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Abstract. Very often, multivariate data analysis problems require dimensional-
ity reduction (DR) stages to either improve analysis performance or represent the
data in an intelligible fashion. Traditionally DR techniques are developed under
different frameworks and settings what makes their comparison a non-trivial task.
In this sense, generalized DR approaches are of great interest as they enable both
to power and compare the DR techniques in a proper and fair manner. This work
introduces a generalized spectral dimensionality reduction (GSDR) approach able
to represent DR spectral techniques and enhance their representation ability. To
do so, GSDR exploits the use of kernel-based representations as an initial nonlin-
ear transformation to obtain a new space. Then, such a new space is used as an
input for a feature extraction process based on principal component analysis. As
remarkable experimental results, GSDR shows to be able to outperform the con-
ventional implementation of well-known spectral DR techniques (namely, clas-
sical multidimensional scaling and Laplacian eigenmaps) in terms of the scaled
version of the average agreement rate. Additionally, relevant insights and theoret-
ical developments to understand the effect of data structure preservation at local
and global levels are provided.

Keywords: Dimensionality reduction - Kernel representations * Principal
component analysis * Spectral methods

1 Introduction

Dimensionality reduction (DR) aims to embed relevant information from high-dimen-
sional data into a lower dimension representation, being of great use among data-related
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areas such as big data, pattern recognition, clustering or data visualization. Many DR
techniques have been extensively studied, ranging from distance-based preservation
criteria, e.g. classical approaches such as classical multidimensional scaling (CMDS)
[1], to graph-based approaches as Laplacian eigenmaps (LE) [2]. Given such a wide
range of techniques developed under different frameworks and settings, generalized
DR approaches are of great interest as it enables to contrast and enhance them in a fair,
proper manner.

In this work, a generalized spectral dimensionality reduction (GSDR) approach
capable of representing DR spectral techniques and exploit their representation abil-
ity is introduced. To do so, in the here-studied GSDR a new space representation is
obtained through an initial nonlinear transformation employed by the use of kernel-
based representations. Then, a feature extraction process based on principal component
analysis is applied in such new space. Remarkable experimental results shows that in
terms of the scaled version of the average agreement rate, GSDR is be able to outper-
form the conventional implementation of well-known spectral DR techniques -namely,
classical multidimensional scaling and Laplacian eigenmaps. Additionally, aimed at
better understanding the effect of data structure preservation at local and global levels
simultaneously, theoretical developments and relevant insights are provided.

The remaining of this manuscript is structured as follows: Sect.?2 states the nota-
tion used throughout this work and presents a brief overview on kernels. In Sect. 3, we
introduce the GSDR method. Both the nonlinear mapping and the feature extraction
are explained in theoretical and computational terms. Section 4 describes the setup and
parameter settings for experiments. Section 5 gathers and discusses the experimental
results. Finally, conclusions and final remarks are drawn in Sect. 6.

2 Background on Kernel Functions and Notation

2.1 Notation

Let us define the input data matrix as X € RV *P holding N samples represented by
D variables, in the form: X = (x{,...,x%)", withx; € R” andi € {1,...,N}.
Likewise, let Y € R™*? be the output data matrix, such that Y = (y{,...,yA)",
y; € R?and d < D. In terms of feature extraction, matrix Y is the embedded (also
extracted, projected, or mapped) space. In such vein, it is traditionally set d < D for DR
purposes. That said, the aim of DR is to embed the space X into a lower-dimensional
space Y.

2.2 Concept of Kernel Function

Roughly speaking, the so-named kernel function can be understood as an approach
that allows for estimating the similarity among input data samples [3]. In general,
such similarity is calculated over samples from either independent or associated spaces
[4,5]. In this work, the concept of kernel is referred to the pairwise similarity or affin-
ity measures intended to represent the input data. Naturally, similarity measures must
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be ruled by a positive semi-definite function. In mathematical terms, we can express a
positive semi-definite kernel function (-, -) as follows:

K(,):RP xR — R

Xiy Xj '—)IC(X’hXj)ﬂ (l)
satisfying
N N
chiéjlc(xi7xj) >0, 2)
i=1 j=1

for all ¢; € C, being ¢; the complex conjugate of c;.

3 Proposed Generalized Spectral Dimensionality Reduction
(GSDR) Approach

The here-proposed Generalized Spectral Dimensionality Reduction, short termed as
GSDR, is based on the premise that data can be mapped onto another space Z € RV *M
before going through a feature extraction procedure itself. In this connection and
inspired by works devoted to dissimilarity-based representations [6], we alternatively
propose to explore the possibility of a nonlinear mapping 7 {-} based on pairwise sim-
ilarities, such that:

7 — T{X}, 3)

where z;; = K(x;,x;). Therefore, Z is said to be a kernel matrix as well as M = N.

Then, a linear projection is performed over the mapped space to obtain the embedded

space Y, such that Y = ZR where R € RN *4 g a rotation matrix to be defined.
Figure 1 depicts a high-level outline of the proposed GSDR.

Input data Embedded data
XNxD Nonlinear Feature Ynxa(d<D)
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Fig. 1. Block diagram of the proposed GSDR. It mainly involves two steps: nonlinear transfor-

mation based on kernel functions (similarities) and linear feature extraction using PCA.

Notice that in this work, either an element of the space (matrix) or the space itself
is indistinctly referred as space.
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3.1 Nonlinear Transformation Using a Kernel Matrix

Since vectors x; are assumed to be real and D-dimensional, and a collection of N
vectors is available (just as stated in notation given above), a matrix Z € RY*" with
entries z;; = K(x;,x;) can be formed. Such a matrix is known as kernel matrix (Gram
or generalized co-variance matrix as well). Therefore, a real symmetric N x N matrix
Z whose 7j entries satisfy Eq. (2) for all ¢; € R is also a positive semi-definite matrix.

A remarkable benefit of this property is that all eigenvalues of Z are ensured to
be non-negative, which enables to readily carry out useful spectral developments for
feature extraction purposes.

Figure 2 depicts the effect of the kernel-based data representation. By nature, a
kernel entries can be understood as pairwise similarities, and therefore non-directed,
weighted graph becomes a suitable geometric representation thereof.

Koas knn

kan = kna .-

k34 = k43},"""‘.k3N = kN3

Fig.2. An explanatory diagram depicting the relationship between the kernel entries and the
weights of an N-node weighted, non-directed graph within a similarity-based representation
framework.

As a matter of fact, kernel matrix entries may be related to the similarity among
nodes (data points), which is in turn related to an opposite notion of distance, and there-
fore the concept of close neighborhood (local structure) takes place. Such a local struc-
ture of data can be preserved by a kernel function if its corresponding kernel matrix is
properly tuned and selected, and subsequently used as an input to either a robust enough
kernelized DR method [7] or similarity-driven generalized DR [8].
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3.2 PCA-Based Feature Extraction

For the dimensionality reduction process to be carried out over the new space Z, we use
a PCA-based feature extraction approach. It works as follows: First, let us consider a
linear projection in the form:

Y = ZR, “4)

where R, € RV *? is a projection or rotation matrix. In this connection, the condition
d < D takes place to extract features in a lower dimensional space.

To ensure linear independence and prevent from length effects, an orthonormal rota-
tion matrix is considered, i.e. RTR = I, where I, is d-dimensional identity matrix.

The estimation of R follows from the distance-based framework widely explained
in [8].

Briefly put, this framework minimizes the distance between of Z and a low-rank
representation thereof Z € RN*N as follows:

; _ 72
min |Z - Z||5 3)
R'R=1,

where ||-||2 stands for the Euclidean (L) norm. As demonstrated in [8], previous for-
mulation is equivalent to the following dual problem:

max tr(R"ZR) (6)
R R=1,
where
DA/ (7)

and tr(-) denotes the conventional matrix trace operator.

As the functional of the dual optimization problem presented in (6) is quadratic
and R is an orthonormal matrix, it is easy to demonstrate that a feasible solution is
selecting R are the eigenvectors corresponding to the d largest eigenvalues of 3. It is
worth noticing that, once centered the matrix Z with

1
Z — (IN—N1N1;> Z, (8)

being 1y an N-dimensional all ones vector, 3 becomes an estimation of the covariance
matrix of Z.

3.3 GSDR Algorithm

The Algorithm 1 is a pseudocode gathering the steps of the proposed GSDR.
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Algorithm 1. Generalized spectral dimensionality reduction (GSDR)

YNXd = GSDR (XNXD7IC('7 )’d)
Input: Data matrix Xnxp = (X7 ,...,Xx) ', given kernel function (-, -),

desired dimension d (d < D)

Calculate the transformation Zyxn = 7{Xnxp} as zi; = K(xi,x;)
Center matrix Zyxn with Zyxn «— (IN — %].Nl]—\r;) ZNxN

Calculate Zyxn as BN = Z sy NZNxN

L AN

Calculate the eigenvalue and eigenvector decomposition of X nxn as [An, Vxn] =
eig (ENXN)Y with Ay = ()\1,. . .,)\N), VN = (Vl,. .. 7VN) and A\ > -+ > An.

5: Form Ryxq as the eigenvectors corresponding to the first d largest eigenvalues of
Y nxn organized in decreasing order as: Ryxd = (Vi,...,V4)

6: Calculate Ynxa = ZnxNRNxd

Output: Embedded data matrix Y y x4

4 Experimental Setup
Kernels for DR: Two kernel approximations for spectral DR methods [9] are consid-

ered, namely CMDS and LE, as detailed in Table 1.
All previously mentioned kernels are widely described in [9].

Table 1. Brief description of the here-used kernel matrices representing dimentionality reduction.

Classical multidimentional scaling (CMDS) Laplacian eigenmaps (LE)

The LE kernel can be expressed as

Kig = LT,
CMDS kernel is the double centered distance | where L = D — S is the graph Lapla-
matrix D € RM*Y guch that Kcups = |cian, S is a similarity matrix, D =
1 . . .
—S(Iy — 1x1)D(Iy — 151}) Diag(S1x) is the degr'ee matrix, and L
2 stands for the pseudo-inverse of L
where the ij entry of D is given by d;; = | Following the study done in [10], S is
[ly: — y;||3 and || - ||2 stands for Euclidean | calculated by keeping the relative band-
norm. width parameter as log K to keep the

entropy across the neighbors, being K a
given number of neighbors. In this work,
K is set to be 30
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Performance Measure: The performance of the considered methods is quantified by
the scaled version, ranged within the interval [0, 1], of the average agreement rate
Ry x (K) presented in [11]. Given that Ry x (K) is obtained at each perplexity value
from 2 to N — 1, a numerical indicator of the overall performance is acquired through
calculating its area under the curve (AUC). Therefore, this AUC is an overall indicator
of quality preservation of a DR approach, as it evaluates the most appropriate weights
at all scales.

Both the dimensionality reduction techniques (GSDR, LE, and CMDS) and the
performance measure (R x (K) curve) are implemented on MATLAB Version: 9.10
(R2021a)).

Databases: Experiments are carried out over fourth conventional data sets. Figure 3
depicts examples/views of the considered data sets.

[ 2
o
[ J
[ J
[ 3
@&
L=
e
-
-
3 @
-
10
0
10§
100
()
50 ~_— 0
0 -10
(c) Swiss Roll (d) Sphere

Fig. 3. The four considered data sets: COIL-20, MNIST, Swiss roll and Sphere
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The first data set is a randomly selected subset of the MNI ST image bank [12], which
is formed by 6000 gray-level images of each of the 10 digits (/N = 1500 data points
—150 instances for all 10 digits— and D = 242), a sample is presented in Fig. 3(b). The
second one is the COIL-20 image bank [13], which contains 72 gray-level images rep-
resenting 20 different objects (N = 1440 data points —20 objects in 72 poses/angles—
with D = 1282), as seen in Fig. 3(a). The third data set (Sphere) is an artificial spher-
ical shell (N = 1500 data points and D = 3), and the fourth data set is a toy set here
called Swiss roll (N = 3000 data points and D = 3), depicted in Fig. 3(d) and
3(c), respectively.

5 Results and Discussion

The plot of the R x curve and its AUC obtained from reducing the data sets by the con-
ventional implementation (no kernelized) of CMDS [1] and LE [2] are compared with
the ones reached by GSDR (X, (-, -),2) (according to Algorithm 1) when selecting
K(-,-) as kernel functions producing respectively the kernel matrices Kcmps and K g.
Results are shown in Fig. 4, 5, 6 and 7.

As can be observed, GSDR slightly outperforms conventional CMDS and LE in all
cases. A remarkable advantage of the proposed GSDR is its ability to both unfold man-
ifolds (as seen in Fig. 4 and 5) and reach separable-classes visualization from complex,
high dimensional real data (as seen in Fig. 6 and 7).

It is also worth noticing that some rotation occurs over the embedded spaces as
can be appreciated in Fig. 6(b), 6(d), 7(b) and 7(d). This fact is due to the orthogonal
rotation done at the second step of GSDR procedure, which adds an effect of global
structure preservation.

That said, as it performs a kernel-based representation and linearly projects the data
with a PCA-based rotation, GSDR is able to preserve both the global and local structure
of the input data.

Even though these preliminary results exhibit no great improvement regarding con-
ventional DR methods, its mathematical development and versatility is highly promis-
ing as it opens possibilities to exploit simultaneously a kernel-matrix-based representa-
tion together with simple PCA.

As demonstrated in previous works [14,15], a joint formulation involving linear
projections (just as PCA) and either similarity-based or kernelized representations is a
suitable framework to design DR alternatives able to preserve local and global structure
of the data.
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Fig. 4. Results for Sphere. Both the embedded spaces of GSDR and conventional CMDS and
LE are shown. Comparison is made in terms of the Ry x curve
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Fig. 5. Results for Swiss roll.
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Fig. 6. Results for COIL 20.
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Fig. 7. Results for MNIST.
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6 Conclusions and Future Work

In this work, we present a generalized spectral dimensionality reduction (GSDR) app-
roach, which exploits simultaneously the use of kernel-based representations and a fea-
ture extraction stage. The former is an initial nonlinear transformation aimed to generate
a new space wherein the local-structure attributes are captured. The latter uses that new
space as an input for a principal-component-analysis-driven projection, which enables
the preservation of global-structure attributes. Experimentally, we prove that proposed
GSDR reaches competitive performance in contrast to the conventional implementation
of classical multidimensional scaling and Laplacian eigenmaps in terms of structure
preservation criteria.

As a future work, more kernel representations are to be explored, which can be
plugged to spectral dimensionality reduction approaches aiming at reaching a suitable
trade-off between the preservation of local and global structure of data.
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