l‘)

Check for
updates

Implementation of the Cross-Blockchain
Interacting Protocol

Rita Tsepeleva and Vladimir Korkhov(®)

Saint Petersburg State University, St. Petersburg, Russia
st0621530student . spbu.ru, v.korkhov@spbu.ru

Abstract. Blockchain is a developing and promising technology that
can provide users with such advantages as decentralization, data security
and transparency of transactions. Blockchain has many applications, one
of them is the decentralized finance (DeFi) industry which is growing
more and more recently. The concept of decentralized finance involves
the creation of a single ecosystem of many blockchains that interact
with each other. The problem of combining and interacting blockchains
becomes crucial to enable DeFi. In this paper, we look at the essence of
the DeF'i industry, the possibilities of overcoming the problem of cross-
blockchain interaction, present our approach, and analyze the results of
the proposed solution.

Keywords: Blockchain - Distributed ledger technologies + Solidity -
Smart-contracts + Decentralized finances

1 Introduction

Blockchain is a modern technology that is a huge distributed database, i.e. a
database whose components are placed in various nodes of a computer network in
accordance with certain criteria. They reflect the transfer of information from one
user to another. This database is stored on a large number of computers and has
a decentralized character. It means that there is no central node that manages
everything. It is a great advantage, because if there is a failure of one machine in
the system, the entire system will continue to work properly and the information
will not be lost. The data is organized into chain of blocks, each new block
contains encrypted information from the previous block. Such an organization
ensures that no data can be replaced, corrected or deleted. Accordingly, the
information is as reliable and secure as possible.

Thanks to these advantages, blockchain is popular in the field of finance and
in other spheres. In addition to the obvious advantages of blockchain in the form
of reliability, transparency and etc., blockchain technology provides another very
important thing. This is the ability to write smart contracts, i.e. executable code
that helps users manage their finances independently, without resorting to the
help of third parties (for example, the banking sector). However, there is an
indisputable fact that smart contracts are not completely safe to use, because a

© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12952, pp. 42-55, 2021.
https://doi.org/10.1007/978-3-030-86973-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86973-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-86973-1_4

Implementation of the Cross-Blockchain Interacting Protocol 43

mistake in the code can cost a lot of money. Despite this fact, the industry of
decentralized finance is becoming more and more popular.

Next, we will take a closer look at decentralized finances concept, will talk
about the most important problem in this area, which in a certain way restricts
the use of its tools. We will discuss possible solutions of the problem and will
analyze them, as well as give our own version of the solution and compare the
results.

The rest of this paper is organized as follows. Section 2 describes the essence
of decentralized finance, as well as the problems that need to be solved. Section 3
describes the existing methods and solutions. Section 4 describes the idea of our
solution and its implementation. And in Sect. 5, the resulting solution is analyzed
in comparison with the existing ones. Section 6 concludes the paper and points
out directions of future work.

2 Decentralized Finances and Its Problems

Decentralized Finances (DeFi [1]) is an independent financial ecosystem that
gives users a full control over their money without the involvement of govern-
ments and banks. Blockchain technologies have played a key role in the imple-
mentation of this industry.

2.1 The Essence of DeFi

Interaction in decentralized ecosystems occurs without intermediaries according
to the P2P scheme, that is, market participants independently cope with making
transactions. It:

1. Saves your time;
2. Saves your money;
3. Allows you to keep your privacy.

What is the reason for the active popularization of DeFi and why are projects
increasingly integrating them into their systems? The monetary monopoly of the
state is a problem that is quite difficult to solve. The control that we have over
our own savings is only relative, and in recent years this has been felt especially
acutely. In many European countries, the population is gradually abandoning
cash and switching to electronic payments. Banks, constant monitoring, and
lack of anonymity are nuances that are absent in DeFi. App developers cannot
influence the money of the participants, and the latter manage their own budget.
The main advantages of decentralized finance are:

1. Simplicity and accessibility of technology for ordinary people;

2. Scalability and distribution of the registry; as a result, system is more secure
and resistant to technical errors;

3. Lower system maintenance costs and lower fees (or no fees);

4. Versability - DeFi can be used in almost any area of our life.

44 R. Tsepeleva and V. Korkhov

2.2 Usability of DeFi

Developers have already offered quite a lot of options for using decentralized
financing. First of all, of course, in the field of banking services.

Mortgages and Insurance. The absence of intermediaries and transparency
are the optimal conditions for issuing mortgage loans and insurance, including
medical insurance. This category could include social benefits — such as pensions.

Lending. Classical lending is primarily a mass of restrictions. Salary require-
ments, sureties, and the many certifications that need to be obtained make these
services inaccessible to a whole category of people. A person spent his time for
making all of documents well, but still waiting for the result, which can be neg-
ative, too. DeFi should solve this problem. Moreover, without intermediaries,
lending should be cheaper and more reliable. Instant transactions, transparency
and security — what is so lacking in this area.

Trading. Cryptocurrency trading has remained popular for quite a long time,
and the world knows dozens of trading platforms with different currencies in
the listing and trading instruments. Most exchanges are centralized, i.e. they
work according to the classical scheme. Decentralized exchanges or DEX operate
without the participation of the administration, i.e. traders enter into a P2P
relationship. The funds are not stored in the platform’s wallets, which is also
very important.

2.3 DeFi and Smart-Contracts

Decentralized finance is inextricably linked to smart contracts. Smart contracts
are programs written in Turing-complete, modern, high-level programming lan-
guages (Solidity, for example). The main difference of such program code is
that after its publication in the blockchain, the contract not only begins its
autonomous work, but also loses an ability to edit or change the code. Also it is
necessary to say that smart-contracts are not available in all of the blockchain
platforms. For example, the most popular platform for developing and deploying
such contracts is an Ethereum [2]. The Binance Smart Chain [3] and Matic [4]
also provide such an opportunity. But such popular network as the Bitcoin does
not provide smart contracts. Smart contracts are used in DeFi, because they
help to fully automate the process, save time and avoid paperwork.

2.4 The Main Problem of DeFi

The concept of decentralized finance involves the creation of a single ecosystem
in which there are many blockchains that interact with each other. However,
each blockchain network was originally created and conceived as an indepen-
dent, autonomous unit. In our opinion, it is the main problem of DeFi. User’s
funds have been “locked up” for a very long time. Users do not have an ability to
transfer their digital assets to another network, and this is a serious restriction

Implementation of the Cross-Blockchain Interacting Protocol 45

on the mobility of their funds. In addition, blockchain developers, while choos-
ing one of the platforms, today have to give up the advantages of using other
platforms. They could use several blockchains in their project at once, along
with their qualities. Instead of this, they should sacrifice such important devel-
opment indicators as scalability, speed, low fees and so on. That is why the issue
of combining and interacting blockchain networks has been relevant for recent
years.

3 Related Work

As already mentioned, the problem of combining and interacting blockchains is
of interest today. That is why at the moment there are already completed or
relatively completed projects in the world which solve it. Let’s look at them in
more detail.

3.1 Polkadot Ecosystem and Polkadot Projects

Polkadot [5] is a new-generation blockchain protocol that greatly simplifies cross-
chain communication and interoperability by bringing multiple blockchains into
one network. This network is going to be secured by a GRANDPA consensus
algorithm [6], tailored for the Polkadot (a flavor of a Proof of Stake). The most
critical parts of the Polkadot network are Relay Chain, Parachains, Parathreads,
and Bridges.

Relay chain is the backbone of Polkadot’s network and it is the main
communication hub between parachains. Validators on this chain are accept-
ing blocks from all parachains and thus provide security for the whole network.

Parachains are independent blockchains that run on top of the Relay Chain
and provide chain-specific features to the Polkadot network. Each parachain
serves a specialized purpose in the network — think of having a fine-tuned chain
for smart contracts, another chain that provides a stable coin for payments
between chains or a parachain which brings a decentralized energy industry to
the network. Each parachain is maintained by the collator which is responsible
for producing chain blocks. Parachains also benefit from a shared security model
provided by the Relay Chain so they are already secured against 51% attacks or
similar. However, there is only a limited amount of parachains in the network
(and the number will be increasing in the future) so there is a system of public
auctions where parachain candidates have to compete in order to obtain their
own slot.

Parathreads are very similar to parachains from a technical point of view,
however, they are very different from an economical standpoint. As we said in the
previous paragraph, parachains have to compete in auctions in order to become
part of the network. On the other hand, the parathread slot can be leased almost
instantly and for only a short period of time. This provides a different way to
run projects on the Polkadot — some of those projects can benefit from trying

46 R. Tsepeleva and V. Korkhov

out the network before purchasing an expensive parachain slot, others can run
as a parathreads before they win an auction for a slot.

Bridges are a special kind of parachain. Bridges connect other already run-
ning blockchains into the ecosystem (like a BTC or ETH) and allow for transfers
of tokens between Polkadot and outside networks.

The peculiarity of the system is that transactions can be carried out simul-
taneously and distributed between blockchains. The main goal of the Polkadot
ecosystem is to make sure that all participating blockchains remain secure and
transactions are carried out in good faith.

The two issues most blockchain-based systems need to solve are scalability:
the number of transactions per second the network can handle, and governance:
how the community manages protocol upgrades and changes. Polkadot aims to
solve both of these problems.

Many different projects are based on the Polkadot technology. Some of them
coincide in their essence and purpose with our goals. For example, Polkaswap.
Polkaswap is a decentralized exchange for the Polkadot ecosystem. It provides a
framework that allows users to connect multiple blockchains using bridges and
become an exchange for connecting Polkadot participants and other blockchains
for efficient asset trading. The principle of operation and implementation of this
project is that Polkadot simplifies the process of combining many assets from
as many chains as possible by providing a Host relay chain, a cross-chain mes-
sage transfer protocol XCMP and a SPREE module (Shared Protected Runtime
Execution Enclaves). In addition to this project, there are several similar ones.

The disadvantages of projects based on Polkadot are as follows. Firstly, the
analysis showed that all similar and interesting projects are stuck in the devel-
opment stage and do not develop further. The second disadvantage is more sig-
nificant and weighty. It is about security. In projects on Polkadot the exchange
process is implemented as follows:

e To make the transfer of tokens from one blockchain network to another, the
process of freezing tokens takes place;

e The freezing of tokens implies the transfer by the user of his funds, which he
wants to exchange, to the “storage”;

e Next, the logic should be implemented: if the tokens come to the storage,
then hold them, and an equivalent amount of them should be credited to the
specified address in the target network.

The security issue is that the storage is just an address, not a smart-contract.
Accordingly, there are no guarantees and protection of users from fraud or tech-
nical failure. It can easily happen that the user will send the tokens that will
remain in the storage, and the equivalent amount will not come to him.

3.2 Bridges

A Dblockchain bridge is an interconnected link that provides communication
and interaction between two blockchain systems. By connecting two blockchain

Implementation of the Cross-Blockchain Interacting Protocol 47

networks, blockchain bridges help decentralized applications take advantage
of both systems, not just their host platform. For example, an application
hosted on Ethereum and linked to the EOS blockchain can use the function-
ality of Ethereum smart contracts, as well as the scalability of EOS. Thanks to
blockchain bridges, any data, information and tokens can be transferred between
two blockchain platforms. These bridges are regulated by the mint-and-burn pro-
tocol. The token transfer does not take place literally; rather, when a token is
needed to transfer from one blockchain to another, it is burned on the first, and
the equivalent token is minted on the other.

An example of such bridge is the Panama Bridge [7], a new solution that
allows users to transfer their cross-chain assets from centralized or decentralized
wallets to the Binance Smart Chain (BSC). Panama Bridge provides an API.
This means that we can use the Panama Bridge on our platform to exchange
the tokens. We can collect POST or GET requests through the form and send
them to the bridge. The disadvantage of this approach is its limitation. The
Panama Bridge, like the other bridges, connects only two blockchains (in this
case, Ethereum and Binance Smart Chain). Thus, it is not possible to talk about
a single ecosystem using only one bridge.

4 The “Wish Swap” Project Idea

The Wish token [8] has the BEP2 format [9] and is placed in the Binance [3]
blockchain, which limits its use. It is necessary to develop a mechanism for
exchanging tokens:

— BEP2 Wish to Ethereum tokens ERC-20 and Binance Smart Chain tokens
BEP-20;

— Ethereum Tokens ERC-20 and Binance Smart Chain Tokens BEP-20 to BEP2
Wish;

— Ethereum ERC-20 Tokens to Binance Smart Chain BEP-20 Tokens;

— Binance Smart Chain BEP-20 Tokens to Ethereum ERC-20 Tokens.

5 Implementation

5.1 Token Smart Contracts

In order to exchange the Wish token, it was decided to implement the contracts
of the token analogues in the Binance Smart Chain (BEP20) and Ethereum [2]
(ERC-20) networks, with the names BWish and WWish, respectively. All project
contracts were developed in the Solidity language. Solidity is a JavaScript-like
object-oriented language for developing smart contracts. It is cross-platform,
so it was easy to generalize the task of writing tokens to two platforms. The
token contracts, in addition to the standard functions and fields, had to con-
tain the functions and events (events reflected in the transaction log) trans-
ferToEthereum/transferToBSC (transfer function to the Ethereum network, or

48 R. Tsepeleva and V. Korkhov

Binance Smart Chain; depending on the network) and transferToBC (transfer of
tokens to Binance Chain), as well as the mint and burn functions. These func-
tions allow you to issue/burn tokens and are only available to the contract owner
(in our case, the backend) to prevent uncontrolled issue/burning of tokens.

In addition to token contracts, a Python backend and scanner were imple-
mented.

5.2 Exchange Process with Binance Chain Network

In the Binance Chain network was created an address for exchange with the
Ethereum and Binance Smart Chain blockchains. The address is a “swap con-
tract”, and the scanner has to catch transfers to it. Transactions on the Binance
network contain a Memo field, which may contain additional information. A user
who wants to exchange Wish tokens from the Binance Chain network, via the
frontend (Django+React), or via binance.org, or via Binance Chain Wallet sends
its BEP2 Wish tokens to this address, filling in the memo field according to the
rules. The memo field must contain the name of the network to which the user
wants to transfer tokens, as well as their number. The scanner scans operations
with the BEP2 Wish token. When a transaction is detected to the exchange
address, it sends it to the backend via RabbitM(@Q. The backend accesses the
BEP20 BWish token contract and issues tokens to the user’s address minus the
set commission (a commission is provided for the transfer in the target network
tokens). Tokens in the Binance network cannot be destroyed and they remain on
the exchange address, only the backend has access to sending from the exchange
address, so the number of tokens on the exchange address corresponds to the
number of tokens in the Binance Smart Chain and Ethereum networks.

5.3 Exchange Process with Binance Smart Chain and Ethereum
Networks

The exchange of tokens carried out from these networks is almost similar. The
difference is that:

— here users interact not with the address, but with the smart contract;
— when tokens are transferred to the contract and successfully credited to the
target account, they are burned.

The Exchange Process from Binance Smart Chain to Binance. A smart
contract has been created in the Binance Smart Chain network for exchange with
other blockchains. The procedure for exchanging BEP 20 BWish tokens for
tokens in the Binance Chain network will be as follows:

— the user specifies the parameters on the page:
1. the network to which the tokens changes (Binance Chain);
2. receiver address;
3. the amount of exchanged tokens.

Implementation of the Cross-Blockchain Interacting Protocol 49

the user calls the transferToBC function of the BWish contract (the frontend
forms a transaction);

when calling the transaction function, the BEP20 tokens are burned;

— the scanner catches the event of the BWish contract and sends it to the
backend;

the backend makes a Wish transfer to the user’s address in the Binance Chain

Only the backend has the right to access the token sending function, which
protects against uncontrolled token issuance. All operations with the token are
performed within a single transaction, if it was successful, the tokens are burned.

The Exchange Process from Ethereum to Binance Chain. For the
Ethereum network, the exchange process is similar to the exchange from Binance
Smart Chain to Binance Chain. A smart contract has been created in the
Ethereum network for exchange with other blockchains. The procedure for
exchanging ERC 20 W W ish tokens for tokens in the Binance Chain network
will be as follows:

— the user specifies the parameters on the page:
1. the network to which the tokens are exchanged (Binance Chain);
2. receiver address;
3. the amount of exchanged tokens.
— the user calls the transferToBC function of the WWish contract (the frontend
forms a transaction);
— when calling the transaction function, the ERC20 tokens are burned;
— the scanner catches the event of the WWish contract and sends it to the
backend;
— the back makes a Wish transfer to the user’s address in the Binance Chain

Only the backend has the right to access the token sending function, which
protects against uncontrolled token issuance. All operations with the token are
performed within a single transaction, if it was successful, the tokens are burned.

The Exchange Process Between Ethereum and Binance Smart Chain
Networks. The procedure for exchanging BEP 20 BWish tokens for tokens in
the Ethereum network will be as follows:

— the user specifies the following parameters:

1. the network to which the tokens are exchanged (Binance Chain);
2. receiver address;
3. the amount of exchanged tokens.

— the user calls the transferToEthereum function of the BWish contract or
transferToBSC function of the WWish contract(the frontend forms a trans-
action);

— when calling the transaction function, the BEP20 or ERC20 tokens are
burned;

50 R. Tsepeleva and V. Korkhov

— the scanner catches an event on the BWish or WWish contract and sends it
to the backend via RabbitMQ);

— the backend address call to WWish token or BWish token to mint tokens to
the user’s address in current network.

Similarly, only the backend has the right to access the token sending function,
which protects against uncontrolled token issuance and all operations with the
token are performed within a single transaction. If it was successful, the tokens
are burned.

5.4 Project Architecture

The final architecture of the project is shown in Fig. 1:

Binance

address with field
[memo]

ETH/BSC receiver
User

Frontend _— %
(Django + React)

e)
Binance Smart Chain

ﬁ;t;on abbitM Pym

— -

smart-contract

smart-contract

Fig. 1. Project architecture.

The Solidity Token smart contract template includes the following
features:

— transferToBC and transferToBSC/transferToEthereum functions (depending
on the network) - transfer of tokens in the Binance Chain and Binance Smart
Chain/Ethereum networks;

— mint function - a function that is available only to the contract owner, in
our case, it is the backend; mint function is necessary to charge tokens to a
specific address;

— burn function - it is also used by the backend in the Ethereum and Binance
Smart Chain networks after the transfer function; it burns tokens;

— other ERC-20/BEP-20 standart functions.

Implementation of the Cross-Blockchain Interacting Protocol 51

The Django + React web application performs the following tasks:

collecting information from the user;

— generating transactions;

calling contract functions (mint, transfers, burn);
— calculating transaction fees.

Ethereum and Binance Smart Chain Network Scanners and
Binance Chain Network Scanner:

It is important to note that the scanners for the Ethereum and Binance Smart
Chain networks are identical, they are configured to check a specific token, token
contract, and event. That is, in order for our application to be able to see the
call of the functions of our contracts coming from the frontend, we just need to
use the API provided by Etherscan [10] (The Ethereum Blockchain Explorer)
or BscScan [11] (Binance Smart Chain Explorer) (block-observers). And the
scanner for the Binance Chain network works in a unique way due to the high
frequency of transactions in the Binance Chain. Instead of parsing all blocks in
a row, a list of transactions involving the address for the last day is requested
with some frequency. When you restart the first request, the data for the week
is returned. Network registry scanners scan all transactions in an open registry
to send confirmation messages to the backend via a queue (RabbitMQ@).

5.5 Security

The current backend has the following architecture: there are N net-
works/blockchains in which the exchange takes place, each of them has a con-
tract/address that can mint tokens to the addresses of end users. Such a con-
tract/address has an owner who has access, and accordingly, the owner has a
private key for such operations.

In fact, we have a small number of private keys (for example, 3 contracts
= 3 keys), which in some way makes the task easier, unlike if there were an
ever-growing set of private keys needed.

It is not a good idea to store private keys in a database in a pure form. The
options for avoiding the problem are as follows.

Refuse to Store the Private Key in Pure Text in the Database Field.
There is an option to use Encrypted Field/Symmetric Field/PGP Encrypted
Field. Such fields work on the principle that the data stored in the field
is encrypted, and cannot be obtained in the absence of the correct pass-
word /passphrase/secret key required for decryption (such a key is stored sepa-
rately, and for example, if you get the database, but do not have such a key, it
will be impossible to decrypt the table field).

Advantages of this option: even if someone takes possession of the table,
he will not be able to see the keys. Even if you dump the table and pull it
out from somewhere, you won’t be able to decrypt it either. Also, this practice
can be freely combined with other options for strengthening the security of the
backend, and it almost never hurts.

52 R. Tsepeleva and V. Korkhov

Disadvantages of this option: we still have some key on the server/in the
settings, but this can not be avoided with other options.

Do Not Store the Key in the Backend Database at All Option 1: It is
a good practice to divide the logic of working with the private key and working
directly with the rest of the backend into two indirectly dependent components.
Since in the current stages and architectures, the backend is already essentially
multi-component (scanners, receivers, deferred tasks, web handler), it will not
be difficult to make another microservice that would work directly with keys
and their receipt/issuance, and keep the rest of the logic in the main part of the
backend.

— Such a service should be separated from the backend, but it can be located
as a separate subservice in the Docker-Compose backend, or it can be put in
a separate application running on its own, perhaps even on a separate server;

— Such a service must communicate with bacon necessarily with encryption,
but it can be either an HTTP or a RabbitMQ channel;

— Such a service must have verification of everything that comes to it for the
correctness of the sender. The API key or the secret message being transmit-
ted. Perhaps even one-time, according to this scheme:

1. The main backend requests a secret message from the private backend;

2. receives the message and encodes it in a certain way;

3. sends the encoded and initial message to the private backend;

4. private backend will check whether it is encoded correctly and if every-
thing is in order will give the private key.

Option 2

This option is more suitable for networks similar to the Ethereum network.
And for networks like Binance Chain, it is not quite suitable. The idea is that the
main backend does not sign anything at all, which means that it will not need
private keys. The very same transaction signature would occur on a separate
backend/service that accepts the signature parameters, and gives the already
signed message:

— The main backend sends parameters to the signature backend;

— The signature backend signs the transaction and gives it to the main backend.

— Such a service must have verification of everything that comes to it for the
correctness of the sender. The API key or the secret message being transmit-
ted. Perhaps even one-time, according to this scheme

The provisions on API keys and encrypted requests from the previous version
also apply here.

Keep Private Keys Normally, if Everything Else Is Secure. Necessary
to understand that to achieve perfection in not storing private keys at all is a
little possible technique, but no methods will save you if you make everything

Implementation of the Cross-Blockchain Interacting Protocol 53

super-secure, but forget any obvious thing that will put everything in question.
It is impossible to get a black box that will save all the private keys, because we
need to get them back. Anyway, the level of security should be not only in the
logic of the backend, but also in everything around it. There are many points
here, but the main ones are:

1. Web Server Security:

Imperative HTTPS;

Imperative firewall, with only port 443 open to the outside, not counting
SSH;

Strict request policy (e.g. Fail2ban and other request limits);

Proxy servers, Cloudflare - required. If the main server is flooded with
HTTP Bandwidth attack or DDoS-obviously everything will fall, and no
one knows how to use it;

Perhaps you should consider Heroku/Kubernetes/Docker Swarm in order
to make the so-called scalability for the backend and reduce the number
of fail-places (as, for example, only one backend instance).

2. Security of the server:

Imperative firewall again;

SSH connection ports can be reassigned and it is a good practice to use
it. Obviously, half of the Internet uses port 22, why not put another one?
Access to the server is NOT by password. The RSA and ECDSA algo-
rithms exist for a reason, and this also needs to be used. No one will get
in without a key, unless you will approve it.

Security Implementation. After studying all the above methods and options
for protecting private keys, it was decided to implement a combined solution
that would contain the maximum number of the listed protection methods.

6 Analysis of the Results Obtained

Comparing the resulting solution with similar projects:

Wish swap PolkaSwap | Panama bridge
Security Yes No Yes
Implementation | Yes In future | Yes
Versatility No Yes No
Scalability Yes Yes No
Fees 100 WWish or 5 Wish/BWish | 0.3% 0.001 BNB

For greater clarity, Fig.2 shows histograms that display quantitative esti-
mates of the performance of the compared services.

54 R. Tsepeleva and V. Korkhov

Amount of gas consumed per transactior
Number of available networks for exchange . ket med per "

Wish Swap PolkaSwap Panama Bridge Wish Swap PolkaSwap Panama Bridge

Service fee (USD) Number of payment methods

Wish Swap PolkaSwap Panama Bridge Wish Swap PolkaSwap Panama Bridge

Fig. 2. Comparison wish swap with other projects.

Finally it is clear that our solution meets the security requirements, and
also has prospects for development when adding new blockchains, such as, for
example, Tron, Neo, Waves, and others.

7 Conclusion

A few years ago, the transfer of tokens and any other information from one
network to another was absolutely not possible. However, today, we have proved
from our experience that in this direction it is possible and necessary to build
useful and completely secure solutions to provide users with as much freedom as
possible and remove all possible boundaries in the use of blockchain technology.

The service is planned to be developed further by connecting more and more
new networks.

References

1. Zetzsche, D.A., Arner, D.W., Buckley, R.P.: Blockchain disruption and decentral-
ized finance: the rise of decentralized business models. J. Financ. Regul. 6(2),
172-203 (2020)

2. Ethereum [Electronic resource]. https://ethereum.org (date of the application:
11.03.2021)

https://ethereum.org

10.

11.

Implementation of the Cross-Blockchain Interacting Protocol 55

Binance [Electronic resource]. https://docs.binance.org (date of the application:
11.03.2021)

Matic [Electronic resource]. https://matic.network/ (date of the application:
11.03.2021)

Polkadot [Electronic resource]. https://wiki.polkadot.network/docs (date of the
application: 11.03.2021)

Stewart, A., Kokoris-Kogia, E.: GRANDPA: a Byzantie finality gadget (2020)
Official Binance Panama Bridge Webpage. https://www.binance.org/en/bridge
(date of the application: 11.03.2021)

Wish BEP2 Token [Electronic resource]. https://explorer.binance.org/asset/
WISH-2D5 (date of the application: 11.03.2021)

The definition of BEP2 token standard by Binance Academy [Electronic
resource]. https://academy.binance.com/en/glossary/bep-2 (date of the applica-
tion: 11.03.2021)

Etherscan (Ethereum Explorer) [Electronic resource]. https://etherscan.io/ (date
of the application: 11.03.2021)

BscScan (Binance Smart Chain Explorer) [Electronic resource]. https://bscscan.
com/ (date of the application: 11.03.2021)

https://docs.binance.org
https://matic.network/
https://wiki.polkadot.network/docs
https://www.binance.org/en/bridge
https://explorer.binance.org/asset/WISH-2D5
https://explorer.binance.org/asset/WISH-2D5
https://academy.binance.com/en/glossary/bep-2
https://etherscan.io/
https://bscscan.com/
https://bscscan.com/

	Implementation of the Cross-Blockchain Interacting Protocol
	1 Introduction
	2 Decentralized Finances and Its Problems
	2.1 The Essence of DeFi
	2.2 Usability of DeFi
	2.3 DeFi and Smart-Contracts
	2.4 The Main Problem of DeFi

	3 Related Work
	3.1 Polkadot Ecosystem and Polkadot Projects
	3.2 Bridges

	4 The ``Wish Swap" Project Idea
	5 Implementation
	5.1 Token Smart Contracts
	5.2 Exchange Process with Binance Chain Network
	5.3 Exchange Process with Binance Smart Chain and Ethereum Networks
	5.4 Project Architecture
	5.5 Security

	6 Analysis of the Results Obtained
	7 Conclusion
	References

