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Abstract. In online interactions, users frequently add emojis (e.g., smi-
leys, hearts, angry faces) to text for expressing the emotions behind the
communication context, aiming at a better interpretation to text espe-
cially of polysemous short expressions. Emotion recognition refers to the
automated process of identifying and classifying human emotions. If text-
based emoticons (i.e., emojis created by textual symbols and characters)
can be directly understood by semantic-based context recognition tools
used in the Web and Artificial Intelligence and robotics, image-based
emojis need instead image recognition for a complete semantic context
interpretation. This study aims to explore and compare systematically
different classification models of emoticon pictograms collected from the
Internet, with different labels according to the Ekman model of six basic
emotions. A first comparison involves supervised machine learning clas-
sifiers trained on features extracted through neural networks. In the sec-
ond phase, the comparison is extended to different deep learning models.
Results indicate that deep learning models performed excellent, and tra-
ditional supervised algorithms also achieve very promising outcomes.

Keywords: Machine learning · Deep learning · Emotion recognition ·
Transfer learning · Emoticons

1 Introduction

The need to express emotional context to text message or to give emotional
feedback, lead to the spread of emojis (i.e., image-based emoticons) and memes
in web-based social interactions. While emoticons were initially codified by stan-
dard sequences of characters, the large variety of pictograms available on different
platforms and devices, allow denoting a wide range of emotional nuances. Emo-
tion recognition of image-based emoticons for context interpretation became,
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thus, a novel task for web-based semantics. For instance, in social networks,
social media websites and applications, as well as in video-calling tools (e.g.,
Zoom, Webex, Teams, Meet) image-based emotional pictograms (e.g., emojis,
GIFS, memes) are integrated to be used to communicate messages in an emo-
tional context or to send emotional feedback, usually called reaction. If humans
convey their messages by using different facial expressions, in textual communi-
cation over different social media platforms, people like to add emotional clues
through emojis to convey the emotional meaning when the face visual is not
available or limited, and to add reactions as feedback to live video communica-
tion (e.g., live streaming, video calls). Images are among the most immediate
clues to arouse emotional communication and empathy through media.

Most studies conducted regarding emotion recognition, based on real facial
expressions, and speech, use a limited set of emotions. The most used and simple
for a universal emotion recognition without cultural or geographical biases is the
Ekman model of emotions with its six basic emotions categories (i.e., fear, anger,
joy, sadness, disgust, and surprise) [8]. Classification of real facial images [9] has
been done with high precision into the six basic emotion of the Ekman categoriza-
tion, based on micro-expressions [10–12]. Also, the semantic analysis of textual
messages in social networks is well studied, using term semantics or textual emoti-
cons. To the best of our knowledge, there is no automatic system focused on the
recognition of emotions from emojis pictograms, which hype of use is still recent.

We study and compare the application to pictogram emojis of emotional
classification by traditional supervised machine learning techniques and deep
learning approaches. From traditional machine learning techniques, we leverage
k-nearest neighbors (K-NN) [1], Support Vector Machine (SVM) [2], Decision
Tree [3] and Linear Discriminant Analysis (LDA) [4] classifiers. In deep learn-
ing approaches, to solve the problem of the extremely high number of sam-
ples required for training we have used transfer learning techniques based on
pre-trained classification models for AlexNet [5,18], GoogleNet [14] and Incep-
tionV3 [6]. Experimental results indicate that deep-learning classifiers with
transfer learning perform better compared to traditional machine learning clas-
sifiers on a limited number of samples and balanced classes. The rest of the
paper is organized as follows. Section 2 reports the research methodology and
data set used for conducting this study. Section 3 describes deep learning mod-
els, traditional supervised classifiers, and feature descriptors used in this study.
Section 4 presents the experimental results followed by the discussion. Finally,
Sect. 5 concludes this study and outlines some future directions.

2 Classification Methodology

In this study, two approaches have been compared for classifying emojis pic-
tograms into the six basic emotional categories of the Ekman model. Pre-
trained deep models, i.e., AlexNet, InceptionV3, and GoogleNet, have been used,
then applying a fine-tuning (i.e., a re-training) phase using transfer learning,
which specializes the training on the six categories of emotions. In addition,
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traditional machine learning classifiers, i.e., k-Nearest Neighbors (k-NN), Sup-
port Vector Machines (SVM), Decision Tree, and Linear Discriminant Analysis
(LDA) are also trained on the deep features extracted through the AlexNet and
Resnet18 [13,18] neural networks (NN) [7].

2.1 Feature Extraction for Supervised Machine Learning

Supervised machine learning requires features and labels for classification. In
our experiments using traditional supervised algorithms, the label is provided by
the image emotion class, while the classification features are extracted from the
image training set using deep neural networks. In particular, we used the AlexNet
and ResNet18 Convolutional Neural Networks (CNNs) for feature extraction [7].
CNNs are a specialized type of Deep Neural Network, able to reduce the infor-
mation explosion: in the convolutional layers, the image information is filtered,
generating a feature map. The number of final feature maps will be equal to the
amount of filters used in the convolutional layers. In the fully connected layers
following the pooling layer which samples the size of each feature map to reduce
the computation, the filtered information is converted to a feature vector which
can be given as output after a weighting phase. Such a final weighted vector is
extracted and fed to machine learning algorithms. In particular, AlexNet fea-
tures are extracted from the fc7 fully-connected layer and Resnet18 features
from the pool5 global pooling layer.

2.2 Knowledge Transfer for Deep Learning

Deep learning models can be trained from scratch, requiring high computational
power and a large number of training samples. On the other hand, using Knowl-
edge Transfer (i.e., Transfer Learning) a neural network pre-trained on large data
sets of general images is used because already capable of recognizing the low-
level features of images, e.g. color distribution, shapes, edges, and corners [17].
The neural network is then fine-tuned with additional fully connected layers
according to our data set of emojis, to recognize the emotional categories. This
method is proved efficient on image and emotion classification, using the knowl-
edge acquired by the NN on images, i.e., the abilities to recognize low-level
features, as the foundation to create a new model for a new problem.

2.3 Emojis Pictogram Classification Framework

Figure 1 shows the structure of our emojis pictogram recognition framework. The
figure shows two blocks representing the flow of the training (left) and testing
(right) phases. The top part shows the training and testing process of traditional
machine learning classifiers; the bottom part shows how deep learning models
are trained and tested. After feature extraction, the images go through the pre-
processing phase (i.e., cleaning from text and frames), then data augmentation
techniques are used to have more samples and to recognize emojis that are not
perfectly even. Machine learning or deep learning using knowledge transfer are
used for classification.



Emojis Pictogram Classification 149

3 Experimental Setup

3.1 Data Set Collection and Balancing

The data set used in this work has been built by authors collecting emojis pic-
tograms from different social media and devices. Emotion terms related to the
Ekman model were used to search the Web for the images, with a focus on select-
ing visualizations from different software and devices, which may show with
different facets the images related to the same emoticon. Image-based emoti-
cons have been added to images related to different visualizations of text-based
emoticons. The labels have been assigned to images based on the Ekman model,
using the same emotional words used in the web-based search phase. Data aug-
mentation techniques i.e., rotation, translation, shear, and reflection, allowed to
diversify the samples and balance classes. The balanced number of samples for
each class in the data set is 624 training images and 156 test images for each
class, for a total of 4680 images, split for training and testing at an 80%–20%
rate.

3.2 Preprocessing of Input Images and Experimental Setup

Initially, images are preprocessed to filter out textual or noise elements. Then,
data augmentation techniques are applied to balance categories increasing the
number of samples in the data set for the required categories, as explained in
Sect. 2.1. Then images are resized according to the input of the models i.e., [227
227 3], [224 224 3], and [299 299 3] pixels for AlexNet, GoogleNet, and Incep-
tionV3 deep neural networks respectively. The data set is divided into training
and testing sets, i.e., 80% samples in training, while 20% images in the test
set used for validation. Features are extracted through AlexNet and ResNet-18
pre-trained deep models, that are fed as input to traditional machine learning
classifiers for the training and testing phase. Each traditional classifier is trained
independently on both deep features using their own parameters setup. Using

Fig. 1. Framework of the image-based emojis classification
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transfer learning, the last fully connected layers of pre-trained deep models are
fine-tuned on the emotion categories.

3.3 Feature Descriptors

To train and test traditional machine learning classifiers, fixed-size feature
descriptors have been extracted [7] using the two pre-trained deep models of
AlexNet [5] and Resnet18 [13]. The length of the feature descriptors, i.e. vec-
tors, extracted through AlexNet and ResNet18 deep models is 1 × 4096 and
1 × 512 respectively for each emoji pictogram. Higher-level layers give low-level
features and the feature descriptors length will be long, while deeper layers give
us higher-level features with reduced size feature descriptors that can be easily
processed. These features are extracted to train and test traditional machine
learning classifiers.

3.4 Supervised Machine Learning Classifiers

The following supervised machine learning classifiers trained on the feature
extracted through AlexNet and ResNet18 deep models.

K Nearest Neighbors (K-NN) [1] finds the k data points that are nearest
to a given sample data point. The number of k neighbors is tuned by the
user. For each sample of the testing data, the algorithm output associates
membership to each emotion class, which depends on the value of k i.e., how
many nearest neighbors are voting to a specific class. Experiments for K-NN
have been performed with different k values i.e., odd values between 1 and
15. The value of K i.e., the number of neighbors which will contribute to the
final decision, is tuned by the user and odd values are recommended to have
fewer chances of a tie.

Support Vector Machine (SVM) [2], is designed for binary classification. To
classify the data points (i.e., our emoji samples), the objective is to find the
partition of the input space through hyper-planes as decision boundaries. For
multi-class classification, the problem is divided into multiple binary clas-
sification problems. In this study we have used Linear SVM, Radial Basis
Function (RBF) Kernel, and Polynomial Kernel.

Decision Tree (DS) divides the data into sub-groups recursively. It is a method
for the approximation of discrete-valued functions. DS learns a heuristic, non-
backtracking search, through the space of all possible decision trees. A pruning
algorithm is given to avoid over-fitting [3].

Linear Discriminant Analysis Classifier (LDA) [4] is used to discover the
linear combination of features that effectively isolates categories. For multi-
class classification, Fisher discriminant is used to discover a subspace that
restrains class inconsistency.
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3.5 Deep Learning Classifiers

Three deep learning classifiers, i.e., AlexNet, GoogleNet, and InceptionV3 are
pre-trained on the ImageNet database including 14,197,122 images of over 1000
different general object categories. Then, transfer learning is applied.

AlexNet [5] contains 8 layers, i.e., the first 5 layers are convolutional layers and
the last 3 are fully connected layers. The input image is fed to the pre-trained
network with a size of [227 × 227 × 3] pixels. The softmax function receives
the output of the last fully connected layer, which produces a distribution
over the given categories.

InceptionV3 [6] is a deep convolutional neural network with 48 layers. The
InceptionV3 pre-trained neural network has 3 main blocks: the basic convo-
lutional block, Inception module, and classification block. The training pro-
cess of InceptionV3 is accelerated by using a 1 × 1 convolutional kernel by
decreasing the number of feature channels.

GoogleNet [14] is a 22 layers deep convolutional neural network. The input of
the GoogleNet RGB images is of size [224 × 224 × 3] pixels.

For fine-tuning deep neural networks, 3 different independent training func-
tions/optimizers are used, i.e., Adaptive Moment Estimation (adam) [15],
stochastic gradient descent with momentum (sgdm) [16], and Root Mean Square
Propagation (rmsprop). Adam is an extension of stochastic gradient descent that
has a small memory requirement and requires only first-order gradients, while
sgdm uses stochastic gradient descent with momentum, i.e. a moving average of
gradients, used to update the weights. rmsprop uses an adaptive learning rate
instead of setting it as a hyper-parameter.

4 Experimental Results

This section describes and compares the experimental results achieved through
traditional and deep learning classifiers. Accuracy is used as a performance met-
ric to grade different classification algorithms, chosen as the most commonly
used metric both for supervised and deep learning.

4.1 Traditional Machine Learning Classifiers Performance

This section expands on the experimental results achieved using traditional
machine learning classifiers described in Sect. 3.2. Figure 3(a) highlights an accu-
racy achieved through k-NN classifiers using different odd values of k ranging
from 1 to 15. We used features that are extracted through AlexNet and ResNet18.
Experimental results indicate that for k = 1, we achieved the highest accuracy
94.66% and 94.97% using features extracted through AlexNet and Resnet18deep
models, respectively. With a higher k, the classification performance keeps on
degrading. K-NN Achieves higher performance on features extracted through
Resnet18 model. SVM classifier trained using Linear, Radial Basis Function
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(RBF), and Polynomial Kernels. Results Fig. 3(b) indicates that Linear SVM
gives better performance compared to RBF and polynomial kernels i.e., 94.97%
accuracy is achieved using features extracted through AlexNet, while SVM with
RBF kernel gives less than 25% accuracy, which is very low. Unlike K-NN, SVM
performs better on AlexNet extracted features. When data is linearly separable,
Linear SVM performs better. K-NN achieved the highest accuracy 94.97% with
k = 1 on Resnet18 feature descriptor, while linear SVM achieve the same high-
est accuracy of 94.97% through AlexNet feature descriptor. Results show that
K-NN and SVM achieve the same highest accuracy (94.97%), while LDA and
Decision tree performance is low compared to SVM and K-NN. Decision Tree
achieves less than (66%) accuracy, which is very low compared to the other three
traditional supervised classifiers.

Fig. 2. (a) and (b): on left confusion matrix of AlexNet and right confusion matrix of
the best performing InceptionV3 NN (accuracy achieved: 99.47%)

4.2 Deep Classifiers Performance

This paragraph shows the results of the experimented deep neural networks.
GoogleNet and InceptionV3 perform better compared to AlexNet. We

achieved the highest accuracy of 97.86%, 98.40%, and 99.47% through AlexNet,
GoogleNet, and InceptionV3 model respectively. For training of these neural
networks, we have used three different training functions (optimizer) i.e. adam,
sgdm, and rmsprop. Table 1 shows the details of the experiments performed using
different training functions and Learning Rates. The loss for InceptionV3 is lower
compared to GoogleNet. The highest accuracy (97.47%) is achieved using Incep-
tionV3 model with a learning rate 0.0001 and training function adam, while
GoogleNet achieve highest performance 98.40% using training function rmsprop
and learning rate 0.0001. The possible reason for the highest accuracy achieved
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Fig. 3. (a) and (b): on the left, performance of K-NN for different k values; on the
right, performance of SVM with different kernels on deep features

through InceptionV3 model may be the number of layers of the model, Incep-
tionV3 has more layers compared to GoogleNet and AlexNet. AlexNet achieves
highest accuracy 97.86% using training function adam and learning rate 0.00001.
Another important observation is that for both AlexNet and InceptionV3, the
highest accuracy is achieved through adam, while GoogleNet achieves the highest
accuracy through rmsprop.

4.3 Discussion

Figure 4 shows the comparison of the deep learning (DL) and traditional super-
vised classifiers trained on the features extracted through AlexNet and Resnet18.
InceptionV3 achieves the highest performance, while deep learning outperforms
traditional machine learning. Among traditional classifiers, K-NN and SVM have
the same best performance around 95%, similar to the LDA in the second place
around 92%. Decision Tree has the worst performance, i.e. around 65%.

Further analysis of the performance of InceptionV3 (IV3) and AlexNet (AN),
i.e., the best and the worst DL classifiers, can be achieved with the help of
confusion matrices shown in Fig. 2(a) and (b), to show the overall and class-wise
performance. IV3 achieved an overall accuracy of 99.47%, while AN achieved
97.86%. IV3 perfectly classified all the images of class Joy and Anger, while AN

Table 1. Validation accuracy (%) achieved using different learning rates (LR) and
training functions.

Classifier AlexNet GoogleNet InceptionV3

Optimizer adam sgdm rmsprop adam sgdm rmsprop adam sgdm rmsprop

Learning rate Accuracy achieved

0.01 16.67 16.67 16.67 16.67 16.67 16.67 82.37 98.4 79.81

0.001 16.67 16.67 16.67 84.72 97.86 16.67 95.51 98.61 96.37

0.0001 94.55 96.69 92.95 98.29 97.33 98.40 99.47 93.91 98.18

0.00001 97.86 95.51 97.65 96.69 82.26 97.54 93.91 75.53 94.76
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misclassified several images. Besides the confusion matrix of the best-performing
network, it is interesting to see also the confusion matrix of the worse deep model.
In fact, from the confusion matrix, we can see which classes are wrongly classified
in which classes, and see if such classes have any common element which can
motivate the errors or if instead, the mistake on the network training is evident.
In this case, we can see that AlexNet cannot detect the emoji pictogram features
as easily as other networks. If some errors can depend on the samples, such as
the Angry emotions mistaken into Sad or Disgust, where we have the same
downward direction of lips, in other cases such as joy mistaken as Sad, Fear,
and Angry, something went wrong in the network training. The final result is
a high accuracy, but the single mistakes are heavier than the ones made by
InceptionV3. In the latter, Joy, which is the emotional class that also in face
detection is easier to recognize, does not present any mistake. The errors are
apparent in the Fear class mistaken as Sad or Disgust, sharing similar features,
Sad is one time mistaken as Angry, Surprise as Fear one time, having the big
open mouth as a shared element. Only in the case of disgust mistaken as Joy,
the training issue is more evident. Results achieved through InceptionV3 model
are better compared to the other tested classifiers of this study.

Fig. 4. Highest performance achieved by deep learning models & traditional classifiers

5 Conclusion

In this study, systematic experiments are performed to classify emojis pictograms
into six basic classes of Ekman emotions. We run the experiments on traditional
supervised classifiers trained on deep features extracted through AlexNet and
Resnet18 pre-trained networks, and three deep learning pre-trained NNs, trained
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using transfer learning. Traditional classifiers K-NN and SVM achieved 94.97%
accuracy using Resnet and AlexNet features respectively, while Decision Tree
achieved the lowest accuracy i.e., 65.49% and 58.01% using AlexNet and ResNet
features respectively. The highest 99.47% accuracy is achieved by InceptionV3
model, while AlexNet and GoogleNet performances are better compared to tra-
ditional supervised classifiers.

A fruitful extension of this work is to use multi-modal approaches e.g., merg-
ing our work with Natural Language Processing techniques for a deeper context
analysis.
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