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Abstract. Monitoring of Land use and Land cover (LULC) changes is a highly
encumbering task for humans. Therefore, machine learning based classification
systems can help to deal with this challenge. In this context, this study evaluates
and compares the performance of two Single Learning (SL) techniques and one
Ensemble Learning (EL) technique. All the empirical evaluations were over the
open source LULC dataset proposed by the German Center for Artificial Intelli-
gence (EuroSAT), and used the performance criteria -accuracy, precision, recall,
F1 score and change in accuracy for the EL classifiers-. We firstly evaluate the
performance of SL techniques: Building and optimizing a Convolutional Neu-
ral Network architecture, implementing Transfer learning, and training Machine
learning algorithms on visual features extracted by Deep Feature Extractors. Sec-
ond, we assess EL techniques and compare them with SL classifiers. Finally, we
compare the capability of EL and hyperparameter tuning to improve the perfor-
mance of the Deep Learning models we built. These experiments showed that
Transfer learning is the SL technique that achieves the highest accuracy and that
EL can indeed outperform the SL classifiers.

Keywords: Land use · Land cover ·Machine learning · Deep learning · Deep
feature extraction · Ensemble learning · Hyperparameter optimization

1 Introduction

Land use and Land cover (LULC) classification refers to the arrangement into groups
of the “human activities on and in relation to the land” and the “biophysical cover of the
Earth’s surface” [12, 16, 23]. LULC classification has several applications such as span-
ning forestry, agriculture, urban planning, and water-resources management [22]. And
thanks to the availability of images of the Earth’s surface (remote sensing) and to image
processing techniques, researchers can construct their own LULC dataset depending on
the LULC classification problem they are dealing with. For instance, the community has
already produced several open source LULC datasets (e.g. Merced Land Use [29], UC
HistAerial [21], EuroSAT [9]).
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To solve LULC classification problems, the literature suggests different approaches,
andConvolutionalNeuralNetworks (ConvNets) are still themost popular one [5], as they
integrate the tedious feature extraction from the input images [19]. Besides, ConvNets
have recently achieved major successes in many Computer Vision (CV) applications
[15]. However, building ConvNets is challenging as it requires setting the values of
several hyperparameters, such as the learning rate, the number of hidden layers and the
batch size [17]. This drawback hasmotivated the use of another approach, that is Transfer
learning [1, 21]. It consists of using ConvNets that were trained on an image-related task,
and adapting the knowledge they had acquired to the new problem [11]. This approach
reduces the time required to design and develop the models since it provides a ready
to use ConvNet architecture. Nonetheless, it still leaves a set of hyperparameters to be
fine-tuned by the user. Hence, the third approach we found in the previous works: Deep
Feature extraction. It tries first to extract the visual features from images, and then feed
them to a Machine Learning (ML) classification technique [2]. This approach achieves
relatively good performance with little fine tuning. But it does not generally outperform
the previously mentioned approaches [3].

The use of ML in LULC classification problems has lately proved very promising
[25]. However, we noticed some limitations in the previousworks, namely fewpretrained
models are employed and the performance of the resulting classifiers depend highly on
the context. Given the cost of building new architectures, most previous works tend
to use Transfer learning instead. Nevertheless, the number of Deep Learning (DL) pre-
trained architectures they use is still limited [1, 26]. Additionally, an important limitation
when using ML/DL techniques is that different techniques give different performances
depending on the context. In fact, there is no general best/worst technique in all con-
texts. Thus, we propose the use of Ensemble Learning (EL) techniques to remedy this
limitation. The use of EL to address LULC problems is not thoroughly studied in the
literature as most works focus on implementing and optimizing Transfer learning single
models, and those who did employ EL techniques, have only combined ML models and
did not investigate the use of DL models as members [8, 13].

This study intends to overcome the aforementioned limitations by means of: 1) thor-
oughly implementing single DL/ML techniques with hyperparameters optimization to
find the best singlemodel; and 2) proposing anELapproach to aggregate the performance
of the best single DL/ML models.

Indeed, we firstly evaluate the three state of the art ML techniques. Specifically:
we build and optimize a ConvNet architecture referred to us LULC-Net, we use sev-
eral pretrained ConvNet architectures and fine tune their hyperparameters and finally
we use the ConvNet part of two of these pretrained models as Feature extractors, and
train ML algorithms on the resulting features. Secondly, we build different EL mod-
els: Machine Learning Ensembles (MLEnsembles), Deep Ensembles (DLEnsembles)
and Hybrid Ensembles (HybridEnsembles) to solve the LULC classification problem.
MLEnsembles are ensembles where the members are the ML classifiers we developed
thanks to the third state of art approach (i.e. Deep Feature extraction) (see Fig. 1).
DLEnsembles on the other hand are composed of DL classifiers (i.e. Transfer learning).
Finally, HybridEnsembles are ensembles combining all the classifiers we built (i.e. ML
and DL). Further, we study their results and investigate the use of EL as an alternative to
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hyperparameter tuning when it comes to improving the performance of well-performing
models.

The main research contributions this paper are:

– Evaluating three state of art singleML/DL techniques and approaches in LULC classi-
fication problems using hyperparameter optimization (i.e. new ConvNet architecture,
End to End Transfer learning and Deep Feature extraction).

– Proposing and assessing the use of different EL combinations for LULC classification.
– Investigating the use of EL to further improve the performance of single DL models
compared with hyperparameter optimization.

Thus, this study discusses the following research questions:

– RQ1: Which one of the SL techniques (i.e. ConvNet, Transfer learning and Deep
Feature extraction) performs the best on the EuroSAT dataset?

– RQ2: Does any of the proposed EL combinations (i.e. MLEnsembles, DLEnsembles
and HybridEnsembles) outperform the best SL models?

– RQ3: Is EL a better alternative to hyperparameter tuning when it comes to increasing
the accuracy of a well performing DL model?

The rest of this paper is organized as follows: Sect. 2 presents the dataset, optimization
technique and evaluation metrics we chose to use in this empirical study, and discusses
the hyperparameter tuning of the different models we built. Then, the performances of
the SL and EL classifiers are presented and compared in Sect. 3. Section 4 provides a
summary of the findings of this study and summarizes ongoing works.

2 Materials and Methods

2.1 Materials

This section presents the materials we used in this work, the experimental design and its
implementation.

Dataset Description. As part of a research project that aimed at proposing a novel
dataset and DL benchmark for LULC classification, the German Center for Artificial
Intelligence (DFKI)1 constructed and made open source a new LULC dataset: EuroSAT
[9]. It is composed of 27000 64 by 64-pixel images: 2000 to 3000 images per class.
The team chose 10 classes of LULC that were frequent and visible in the Sentinel-
2A images: Industrial Buildings, Residential Buildings, Sea and Lake, Herbaceous
Vegetation, Annual Crop, Permanent Crop, River, Highway, Pasture, Forest.

Hyperparameter Optimization. Tofine tune the hyperparameters of our classifiers,we
set accuracy to be the objective function and Random Search (RS) as the optimization
algorithm. RS lets the hyperparameters be chosen at randomwithin a range of values and

1 https://www.dfki.de/en/web.

https://www.dfki.de/en/web
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decides the best configuration that maximizes the objective function (i.e. accuracy) [4].
It is computationally cheap, and outperforms Grid Search when some hyperparameters
are far more important than others [4]. We implemented this phase using Keras Tuner
[18]; a Keras hyperparameter optimization library.

Metrics. In order to evaluate the performance of our classifiers, and since EuroSAT is a
balanced dataset, this study uses the following benchmark metrics: Accuracy, Precision,
Recall, and F1 score. These popular criteria are defined by Eqs. 1–4.

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

F1score = 2× Precision× Recal

Precision+ Recall
(4)

where TP, FP, TN and FN stand for True Positive. False Positive, True Negative and
False Negative respectively. To evaluate the improvement of EL classifiers over the best
single classifier, we use another metric as well, and that is Change In Accuracy. This
metric compares theAccuracy of the Ensemble (AoE) to that of the Best Single Classifier
(AoBSC) in the ensemble. Equation 5 defines AoBSC.

AoBSC = max (AoBaseLearner 1 , AoBaseLearner 2, . . . , AoBaseLearner N − 1,

AoBaseLearner N ) (5)

where AoBaseLearneri is Accuracy of the ith Base Learner, and N is Number of Base
Learners used.

Lastly, Eq. 6 defines the Change In Accuracy metric.

ChangeInAccuracy(e) = AoE(e)− AoBSC(e) (6)

where AoE(e) is Accuracy of the ensemble e, andAoBSC(e) is Accuracy of the Best Sin-
gle Classifier in the ensemble e. A negative value indicates that the best single classifier
outperformed the ensemble.

2.2 Experimental Design

This study focuses on providing an evaluation of the performance of diverse single
ML/DL techniques in LULC classification problems and proposing a new technique
based on ensemble learning as shown in Fig. 1. We used the images and labels in
the EuroSAT dataset as input data, and implemented four ML approaches: build a new
ConvNet architecture (LULC-Net), End to End Transfer learning, DL Feature Extraction
and Ensemble Learning.
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During the process of building the different classifiers, we used the following config-
uration: categorical cross entropy as loss function, Softmax as an activation function of
the last layer and a 80–20% data split. Next, we will present the implementation details
of the building process of the different classifiers.

LULC-Net: To propose a new ConvNet architecture for LULC classification tasks, we
began with a shallow ConvNet randomly configured, and while seeking to maximize
the accuracy, we tuned a list of hyperparameters that according to [17] affect both the
structure and the training process of ConvNets. Table 1 shows the hyperparameters we
chose to tune, their respective ranges as well as the optimal values returned by the RS
technique we implemented using the Keras Tuner library.

Transfer Learning. ATransfer learningmodel is a combination of aDLFeature extrac-
tor (i.e. ConvNet layers) and a set of dense layers (i.e. fully connected layers). Training
the Transfer learning models was a two steps process: (1) we trained the fully connected
layers (initially composed of two layers, 512 and 10 neurons respectively), then fine-
tuned the weights of the pretrained models. The first step trained the dense layers part
of the model, and did not permit change to occur in the ConvNet part (i.e. the pretrained
layers were frozen). And (2) let the learning process change the weights of the top 30%
layers of the pretrained part (i.e. unfreeze the top 30% layers), and thus adapt to the new
task [7] (Table 2).

Fig. 1. Experimental design.

Deep Feature Extraction. As it was previously pointed out, the first part of every Con-
vNet architecture is one that performs feature extraction [19]. Therefore, we used the
convolutional part of the VGG16 and RestNet50 pretrained models to extract visual
features from the images, and fed them toML algorithms. These features are predictions
of the ConvNet parts of VGG16 and RestNet50 on the EuroSAT images stored in a CSV
file. And the MLmodels that we trained were mainly: Support Vector Machines (SVM),
RandomForest (RF) and Logistic Regression (LR). Eachwith their default configuration
implemented in the Sikit-learn library [20] (Table 3).
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Table 1. Fine tuning of LULC-Net: Hyperparameters, range and optimal values.

Hyperparameter Range Optimal value

Optimizer Adam, RMSprop, Stochastic Gradient Descent Adam

Batch size 20, 32, 64, 128 32

Number of ConvNet blocks min = 3, max = 25, step = 1 7

Number of filters min = 32, max = 256, step = 32 64, 224, 192

Kernel size 3, 5 and 7 5

Activation function Tanh, ReLu, Leaky Relu ReLu

Learning rate 0.01, 0.0001, 0.00001 0.0001

Table 2. Fine tuning of the fully connected layers on top of VGG16.

Hyperparameter Range Optimal value

Optimizer Adam, RMSprop, Stochastic Gradient Descent Adam

Batch size 20, 32, 64, 128 32

Number of hidden layers min = 1, max = 3, step = 1 2

Number of neurons min = 32, max = 1024, step = 32 960

Dropout rate min = 0, max = 0.6, step = 0.1 0.2

Activation function Tanh, ReLu ReLu

Learning rate 0.01, 0.0001, 0.00001 0.0001

Table 3. Fine tuning of the Machine Learning classifiers trained on VGG16’s extracted features.

Algorithm Hyperparameter Range Optimal value

SVM C
Kernel

1, 10, 50 and 100
Linear, RBF, Sigmoid

10
Linear

RF Number of estimators
Max depth
Max feature

min = 100 max = 1500, step = 100
min = 3 max = 100, step = 1 and None
auto, sqrt and log2

1000
10
auto

LR C
Solver

100, 50, 20, 10, 1, 0.1, 0.01
newton-cg, lbfgs, liblinear

100
liblinear

EL: Stacked Generalization. We chose to develop the EL models using the stacked
generalization technique, which combines learners and finds the best combination of
their predictions using another model (i.e. meta learner) [27]. Figure 2 shows the imple-
mentation process we followed, we put the classifiers we built so far into three groups of
base learners. The first set was composed of Deep Learners namely: VGG16, RestNet50,
DenseNet201, VGG16 Places365 (VGG16-P) and VGG16HybridPlaces (VGG16-HP)
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(DLEnsembles) [14]. The second was made of MLmodels: SVM, RF, K Nearest Neigh-
bour (KNN) and Gaussian Native Bayes (Gaussian NB) trained on the features extracted
by VGG16 and RestNet50 (MLEnsembles). Finally, the last set of base learners was a
combination of both approaches and sets of base learners (HybridEnsembles). The meta
learners we experimented with were LR or Multilayer perceptron (MLP) and the fine
tuning of this approach focused on finding the best combination of base learners and
the best meta learner. By comparing the increase in accuracy introduced by EL and
fine-tuning DL models we aim at investigating the ability of EL methods to improve the
accuracy of well performing single models.

Fig. 2. Ensemble learning technique.

3 Results and Final Discussion

This last sectionwill attempt to answer the RQs of our work by presenting and discussing
the findings of our work.

3.1 Performance Comparison Between ML Models

The first single classifier we built was a new ConvNet architecture: LULC-Net. Its
accuracy, F1 score and training times are respectively: 94.24%, 94.36% and 7 min (12
epochs using the GPU support of Kaggle kernels). However, LULC-Net does suffer
slightly from overfitting. Indeed, among the LULC classifiers we developed, the one
that overfits the data the most is this newly proposed ConvNet architecture. The Transfer
learning classifiers on the other hand achieved state of art performance (96% and 97%
accuracy) [5, 28]. Table 4 summarizes the performance achieved by our single Transfer
learning classifiers after 25 epochs of training. The DenseNet201 model achieves the
best accuracy and F1 score (96.88% and 96.90% respectively). However, because of its
depth [10], it takes the longest to train (30 min). On the other hand, VGG16 manages
to achieve 96.81% accuracy, after just 11 min of training. Nonetheless, the performance
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of the VGG16 architecture decreases slightly if it was trained on the Places dataset [30]
insteadof ImageNet [15] (e.g.VGG16-P).Oneother notablefinding is that InceptionV3’s
performance is poor on EuroSAT compared to that of the other models we used, and
this is even if InceptionV3 outperforms all of them on the ImageNet dataset [24]. Lastly,
MobileNet is the pretrained model that performed the poorest on EuroSAT.

Overall the Deep Feature extraction classifiers underperformed the Transfer learning
ones (see Table 5). Additionally theDeep Feature extractionmodel that performs the best
is RestNet50 + Logistic Regression (93.86% accuracy). However, it takes RestNet50
several minutes to extract the features, which in turn elongates the classification process.
Further, all metrics considered, Logistic Regression outperforms all other algorithms
regardless of the Feature extractor used. In fact, it trains in fewer minutes, and it achieves
the best accuracy with RestNet50’s features and second best with VGG16’s. Finally,
although it takes longer to extract the features, accuracy-wise RestNet50 is a better
feature extractor than VGG16. For instance, training Random Forest on RestNet50’s
features improved its accuracy significantly, and that is the case for Logistic Regression
as well.

In termsof accuracy and training time, thefindings of theSLexperiments indicate that
Transfer learning performs the best, followed by LULC-Net andDeep Feature extraction
classifiers. In fact, Tables 4 and 5 show that all the Transfer learning classifiers produced
a better accuracy than the one ML models returned. Moreover, the experiments also
demonstrate that the training time of the ML models is longer than that of the Transfer
learning models: most DL models train in less than 20 min, whereas most of the ML
models take more than 20 min to converge.

Table 4. Performance of the fine tuned Transfer learning models

Architecture Dataset Accuracy
(%)

Precision
(%)

Recall
(%)

F1 score
(%)

Training
time
(minutes)

DenseNet201 ImageNet 96.88 96.97 96.83 96.90 30

InceptionV3 ImageNet 95.44 95.75 95.44 95.59 18

MobileNet ImageNet 94.70 94.69 94.52 94.60 10

RestNet50 ImageNet 96.77 96.79 96.69 96.74 15

VGG16 ImageNet 96.81 96.87 96.80 96.83 11

VGG16-HP Places/
ImageNet

96.37 96.42 96.36 96.39 15

VGG16-P Places 96.33 96.28 96.25 96.25 14
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Table 5. Performance of the Deep Feature Extractors and fine tuned ML models.

Feature
extractor

Algorithm Accuracy % Precision % Recall % F1 score % Training time
(minutes)a

RestNet50 LR
RF
SVM

92.60
85.86
92.98

92.56
85.97
92.95

92.60
85.86
92.87

92.56
85.91
92.96

10
20
35

VGG16 LR
RF
SVM

93.86
87.26
93.53

93.87
87.68
93.53

93.86
87.26
93.53

93.84
87.01
93.51

24
27
41

aIncluding 7.6 min and 21 min of Feature extraction with VGG16 and RestNet50 respectively

3.2 Performance Comparison Between EL and SL Models

The results of the experiments we conducted to answer this question show that the
accuracies of the DLEnsembles and HybridEnsembles are far better than those of the
MLEnsembles. In fact, the HybridEnsemble3 + LR has the worst accuracy among all
DL and Hybrid ensembles (95.74%); however, its accuracy is still approximately 6%
better than the accuracy of the best performing ML ensemble (i.e. MLEnsemble1 +
MLP, 89.92%). Moreover, DL and Hybrid ensembles are also better at improving their
Best Single Classifier’s accuracy. With the exception of the MLEnsemble4, all the ML
ensembles have either slightly increased the accuracy of their Best Single Classifier (less
than 0.30% increase), or decreased it. On the other hand, when they use LR as a meta
learner, most of the DL and Hybrid ensembles have an accuracy that is approximately
1% better than that of their Best Single Classifier.

More insights can be drawn from Table 6. First, the best classifier this approach
managed to build is a Deep EL classifier, namely: DLEnsemble1 which achieved 97.92%
accuracy. Second, although DenseNet201 and VGG16 have very close accuracy values,
combining DenseNet201 instead of VGG16 with VGG16-P and RestNet50 resulted in
a better performing ensemble. In fact, DLEnsemble1 + LR composed of DenseNet201,
VGG16-P and RestNet50 produced an accuracy of 97.92%, while DLEnsemble3 + LR
where we substitute DenseNet201 with VGG16, manages to classify only 97.11% of the
unseen images. Nonetheless, DLEnsemble1 takes longer to train than DLEnsemble3,
and that is because DLEnsemble1 combines DenseNet201 whose time-cost is higher
than VGG16’s. Similarly, ensembling the SVM classifier with KNN performed much
better than MLEnsemble3. However, this high performance of ensembles where SVM
is a member also comes at a high time-cost, as SVM is the model that takes the longest
to train among the ML classifiers we built. Finally, the hybrid experiments show also
this trade off as well: the hybrid ensembles that performed the best combined models
that have the highest cost (in terms of their training time).

Finally, as a meta learner, LR outperformsMLPwhen the ensemble members are DL
models, whereas MLP produces a better accuracy if the base learners are mainly ML.
In fact, the DL ensembles + LR all returned a higher accuracy than that they produced
withMLP. Similarly, the hybrid ensembles composedmostly ofDL classifiers performed
better with LR (accuracy-wise). On the other hand, MLP increases the accuracy of ML
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ensembles. With the exception of MLEnsemble3, all ML ensembles scored a higher
accuracy with MLP than with LR.

3.3 Performance Comparison Between Hyperparameter Tuning and the EL
Approach

Hyperparameter optimization was crucial to improving the performance of our sin-
gle ML/DL models, especially the DL. Prior to fine tuning, DenseNet201 and VGG16
achieved 89% and 87% accuracy respectively. However, optimizing the same models
(i.e. unfreezing their top 33% pretrained layers) increased their respective accuracies to
96.88% and 96.81%. Nonetheless, the EuroSAT benchmark model proposed by DFKI
has an accuracy of 98.57% [9].Oneway to increase the performance of ourDLclassifiers,
is to extend the search space during the hyperparameter optimization. Another way is to
use an EL technique and aggregate the knowledge they had previously acquired. Table
7 compares both methods as it shows the increase in accuracy of VGG16, DenseNet201
and MobileNet introduced by hyperparameter optimization and EL. The Current per-
formance column presents the results discussed in Table 4. The third column we find
the performances (accuracy and time cost) attained after further-optimizing the models;
that is after unfreezing 66% of their top pretrained layers. The last column presents the
performance obtained after the aggregation of the classifier in question with others in a
stacked generalization ensemble. The time cost in this case is the summation of the cost
of each member in the ensemble, including the meta learner.

Optimizing the hyperparameters by letting more layers adapt to the new task slightly
increased the accuracy of each classifier. Actually, the model whose accuracy saw
improvement the most is the MobileNet classifier, which is also the model that per-
formed the poorest after the first fine tuning phase. More importantly, the use of EL
improved all classifiers’ accuracy more than fine tuning; however, it does require more
time as it trains and combines several models.

Table 6. Performance of the stacked generalization Ensemble

Approach Ensembles Members AoE % AoBSCa Change In
Accuracy %

LR MLP LR MLP

DL DLEnsemble1 DenseNet,
RestNet,
VGG16-P

97.92 97.18 DenseNet(96.77%) +1.15 +0.41

DLEnsemble2 DenseNet,
RestNet,
VGG16-P,
VGG16-HP

97.7 97.22 DenseNet(96.77%) +0.93 +0.55

(continued)
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Table 6. (continued)

Approach Ensembles Members AoE % AoBSCa Change In
Accuracy %

LR MLP LR MLP

DLEnsemble3 VGG16,
RestNet,
VGG16-P

97.11 96.74 VGG16 (96.66%) +0.45 +0.37

All DL classifiers DenseNet,
RestNet,
VGG16,
VGG16-P,
VGG16-HP

97.74 97.07 DenseNet(96.77%) +0.97 +0.30

ML MLEnsemble1 SVM, RF 89.85 89.92 SVM(89.66%) +0.19 +0.26

MLEnsemble2 SVM, KNN 89.85 89.48 SVM(89.66%) +0.19 −0.18

MLEnsemble3 RF, KNN 82.77 85.40 RF(85.5%) −2.73 −0.1

MLEnsemble4 Gaussian
NB, KNN

78.51 80.07 KNN(73.37%) +5.14 +6.34

All ML classifiers RF, SVM,
Gaussian
NB, KNN

89.29 89.74 SVM(89.66%) −0.4 +0.8

Hybrid HybridEnsemble1 DenseNet,
RestNet,
VGG16-P,
SVM

97.55 96.92 DenseNet(96.77%) +0.74 +0.15

HybridEnsemble2 DenseNet,
RF,
VGG16-P,
SVM

97.70 97.18 DenseNet(96.77%) +0.89 +0.41

HybridEnsemble3 RestNet,
RF, KNN,
Gaussian
NB

95.74 96.07 RestNet(96%) −0.26 +0.07

HybridEnsemble4 RestNet,
VGG16-P,
KNN,
Gaussian
NB

96.92 96.22 VGG16-P(96.33%) +0.92 −0.11

HybridEnsemble5 VGG16,
DenseNet,
RF, KNN

97.74 97.03 DenseNet(96.77%) +0.97 +0.26

(continued)
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Table 6. (continued)

Approach Ensembles Members AoE % AoBSCa Change In
Accuracy %

LR MLP LR MLP

HybridEnsemble6 VGG16,
RestNet,
DenseNet,
VGG16-P,
RF, SVM,
KNN

97.74 97.18 DenseNet(96.77%) +0.97 +0.41

aTo conduct these experiments we trained and tested the DL models another time. Hence the
differences between the results in this column and the ones in Table 4

Table 7. The increase in accuracy introduced by hyperparameter fine tuning and EL

Model Current performance Further Fine tuning Ensemble learning

Accuracy % Training
time

Accuracy % Training
time

Accuracy % Training
time

DenseNet201 96.88 30 97.07 32 97.92a 60

VGG16 96.81 11 96.92 14 97.74b 56

MobileNet 94.70 10 95.14 11 97.14c 40
aVGG16, RestNet50 and DenseNet201.
bDLEnsemble1.
CMobileNet and DenseNet201 ensemble.

3.4 Discussion

To tackle the LULC classification from satellite images problem we used three SL
approaches. The first SL approach consisted of optimizing a ConvNet architecture, and
resulted in a classifier that achieves a relatively good accuracy (94%) but that overfits
the data. This inability to generalize to unseen data can be due to its low expressive
power, which has led to an incapacity to capture the target function. Experiments with
the second approach (i.e. Transfer learning) helped us build classifiers that perform bet-
ter (accuracy-wise). They also demonstrated that when it comes to LULC classification,
models pretrained on the ImageNet dataset outperform the ones trained on the Places
dataset; in fact, VGG16 pretrained on ImageNet achieved 96.81% accuracy and 96.33%
when pretrained on Places. The third approach uses VGG16 and RestNet50 as feature
extractors, stores the features they extract from EuroSAT and trains several ML algo-
rithms on them. This last SL technique performed the poorest and some of the algorithms
it uses are expensive (time-wise). The one that trains the longest is SVM, and that is
due to the fact that the implementation we used is based on LIBSVM [6], which makes
“the fit time scale at least quadratically with the number of samples” [20]. Overall, the
SL classification technique that achieved the best results is Transfer learning. End to
end classifiers outperformed the ML approach in terms of accuracy and training time.
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Nonetheless, this last approach and as it can use white-box ML algorithms, has the
advantage of returning interpretable predictions.

To outperform the results the SL approach produced we propose the use of EL classi-
fiers (i.e. stacked generalization) (MLEnsembles, DLEnsembles and HybridEnsembles)
that combine the knowledge the SL models had gained. Overall, the findings suggest
that ensembles composed of DL classifiers perform best (accuracy-wise). This should
not come as a surprise since DL single learners achieve the highest accuracy among the
SL models we built. Similarly, and since they performed the worst as single classifiers,
ensembles of ML models also performed the poorest (accuracy-wise). All in all, the DL
and ML ensembles achieved an increase in accuracy of the SL classifiers we built.

Using SL techniques, we managed to build well-performing models. In the previous
Subsect. 3.3 we presented experiments that would answer our third RQ, which dealt
with the viability of EL as an alternative to fine tuning when it comes to improving the
performance of optimized models. However, these experiments showed once more the
high accuracy and high time-cost trade-off (see Table 7). In fact, the EL approach helped
the three SL classifiers increase their accuracy significantly; nonetheless, the cost of
building an EL classifier aggregates the cost of building each one of its members. Plus,
choosing the models to combine is a challenging task given that a model’s performance
is directly related to its context. On the other hand, the hyperparameter optimization
process has a lower time-cost, but results in smaller improvements.

4 Conclusion and Future Work

The purpose of this work was to use different ML techniques and the freely available
satellite data, to build LULC classification systems. In fact, we aimed at first optimiz-
ing, evaluating and comparing the performance of single ML/DL techniques. Second,
comparing their results to those of the EL classifiers we built using the stacked gener-
alization. Third, investigating the ability of EL and hyperparameter tuning to increase
the accuracy of single DL models. The experiments we conducted in this work helped
achieve these objectives and answer this work’s research questions:

• RQ1: Which one of the SL techniques (i.e. ConvNet, Transfer learning and
Feature extraction) performs the best on the EuroSAT dataset?

When it comes to SL techniques, the end to end classifiers (i.e. LULC-Net and Trans-
fer learning) perform the best (accuracy-wise). In fact, pretrained models achieved state
of art accuracy and trained fast (e.g. VGG16). This performance was mainly obtained
thanks to the hyperparameter optimization steps. On the other hand, single ML models
produced a lower accuracy, and took longer to train and optimize.

• RQ2:Does any of the proposedELcombinations outperform the best SLmodels?

Several insights can be drawn from the experiments we conducted to answer this
question. Firstly, ensembleswithDLbase learners (i.e.DLEnsembles andHybridEnsem-
bles) tend to have a higher accuracy than that of the ensembles that only have ML base
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learners (i.e. MLEnsembles). Moreover, the performance of a stacked generalization
ensemble increases if the base learners are diverse. Finally, these experiments also proved
that in terms of accuracy, the EL approach outperforms SL.

• RQ3: Is EL a better alternative to hyperparameter tuning when it comes to
increasing the accuracy of a well performing DL model?

Our results showed that EL increased the accuracy of single DL models more than
hyperparameter optimization.However, usingELpresents several challenges, such as the
high time-cost, and difficulty of choosing themembers of the ensemble. Hyperparameter
optimization on the hand had a lower time-cost, but only introduced a slight increase in
accuracy to the DL models.

Ongoing work aims at using the classifiers this work built to construct a Moroccan
LULC dataset, which to the best of our knowledge will be the first of its kind. Then, we
will use this newly constructed dataset, to develop Land use & Land cover monitoring
systems of Moroccan lands.

Appendix A - Comparison of the Performance of Our Models
on Moroccan LULC Images

We aim to use the models we built during this work to construct a Moroccan LULC
dataset. Indeed, we will choose one of these models to be used as an annotator of
Moroccan satellite images. Therefore, we decided to test these classifiers’ ability to
generalize to images of Moroccan regions. In this appendix we present the classification
results of the four classifiers (i.e. LULC-Net, VGG16,VGG16+LRandDLEnsemble1).
The nine images we tested our models on are of the city of Casablanca where Industrial,
Residential, Sea & Lake and highway classes are present, and of the North of Morocco
where classes such as Forest, Pasture, River and Annual Corp are present.

• LULC-Net

Image from: North
Classified as: Annual Corp 

       Image from: Casablanca-Sea 
           Classified as: Industrial 

             Image from: Casablanca 
              Classified as: Industrial 

Image from: Casablanca 
Classified as: Industrial 

             Image from: Casablanca 
              Classified as: Industrial 

                 Image from: North 
              Classified as: Industrial 

Image from: Casablanca 
Classified as: Industrial 

              Image from: North 
            Classified as: Industrial 

Image from: North 
            Classified as: Industrial 
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• VGG16

Image from: North
Classified as: Sea&Lake

         Image from: Casablanca-Sea 
              Classified as: Sea&Lake

           Image from: Casablanca 
         Classified as: Permanent crop

Image from: Casablanca 
Classified as: Industrial

           Image from: Casablanca 
              Classified as: Highway

                Image from: North 
             Classified as: Industrial 

Image from: Casablanca 
Classified as: Permanent Crop

               Image from: North 
            Classified as: Sea&Lake 

                Image from: North 
             Classified as: Sea&Lake 

• VGG16 + LR

Image from: North
Classified as: Herbaceous Vegetation

        Image from: Casablanca-Sea  
            Classified as: Residential

             Image from: Casablanca 
             Classified as: Sea&Lake

Image from: Casablanca
Classified as: Industrial

           Image from: Casablanca 
              Classified as: Industrial 

                Image from: North 
         Classified as: Herbaceous Vegetation 

Image from: Casablanca
Classified as: Industrial 

               Image from: North 
      Classified as: Herbaceous Vegetation 

                 Image from: North  
             Classified as: Residential  
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• DLEnsemble1

Image from: North
Classified as: Sea&Lake

        Image from: Casablanca-Sea  
            Classified as: Sea&Lake

            Image from: Casablanca 
          Classified as: Permanent crop

Image from: Casablanca
Classified as: Residential

           Image from: Casablanca 
              Classified as: Highway

                Image from: North 
             Classified as: Sea&Lake 

Image from: Casablanca
Classified as: Residential 

               Image from: North 
           Classified as: Sea&Lake 

                 Image from: North  
             Classified as: Annual crop  
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