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Abstract. Brain-Computer Interfaces (BCI) is one of the alluring
breakthroughs for mankind as it provides a new way of communica-
tion for the patients of neuro-muscular disorders. Electroencephalogra-
phy (EEG) signals are the most studied type of signals to detect brain
activities because of its non-invasive and portable nature. The major
problem in the identification of neural activities from EEG signals and
the presence of non-task related artifacts in the signal data. These arti-
facts affect the classification of feature set. With these effective tech-
niques, BCI classifier can efficiently classify EEG signals. The proposed
research deals with different motor imagery datasets for the detection of
movements. An EEG based BCI system is proposed that implement a
linear regression based artifact removal method for EOG processing, fea-
ture construction and recursive feature elimination with cross-validation.
It achieved promising results with relatively fewer data used for train-
ing than the original competition’s data, that shows the significance as
compared to top leaderboard entries. The results obtained show that
our approach tackles noise and artifacts in EEG signals which provides
reliable features for BCI classification.

Keywords: Brain-computer interface (BCI) · Electroencephalography
(EEG) · Electrooculography (EOG) · Feature selection · Motor
Imagery (MI)

1 Introduction

Brain-computer interface (BCI) provide a communication system in which an
individual can send messages to an external device (e.g. a computer) without
using the brain’s muscular. The person’s intention to control or communicate ini-
tiates brain activities and the patterns from those brain activities can be detected
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from electrophysiological signals [1,2]. Patients suffering from high spinal cord
injuries (HSCL), amyotrophic lateral sclerosis (ALS), brainstem stroke, cerebral
palsy or other neural disorders find difficulties in communication and neural
prosthetics. BCI aims at resolving the difficulties of such patients and raise their
standard of living [3–5].

There are different invasive and non-invasive electrophysiological signal
recording methods that are being used to detect brain activities. Electroen-
cephalography (EEG) signals are the most studied type of signals to detect brain
activities because of its non-invasive and portable nature. Non-invasive meth-
ods include magneto encephalography (MEG), positron emission tomography
(PET), functional magnetic resonance imaging (fMRI), and optimal imaging.
These methods have expensive setup and equipment costs, they are technically
more demanding, have longer time constants and less suitable for rapid commu-
nication [6,7].

When recording EEG signals, most of the electrodes are not tightly contained
within the scalp therefore many environmental, electromagnetic (EM) and other
surrounding sources contribute to the high noise-to-signal ratio of EEG sig-
nals. The EOG artifact is most disturbing artifact that corrupt the EEG signal
because of the frequency range of EOG activity [1,8–10]. The important aspect
of a BCI system is, therefore, to minimize the noise-to-signal ratio and remove
the non-CNS related artifacts from the signals. High dimensional feature set
reduces the accuracy of the BCI classifier by contributing more noise.

For good classification of mental tasks by a BCI system it needs to give more
importance to the preprocessing and feature selection units. But constructing
an efficient one and less complicated system is still a goal to achieve. Different
machine learning and signal processing techniques are being explored for these
preprocessing stage [11–13]. But these are quite time consuming because of heavy
computations and our main target while developing a BCI system should be fine
accuracy with more instantaneous attitude. So we presents a simple yet efficient
model for EEG based BCI to detect motor imagery.

The main objective of our research is to deal with feature selection stage for
better classification of motor imagery by EEG based BCI. The proposed system
take three different dataset and process it through various experiments. It record
the EEG signals from and optimized it through NAN values and separate the
data into training and testing data to lower the frequency with RFECV feature
selection. The system will classified the results and compare these experiments
to achieve an appropriate model.

In the next section we discussed our proposed methodology and its imple-
mentation on our main observed dataset. Section 3 presents the experiment on
remaining two datasets to test our model. Section 3.2 gives discussion on results
of implementation and finally Sect.4 concludes this paper.

2 Proposed System Model

This section presents BCI design, which is tested through different experimen-
tation performed on BCI motor-imagery datasets. The main component of pro-
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posed research is Butterworth low-pass filter banks method for feature construc-
tion with “Recursive Feature Elimination with Cross Validation (RFECV)”.
Working on Graz 2A, Graz 2B datasets [14] and Random forest classifier keeps
it simple and robust. To evaluate the system, Receiver Operate characteristics
(ROC) and Area Under Curve (AUC) as an evaluation matrix for ‘Grasp-And-
Lift’ dataset [15] and Cohen’s kappa score for Graz 2A and Graz 2B datasets
[16]. The proposed model as shown in Fig. 1, the demand of Graz 2A and Graz
2B datasets.

Fig. 1. BCI generalized proposed model

2.1 Design and Implementation

Before going into the design and implementation there is an important point
showed in the task video of the dataset [15]. The subjects viewed a light bulb
constantly, when the light bulb glows subject performs hand movements accord-
ingly. When the bulb glows, visual evoked potential (VEP) is generated in the
EEG dataset. They occur just before the hand movement [15].

We also performed a basic experiment to analyze the BCI dataset of “Grasp-
and-Lift”. By using the simple approach of training and testing, it achieved
accuracy of 0.73 with ROC and AUC as shown in Fig. 2. This experiment showed
that by only dividing the six-class problem into the two-class problem accuracy
of 0.73 is achieved.
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2.2 Classification Method Used

Below are the steps for training of classifier with specific approach

– For each subject S, there are 6 different classes required
– Train the classifier on class m, m = 1.6 using X as training data and Y as

target labels. For U predict the class label P
– Combine all the series data and event data for subject S in X and Y
– Combine all the test series data for a subject S in U
– Compute the ROC AUC for all 6 classes and micro-average ROC AUC for

all.

Fig. 2. EEG segment for channel Cz

2.3 Preprocessing and Feature Construction

To deal with these high frequency components, a low-pass filter should be used.
Therefore, we used the Butterworth digital low-pass filter with some low cutoff
frequency to attenuate the high frequency components. The EOG artifact due
to eye movement and eye blinking also lies in the low frequency range from 0–4
Hz. Figures 3, 4 and 5 shows the effect of choosing different cutoff frequencies.
Figure 6 shows the boost in classification accuracy described in previous section,
which make use of all feature columns. Later, non-important filtered features
can be excluded from the feature set by using suitable feature selection method.

2.4 Feature Selection

We filter the potential features with low-pass filter banks with five different
frequency banks between 0–5 Hz. To overcome this problem, we implemented an
automated features selection RFECV method. As the random forest classifier is
used for feature classification so we also used it with RFECV. The accuracy score
for cross-validation scoring and K = 3 for cross-validation. There are numerous
possibilities in which RFECV method can be used to find optimal features.
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We take the option 2 and 5 to run our model with RFECV method because
option 1 might not give the optimal features for classification. Each channel
has their own feature channel’s importance for a particular task so option 3 is
also out of consideration and Option 4 will not give the true generalization of
trials. Option 5 gives the best results of all but the RFECV method take some
considerable time to run.

Fig. 3. Butterworth with filtering f = 0.4 Fig. 4. Butterworth with filtering f = 1

Fig. 5. Butterworth with filtering f = 2

So now we filtered all 32 EEG channels with digital Butterworth low-pass
filter banks with 5 cut-off frequencies f = [0.5,1.5,2,3,20]. There are total of 32× 5
= 160 features in the feature set. Then RFECV method is applied with option 2,
14 optimal features are reached from 160 total features with 90% accuracy, Fig. 7
represents the ROC curve using the RFECV method with option 2 for ‘Grasp-
and-Lift’ dataset. Then we applied RFECV selection method using option 5 just
like option 2. Again the 32 EEG channels are filtered with 5 low-pass filter banks
of order 5 at f = [0.5,1.5,2,3,20], so there is a total of 160 features before RFECV
feature selection. Figure 8 shows the ROC curve with option 5.
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Fig. 6. ROC AUC for Butterworth low pass filter used on all columns, ROC AUC, is
increased to 0.83 from 0.73

Fig. 7. ROC & AOC using Option 2 Fig. 8. ROC & AOC using Option 5

Option 5 gives the best accuracy of 91% better than about 90% accuracy of
option 2 with RFECV automated feature selection for Grasp-And-Lift dataset,
but as compared to option 2, option 5 takes six times more time to run. While
for option 5 RFECV method is executed for all classes separately that means
RFECV method runs for six times and optimal features are found for each class
separately, which are presented in Table 1.

3 Experimental Study

3.1 Implementation on Graz 2A BBCI Dataset

To confirm the performance of developed system, we have to test it with more
datasets, we take the Graz dataset 2A from BBCI competition IV [16]. It is a
four-class problem for the detection of motor imagery movements of left hand
(class1), right hand (class2), both feet (class3) and tongue (class4). So, for each
subject out of 72 trials for each class, 50 trials are used for training, and 22
trials are used for evaluation or classification. For this dataset, we performed
two experiments using our proposed model.
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Table 1. Optimal features selection using RFECV

Class # Hand movement Optimal features

1 Hand start 7

2 First digit touch 27

3 Both start load phase 45

4 Lift off 31

5 Replace 25

6 Both released 15

Experiment 1
Digital Butterworth low-pass filter banks of order 5 with 4 cut-off frequencies
f = [0.5,1.5,2,3] are used. 22× 4 = 88 features are given to RFECV for feature
selection. Figure 9 shows the optimal number of features for this dataset against
the cross-validation score. Table 2 concludes the results of experiment 1 with
our approach for Graz 2A dataset and Fig. 10 shows the average ROC AUC for
experiment 1.

Fig. 9. Exp-1 features for Graz 2A Fig. 10. Exp-1 ROC & AUC on Graz
2A

We also computed kappa score for all subjects and mean kappa score for
overall experiment 1, which is 0.2155 is quite promising and competitive with
the top five participants by using 50% less data for each subject.

Experiment 2
For artifact processing we implemented linear regression based artifact removal
method for experiment 2 on Graz 2A BBCI dataset. The result of applying linear
regression based EOG artifact removal method on subject A01 where fluctua-
tions in EOG channels shows eye blinking which is the corrected signal as shown
after EOG artifact processing. Table 2 presents the summary of experiment 2 on
Graz 2A dataset using the artifact-processing unit.
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Table 2. Result summary of Experiment 1 & 2 on GRAZ2A

Subject Subject name Experiment 1 Experiment 2

Optimal features AOC ROC Kappa score Optimal features AOC ROC Kappa score

1 A01 33 0.65 0.23 34 0.77 0.40

2 A02 37 0.58 0.10 8 0.81 0.48

3 A03 37 0.68 0.26 27 0.79 0.43

4 A04 32 0.63 0.19 45 0.78 0.42

5 A05 36 0.67 0.28 50 0.79 0.45

6 A06 40 0.62 0.20 30 0.74 0.39

7 A07 45 0.67 0.25 26 0.80 0.44

8 A08 13 0.68 0.26 7 0.80 0.46

9 A09 14 0.64 0.19 23 0.76 0.38

Average 0.65 0.2155 0.78 0.42

3.2 Implementation on Graz 2B BBCI Dataset

It is a two-class problem for the detection of right and left hand motor imagery
movements. For all nine subjects (B01 to B09), there are 5 sessions recorded
signal, out of which 3 sessions are meant to use for training and 2 are meant
to use for testing/evaluation. We performed two experiments on this Graz 2B
BBCI dataset using our proposed model.

Experiment 1
For first experiment on Graz 2B dataset we used the same model just like exper-
iment 1 of Graz 2A dataset, the only difference is that as there are only 3 EEG
channels instead of 22 EEG channels and all 3 EEG channels (C3, Cz and C4)
are contributing positively for the classification of brain activity. Just like Graz
2A dataset this dataset also has missing (NaN) values and idle/other events
recorded data. Then we applied the Digital Butterworth low-pass filter banks of
order 5 at six cut-off frequencies i.e. f = [1,2,3,4,7,9,20].

Experiment 2
For experiment 2 the missing values are resolved by averaging method. Then
the signal is corrected by linear regression based artifact removal method. The
signal data is filtered with Butterworth low-pass filter banks of order 5 at cut-off
frequencies f = [1,2,3,4,7,9,20] just like experiment 1. For experiment 2 on Graz
2B dataset, we achieved a promising mean Cohen’s kappa score of 0.61 and ROC
AUC accuracy of about 93% as shown in Figs. 11 and 12. The accuracy achieved
through this experiment on kappa score is quite promising.

CSP is widely used for EEG based BCI systems [17], and it shows good
results. For benchmarking we applied the CSP on same datasets and kept the
random forest as a classifier. The detail discussion for all three datasets exper-
iments is presented below. Table 3 summarizes the results obtained using our
proposed approach as compared to the CSP method.
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Fig. 11. Exp-1 features for Graz 2B Fig. 12. Exp-1 ROC & AUC on Graz
2B

Table 3. Summary of results obtained using proposed approach

Dataset Methods Accuracy method Accuracy

Grasp-And-Lift Butterworth, RFECV, RF classifier AUC ROC 91.3%

CSP with RF classifier AUC ROC 89.13%

Graz 2A Dataset Butterworth, RFECV, RF classifier Kappa Score 0.42

CSP with RF classifier Kappa Score 0.31

Graz 2B dataset Butterworth, RFECV, RF classifier Kappa Score 0.61

SP with RF classifier Kappa Score 0.60

4 Conclusion and Future Work

To compensate the noise and artifacts of EEG signals this paper presents an
improved model for feature construction and feature selection and hence pro-
vide a more efficient BCI system to classify motor imagery. For ‘Grasp-And-
Lift’ challenge we increased the accuracy to 91% from 73% using our proposed
model with 25% less data for training. For Graz 2A and 2B datasets, we achieved
kappa scores of 0.42 and 0.61 respectively, by using 50% and 40% reduced data.
For all our experiments, we used relatively simple random classifier for feature
classification. The promising results achieved by using our proposed feature con-
struction and feature selection model shows the potential of its use for online
experimentation. Further work will focus on online experiments to minimize the
noise and improve the efficiency for its effectiveness.
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