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Abstract. This article presents the results of applying the method of
the minimum area of alarm to the complex forecasting of earthquakes
based on data of different types. Point fields of earthquake epicenters and
time series of displacements of the earth’s surface, measured using GPS,
were used for the prediction. Testing was carried out for earthquakes
with a hypocenter depth of up to 60 km for two regions with different
seismotectonics: Japan, the forecast time interval from 2016 to 2020,
magnitudes m ≥ 6; California, the forecast time interval from 2013 to
2020, magnitude m ≥ 5.5. Testing has shown the effectiveness of system-
atic earthquake forecasting using seismological and space geodesy data
in combination.

Keywords: GPS time series · Grid-based spatio-temporal fields ·
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1 Introduction

Field observations show that anomalous changes are observed in a number of
natural processes before a strong earthquake. They can relate to the character-
istics of the seismic regime, the values of deformations of the earth’s surface, the
chemical composition of fluids, the level of groundwater, the transit time of seis-
mic waves, variations of electric and geomagnetic fields. These phenomena are
often localized near the source of a future earthquake [11,14,18,20,26,27] and
can be used as precursors of earthquakes. At the same time, it is known that
with an increase in the energy of the expected earthquake, the distance from the
epicenter to the area of manifestation of precursors increases and can be more
than 15 km [4,10], which introduces additional uncertainty in the assessment of
the location of the expected earthquake.

Many aspects of earthquake prediction have been studied. They include the
study of rock failure and earthquake precursor phenomena, the study of math-
ematical models for earthquake prediction, machine learning methods, and the
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testing of earthquake prediction algorithms [12,16,23–25,29,30]. At the same
time, a number of works have stated that earthquakes cannot be predicted
[6,9,15].

Systematic earthquake prediction consists of the regular calculation of a lim-
ited warning zone, in which an earthquake with a magnitude above a certain
threshold is expected for a certain time. The effectiveness of the forecast largely
depends on the quality of the initial data and methods of their processing. We get
the broadest access to regularly updated seismological monitoring data. There-
fore, as a rule, in many articles, only seismological data are used. Currently, data
from monitoring the displacement of the earth’s surface, obtained using a global
positioning system (GPS), is published in real-time for a number of seismically
active regions.

In this article, we consider the results of a systematic forecast obtained with
the combined use of seismological and geodynamic data. For the systematic
prediction of earthquakes, we have developed a new method of machine learning,
called the method of the minimum area of alarm [8]. The article is divided
into three sections. In Sect. 2, we shortly describe the main elements of the
forecast method. Section 3 presents the results of modeling the forecast of strong
earthquakes in Japan and California, obtained on the basis of combining seismic
and geodetic data.

2 Basis of a Forecasting Method

The considered approach to the systematic forecasting of earthquakes is based
on the machine learning method, which we called the method of the minimum
area of alarm. This method is described in [7,8]. The idea of the method is as
follows.

Let there be a set of objects. An object is described by a set of its properties,
expressed in numerical form (a vector of features). The values of the properties of
objects, close to the maximum possible, have a low probability. Among the set of
objects, there are anomalous objects (precedents). They differ from other objects
in that the values of some of their properties are close to the maximum. It seems
natural to classify an object as anomalous if the corresponding feature vector
is greater than or equal componentwise to one of the vectors corresponding to
the precedent. However, the description of the properties of objects is usually
incomplete. Therefore, some precedents lack properties that are close to their
maximum values. For such precedents, the number of objects classified by them
as anomalous can be quite large, and the objects themselves are likely to be
erroneously classified as anomalous.

The task is to find the largest number of precedents, provided that the num-
ber of objects classified by them as anomalous does not exceed the specified
number. The algorithm of the minimum area of alarm is non-parametric. It
refers to machine learning algorithms for one-class classification [2,13,17]. The
idea of the algorithm is as follows. At the first step, for each precedent, a set
of anomalous objects classified by it is built. Next, the maximum number of
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precedents is selected for which the cardinality of the union of these sets does
not exceed a predetermined number N∗. The decision rule classifies objects only
according to the selected precedents. For the rest of the precedents, new distinc-
tive properties should be sought and added to the feature space. The amount
of computations of the algorithm is significantly reduced if not the maximum
number of precedents is selected, but a close one.

With a systematic forecast of earthquakes, it is required to regularly indicate
on the map the alarm zone, in which the epicenter of the target earthquake is
expected. A demo version of the systematic earthquake prediction system since
2018 is available on the website https://distcomp.ru/geo/prognosis/ (accessed
on 15 March 2021). At each step Δt, new initial data are loaded from the seis-
mological and geodynamic monitoring servers, they are used to calculate the
spatial and spatio-temporal grid-based fields, the sample of target earthquake
epicenters is supplemented, and then training is performed with all downloaded
data from the beginning of training until the moment of forecasting t. As a result
of training, an alarm zone with size S∗(t) is calculated, in which the epicenter
of the target earthquake is expected in the interval (t, t + Δt).

A target earthquake is predicted if its epicenter falls within the calculated
alarm zone. The larger the product S∗(t)Δt, the more successful the forecast.
At the same time, it is obvious that the size of this region of space-time must
be reasonably limited. Indicators of forecast quality are the assessment of the
probability of a successful forecast of events (forecast probability), equal to U =
Q∗/Q and the alarm volume equal to V = L∗/L, where Q∗ and Q are the number
of predicted and all target earthquakes, L∗ = ΔtΣN

n=1S
∗(tn) is the size of the

spatio-temporal area of alarm, N is the number of forecast intervals, L = NSΔt
is the size of the entire analysis spatio-temporal area, S is the size of the analysis
zone. As a result of training, it is desirable to obtain a solution that provides the
maximum probability of a successful prediction for a given value of the alarm
area. It can be seen that the alarm volume V is equal to the probability of
detecting target events by random areas of size L∗ = V L.

3 Modeling

3.1 GPS Data Preprocessing

We analyzed the time series of daily horizontal displacements of the earth’s sur-
face at the intervals 01.01.2009–26.07.2020 for Japan and 01.01.2008–14.11.2020
for California. The data obtained from the Nevada Geodetic Laboratory (NGL),
http://geodesy.unr.edu/about.php (accessed on 15 March 2021) [3]. There are
1420 and 1803 GPS receiving stations in Japan and California, respectively.
The analysis areas contain 1229 and 1204 stations. Networks of GPS receiving
stations, areas of analysis, and epicenters of target earthquakes are shown in
Fig. 1. Stations evenly cover the analysis area. The average minimum distance
between stations is 12.8 km for Japan and 9.38 km for California, with standard
deviations of 5.4 and 5.74 km.

https://distcomp.ru/geo/prognosis/
http://geodesy.unr.edu/about.php
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Fig. 1. Areas of analysis, Global Positioning System (GPS) ground receiving stations,
and the epicenters of target earthquakes. Left: Japan, epicenters of target earthquakes
with magnitude m ≥ 6.0 in the interval 01.01.2011–26.07.2020; Right: California, epi-
centers of target earthquakes with magnitude m ≥ 5.5, in the interval 23.12.2009–
14.11.2020. The epicenters of the target earthquakes for which the forecast was tested
are highlighted in red. (Color figure online)

The calculation of the feature fields used for earthquake prediction based on
GPS data is performed in two stages. The purpose of the first stage is to extract
a useful signal from the time series of coordinates of the receiving stations. The
purpose of the second stage is to calculate spatio-temporal fields of forecast
features.

Time Series of Earth’s Surface Displacement Velocities
The initial data are daily time series of coordinates x(t) and y(t) of GPS ground
receiving stations in the W–E and N–S directions in the intervals 01.01.2009–
26.07.2020 for Japan and 01.01.2008–14.11.2020 for California. The daily hori-
zontal velocities of the earth’s surface displacements gx(t) and gy(t) are deter-
mined by two coordinates of the GPS receiving station, spaced in time by the
interval T0: gx(t) = (x(t) − x(t − T0))/T0, gy(t) = (y(t) − y(t − T0))/T0. There
are discontinuities (gaps) in the time series. In our case, for each coordinate,
there were 23682 gaps and 168218 days of missed measurements for Japan, and
29977 gaps and 357067 days of missed measurements for California. Since the
displacement rate estimates are ahead of the time of the values of the first sta-
tion coordinates x(t−T0) and y(t−T0) by T0 days, each gap in the time series of
station coordinates increases the number of missing values in the time series of
velocities by T0 days. With a large number of gaps, the number of missing veloc-
ity values can significantly exceed the number of missing coordinate values. To
limit the number of missed velocity values, we linearly interpolate the coordinate
values in the gaps less than or equal to T0. For the gaps that more than T0 days,
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we end the calculation of the speed at the last value of the station coordinate
before the start of the rupture and re-estimate the rates, starting from the first
value of the station coordinate after the rupture.

To calculate the daily rates, we selected the interval T0 = 30 days. For this
interval, the station movement values are comparable to the noise value of daily
measurements. For 30 days intervals, there are 23119 gaps in each coordinate of
the Japan area, which is 97.62% of all gaps in the time series and 50537 blanks
in measurements (30.04%). For California, there are 27990 measurement gaps
(93.37%) and 88387 measurement gaps (24.75%) over a 30-day period for each
coordinate. At the same time, the number of missing speed values in each of the
W–E and N–S directions increased for Japan by (23682−23119) × 30 = 16890
(10.04%), and for California by (29977–27990) × 30 = 59610 (16.69%).

The first stage is completed by calculating the spatio-temporal fields of the
rate components Vx and Vy in the W–E and N–S directions. The fields were
presented in the grid Δx × Δy × Δt = 0.1◦ × 0.075◦ × 1 day. The calculation
of the fields was carried out using an interpolation technique known as inverse
distance weighting. During interpolation, the gaps in the values of the time series
were not filled, but they were taken into account as the absence of the receiving
station. The values of the fields Vx and Vy at the grid points for each time slice
of the field of the velocity component W–E were calculated by the formula:

Vxn(t) =
∑K

k=1 g
(t)
xk/rpk

∑K
k=1 1/rpk

, (1)

where Vxn(t) is the value of the field of the W–E strain rate component
at the grid node n at the moment t, K is the maximum number of stations
closest to the node n in the circle of radius Rmax, the values of which were used
for interpolation, gxk(t) is the value of the W–E strain rate component for the
station k, k = 1, . . . ,K, at the time t, rk ≤ Rmax is the distance from the k-th
station to the grid node n, and p is the degree that determines the dependence of
the station weight on its distance to the grid node. The interpolation parameters
were K = 5, Rmax = 50 km, and p = 1. If rk = 0, then Vxn(t) = gxk(t). The
calculations of the field of the N–S strain rate components were similar.

Spatio-temporal Fields of Features
We assume that strong earthquakes are preceded by spatio-temporal anomalous
changes in the regime of various deformations of the earth’s surface. Therefore,
we are looking for fields containing information about the anomalous values of
the change in the deformation mode. The basis of the considered fields of features
is the following invariants of the strain-rate fields.

– F1 is the field of divergence of the strain rates:

divVn =
∂Vxn

∂x
+

∂Vyn

∂y
(2)

The maximum and minimum values of the divergence field refer to places
where there is a relative contraction or expansion of the size of a small horizontal
area.
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– F2 is the field of rotor of the strain rates:

rotVn =
∂Vxn

∂y
− ∂Vyn

∂x
(3)

The field values determine the direction and intensity of the field twisting
around the vertical axis.

– F3 is the field of shear of the strain rates:

shVn =
1
2

√(
∂Vxn

∂x
− ∂Vyn

∂y

)2
+

(
∂Vxn

∂y
+

∂Vyn

∂x

)2
(4)

The fields of features F4, F5, and F6 represent changes in the fields of the
strain rate invariants over time. They are equal to the ratios of the mean values
of the invariants in two consecutive intervals to the standard deviation of this
difference. The values of the fields are converted into the grid Δx × Δy × Δt =
0.1◦ × 0.075◦ × 30 days.

– F4 is the field of the temporal variations in the divergence strain rate.

The value of the field f4n(t) at time t is equal to the ratio of the difference
(div2n − div1n) between the mean values of the divergence in two consecutive
intervals, namely, T1 and T2, to the standard deviation of this difference σn(div),
T1 = T2 = 361 days.

f4n(t) = (div2n − div1n)/σn(div), (5)

where div2n is calculated from the values of field F1 at the interval (t − T2, t),
div1(t − T2) is calculated at the interval (t − T2 − T1, t − T2).

– F5 is the field of the temporal variations in the rotor rate.

The values of field f5(t) are calculated similarly to the values of field F4,

f5n(t) = (rot2n − rot1n)/σn(rot). (6)

– F6 is the field of the temporal variations in the shear deformation rate.

The values of field f6(t) are calculated similarly to the values of field F4,

f6n(t) = (sh2n − sh1n)/σn(sh), (7)

Fields F7, F8, and F9 represent spatial correlations of strain rate changes in a
sliding window of 75×75 km2. With this window size, the correlation coefficients
are estimated in approximately 70–80 grid points of the fields.

– F7 is the field of spatial correlations in fields F4 and F5.
– F8 is the field of spatial correlations in fields F4 and F6.
– F9 is the field of spatial correlations in fields F5 and F6.
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Correlation fields F7, F8, and F9 carry information about the spatial relation-
ship between the values of the change in the rate of different pairs of deformation
types. The minimum or maximum fields of the correlation fields combine this
information.

To combine information on the spatial relationship between the values of the
change in the rate of different pairs of deformation types, you can use the field
of maximum or minimum values of the correlation fields F7, F8, and F9. This
operation can be interpreted in terms of fuzzy logic [28]. For Japan, the most
successful prediction of target earthquakes was obtained using the F10 field:

– F10 is the field of minimum values of the fields F7 and F9:

f10n = min(f7n, f9n) (8)

The best forecast of target earthquakes according to GPS data for California
was obtained from the F4 and F6 fields.

3.2 Seismological Data Preprocessing

Seismological data for Japan and California taken from the Japan Meteorological
Agency earthquake catalogs [21,22] and the National Earthquake Information
Center (NEIC) [1] at intervals 02.06.2002–26.07.2020 and 01.01.1995–20.12.2020.
They are represented by earthquakes with a magnitude m ≥ 2.0 and a hypocen-
ter depth H ≤ 160 km.

– S1 is the 3D field of the density of earthquake epicenters.
– S2 is the 3D field of the mean earthquake magnitude.
– S3 is the 3D field of the negative temporal anomalies of the density of

earthquake epicenters.
– S4 is the 3D field of the positive temporal anomalies of the density of

earthquake epicenters.
– S5 is the 3D field of the negative temporal anomalies of the mean earthquake

magnitude.
– S6 is the 3D field of the positive temporal anomalies of the mean earthquake

magnitude.
– S7 is the 2D field of the density of earthquake epicenters: Kernel smoothing

with the parameter R = 50 km in the interval from the beginning of the
analysis to the start of training.

– S8 is the 3D field of quantiles of the background density of earthquake epi-
centers, calculated using the interval from the beginning of the analysis to
the start of training, which corresponds to the density values of earthquake
epicenters at the current time.

The estimation of 3D fields S1 and S2 was performed with the method of
local kernel regression. The kernel function for the q-th earthquake has the form
Kq = [ch2(rq/R)2ch2(tq/T )]−1, where rq < Rε and tq < Tε are the distance and
time interval between the q-th epicenter of the earthquake and the node of the
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3D grid of the field, ε = 2, R = 50 km, T = 100 days for S1 and R = 100 km,
and T = 730 days for S2. The field S7 was calculated with the kernel function
Kq = [cosh2(rq/R)2]−1. The parameters for evaluating the fields, the radii R,
and the interval T were chosen empirically, considering the step of the network
of fields and the approximate number of events in the evaluation window. To
calculate the fields S3, S4, S5, and S6, Student’s t-test was used. This t-statistic
was determined for each grid node as the ratio of the difference in the average
values of the current interval T2 and the background interval T1 to the standard
deviation of this difference. Positive values of the t-statistic correspond to an
increase in the value on the test interval.

We also analyzed fields similar to the fields S3, S4, S5, and S6, but with
different values of the T2 and T1 intervals.

When predicting from seismological data, the following three fields turned
out to be the most informative.

– S9 = S1/(S8 + 0.001) is the field of ratios of the density values of the earth-
quake epicenters s1n to the values of the quantiles of the density of the epicen-
ters calculated on the interval from the beginning of the analysis to the start
of training, which corresponds to the density values of earthquake epicenters
at the current time (s8n + 0.001).

– S10 is the field of negative anomalies of Student’s t-statistic of the density of
earthquake epicenters with the intervals T1 = 1095 and T2 = 365 days.

– S11 is the field of negative anomalies of Student’s t-statistic of the mean
earthquake magnitude with the intervals T1 = 1095 and T2 = 730 days.

For Japan, the most informative were the fields S9 and S10. Both of them
previously proved to be the most effective in predicting earthquakes and their
magnitudes in Kamchatka and the Aegean region. The anomalous values of the
S9 field correspond to areas of the seismic process in which the density values of
earthquake epicenters are quite high but significantly less than the average values
of the density of epicenters in the interval from the beginning of the analysis to
the start of training. The anomalous values of the S10 field correspond to the
spatio-temporal regions of the seismic process, in which the average values of the
density of earthquake epicenters in the T2 interval are significantly lower than
the average field values in the T1 interval. These changes highlight anomalous
areas in which a quiescence sets in after the activation of the seismic process.
The time series of the S10 field simulates the preparation of strong earthquakes
proposed by the AUF model proposed in [7]. For California, the most informative
were the fields S9 and S11.

3.3 Earthquake Forecast

The training intervals start for Japan and California on 01.01.2011 and
23.12.2009 and end before the next forecast, starting on 20.11.2015
and 19.01.2013. Testing intervals are 20.11.2015–10.09.2020 for Japan and
19.01.2013–14.11.2020 for California. The areas of analysis at the testing inter-
vals contain 14 epicenters of target earthquakes in Japan with a magnitude of



Earthquake Prediction Based on Combined Seismic 609

Fig. 2. Dependences U(V ) of the probability of a successful earthquake prediction U
on the alarm volume V obtained with the different fields for Japan (A) and California
(B). (1) field S7 for both regions; (2) fields S9 and S10 for Japan, S9 and S11 for
California; (3) fields S9, S10 and F10 for Japan, S9, S11, F4 and F6 for California.

m ≥ 6.0 and 12 epicenters of target earthquakes in California with a magnitude
of m ≥ 5.5.

In the method of the minimum area of alarm, alarm zones are constructed
from a combination of spatio-temporal alarm cylinders. The parameters of the
learning algorithm are the radius of the cylinders in spatial coordinates and
the element of the cylinder in time. The larger the radius, the higher the alarm
volume V . The larger the element, the slower the alarm zone changes. The alarm
cylinder parameters are the radius R = 16 km and its element T = 91 days for
Japan and R = 18 km and its element T = 61 days for California. The best
forecast of target earthquakes according to GPS data for Japan was obtained
from the F10 field, and for California from the F4 and F6 fields.

Figure 2 shows the dependences U(V ) for Japan (A) and California (B).
The results for Japan obtained using 2D field S7 of the density of earthquake
epicenters (line 1), seismological fields S9, S10 (line 2), and the fields S9, S10

with the field F12 (line 3). The result of forecasting earthquakes in California
obtained using field S7, fields S9 and S11, and fields S9, S11, with the fields F4

and F6.

4 Conclusion

A number of seismically active regions are equipped with a rather dense network
of GPS receiving stations that track the movements of the earth’s surface. In
our study, we tried to get answers to two questions: (1) Is space geodesy data
effective for systematic earthquake prediction? and (2) Is the earthquake fore-
cast improved if seismological data with the addition of space geodesy data?
Obviously, the answers to these questions depend on the spatial density of the
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network of receiving stations, on the parameters of the time series of GPS mea-
surements, on the method of preprocessing of GPS data, and on the method for
forecasting earthquakes.

The results in this article are based on data for the Japan and California
regions. Our data from space geodesy are represented by daily time series of
horizontal displacements of the earth’s surface. The GPS time series processing
is based on the calculation of the spatio-temporal fields of changes in the seismic
strain rate invariants. To predict earthquakes, we used our method of the min-
imum area of alarm. It is shown that the probability of predicting earthquakes
based on combined GPS and seismological data is almost the same as a forecast
based only on seismological data in Japan and much higher in California.

A number of transformations were required to calculate feature fields based
on GPS data. These include interpolation of time series at relatively small time
intervals of discontinuity in the operation of GPS receiving stations, calculation
of time series of the components of the velocities of horizontal displacements of
stations, calculation of spatio-temporal fields of components of the velocities of
the earth’s surface deformations, calculation of fields of invariants of velocities
and fields of variation of invariants of velocities in time, calculation of spatial
correlation fields, calculation of minimum and maximum values of correlations,
etc. A number of parameters were used in the algorithms for calculating these
transformations: the time interval for estimating the daily displacement rates,
the sizes of the spatial and temporal smoothing windows and the windows for
estimating the spatial correlation coefficients, as well as the time intervals for cal-
culating the field of invariants of the strain rates. The GPS fields for Japan and
California were calculated with the same parameters. The choice of transforma-
tion parameters, as well as the choice of the feature fields themselves, requires
special studies. In this work, such studies were not carried out. The types of
transformations of the initial data into the fields of features and transformation
parameters were selected based on qualitative considerations about the methods
of cleaning signals from noise, recovering missing values, and disclosing informa-
tion about the spatio-temporal properties of geodynamic processes.

The method of the minimum area of alarm is universal for various types of
initial data since, for forecasting, all data is converted into uniform spatial, and
spatio-temporal grid-based fields. The most informative for predicting earth-
quakes were the fields reflecting the change in the rates of various types of defor-
mations of the earth’s surface, the change in the characteristics of the seismic
regime and the spatial correlation of these processes. The modeling of the earth-
quake prediction in the regions under study showed that these fields’ anomalous
values distinguish the spatio-temporal regions preceding the appearance of the
epicenters of strong earthquakes. This is the similarity of the most informative
feature fields selected for forecasting in the regions of Japan and California. It
should be noted that these regions differ significantly in seismotectonic and geo-
dynamic regimes [5,19]. This testifies in favor of the universality of the proposed
methods of our data preprocessing.
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