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Abstract. Understanding the brain function requires investigating
information transfer across brain regions. Shannon began the remark-
able new field of information theory in 1948. It basically can be divided
into two categories: directed and undirected information-theoretical
approaches. As we all know, neural signals are typically nonlinear and
directed flow between brain regions. We can use directed information
to quantify feed-forward information flow, feedback information, and
instantaneous influence in the high-level visual cortex. Moreover, neu-
ral signals have bidirectional information flow properties and are not
captured by the transfer entropy approach. Therefore, we used directed
information to quantify bidirectional information flow in this study. We
found that there has information flow between the scene-selective areas,
e.g., OPA, PPA, RSC, and object-selective areas, e.g., LOC. Specifically,
strong information flow exists between RSC and LOC. It explained that
functionally coupled between RSC and LOC plays a vital role in visual
scenes/object categories or recognition in our daily lives. Meanwhile, we
also found weak reverse-directed information flow in the visual scenes
and objects neural networks.
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1 Introduction

Understanding how information flow in the brain conducts a specific cognitive
task is a major scientific challenge. In the field of neuroscience, studying brain
function entails learning about how the brain processes information. Researchers
can figure out how information flows through different parts of the brain to gain
such knowledge [8,9,12]. In most cases, information flow in the brain is random
and directional. Granger causality [1,14], or Transfer Entropy [4,19], can be used
to calculate directional information flow. However, the methods described above
can only calculate one-way information flow from one area to another rather than
bidirectional information and instantaneous information flow between functional
brain regions. Directed information was designed to characterize channels with
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feedback but the way that we applied it to neuroscience to solve the aforemen-
tioned problems [10]. It’s mainly a tool for inference, some causality inference,
and more along the lines of Granger causality in spirit [14]. Granger causality
says that X causes Y because time series X causes a time series Y if you can
predict Y if you also condition on the observations of X. Directed information
encapsulates this by prediction reduction attribute so a decrease in randomness.
Comparison of other information-theoretic methods applied in neuroscience, DI
not only quantify measure feed-forward information but also feedback informa-
tion. The brain is a complex system, and each region is densely connected to infer
specific cognitive tasks. Therefore, directed information can help us understand
how neural information flows among brain regions. This study uses a directed
information method to measure information communication among visual scene
category neural networks with fMRI dataset.

According to fMRI studies, some scene-selective regions in the human visual
cortex have been discovered and linked to higher-order functions like scene per-
ception or category, such as Primary Visual Cortex (V1), Fusiform Face Area
(FFA) [7], Occipital Face Area (OFA), Occipital Place Area (OPA), Parahip-
pocampal Place Area (PPA) [3], and retrosplenial cortex (RSC) [13]. Although
all these regions respond well to scenes and objects, less research has been done
on how these regions communicate with one another during the experience of
natural scenes, specific bidirected information flow among these regions. That’s
also our primary motivation in this study.

2 Methods

2.1 Definition

Shannon Entropy. Assuming a random variable X, which can get a value like
x as probability P(X = x), entropy of this variable can be expressed as:

H(X) = −
∑

x

p(x) log2 p(x) = 〈− log2 p(x)〉 (1)

Conditional Entropy. The conditional entropy of X given Y is the average
uncertainty that remains about x when y is known:

HX|Y = −
∑

x,y

p(x, y) log2 p(x|y) = HX,Y − HY p(x|y) =
p(x, y)
p(y)

(2)

Mutual Information. Given two random variables X and Y , the mutual infor-
mation can be calculate as the difference of sum of individual entropy and the
entropy of the variables considered jointly as a single system. It can be mathe-
matically formula expressed as:

H(X;Y) = H(X) + H(Y) − H(X,Y) (3)
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Conditional Mutual Information. The conditional mutual information of X
and Y given Z is the uncertainty that remains about x and y when z is known:

I(X;Y | Z) = H(X | Z) + H(Y | Z) − H(X,Y | Z)

=
〈

log2
p(x | y, z)
p(x | z)

〉
(4)

Granger Causality. The Granger causality (GC) idea firstly proposed by
Granger in 1969 [5]. The basic idea is, if two signal X and Y have caucal rela-
tionship, instead of history value of Y, then Y also can be predicted given X
information. Assuming Xn = [X1,X2, . . . , Xn] and Yn = [Y1, Y2, . . . , Yn] are
two continue time series. The GC analysis can be expressed as a auto-regressive
or line prediction model as follows:

Yi =
P∑

j=1

ajYi−j + ei (5)

Yi =
P∑

j=1

[bjYi−j + cjXi−j ] + ẽi (6)

where ei indicate error of prediction Yi given only past valye of Y,
(Yi−1, ..., Yi−P ), and ẽi is the error of prediction Yi given both history value
of Y (Yi−1, ..., Yi−P ) and previous value of X (Xi−1, ...,Xi−P ). Based on GC
properties above described, GC analysis gradually applied in the neuroscience
disincline.

Transfer Entropy. Another widely applied causal measurement in neuro-
science is Transfer Entropy (TE) [17]. How the prior knowledge affects the next
state or predicts future state can use TE to address this question. TE can be
defined as:

TEX→Y = I (Yt+1 : Xt−k:t|Yt−l:t) = H (Yt+1|Yt−l:t) − H (Yt+1|Yt−l:t,Xt−k:t)

=
∑

yt+1

∑

xt−k:t

∑

yt−l:t

p (xt+1, xt−k:t, yt−l:t) log
p (xt+1|xt−k:t, yt−l:t)
p (xt+1|p (xt−k:t)

(7)
The TE can be used measured the directed information flow from Y →

X or X → Y . The basic theory of TE can be shown graphically in Fig. 1. In
neuroscience studies, it is very used for defined the directed causality effects
between neural signals. However, the real neural activity not just single directed
information flow. Neurons can use resonance at the same time, that means X ↔
Y . The pitfall of TE is that it cannot measure the bi-directed information flow
at the same time. A comprehensive review on TE estimate directed information
flow could be found in [16].
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Fig. 1. The diagram of transfer entropy flow from X → Y (X causes Y) and vice versa.
Xt and Yt, with t = 1, · · · , n indicate two time series, respectively. The time series Yt

is caused not only by the previous history of X, Xt, Xt−1, Xt−2, and Xt−3, but also by
the caused by self-previous history, Yt−1, Yt−2, and Yt−3.

2.2 Directed Information

In this section, we are going to describe directed information from mathematics
view. Assuming uppercase letters X and Y denoted random variables, and denote
n-tuple (X1,X2, . . . , Xn) as Xn. The information flow from Xn to Y n can be
formula as,

I (Xn → Y n) �
n∑

i=1

I
(
Xi;Yi | Y i−1

)
= H (Y n) − H (Y n‖Xn) (8)

Where H (Y n) − H (Y n‖Xn) is causally conditional entropy [15], and it can
be defined as,

H (Y n‖Xn) �
n∑

i=1

H
(
Yi | Y i−1,Xi

)

Comparison of mutual information,

I (Xn;Y n) = H (Y n) − H (Y n | Xn)

The condition entropy instead of causally conditional entropy in the
directed information. Meanwhile, directed information is not symmetric, e.g.,
I (Y n → Xn) �= I (Xn → Y n) in general. On the contrary, reverse information
flow can be defined as,

I
(
Y n−1 → Xn

)
=

n∑

i=1

I
(
Y i−1;Xi | Xi−1

)
(9)

It has a number of significant properties, some can be found in [1,15]. For
the sake of brevity, we’ll just reveal two enlightening conservation rules. Based
on Massey and Massey [11] the conservation law,

I (Xn;Y n) = I (Xn → Y n) + I
(
Y n−1 → Xn

)
(10)

Equation 10 is particularly enlightening in settings where Xi and Yi appear
alternately, as shown in Fig. 2.
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Fig. 2. The interaction between Xn and Y n sequence.

In some cases, Xn, Y n may happen simultaneously, such as neural network
in the brain. The following is another conservation law stated in [1] which, in
such situations, may be more insightful than that in Eq. 10. The instantaneous
influence can be calculated through directed information and reverse directed
information as shown in Fig. 3(c),

n∑

i=1

I
(
Xi;Yi | Xi−1, Y i−1

)
= I (Xn → Y n) − I

(
Xn−1 → Y n

)
(11)

Fig. 3. The three possible way of neural information flow. (a) shown information flow
from A to B, (b) shown information flow from B to A, (c) shown bidirectional infor-
mation flow between A and B, respectively.

If
∑n

i=1 I
(
Xi;Yi | Xi−1, Y i−1

)
= 0. That is, they do not have an instanta-

neous effect on one another. In this study, the Context-Tree Weighting (CTW)
algorithm proposed by Willims [18] was used to estimate DI [6] flow among visual
scene neural networks and its powerful algorithms to compress data.

2.3 FMRI Dataset

The public BOLD5000 dataset1 [2] used in this study when we estimated bidi-
rected information flow among visual scene neural networks (see Fig. 4). The
fMRI experiments used a dataset obtained from 4 subjects (aged 24 to 27 years)
with normal or corrected-to-normal vision, who each viewed 5254 images over 15
scanning sessions. The stimuli images were selected from three classical computer

1 https://bold5000.github.io/.

https://bold5000.github.io/
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vision datasets. They are SUN dataset (1000 Scene Images)2, COCO dataset3,
and ImageNet dataset (1916 images)4, respectively.

Fig. 4. Nature scenes and objects selective ROIs.

3 Result

In this section, we experimentally compared correlation, mutual information,
transfer entropy, and directed information for quantifying information flow in
the visual scenes neural networks. In Fig. 5, we have shown functional connec-
tivity among visual scenes neural networks with correlation, mutual informa-
tion, and transfer entropy approaches. We found that mutual information can
capture more information than correlation, but both methods do not quantify
information flow direction. In Fig. 6, the graphs depict the functional connec-
tivity between visual scenes neural networks, and the strength of edges color
represents connectivity weights in which consistence of functional connectivity
matrix in Fig. 5. We found that information flow between the scene-selective
areas, e.g., OPA, PPA, RSC, and object-selective areas, e.g., LOC, plays an
important role in visual scene/object categories or recognitions. Nevertheless,
we are interested in whether information feedback and resonance information
flow in the high-level visual cortex. Therefore, in Fig. 7 and Fig. 8, we found con-
sistent results with correlation and mutual information methods. However, we
also found some unknown results that are resonance information exists in the
high-level visual cortex.

2 http://sun.cs.princeton.edu/.
3 https://cocodataset.org/.
4 http://www.image-net.org/.

http://sun.cs.princeton.edu/
https://cocodataset.org/
http://www.image-net.org/
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Fig. 5. The functional connectivity matrix between scene/object-selective ROIs was
estimated with correlation, mutual information, and transfer entropy methods.

Fig. 6. The graphs depict functional connectivity in the high-level visual cortex with
correlation with threshold 0.05, mutual information with threshold 0.1, and transfer
entropy (arrow indicates the direction of information flow). Edge thickness is propor-
tional to correlation coefficients, mutual information, and directed transfer entropy.

Fig. 7. The left matrix shows pair-wise directed functional connectivity. The middle
image shows pair-wise instantaneous influence, and the right image indicates pair-wised
reverse-directed functional connectivity in the high-level visual cortex. Therefore, there
has a weak reverse-directed information flow in the visual scenes and objects neural
networks.
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Fig. 8. The graph depicted functional connectivity of the representation from sev-
eral scenes ROIs corresponding to Fig. 7, respectively. The graph on the left depicts
pair-wise directed functional connectivity. The middle graph depicts pair-wise reverse
directed functional connectivity, whereas the right figure depicts pair-wise instanta-
neous influence in the high-level visual cortex.

4 Discussion and Conclusions

This paper begins with an information-theoretic perspective and quantifies infor-
mation flow in the high-level visual neural networks. It collects directed and
reverse directed information, mutual information, and resonance information
between the brain’s left and right regions of interest. It opens up a new avenue
for us to investigate what happens when pairwise neural signal entanglement
occurs. It means a lot in understanding neural signal flow in the brain. However,
there are some limitations in which we should point out in the following contents.

First, we got directed information through CTW estimator, and it needs
to satisfy that input data should be binary value. In other words, we need to
convert the BOLD signal into a binary value that means we will lose some
information when we estimate functional connectivity between ROIs. There-
fore accuracy estimate binary BOLD signal is a crucial problem when we are
going to quantify directed information flow. Second, we directly used in visual
scenes/objects selective-ROIs in which defined via t-statistics. Considered effect
size and functional overlap problems, the estimated information flow through
information-theoretical methods are not accurate. In the following study, on the
one hand, we need to consider how to avoid or solve the problems mentioned
above. On the other hand, we can reconstruct nature images from the BOLD
signal to confirm the information flow in the high-level visual cortex.

Nevertheless, we still found some interesting results through estimated
directed information. First, we found that there has information flow within
the scene-selective areas, e.g., OPA, PPA, and RSC. Second, we also found that
information flow between the scene-selective areas, e.g., RSC, and the object-
selective areas, e.g., LOC. Third, we found that there has weak reverse-directed
information flow in the high-level visual cortex.
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5 Code Availability

The code used to reproduce result can be available under the request author.
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