which gradients flows
will be frozen by Table 1.
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We further propose an attention decision module (ADM) as shown in Fig. 2. For ADM
with respect to class c, FG-CAM module outputs GCAMc

1 , GCAM
c
2 are obtained by

Eq. (3) from two branch final convolutional layer features of our CNN respectively:

GCAMc
i = ∑

k

∂yc

∂Ak
Ak

(3)

where Ak denotes kth feature map at the final convolutional layer, yc denotes score of
class c, ∂yc

∂Ak
denotes gradient matrix that contains derivative of function yc with respect

to Ak by forward propagation. The DSRM is calculated as:

DSRM = DownSample
(
X̃

)
− f

(
X̃

)
(4)

whereDownSample(•) denotes mean pooling module in this paper, and f
(
X̃

)
is a scalar

to adjust pixel value distribution of DSRM. Once three inputs are prepared, and then we
calculate their cosine distances Lc

cos13, Lc
cos23, Lc

cos12 with respect to the class c by:

Lc
cosij = 1 − vi ·vj

‖vi‖‖vj‖ (5)

where vi, vj denote two vectors to be calculated cosine distance, Lc
cosij ∈ [0, 2], v1, v2,

v3 are flattened by GCAMc
1 , GCAM

c
2 , DSRM respectively. After that we make a final

decision of the output Lc
f by the following algorithm in Table 1:

Table 1. The decision algorithm of ADM with input1, input2, input3 in Fig. 2.

th1 is a threshold to describe the tolerability of disimilarity between GCAMc
i and

DSRM. Lc
f will be set to 0 when GCAMc

i is similar to DSRM enough. GCAMc
i is

expected to tend to be different from DSRM to some extend, because we believe that
the weight distribution of the neural network attention regionGCAMc

i is not necessarily
similar to that of semantic region DSRM, and the specific extent is decided by the neural
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network itself. th2 is a threshold to describe the tolerability of maximal angle between
v1 and v2. Lc

f will be set t 0 when the angle is small enough. GCAMc
1 , GCAM

c
2 are

expected to tend to focus on different regions, because we believe more information
tends to mine when attention regions on the final convolutional layer features of two
branches are different.

Combining Fig. 1, frozen the gradient flow of GCAMc
i denotes that in backpropa-

gation the gradient backflow of GCAMc
i with respect to class c does not be optimized,

whichmeans the one that has a bigger difference with respect to down-sampled semantic
region mask will learn to the other one but not learn with each other. Note that the last
fully-connected layer parameters are shared betweenGCAMc

1 ,GCAM
c
2 , so the gradients

of these parameters will not be frozen.
Overall, the total loss of our model is:

Ltotal = LCE + β · 1
l · ∑l

c Lc
f (6)

where l denotes the number of classes, and β is a coefficient to adjust the contribution
between cross entropy loss and the ADM loss.

4 Experiments

4.1 Implementation Details

All Experiments in this paper obey the following rules: The Adam optimizer is adopted
with the learning rate of 0.0001 firstly. When the average training accuracy of the multi-
task classification is above 85%, the learning rate is set to 0.00001. It will be early stopped
when the training accuracy of task image quality is above 98%, which is judged to be
overfitting. The mini-batch size is set to 8 and all the experiments run on an NVIDIA
GTX 1080Ti GPU.

4.2 Parameter Influence

The th1 and th2 in Table 1 will affect the tolerability of dissimilarity among Grad-CAM
maps and the semantic region mask, and the β in Eq. (6) will affect the balance between
cross-entropy loss and ADM loss. As shown in Table 2, we can see different th1 and th2
have little effect on AUC, F1, Accuracy, which shows our proposed method has good
robustness. When β is set to 0.03, it will have an obvious performance deduction on the
metrics. The reason is that our ADM loss accounts too small proportion to guide neural
network attention to the goal region.

4.3 Comparison with Other Methods

Our method is compared with other similar methods as shown in Table 3. All the inputs
of the compared methods are the original images. The AFN [1] and LACNN [5] are
designed for lesion region mask attention, so there are not any improvement on our task
compared with baseline [14]. AFN has long train time because extra structure is added
on fully connected layer. The GAIN proposed by Li et al. [15] first utilized forward
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Table 2. Parameter influence. Each experiment is repeated three times. The basic combination
of the parameters is th1 = 0.8, th2 = 0.4, β = 0.1. We change one of these parameters, and the
other two parameters remain unchanged for one experiment.

Parameter AUC (%) F1-score (%) Accuracy (%)

th1 = 0.7 97.30 ± 0.10 84.29 ± 0.39 92.67 ± 0.09

th1 = 0.8 97.42 ± 0.09 84.81 ± 0.55 92.65 ± 0.16

th1 = 0.9 97.32 ± 0.04 84.34 ± 0.55 92.36 ± 0.33

th2 = 0.3 97.37 ± 0.07 84.60 ± 0.61 92.65 ± 0.17

th2 = 0.5 97.29 ± 0.08 84.44 ± 0.79 92.76 ± 0.16

β = 0.03 97.18 ± 0.09 83.75 ± 0.77 92.20 ± 0.48

β = 0.3 97.37 ± 0.08 84.41 ± 0.28 92.52 ± 0.06

Grad-CAM to guide CNN’s attention, and it has slightly improvement on AUC and F1-
score comparedwith baseline, but its serial repeat feature extractors take big cost of time.
The DFS proposed by Wang et al. [9] is designed for semantic region mask attention,
and it has a little improvement compared with baseline, but its added segmentation head
attention takes long time. Our proposed method has obvious improvement on AUC,
F1-score and accuracy, and also takes short training time because our architecture has
not any extra structures or serial repeat parts.

Table 3. Comparison with other similar methods, where each experiment is repeated six times.
We denote the train time of the baseline as one unit time.

Method AUC (%) F1-score (%) Accuracy (%) Train time

Baseline [14] 96.99 ± 0.13 83.31 ± 0.41 92.10 ± 0.28 1

AFN [1] 96.97 ± 0.15 83.07 ± 0.48 91.87 ± 0.26 3.115

GAIN [15] 97.07 ± 0.20 83.46 ± 0.77 91.96 ± 0.33 3.067

LACNN [5] 96.99 ± 0.18 83.21 ± 0.52 91.92 ± 0.33 1.308

DFS [9] 97.16 ± 0.13 83.58 ± 0.48 92.00 ± 0.17 3.719

Ours 97.41 ± 0.14 84.79 ± 0.42 92.71 ± 0.28 1.966

The FG-CAM visualization results of each method is shown in Fig. 3. For column A,
AFN has a deviation while other methods focus on the overexposure region. For column
B, AFN and our proposed method focus on the left underexposure region in column
B2 while baseline and LACNN focus on the error region of the cornea in column B1.
For column C, all the methods focus on the overexposure region in column C2, but the
semantic region masked image has many black holes in the overexposure region which
will impede semantic comprehension. Only baseline and our proposed method focus
on the whole overexposure region in column C1. For column D, baseline, LACNN and
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our proposed method focus on the pterygium region in D1, and our proposed method
pays more attention to the bulbar conjunctiva region, while baseline and LACNN pay
more attention to the angulus oculi medialis region which is out of the bulbar conjunc-
tiva region. Overall, our proposed method not only focuses on the bulbar conjunctiva
region, but also notices the specific abnormality regions. Moreover, our method also
notices the whole abnormality region on the original image branch, while the semantic
region masked image has obvious black holes that have a big influence on semantic
comprehension.

Fig. 3. Grad-CAM visualization results of each method. Column A1, B1, C1, D1 are four exam-
ples with different original inputs respectively. A2, B2, C2, D2 are bulbar conjunctiva regions
masked image with respect to A1, B1, C1, D1 respectively. The first row contains the original
images of four pairs of examples. The second row contains eight marked images, where yellow
marks in the odd column show reference bulbar conjunctiva regions while green marks in even
column show reference abnormality regions. The third row to the eighth row are the visualization
of each method. (Color figure online)
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5 Conclusion

We proposed an attention-guided architecture with two-branch CNN for the slit lamp
image quality assessment. Experimental results show that it achieves visual attention
close to human experts and thus improves classification performance. Compared with
the-state-of-art methods, our proposed method has a better performance on AUC, F1-
score, Accuracy metrics. Moreover, our method has the potential to migrate to other
attention-dependent tasks.
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Abstract. Retinal vessel segmentation is a fundamental step in screen-
ing, diagnosis, and treatment of various cardiovascular and ophthalmic
diseases. Robustness is one of the most critical requirements for practical
utilization, since the test images may be captured using different fundus
cameras, or be affected by various pathological changes. We investigate
this problem from a data augmentation perspective, with the merits of
no additional training data or inference time. In this paper, we pro-
pose two new data augmentation modules, namely, channel-wise random
Gamma correction and channel-wise random vessel augmentation. Given
a training color fundus image, the former applies random gamma cor-
rection on each color channel of the entire image, while the latter inten-
tionally enhances or decreases only the fine-grained blood vessel regions
using morphological transformations. With the additional training sam-
ples generated by applying these two modules sequentially, a model could
learn more invariant and discriminating features against both global and
local disturbances. Experimental results on both realworld and synthetic
datasets demonstrate that our method can improve the performance and
robustness of a classic convolutional neural network architecture. The
source code is available at https://github.com/PaddlePaddle/Research/
tree/master/CV/robust vessel segmentation.

Keywords: Roust retinal vessel segmentation · Gamma correction ·
Vessel augmentation · Color distortion · Pathological changes

1 Introduction

Retinal vessel segmentation plays a crucial role in computer-aided screening,
diagnosis, and treatment of various cardiovascular and ophthalmic diseases such
as stroke, diabetics, hypertension and retinopathy of prematurity [9]. A substan-
tial amount of work has been reported in the last two decades for automated
detecting blood vessels in retinal fundus images. These algorithms can mainly
be categorized into two groups: the unsupervised and supervised methods. The
unsupervised methods rely on strong but intuitive priors of the blood vessel
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appearance [2,3], while the supervised methods utilize labelled datasets based on
given features [4,14]. Among these algorithms, supervised segmentation of blood
vessels based on deep learning has reached new performance levels [1,5,18].

Despite architectural advances based on deep learning have led to enormous
progress at segmenting vessels in curated datasets, their ability to generalize to
new situations is rarely studied. In contrast, the generalization ability, which
refers to robustness, is an important factor for algorithms performance. To
improve robustness, there exist two issues which need special attention. First,
in the real world context of retinal fundus image analysis, the input images
may come from different kinds of digital fundus camera systems. Since the tonal
quality of a fundus image is affected by the characteristics of these systems [16],
models fitting well to datasets collected from a specific class of fundus camera
might fail to generalize to those captured from other types of machines. Second,
for retinal vessel segmentation models to be adopted in practice, they also need
to be robust on pathological changes, especially on those not included during
the training stage.

These issues can be alleviated by different strategies. Image pre-processing
techniques like contrast limited adaptive histogram equalization try to shrink the
difference among samples by redistributing their pixel values, However, they only
lead to limited improvement yet require additional inference time. Domain adap-
tation, on the other hand, learns to adapt models between domains. But more
data from the target domain are needed to retrain the models when encounter-
ing a new circumstance. In contrast, data augmentation methods, which includes
input transforms that the model should be invariant against, show great merits
of without requiring any extra training data or inference time. Motivated by
that, in this paper we investigate the robust retinal vessel segmentation problem
from a data augmentation perspective.

Our method consists of two novel data augmentation modules, i.e., channel-
wise random gamma correction and channel-wise random vessel augmentation,
for training robust retinal vessel segmentation models. The former aims at vary-
ing the tonal quality of the whole image, while the latter only focuses on aug-
menting the visual appearance of retinal vessels. By doing so, the models are
able to learn more representative features regardless of both global and local
variations. The experimental results on three real world datasets suggest that
the proposed method significantly increases the robustness on samples that are
captured by different camera systems and/or affected by diverse pathological
changes. Furthermore, we also conduct a thorough set of synthetic datasets to
demonstrate that our augmentation scheme achieves reduced sensitivity to the
variations of image brightness, contrast and saturation.

2 Methodology

In this section, we present a novel scheme to improve the robustness of retinal ves-
sel segmentation, which comprises two data augmentation modules that increase
the global and local invariance, respectively. Figure 1 illustrates the process of
virtual sample generation through the proposed data augmentation method.
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Fig. 1. Illustration of the proposed data augmentation scheme. (a) Original image from
the DRIVE [15] training set. (b) Sample image augmented via channel-wise random
gamma correction (CWRGC). (c) A rough vessel map generated by morphological
transformation (MT). (d) Sample image augmented via channel-wise random vessel
augmentation (CWRVA).

2.1 Channel-Wise Random Gamma Correction (CWRGC)

Gamma correction is a nonlinear operation used to encode and decode lumi-
nance or tristimulus values, and has been widely used as a image preprocess-
ing step in automated vessel segmentation systems. Unlike current approaches
which employ gamma correction in the HSV (Hue, Saturation, value) color
space [11,19], we suggest to apply it directly in the RGB (Red, Green, Blue)
color space. And, different from the preprocessing method to make the spatial
distribution of training test samples more consistent, we use the data augmenta-
tion method to increase the diversity of sample distribution, so that the model
learning can overcome the interference of task-independent features and learn
more effective features. In particular, a simple yet effective data augmentation
technique, termed channel-wise random gamma correction, is developed. This
method is formulated as

̂Vi = V γi

i (1)

where ̂Vi and V γi

i represent the intensity of the image before and after transfor-
mation, respectively. γi > 0 is the correction value, and subscript i ∈ {R, G, B}
denotes the corresponding red, green, or blue channel. By varying γi randomly,
virtual examples covering a wide range of tonal quality can be created at the
training stage. Figure 1(b) shows one of the generated images.

2.2 Channel-Wise Random Vessel Augmentation (CWRVA)

Different from the first method that transforms the whole fundus images, our
second method only focuses on blood vessel regions. This can be achieved by
taking advantages of existing unsupervised methods, as they are able to provide
the rough vessel maps without requiring annotations. To be specific, morpholog-
ical transformation [10] is used here due to its simplicity of implementation and
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effectiveness in practice. When the structuring element used in the morphologi-
cal opening is orthogonal to the vessel direction and longer than the vessel width,
it will eradicate a vessel or part of it. Based on this observation, morphological
transformation is defined as follows

Iθ
th = I − (I ◦ Sθ

e ), (2)

ISth =
∑

θ∈A

Iθ
th (3)

where Iθ
th is the top-hat transformed image, I is the image to be processed, ◦ is

the opening operation, Se ia the structuring element, and θ ∈ A is the angular
rotation equally distributed in [0, π) .

Given the top-hat transformed image, the blood vessel attention map for
each color channel of the fundus image can then be obtained by

Mi = N(ISth) · λi (4)

where N(x) is a normalization function which scales and shifts the input array
x so that the minimum and maximum value of x are 0 and 1, respectively, and
λi ∈ [0, 1] is a random decay coefficient with i ∈ {R, G, B}.

The proposed channel-wise random vessel augmentation is formulated as

˜Vi = Vi · (1 − Mi) + Mi · 255 (5)

where ˜Vi and Vi denote the intensity values of the image before and after vessel
augmentation, respectively. Virtual images with various visual effect can be gen-
erated through changing λi in Eq. (4). A typical example is shown in Fig. 1(c).

3 Experiments

To evaluate the effectiveness of our method, a thorough set of ablation study
experiments are conducted. The first experiment is performed on three real world
datasets to show how our method impacts robustness on testing images collected
by a different fundus camera and/or affected by different pathological changes.
Furthermore, we also utilize synthetic datasets to investigate the sensitivity of
different models to the variations of image brightness, contrast and saturation.

3.1 Experiments Setup

We adopt the U-Net architecture [13] in our experiments due to its popularity
in medical image analysis community and formation of the basis for most of the
recent architectural advances at segmenting retinal vessels [6,17]. In particular,
we replace its feature encoder module with the pretrained ResNet-50, remaining
the first five feature extraction blocks without the global averaging pooling layer
and the fully connected layers.
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We employ random horizontal flip and random vertical flip with a probability
of 50% as the basic data augmentation strategy (BS). In addition, two commonly
used randomized data augmentation methods in literature are also implemented
for comparison:

– RGN: Disturb the intensity of the red, green and blue channels by adding
Gaussian noise with mean of 0 and standard deviation of 20.

– SVGC: Gamma correction of Saturation and Value (of the HSV color space)
by raising pixels to a power in [0.25, 4].

In our experiments, γi in Eq. (1) for the channel-wise random gamma correction
(CWRGC) is randomly selected from [0.33, 3], and λi in Eq. (4) for the channel-
wise random vessel augmentation (CWRVA) is randomly picked in [0, 1]. All the
models are trained on the DRIVE [15] training set using a publicly available
library1. We use the “step-scaling” method provided in the library to resize the
input images to 640 × 640, setting the scaling factor range from 0.75 to 1.25
with a step of 0.25. We use adam as the optimizer. The learning rate is initially
set to be 0.005 and then decays following the “poly” policy with a power of 0.9.
Instead of training all parameters from scratch, we fine-tune the network end-
to-end from an ImageNet pre-trained model. We integrate both dice loss and
binary cross entropy loss to train all models for 3000 epoches.

Following previous work, the retinal vessel segmentation results are evalu-
ated quantitatively by the area under the receiver operation characteristic curve
(AUC), accuracy (ACC), specificity (SP), sensitivity (SE), and F1-score (F1).
However, we mainly focus on AUC and F1 when comparing the performance
of different methods as they are more reliable for evaluating binary classifiers
(say, to classify if a pixel belongs to vessels or not) [8]. In particular, when we
conclude that one method outperforms another, we mean that it achieves both
the higher AUC and F1 if without stating which metrics are used.

3.2 Generalization Across Different Datasets

To validate how our augmentations impact robustness in a realistic setting, mod-
els trained on the DRIVE training set are applied to three datasets:

– Testing set of DRIVE [15]: the fundus images are captured from the same
digital fundus camera system.

– Full set of STARE [7]: the provided images come by a different type of
fundus camera, and contain more kinds of pathological changes

– Full set of CHASE-DB1 [12]: the images are captured by another type of
fundus machine which has a smaller field of view.

From the evaluation results shown in Table 1, we can observe that: 1) BS+CWR-
GC+CWRVA achieves the best results in all datasets; 2) BS+CWRGC and
BS+CWRVA outperform BS, BS+RGN and BS+SVGC in all datasets. 3) BS

1 https://github.com/PaddlePaddle/PaddleSeg.

https://github.com/PaddlePaddle/PaddleSeg
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Table 1. Performance comparison on three Datasets.

Method AUC ACC SP SE F1

DRIVE BS 0.9755 0.9531 0.9750 0.8055 0.8126

BS + RGN 0.9769 0.9531 0.9746 0.8088 0.8131

BS + SVGC 0.9772 0.9540 0.9752 0.8108 0.8167

BS + CWRGC 0.9777 0.9539 0.9744 0.8150 0.8174

BS + CWRVA 0.9783 0.9545 0.9741 0.8225 0.8205

BS + CWRGC + CWRVA 0.9788 0.9545 0.9741 0.8227 0.8209

STARE BS 0.9287 0.9334 0.9512 0.7103 0.6699

BS + RGN 0.9147 0.9556 0.9812 0.6157 0.6273

BS + SVGC 0.9288 0.9602 0.9837 0.6500 0.6769

BS + CWRGC 0.9892 0.9676 0.9738 0.8902 0.8056

BS + CWRVA 0.9771 0.9665 0.9816 0.7711 0.7652

BS + CWRGC + CWRVA 0.9893 0.9683 0.9745 0.8908 0.8082

CHASE-DB1 BS 0.8794 0.9344 0.9825 0.2989 0.3768

BS + RGN 0.9165 0.9394 0.9715 0.5159 0.5279

BS + SVGC 0.9258 0.9465 0.9893 0.3848 0.4841

BS + CWRGC 0.9812 0.9623 0.9702 0.8565 0.7563

BS + CWRVA 0.9555 0.9522 0.9772 0.6230 0.6385

BS + CWRGC + CWRVA 0.9838 0.9612 0.9673 0.8818 0.7565

performs worst on DRIVE, DRIVE-GRAY and CHASE-DB1, but outperforms
BS+RGN in STARE; 4) the performance of BS+RGN and BS+SVGC degen-
erates significantly on STARE and CHASE-DB1; 5) although CWRVA works
slightly better than CWRGC in the DRIVE testing set, such superiority fails to
generalize to other datasets; 6) SVGC achieves the highest SP in all testing set,
at the expense of getting a much lower SE when comparing to BS+CWRGC,
BS+CWRVA, and BS+CWRGC+CWRVA; 7) CWRGC outperform SVGC in
all datasets in terms of AUC and F1. This experiment shows that in RGB space
is indeed significantly better than in HSV space due that directly applied to RGB
space can be targeted to optimize the hue change problem. Figure 2 shows some
visual examples of the segmentation results. The results on real world datasets
suggest that the proposed method possess the significant generalization improve-
ment to samples captured by different camera systems and/or affected by diverse
pathological changes. This is due to the different camera systems resulting in the
various image hues, while gamma correction is good at generating augmentation
images with multiple different hues to improve the robustness of the model. In
addition, pathological changes are mainly reflected in the local changes of fun-
dus image texture and vascular region, and random vessel augmentation could
increase the variation diversity of vascular region, thus improving the robustness
of the model in the region with pathological changes.
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Fig. 2. Sample results on three different datasets. From up to bottom: input image,
ground truth and predictive results of BS, BS+RGN, BS+SVGC, BS+CWRGC,
BS+CWRVA, and BS+CWRGC+CWRVA. From left to right: sample images from
DRIVE, DRIVE, STARE, STARE, CHASE-DB1, CHASE-DB1.

3.3 Robustness to Brightness, Contrast and Saturation

In order to investigate a model’s robustness on the more complex situation,
the virtual dataset are employed. Thus, three image processing functions are
respectively introduced to adjust the brightness, contrast and saturation of a
color fundus image. Let V be the input image in RGB space, G(V ) be the
function to convert the input image from RGB space to gray space, and M(V )
be the mean function, the brightness jitter, contrast jitter and saturation jitter
can then be defined, respectively, as
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Fig. 3. Evaluation results to illustrate robustness of different methods to variations of
brightness, contrast and saturation

B(V ) = V · (1 − b), (6)
C(V ) = V · (1 − c) + M(G(V )) · c, (7)
S(V ) = V · (1 − s) + G(V ) · s (8)

where b ∈ [−1, 1] is brightness jitter ratio, c ∈ [−1, 1] is the contrast jitter ratio,
and s ∈ [−1, 1] is saturation jitter ratio. The output values of these functions
are all limited to [0, 255].

By respectively varying b, c and s from –0.5 to 0.5 with a step of 0.1, we
construct 30 more datasets with different degree of brightness, contrast and sat-
uration based on the testing set of DRIVE. The evaluation results of different
data augmentation strategies on these datasets are shown in Fig. 3. It can be
obviously seen that : 1) models trained with the proposed methods are less sen-
sitive to the variations of image brightness, contrast and saturation than BS and
BS+RGN in terms of all the five evaluation metrics; 2) BS+CWRGC+CWRVA
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method consistently achieves the best results for all sorts of settings. These
results indicates the proposed algorithms lead to reduced sensitivity to these
naturally occurring variations.

4 Conclusion

This paper investigates the practicability and robustness of retinal vessel seg-
mentation from a data augmentation perspective, with the advantages of not
requiring extra training data or inference time. Our method comprises two new
data augmentation modules to increase the performance and robustness of mod-
els learned. The channel-wise random gamma correction module aims at covering
a wide range of tonal quality of the global image, while the channel-wise random
vessel augmentation module focuses on diversifying the local visual appearance
of the retinal vessels only. The proposed methods achieve excellent results on
both real-world and virtual datasets. Experimental results on various real-world
public datasets show that the proposed method could consistently stabalize the
segmentation performance on samples captured by different cameras or affected
by various pathological changes. Moreover, by conducting synthetic databases,
we also observe that the proposed method is less sensitive to the variations of
image brightness, contrast, and saturation. In the future, we plan to explore
more general techniques for robust automated image analyzing systems.
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