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Abstract. Formal Concept Analysis (FCA) allows to analyze binary
data by deriving concepts and ordering them in lattices. One of the main
goals of FCA is to enable humans to comprehend the information that
is encapsulated in the data; however, the large size of concept lattices
is a limiting factor for the feasibility of understanding the underlying
structural properties. The size of such a lattice depends on the number
of subcontexts in the corresponding formal context that are isomorphic
to a contranominal scale of high dimension. In this work, we propose
the algorithm ContraFinder that enables the computation of all con-
tranominal scales of a given formal context. Leveraging this algorithm,
we introduce δ-adjusting, a novel approach in order to decrease the
number of contranominal scales in a formal context by the selection of
an appropriate attribute subset. We demonstrate that δ-adjusting a
context reduces the size of the hereby emerging sub-semilattice and that
the implication set is restricted to meaningful implications. This is evalu-
ated with respect to its associated knowledge by means of a classification
task. Hence, our proposed technique strongly improves understandability
while preserving important conceptual structures.

Keywords: Formal Concept Analysis · Contranominal scales ·
Concept lattices · Attribute selection · Feature selection · Implications

1 Introduction

One of the main objectives of Formal Concept Analysis (FCA) is to present data
in a comprehensible way. For this, the data is clustered into concepts which are
then ordered in a lattice structure. Relationships between the features are rep-
resented as implications. However, the complexity of the corresponding concept
lattice can increase exponentially in the size of the input data. Beyond that, the
size of the implication set is also exponential in the worst case, even when it
is restricted to a minimal base. As humans tend to comprehend connections in
smaller chunks of data, the understandability is decreased by this exponential
nature even in medium sized datasets. That is why reducing large and com-
plex data to meaningful substructures by eliminating redundant information
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enhances the application of Formal Concept Analysis. Nested line diagrams [26]
and drawing algorithms [8] can improve the readability of concept lattices by
optimizing their presentation. However, neither of them compresses the size of
the datasets and thus grasping relationships in large concept lattices remains
hard. Therefore, our research question is: How can one reduce the lattice
size as much as possible by reducing the data as little as possible?
There are different ways of reducing the data. In this paper, we focus on the
removal of attributes. The size of the concept lattice is heavily influenced by
the number of its Boolean suborders. A lattice contains such an k-dimensional
Boolean suborder if and only if the corresponding formal context contains an
k-dimensional contranominal scale [1,16]. Thus, to reduce the size of the con-
cept lattice it is reasonable to eliminate those. However, deciding on the largest
contranominal scale of a formal context is an NP-complete problem. Therefore,
choosing sensible substructures of formal contexts which can be augmented in
order to reduce the number of large contranominal scales is a challenging task.

In this work, we propose the algorithm ContraFinder that is more effi-
cient then prior approaches in computing all contranominal scales in real world
datasets. This enables us to present our novel approach δ-adjusting which
focuses on the selection of an appropriate attribute subset of a formal context.
To this end, we measure the influence of each attribute with respect to the
number of contranominal scales. Hereby, a sub-semilattice is computed that pre-
serves the meet-operation. This provides the advantage to not only maintain
all implications between the selected attributes but also does not produce false
implications and thus retains underlying structure. We conduct experiments to
demonstrate that the subcontexts that arise by δ-adjusting decrease the size
of the concept lattice and the implication set while preserving underlying knowl-
edge. We evaluate the remaining knowledge by training a classification task.
This results in a more understandable depiction of the encapsulated data for the
human mind.

Due to space constraints, this work only briefly sketches proofs. A version
containing all proofs is released on arxiv.org1.

2 Foundations

We start this section by recalling notions from FCA [10]. A formal context is a
triple K := (G,M, I), consisting of an object set G, an attribute set M and a
binary incidence relation I ⊆ G × M . In this work, G and M are assumed to be
finite. The complementary formal context is given by K

C := (G,M, (G×M)\I).
The maps ·′ : P(G) → P(M), A �→ A′ := {m ∈ M | ∀g ∈ A : (g,m) ∈ I}
and ·′ : P(M) → P(G), B �→ B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈ I} are called
derivations. A pair c = (A,B) with A ⊆ G and B ⊆ M such that A′ = B
and B′ = A is called a formal concept of the context (G,M, I). The set of all
formal concepts of K is denoted by B(K). The pair consisting of B(K) and the
order ≤ ⊂ (B(K) × B(K)) with (A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 defines the
1 https://arxiv.org/abs/2106.10978.
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concept lattice B(K). In every lattice and thus every concept lattice each subset
U has a unique infimum and supremum which are denoted by

∧
U and

∨
U .

The contranominal scale of dimension k is N
c
k := ({1, 2, ..., k}, {1, 2, ..., k}, 	=).

Its concept lattice is the Boolean lattices of dimension k and consists of 2k

concepts. Let K = (G,M, I). We call an attribute m clarifiable if there is an
attribute n 	= m with n′ = m′. In addition we call it reducible if there is a set
X ⊆ M with m 	⊆ X and m′ = X ′. Otherwise, we call m irreducible. K is called
attribute clarified (attribute reduced) if it does not contain clarifiable (reducible)
attributes. The definitions for the object set are analogous. If K is attribute
clarified and object clarified (attribute reduced and object reduced), we say K is
clarified (reduced). This contexts are unique up to isomorphisms. Their concept
lattices are isomorphic to B(K). A subcontext S = (H,N, J) of K = (G,M, I) is
a formal context with H ⊆ G, N ⊆ M and J = I ∩ (H × N). We denote this by
S ≤ K and use the notion K[H,N ] := (H,N, I ∩ (H ×N)). If S ≤ K with S ∼= N

c
k

we call S a contranominal scale in K. For a (concept) lattice (L,≤) and a subset
S ⊆ L, (S,≤S×S) is called suborder of (L,≤) A suborder S of a lattice is called
a sub-meet-semilattice if (a, b ∈ S ⇒ (a ∧ b) ∈ S) holds. In a formal context
K = (G,M, I) with X,Y ⊆ M define an implication as X → Y with premise X
and conclusion Y . An implication is valid in K if X ′ ⊂ Y ′. In this case, we call
X → Y an implication of K. The set of all implications of a formal context K is
denoted by Imp(K). A minimal set L(K) ≤ Imp(K) defines an implication base
if every implication of K follows from L(K) by composition. An implication base
of minimal size is called canonical base of K and is denoted by C(K).

Now recall some notions from graph theory. A graph is a pair (V,E) with
a set of vertices V and a set of edges E ⊂ (

V
2

)
. Two vertices u, v are called

adjacent if {u, v} ∈ E. The adjacent vertices of a vertex are called its neighbors.
In this work graphs are undirected and have no multiple edges or loops. A graph
with two sets S and T with S ∪ T = V and S ∩ T = ∅ such that there is no
edge with both vertices in S or both vertices in T is called bipartite and denoted
by (S, T,E). A matching in a graph is a subset of the edges such that no two
edges share a vertex. It is called induced if no two edges share vertices with some
edge not in the matching. For a formal context (G,M, I) the associated bipartite
graph is the graph where S and T correspond to G and M and the set of edges
to I.

3 Related Work

In the field of Formal Concept Analysis numerous approaches deal with simpli-
fying the structure of large datasets. Large research interest was dedicated to
altering the incidence relation together with the objects and attributes in order
to achieve smaller contexts. A procedure based on a random projection is intro-
duced in [18]. Dias and Vierira [5] investigate the replacement of similar objects
by a single representative. They evaluate this strategy by measuring the appear-
ance of false implications on the new object set. In the attribute case a similar
approach is explored by Kuitche et al. [17]. Similar to our method, many com-
mon prior approaches are based on the selection of subcontexts. For example,
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Hanika et al. [12] rate attributes based on the distribution of the objects in the
concepts and select a small relevant subset of them. A different approach is to
select a subset of concepts from the concept lattice. While it is possible to sample
concepts randomly [2], the selection of concepts by using measures is well inves-
tigated. To this end, a structural approach is given in [7] through dismantling
where a sublattice is chosen by the iterative elimination of all doubly irreducible
concepts. Kuznetsov [20] proposes a stability measure for formal concepts based
on the sizes of the concepts. The support measure is used by Stumme et al. [25]
to generate iceberg lattices. Our approach follows up on this, as we also preserve
sub-semilattices of the original concept lattice. However, we are not restricted to
the selection of iceberg lattices. Compared to many other approaches we do not
alter the incidence or the objects and thus do not introduce false implications.

4 Computing Contranominal Scales

In this section, we examine the complexity of computing all contranominals and
provide the recursive backtracking algorithm ContraFinder to solve this task.

4.1 Computing Contranominals Is Hard

The problem of computing contranominal scales is closely related to the problem
of computing cliques in graphs and induced maximum matchings in bipartite
graphs.

The relationship between the induced matching problem and the contranom-
inal scale problem follows directly from their respective definitions.

Lemma 1. Let (S, T,E) be a bipartite graph, K := (S, T, (S × T )\E) a formal
context and H ⊂ S,N ⊂ T . The edges between H and N are an induced matching
of size k in (S, T,E) iff K[H,N ] is a contranominal scale of dimension k.

The lemma follows directly from the definition of induced matchings and
contranominal scales. To investigate the connection between the clique problem
and the contranominal scale problem, define the conflict graph as follows:

Definition 1. Let K := (G,M, I) be a formal context. Define the conflict graph
of K as the graph cg(K) := (V,E) with the vertex set V = (G × M)\I and the
edge set E = {{(g,m), (h, n)} ∈ (

V
2

) | (g, n) ∈ I, (h,m) ∈ I}.
The relationship between the cliques in the conflict graph and the contra-

nominal scales in the formal context is given through the following lemma.

Lemma 2. Let K = (G,M, I) be a formal context, cg(K) its conflict graph and
H ⊂ G,N ⊂ M . Then K[H,N ] is a contranominal scale of dimension k iff
(H × N)\I is a clique of size k in cg(K).

The lemma follows from the definition of the conflict graph. Furthermore, all
three problems are in the same computational class as the clique problem is NP -
complete [15] and Lozin [21] shows the similar result for the induced matching
problem in the bipartite case. Thus, Lemma 1 provides the following:

Proposition 1. Deciding the CONTRANOMINAL PROBLEM is NP -complete.
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4.2 Baseline Algorithms

Building on Lemma 2 the set of all contranominal scales can be computed using
algorithms for iterating all cliques in the conflict graph. The set of all cliques
then corresponds to the set of all contranominal scales in the formal context. An
algorithm to iterate all cliques in a graph is proposed by Bron and Kerbosch [3].

An alternative approach is to use branch and search algorithms such as [27].
Those exploit the fact that for each maximum matching and each vertex there is
either an adjacent edge to this vertex in the matching or each of its neighboring
vertices has an adjacent edge in the matching. Branching on these vertices the
size of the graph is iteratively decreased. Note, that this idea, in contrast to our
approach described below, does not exploit bipartiteness of the graph.

4.3 ContraFinder: An Algorithm to Compute Contranominal Scales

In this section we introduce the recursive backtracking algorithm ContraFinder
to compute all contranominal scales. Due to Proposition 1, it has exponential
runtime, thus two speedup techniques are proposed in the subsequent section.

The main idea behind ContraFinder is the following. In each recursion step
a set of tuples corresponding to an attribute set is investigated:

Definition 2. Let K = (G,M, I) be a formal context and N ⊂ M . Define
C(N) := {(g,m) 	∈ I | g ∈ G,m ∈ N and ∀x ∈ N \ {m} : (g, x) ∈ I} as the set
of characterizing tuples of N . We call N the generator of C(N).

The characterizing tuples encodes all contranominal scales for this attributes:

Lemma 3. Let K = (G,M, I), N ⊆ M and H(m) := {g ∈ G | (g,m) ∈ C(N)}.
Then K[O,N ] is a contranominal scale iff O contains exactly one element of
each H(m) with m ∈ N .

The proof follows from the fact, that the non-incident pairs of each con-
tranominal scale are represented by the combinations of characterizing tuples
with different attributes. Lemma 3 implies that such contranominal scales can
exist only if no H(m) is empty and |N | = |O|. Both this sets can be recon-
structed from a set of characterizing tuples corresponding to N . This is done
in unpack contranominals in Algorithm 1. Therefore, N does not have to be
memorized in ContraFinder. The algorithm exploits the fact that for each set
of characterizing tuples C(N) the attributes N can be ordered and iterated in
lexicographical order, similar to NextClosure [10, sec. 2.1].

Definition 3. Let (M,≤) be a linearly ordered set. The lexicographical order
on P(M) is a linear order. Let A = a1, . . . , an and B = b1, . . . , bm with ai < ai+1

and bi < bi+1. A < B in case n < m if (a1, . . . , an) = (b1, . . . , bn) and in case
n = m if ∃i : ∀j ≤ i : aj = bj and ai < bi.
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Algorithm 1. ContraFinder
Input: Formal Context K = (G, M, I)
Output: Set of all Contranominal Scales

def compute contranomina l sca l e s (G, M, I ) :
c h a r a c t e r i z i n g t u p l e s (∅, M, ∅, I )

def c h a r a c t e r i z i n g t u p l e s (CN , M̃ , F, I ) :
for m in M̃ in l e x i c o g r a ph i c a l order :

M̃ = M̃ \ {m}
cand CN = {(g, n) ∈ CN | (g, m) ∈ I}
cand m = {(g, m) | (g, m) �∈ I, g �∈ F, �n : (g, n) ∈ CN}
i f |{g | (g, n) ∈ CN}| = |{g | (g, n) ∈ cand CN}| and |cand m| > 0 :

unpack contranominals (cand CN ∪ cand m)
CNnew = cand CN ∪ cand m
Fnew = F ∪ {g ∈ G | (g, m) �∈ I}
c h a r a c t e r i z i n g t u p l e s (CNnew , M̃ , Fnew, I )

def unpack contranominals (CN ) :
N = {m | (g, m) ∈ CN}
for O in {{gm1 , . . . , gm|N|} | mi ∈ N, gmi ∈ {g ∈ G | (g, mi) ∈ CN}}

r epo r t (O, N) as contranominal s c a l e

Similar to Titanic, our algorithm utilises the following anti-monotonic prop-
erty. Each contranominal scale of dimension k has a contranominal scale of
dimension k − 1 as subcontext. Thus, only attribute combinations N have to
be considered if ∀N ′ ⊂ N : C(N ′) 	= ∅. The algorithm removes in each recursion
step the attributes in M̃ in lexicographical order to guarantee that all attribute
combinations of the formal context with contranominal scales are investigated.

In each step the set of forbidden objects F increases, since each contranominal
scale contains exactly one non-incidence in each contained object.

Theorem 1. The algorithm reports every contranominal scale exactly once.

To proof this theorem, one has to show that the lexicographical order and the
anti-monotonic property are respected. ContraFinder, combined with Lemma 1,
can also be used to compute all maximum induced matchings in bipartite graphs.

4.4 Speedup Techniques

Clarifying and Reducing. In the following, we consider clarified and reduced
formal contexts with regards to reconstructing the contranominal scales in the
original context from the contranominal scales of the augmented one. This allows
to use clarifying and reducing as a speedup technique.

In the clarified context, each pair of objects or attributes is merged if equality
of their derivations holds. To deduce the original formal context from the clari-
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fied one the previously merged attributes and objects can be duplicated. Thus,
contranominal scales containing merged objects or attributes are duplicated.

Now, we demonstrate how to reconstruct the contranominal scales from
attribute reduced contexts. Thereby, for each eliminated attribute m we have
to memorize the irreducible attribute set that has the same derivation as m.

Definition 4. Let K = (G,M, I) be a formal context and R(K) the set of all
attributes that are reducible in K. Define the map ω : R(K) → P(M \R(K)) with
x �→ (N ⊂ M \ (R(K) ∪ {x})) such that N ′ = x′ and N of greatest cardinality.
For a fixed object set H ⊆ G, let ωH : R(K) → P(M \ R(K)) be the map with
x �→ {y | y ∈ ω(x),∀h ∈ H : (h, x) 	∈ I ⇒ (h, y) 	∈ I}.

Note, that the map ω is well defined as the uniqueness follows directly from
the maximality of N . The following lemma provides a way to reconstruct the
contranominal scales in the original context from the ones in the reduced one.

Lemma 4. Let K = (G,M, I) be a formal context with Kr its attribute-reduced
subcontext and K the set containing all contranominal scales of Kr. Then the set
K̃ = {K[H, Ñ ] | K[H,N = {n1, . . . , nl}] ∈ K, Ñ = {ñi | ni = ñi ∨ ni ∈ ωH(ñi)}}
contains exactly all contranominal scales of K.

This follows from the definition of reducibility. Thus, to reconstruct contra-
nominal scales, for each x ∈ R(K) all y ∈ ω(x) are considered. U∪x is a candidate
for the attribute set of a contranominal scale in K, if there is a U ⊂ M \ ω(x)
with U ∪ y attribute set of a contranominal scale Sy for all y. This candidate
forms the contranominal scale K[H,U ∪x], if and only if all contranominal scales
Sy share the same object set H. The object reducible case can be done dually.

Knowledge-Cores. The notion of (p, q)-cores is introduced to FCA by Hanika
and Hirth in [11]. Thereby, dense subcontexts are defined as follows:

Definition 5 (Hanika and Hirth [11]). Let K = (G,M, I) and S = K[H,N ]
be formal contexts. S is called a (p, q)-core of K for p, q ∈ N, if ∀g ∈ H : |g′| ≥ p
and ∀m ∈ N : |m′| ≥ q and S is maximal under this condition.

Every formal context with fixed p and q has a unique (p, q)-core. Computing
knowledge cores provides a way to reduce the number of attributes and objects
in a formal context without removing large contranominal scales.

Lemma 5. Let K be a formal context, k ∈ N, and S ≤ K its (k − 1, k − 1)-core.
Then for every contranominal scale C ≤ K of dimension k it holds C ≤ S.

The lemma follows from the maximality of (p, q)-cores. Thus, to compute all
contranominal scales of dimension at least k it is possible to compute them in
the (k − 1, k − 1)-core. Note that in this case however, smaller contranominal
scales might get eliminated. Therefore, if the goal is to compute contranominal
scales of smaller sizes the (k − 1, k − 1)-cores should not be computed.
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5 Attribute Selection

In this section we propose δ-adjusting, a method to select attributes based on
measuring their influence for contranominal scales as follows:

Definition 6. Let K = (G,M, I) be a formal context and k ∈ N. Call N ⊂ M
k-cubic if ∃H ⊂ G with K[H,N ] being a contranominal scale of dimension k
and �Ñ ⊇ N such that Ñ is (k + 1)-cubic. Define the contranominal-influence
of m ∈ M in K as ζ(m) :=

∑∞
k=1

(
|{N ⊂ M | m ∈ N,N is k-cubic}| · 2k

k

)
.

Subcontexts that are k-cubic are directly influencing the concept lattice, as
those dominates the structure as the following shows.

Proposition 2. An attribute set is k-cubic, iff the sub-meet-semilattice that is
generated by its attribute concepts is a Boolean lattice of dimension k that has
no Boolean superlattice in the original concept lattice.

The contranominal influence thus measures the impact of an attribute on the
lattice structure. In this, only the maximal contranominal scales are considered
since the smaller non maximal-ones have no additional structural impact. As
each contranominal scale of dimension k corresponds to 2k concepts, we scale
the number of attribute combinations with this factor. To distribute the impact
of a contranominal scale evenly over all involved attributes, the measure is scaled
by 1

k . With this measure we now define the notions of δ-adjusting.

Definition 7. Let K = (G,M, I) be a formal context and δ ∈ [0, 1]. Let N ⊂ M

minimal such that |N |
|M | ≥ δ, ζ(n) < ζ(m) for all n ∈ N,m ∈ M \ N . We call

Aδ(K) := K[G,N ] the δ-adjusted subcontext of K and B(Aδ(K)) the δ-adjusted
sublattice of B(K).

Note, that δ-adjusting always results in unique contexts. Moreover, every
δ-adjusted sublattice is a sub-meet-semilattice of the original one [10, Prop
31]. For every context K = (G,M, I) it holds that A1 = K and A0 = K[G, ∅]. A
context from a medical diagnosis dataset with measured contranominal influence
and computed 1

2-adjusted subcontext can be retraced in Fig. 1.
It is important to observe that for a context K and its reduced context Kr

a different attribute set can remain if they are δ-adjusted, as can be seen
in Fig. 2. Therefore, the resulting concept lattices for K and Kr can differ. To
preserve structural integrity between δ-adjusted formal contexts and their con-
cept lattices we thus recommend to only consider clarified and reduced formal
contexts. In the rest of this work, these steps are therefore performed prior to
δ-adjusting. Note, that since no attributes are generated no new contranomi-
nal scales can arise by δ-adjusting. Furthermore, removing attributes can not
turn another attribute from irreducible to reducible. On the other hand how-
ever, objects can become reducible as can be seen again in Fig. 2. While 6 is
irreducible in the original context, it is reducible in A 3

5
(K).
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Fig. 1. Top: reduced and clarified medical diagnosis dataset [4]. The 1
2
-adjusted sub-

context is highlighted. The objects are patient numbers. The attributes are described
in the figure together with the count of k-cubic subcontexts and their contranominal
influence ζ. Bottom: lattice of the original (left) and the 1

2
-adjusted (right) dataset.

(Color figure online)

5.1 Properties of Implications

In this section we investigate δ-adjusting with respect to the influence on
implications. Let K = (G,M, I) be a formal context, m ∈ M and X → Y an
implication in K. If m is part of the implication; i.e., m ∈ X or m ∈ Y , this
implication vanishes. Therefore the removal of m in an implication X → Y of
some implication base C(K) is of interest. If m is neither part of a premise nor
a conclusion of an implication X → Y ∈ C(K) its removal has no impact on this
implication base. In case m ∈ Y , its elimination changes all implications X → Y
to X → Y \ {m}. Note that, even though all implications can still be deduced
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Fig. 2. A concept lattice together with two of its contexts K and Kr whereby Kr

is attribute reduced while K contains the reducible element e. In both contexts the
3
5
-adjusted subcontext is highlighted. Their lattices (right to each context) differ.

(Color figure online)

from C′ = {X → Y : X → Y ∪ {m} ∈ C(K)} this set is not necessarily minimal
and in this case is not a base. Especially if {m} = Y the resulting X → ∅ is never
part of an implication base. In case m ∈ X, every Z → X in the base is changed
to Z → X \ {m} ∪ Y while X → Y is removed. Similarly to the conclusion case,
the resulting set of implications can be used to deduce all implications but is
not necessarily an implication base. Moreover, no new implications can emerge
from the removal of attributes, as the following shows.

Lemma 6. Let K = (G,M, I) be a formal context, N ⊂ M and X,Y ⊆ N with
X → Y a non-valid implication in K. Then X → Y is also non-valid in K[G,N ].

The lemma follows from the fact that if X ′ ⊂ Y ′ in K, then X ′ ⊂ Y ′ in a
subcontext of K with all objects. Thus, the relationship between the implications
of a subcontext with all objects and the original context is as follows:

Corollary 1. Let K = (G,M, I) be a formal context, S = K[G,N ] and N ⊂ M .
Then Imp(S) ⊆ Imp(K).

This influences the size of the base of a δ-adjusted subcontext as follows:

Lemma 7. Let K = (G,M, I) a formal context, and S = K[G,N ] and N ⊂ M .
Then |C(S)| ≤ |C(K)|.

To prove this lemma, one can construct an implication set of size at most
|C(K)| that generates all implications. Revisiting the context in Fig. 1 together
with its 1

2-adjusted subcontext the selection of nearly 50% of the attributes (8
out of 15) results in a sub-meet-semilattice containing only 33% of the concepts
(29 out of 88). Moreover, the implication base of the original context includes
40 implications. After the alteration its size is decreased to 11 implications.

6 Evaluation and Discussion

In this section we evaluate the algorithm ContraFinder and the process of
δ-adjusting using real-world datasets.
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6.1 Datasets

Table 1 provides descriptive properties of the datasets used in this work. The
zoo [6,22] and mushroom [6,23] datasets are classical examples often used in
FCA based research such as the TITANIC algorithm. The Wikipedia [19] dataset
depicts the edit relation between authors and articles while the Wiki44k dataset
is a dense part of the Wikidata knowledge graph. The original Wiki44k dataset
was taken from [14], in this work we conduct our experiments on an adapted
version by [13]. Finally, the Students dataset [24] depicts grades of students
together with properties such as parental level of education. All experiments are
conducted on the reduced and clarified versions of the contexts. For reproducibil-
ity the adjusted versions of all datasets are published in [9].

Table 1. Datasets used for the evaluation of ContraFinder and δ-adjusting.

Zoo Students Wikipedia Wiki44k Mushroom

Objects 101 1000 11273 45021 8124

Attributes 43 32 102 101 119

Density 0.40 0.28 0.015 0.045 0.19

Number of concepts 4579 17603 14171 21923 238710

Mean objects per concept 18.48 16.73 20.06 109.47 91.89

Mean attributes per concept 7.32 5.97 5.88 7.013 16.69

Size of canonical base 401 2826 4575 7040 2323

6.2 Runtime of ContraFinder

ContraFinder is a recursive backtracking algorithm that iterates over all
attribute sets containing contranominal scales. Thus, the worst case runtime
is given by O(nk) where n is the number of attributes of the formal context
and k the maximum dimension of a contranominal scale in it. The Branch-And-
Search algorithm from [27] has a runtime of O(1.3752n) where n is the sum of
attributes and objects. Finally the Bron-Kerbosch algorithm has a worst-case
runtime of O(3n/3) with n being the number of non-incident object-attribute
pairs.

To compare the practical runtime of the algorithms we test them on the
previously introduced real world datasets. We report the runtimes in Table 2,
together with the dimension of the larges contranominal scale and the total
number of contranominal scales. Note, that for larger datasets we are not able
to compute the number of all contranominal scales using Bron-Kerbosch (from
Students) and the Branch-And-Search algorithm (Mushroom) below 24 h due to
their exponential nature and thus stopped the computations. All experiments
are conducted on an Intel Core i5-8250U processor with 16 GB of RAM.
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Table 2. Experimental runtimes of the different algorithms on all datasets.

Zoo Students Wikipedia Wiki44k Mushroom

ContraFinder 2.43 7.36 17.15 35.65 1961.0

Bron Kerbosch searching cliques 138.70 >86400 >86400 >86400 >86400

Branch and search algorithm 14.40 12005.82 1532.17 16783.58 >86400

Dim. of max. contranominal scale 7 8 9 11 10

Number of contranominal scales 4.1 · 107 7.8 · 109 9.9 · 108 2.0 · 1014 1.2 · 1019

Table 3. Evaluation of k-adjusted contexts. The standard deviation is given in paren-
thesis. “Acc of DT” is the abbreviation for “Accuracy of the Decision Tree”.

Zoo Students Wikipedia Wiki44k Mushroom

|B(K)| 1
2 -adjusted 90 312 65 323 426

Sampling 496 (205) 1036 (327) 833 (517) 1397 (627) 8563 (4532)

Hanika et al. 95 341 67 254 561

|C(K)| 1
2 -adjusted 98 105 626 1003 339

Sampling 95 (17) 156 (35) 758 (101) 1360 (135) 574 (93)

Hanika et al. 100 105 553 1091 490

Acc of DT 1
2 -adjusted 0.88 (0.08) 0.88 (0.06) 0.99 (0.01) 0.98 (0.03) 0.98 (0.02)

Sampling 0.89 (0.15) 0.81 (0.15) 0.9 (0.14) 0.95 (0.06) 0.92 (0.13)

Hanika et al. 0.88 (0.09) 0.89 (0.06) 0.99 (0.01) 0.98 (0.16) 0.97 (0.03)

6.3 Structural Effects of δ-Adjusting

We measure the number of formal concepts generated by the formal context as
well as the size of the canonical base. To demonstrate the effects of δ-adjusting
we focus on δ = 1

2 . Our two baselines are selecting the same number of attributes
using random sampling and choosing the attributes of highest relative relevance
as described in [12]. It can be observed, that in all three cases the number
of concepts heavily decrease. However, this effect is considerably stronger for
1
2-adjusting and the approach of Hanika et al. compared to sampling. Hereby,
1
2-adjusting yields smaller concept lattices on four datasets. A similar effect
can be observed for the sizes of the canonical bases where our method yields
three times in the smallest cardinality.

6.4 Knowledge in the δ-Adjusted Context

To measure the degree of encapsulated knowledge in δ-adjusted formal con-
texts we conduct the following experiment using once again sampling and the
relative relevant attributes of Hanika et al. as baselines. In order to measure
if the remaining subcontexts still encapsulates knowledge we train a decision
tree classifier on them predicting an attribute that is removed beforehand. This
attribute is sampled randomly in each step. To prevent a random outlier from
distorting the result we repeat this same experiment 1000 times for each con-
text and method and report the mean value as well as the standard-deviation
in Table 3. The experiment is conducted using a 0.5-split on the train and test
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data. For all five datasets, the results of the decision tree on the 1
2-adjusted

context are consistently high, however 1
2 -adjusting and the Hanika et al. app-

roach outperform the sampling approach. Both this methods achieve the highest
score on four contexts, in two of this cases the highest result is shared. The single
highest score of sampling is just slightly above the other two approaches.

6.5 Discussion

The theoretical runtime of ContraFinder is polynomial in the dimension of
the maximum contranominal. Therefore, compared to the baseline algorithms it
performs better, the smaller the maximum contranominal scale in a dataset. Fur-
thermore, the runtime of Bron-Kerbosch is worse, the sparser a formal context,
as the number of pairs that are non-incident increases and thus more vertices
have to be iterated. Finally, the Branch-And-Search algorithm is best in the case
that the dimension of the maximum contranominal scale is not bounded. To eval-
uate, how this theoretical properties translate to real world data, we compute
the set of all contranominal scales with the three algorithms on the previously
described datasets. Only ContraFinder can compute the set of all contranom-
inal scales on the larger datasets on our hardware under 24 h. The runtime of
ContraFinder is thus superior to the other two on real-world datasets.

To evaluate the impact on the understandability of the δ-adjusted formal
contexts, we conduct the experiments measuring the sizes of the concept lattices
and the canonical bases. All three evaluated methods heavily decrease the size
of the concept lattice as well as the canonical base. Compared to the random
sampling 1

2-adjusting and the method of Hanika et al. influence the size of this
structural components much stronger. Among those two, 1

2-adjusting seems to
slightly outperform the method of Hanika et al. and is thus more suited to select
attributes from a large dataset in order to be analyzed by a human.

To evaluate to what extent knowledge in the formal context of reduced size
is encapsulated we conduct the experiment with the decision trees. This experi-
ment demonstrates that the selected formal subcontext can be used in order to
deduce relationships of the remaining attributes in the context. While meaning-
ful implications are preserved and the implication set is downsized, 1

2-adjusted
lattices seem to be suitable to preserve large amounts of data from the original
dataset. Similar good results can be achieved with the method of Hanika et al.;
however, our algorithm combines this with producing smaller concept lattices
and canonical bases and is thus more suitable for the task to prepare data for a
human analyst by reducing sizes of structural constructs.

We conclude from these experiments that δ-adjusting is a solution to the
problem to make information more feasible for manual analysis while retaining
important parts of the data. In particular, if large formal contexts are investi-
gated this method provides a way to extract relevant subcontexts.
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7 Conclusion

In this work, we proposed the algorithm ContraFinder in order to enable the
computation of the set of all contranominal scales in a formal context. Using this,
we defined the contranominal-influence of an attribute. This measure allows us to
select a subset of attributes in order to reduce a formal context to its δ-adjusted
subcontext. The size of its lattice is significantly reduced compared to the orig-
inal lattice and thus enables researchers to analyze and understand much larger
datasets using Formal Concept Analysis. Furthermore, the size of the canoni-
cal base, which can be used in order to derive relationships of the remaining
attributes shrinks significantly. Still, remaining data can be used to deduce rela-
tionships between attributes, as our classification experiment shows. This app-
roach therefore identifies subcontexts whose sub-meet-semilattice is a restriction
of the original lattice of a formal context to a small meaningful part.

Further work in this area could leverage ContraFinder in order to compute
the contranominal-relevance of attributes more efficiently to handle even larger
datasets. Moreover, a similar measure for objects could be introduced. However,
one should keep in mind that hereby false implications can arise.
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2. Boley, M., Gärtner, T., Grosskreutz, H.: Formal concept sampling for counting and
threshold-free local pattern mining. In: SIAM International Conference on Data
Mining (SDM 2010), pp. 177–188. SIAM (2010)

3. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457).
Commun. ACM 16(9), 575–576 (1973)

4. Czerniak, J., Zarzycki, H.: Application of rough sets in the presumptive diagnosis
of urinary system diseases. In: So�ldek, J., Drobiazgiewicz, L. (eds.) Artificial Intel-
ligence and Security in Computing Systems. The Springer International Series in
Engineering and Computer Science, vol. 752, pp. 41–51. Springer, Boston (2002).
https://doi.org/10.1007/978-1-4419-9226-0 5

5. Dias, S., Vieira, N.: Reducing the size of concept lattices: the JBOS approach. In:
7th International Conference on Concept Lattices and Their Applications (CLA
2010). CEUR Workshop Proceedings, vol. 672, pp. 80–91. CEUR-WS.org (2010)

6. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

7. Duffus, D., Rival, I.: Crowns in dismantlable partially ordered sets. In: 5th Hun-
garian Combinatorial Colloquium, vol. I, pp. 271–292 (1978)

8. Dürrschnabel, D., Hanika, T., Stumme, G.: Drawing order diagrams through two-
dimension extension. CoRR arXiv:1906.06208 (2019)

9. Dürrschnabel, D., Koyda, M., Stumme, G.: Attribute selection using contranominal
scales [dataset], April 2021. https://doi.org/10.5281/zenodo.4945088

10. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

https://doi.org/10.1007/978-1-4419-9226-0_5
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1906.06208
https://doi.org/10.5281/zenodo.4945088
https://doi.org/10.1007/978-3-642-59830-2


Attribute Selection Using Contranominal Scales 141

11. Hanika, T., Hirth, J.: Knowledge cores in large formal contexts. CoRR
arXiv:2002.11776 (2020)

12. Hanika, T., Koyda, M., Stumme, G.: Relevant attributes in formal contexts. In:
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